

Appendix J South Brooklyn Marine Terminal Phase II Environmental Site Assessment Portions of Lots 1, 130, 136, 137, 155, Block 662, January 6, 2022

South Brooklyn Marine Terminal Phase II Environmental Site Assessment (ESA)

Portions of Lots 1, 130, 136, 137, and 155, Block 662 2nd Avenue **Brooklyn, New York 11232**

Tetra Tech Project #194-1247-0003 Revision 0 January 6, 2022

PREPARED FOR

PREPARED BY

Empire Offshore Wind LLC 120 Long Ridge Road, Suite 3EO1 Stamford, CT 06902

Tetra Tech, Inc. 6 Century Drive, Suite 300 tetratech.com Parsippany, NJ07054

P +1-973-639-8000

TABLE OF CONTENTS

1.0 IN	TRODUCTION	1-1
1.1		
1.1	·	
2.0 DE	SCRIPTION OF PHASE II ESI FIELD ACTIVITIES	2-1
2.1	Soil Boring Investigation	2-1
2.2	Groundwater Investigation	2-2
2.3	Soil Vapor Investigation	
3.0 DI	SCUSSION OF FINDINGS	3-1
3.1	Applicable Regulatory Standards	
3.2.	NYSDEC Soil Cleanup Objectives	
3.2.2	, ,	
3.2.3	•	
3.2	Findings for Soil Boring Investigation	
3.3	Findings for Groundwater Investigation	
3.4	Findings for Soil Vapor Intrusion Sampling	
3.5	Summary of Findings	
4.0 CC	NCLUSIONS AND RECOMENDATIONS	4-1
5.0 RF	FERENCES	5-1

LIST OF FIGURES

Figure 1 Site Location Map

Figure 2 Soil, Groundwater, Vapor and Air Sampling Locations

LIST OF TABLES

 Table 1
 Summary of Soil Sampling Results

Table 2 Summary of Groundwater Sampling ResultsTable 3 Summary of Soil Vapor Sampling Results

APPENDICES

Appendix A Soil Boring Logs

Appendix B Low flow data Sheets

Appendix C Laboratory Analytical Data Packages

1.0 INTRODUCTION

1.1 Purpose

Tetra Tech, Inc. (Tetra Tech), on behalf of Equinor Wind US LLC (Equinor), conducted a Phase II Environmental Site Assessment (ESA) for portions of the South Brooklyn Marine Terminal (SBMT) located at 2nd Avenue Brooklyn, New York (hereafter referred to as the "Site"). The Site occupies approximately 73.68 acres of land which is largely vacant and primarily consists of asphalt and concrete pavement, existing above-grade structures, railway spurs, and bulkheads. The Site is bounded by 2nd Avenue to the southeast, 39th Street to the southwest, a recycling facility and 29th Street to the northeast and the Gowanus Bay to the northwest. The approximate location of the Site is shown on Figure 1.

The Site is generally flat, and it slopes slightly to the northwest towards Gowanus Bay. The nearest surface water body is Gowanus Bay, which is adjacent to the northwestern portion of the Site. Groundwater was encountered between 5 to 10 feet of the ground surface and has some tidal influence.

Tetra Tech conducted this Phase II ESA to further evaluate the subsurface conditions at the Site and within in the vicinity of RECs and environmental concerns. Historical Phase I ESAs and Phase II ESIs have been performed and are summarized below. The Limited Phase II investigation included sampling and analytical analyses of the soil, groundwater, soil vapor, and ambient air at locations across the Site.

1.1 Previous Investigations

Based on a review of prior reports for the Site, environmental investigations have been completed for the SBMT since at least October 1997. In March 1998, two 550-gallon gasoline underground storage tanks (USTs), four 4,000-gallon gasoline USTs, one 4,000-gallon diesel UST, one 550-gallon waste oil UST, one 1,000-gallon above-ground storage tank (AST) of unknown contents, and one 550-gallon fuel AST were removed from the property. Since impacted soils were detected through post-excavation sampling around the tanks and associated pumps, two spill cases (No. 97-14188 and 97-14190) were opened by New York State Department of Environmental Conservation (NYSDEC) on March 23, 1998. No additional USTs were located during a 1998 geophysical investigation performed at eight portions of the Site following removal of the tanks (TRC 2004). Impacted soils surrounding the former UST area were excavated and transported off-Site for disposal. 13 groundwater monitoring wells were installed around the former tank area and quarterly groundwater sampling was completed by URS Corporation (URS) for various wells between August 2003 and March 2005. Once groundwater contaminant concentrations were measured below the NYSDEC Groundwater Quality Criteria, a request for spill closure was submitted and approved for both cases in May 2005.

An April 2004 investigation by TRC included the advancement of 12 soil borings throughout the Site that revealed the presence of petroleum-related volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOC)s, and metals in subsurface soils between 0 and 10.5 feet below ground surface (bgs). Petroleum-related impacts were observed in four shallow and two subsurface soil samples collected from four borings in the vicinity of the former ASTs (TRC 2004).

1-1

A Phase I Environmental Site Assessment was performed by AECOM for the Site in May 2018. AECOM documented that due to the potential for orphan USTs and presence historic urban fill, subsurface contamination may exist at the SBMT. A brass cap within a concrete pad was observed behind the two temporary structures associated with the auto maintenance facility near 37th Street and Second Avenue. The Phase I report also recognized the history of reported spills and removal of the former USTs in 1999. It was suspected that four former 160,000-gallon ASTs existed in in the location of the "N Shed" along the 39th Street Pier. Based on a review of historic aerial photographs, it was estimated that these tanks were active between 1940 and 1953. However, information regarding the decommissioning of the tanks and any impacted soil removal was not available (AECOM 2018).

AECOM also completed a Phase II Limited Site Investigation at SBMT in October 2018 that included the advancement of 15 soil borings to a maximum depth of 20 feet, collection of groundwater grab samples from eight borings, and an inspection of an underground vault located near the New York Department of Transportation (DOT) building in the northeast portion of the Site. Elevated SVOCs concentrations were detected above the New York State Department of Environmental Conservation's (NYSDEC) soil cleanup objectives (SCOs) for Unrestricted, Residential, and Commercial Use in eight borings at the Site, but primarily in the location of the former ASTs within the "N Shed". PCBs were also detected above the commercial SCOs in the vicinity of the DOT building. No VOCs were detected in any soil samples above the Unrestricted SCOs. SVOCs above the New York Technical and Operational Guidance Series (TOGS) 1.1.1 standards were detected in only one groundwater sample from a boring near the 39th Street parking lot.

A subsurface investigation was completed by TRC in July 2019 throughout the Site that included a geophysical survey, advancement of 20 soil borings, installation of eight temporary wells, and installation of eight soil vapor sample locations. The geophysical survey identified an additional UST in the southwestern portion of the Site near 39th Street. Information regarding the four former 160,000-gallon ASTs was not provided in this investigation report. According to the TRC Phase II Investigation Report, the following contaminants were identified for on-Site soils:

- Select VOCs were detected over the Unrestricted Use SCO and Commissioner's Policy Table 2 and/or Table 3 SCLs, but below the Restricted Residential Use, Restricted Commercial Use, and Restricted Industrial Use SCOs;
- Select SVOCs and metals were detected above the Unrestricted Use, Restricted Residential Use, Commercial Use, and Industrial Use SCOs;
- Total PCBs were detected in one sample at a concentration above the Unrestricted Use SCO, but below the Restricted Residential Use, Commercial Use, and Industrial Use SCOs; and,
- Select pesticides were detected over the Unrestricted Use SCOs but below the Restricted Residential Use, Commercial Use, and Industrial Use SCOs.
- Impacts to adjacent subsurface materials were not observed downgradient of the UST.

2.0 DESCRIPTION OF PHASE II ESI FIELD ACTIVITIES

Tetra Tech completed a Phase II ESA between November 16 and December 9, 2021. The completed Phase II ESA field activities focused primarily on evaluating potential subsurface contamination identified from previous investigations. All sample locations are shown on Figure 2.

The Phase II ESA consisted of the following activities:

- The completion of a geophysical survey at each sample location,
- The completion of 40 soil borings to a depth of approximately 10 feet bgs,
- The installation of 11 temporary monitoring wells in the water table aquifer to depths of 6 to 10 feet bgs and collection of groundwater samples from the temporary monitoring wells,
- The collection of soil vapor samples from 13 locations below ground cover (concrete slabs, asphalt, etc.) but above the water table,
- The collection of one ambient air sampling from the Site, and
- Analytical analyses for parameters of environmental concern by a New York certified environmental laboratory.

2.1 Soil Boring Investigation

Tetra Tech completed a total of 40 soil borings at the Site between November 18 through December 6, 2021. The soil boring locations were chosen to further evaluate the subsurface conditions at the Site and within in the vicinity of RECs and environmental concerns as noted in Section 2.0 of this Report. The soil boring locations are shown on Figure 2.

Aquifer Drilling and Testing (ADT), a subsidiary of Cascade Environmental, of Mineola, NY was retained as a subcontractor by Tetra Tech for drilling services. Soil borings were completed using direct push drilling methods (i.e., Geoprobe™), utilizing a track-mounted direct drive rig. The top five feet of each boring were hand cleared using either hand auger or a Utilivac and air knife. From five feet bgs to completion, a continuous soil core was collected from ground surface to boring completion depth with a macro-core sampler lined by acetate sleeves. A description of the soils retained in each sample core was logged, according to the Universal Soil Classification System (USCS), by Tetra Tech's field personnel, and the soils were screened in the field for the presence of VOCs with a photoionization detector (PID). Upon completion, the borings were backfilled to near grade-surface with soil cuttings. Soil boring logs, including the PID readings are provided in Appendix A.

One soil sample from each boring was collected for laboratory analysis, from the two-foot interval exhibiting the greatest evidence of impact (e.g., elevated PID readings, odors, or staining). If no evidence of impacts was observed during soil boring advancement, a soil sample was collected from the interval immediately above the groundwater table.

Soil samples for off-site laboratory analysis were transferred to certified-clean containers provided by the laboratory by personnel wearing clean, disposable nitrile gloves. The soil fraction for TCL VOCs was collected using an En Core® sampler before removing the soil from the core tube. Collected soils were then placed into a clean, disposable aluminum tin using a disposable plastic trowel, and mixed together to ensure a homogeneous sample representative of the sampling interval. The remaining analytical fractions were then transferred into the appropriate glass jars, labeled, recorded on a chain-of-custody, and placed into an ice-chilled cooler pending transport to the analytical laboratory. Samples for PFAS analysis were collected using NYSDEC PFAS protocols.

The soil samples were analyzed by an off-site laboratory certified under the New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) using a standard 10-day turn-around-time. The soil samples were analyzed for the following:

- Target Compound List (TCL) VOCs using USEPA Method 8260;
- TCL semi-volatile organic compounds SVOCs using USEPA Method 8270;
- Polychlorinated biphenyls (PCBs) using USEPA Method 8082;
- TCL pesticides and herbicides using USEPA Methods 8081 and 8151, respectively;
- Target Analyte List (TAL) metals using USEPA Methods 6010 and 7471;
- Total cyanide by USEPA Method 9014;
- 1,4-dioxane by USEPA Method 8270 SIM, and;
- Per- and polyfluoroalkyl substances (PFAS) by USEPA Method 537.1.

2.2 Groundwater Investigation

A total of eleven temporary monitoring wells were installed at depths of 6 to 10 feet bgs. Groundwater samples were collected from eleven temporary well locations via low-flow purge by peristaltic pump. Groundwater samples were collected on December 6 and 7, 2021 at the Site. The groundwater samples were field screened for evidence of contamination. Low flow data sheets are provided in Appendix B. As noted on the data sheets, field indications of contamination (sheen observed in purge water bucket) were generally limited to temporary monitoring wells TT-SB-12GW and TT-SB-27GW. Groundwater sample locations are shown on Figure 2.

Due to the undeveloped nature of the temporary wells, only an initial and end reading was recorded on the purge log forms. A sample was collected once the readings began to stabilize (primarily turbidity). Readings were measured via a Horiba U-52 and a LaMotte Turbidity meter and samples were collected

using a peristaltic pump. The groundwater samples were collected and containerized in accordance with NYSDEC protocols. The sample containers were properly labeled and placed in a cooler for transport to Chemtech Laboratories. Standard chain-of-custody procedures were followed.

The ground water sample were submitted to a New York State Department of Health (NYSDOH) approved laboratory for the following analyses:

- VOCs by USEPA Method 8260;
- Per- and poly-fluoroalkyl (PFAS) compounds by Method 537.1 (21 Compound List);
- SVOCs by USEPA Method 8270;
- Pesticides by USEPA Method 8081A;
- PCBs by USEPA Method 8082;
- Herbicides by USEPA Method 8151;
- Total Metals (total and dissolved metals);
- 1,4-dioxane by USEPA Method 8270 SIM, and;

2.3 Soil Vapor Investigation

Tetra Tech completed a soil vapor investigation at various locations throughout the Site. These locations were selected to evaluate subsurface soil and soil vapor conditions for the presence of VOCs throughout the Site. One ambient air sample was also collected concurrent with the soil vapor samples to compare with the results of the soil vapor samples to assist in evaluating whether the compounds detected are airborne related verses contaminants detected below grade. Tetra Tech installed thirteen soil vapor sampling points in asphalt paved areas and inside two of the warehouses. Of the fourteen planned locations, only thirteen were sampled due to a high-water table at TT-SB-26SV. The soil vapor sample locations and the ambient air sample location are shown in Figure 2.

The soil vapor points were installed using direct push methods with a 4-inch diameter stainless steel screen to the target depth. This depth was approximately 1 to 2 feet above the groundwater, so the depths of the points ranged from 3 to 6 feet bgs, but were typically 5 feet bgs. The void around the screen was filled with #1 Morie sand and the upper portion sealed to the slab or asphalt using bentonite. The soil vapor and ambient air samples were collected in accordance with applicable NYSDEC protocols and the NYSDOH Soil Vapor Intrusion Guidance Document utilizing six-liter Summa Cannisters and an eighthour sampling interval flow controller with a gauge and Swagelok® connection. Start and end pressures (vacuum) were recorded, and the flow controller gauges were monitored, and the valves closed before the canisters reached neutral or positive pressure. The sample containers were properly labeled and placed in a shipping box for transport to SGS. Standard chain-of-custody procedures were followed, and

the samples were analyzed for the TO-15 suite of VOCs. The samples were analyzed for a suite of approximately 68 VOCs utilizing United States Environmental Protection Agency (USEPA) method TO-15.

3.0 DISCUSSION OF FINDINGS

This section presents a discussion of the findings of the sampling activities described above. Summaries of the detected compounds in the soil, groundwater, soil vapor, and ambient air samples collected during the Phase II ESA are presented in Tables 1 through 3. The complete laboratory analytical data packages are included in Appendix C.

3.1 Applicable Regulatory Standards

The regulatory standards and guidelines of the NYSDEC and NYSDOH were used to evaluate the results of the soil and groundwater analyses, as described below.

3.2.1 NYSDEC Soil Cleanup Objectives

Analytical results for soil samples were compared to the NYSDEC Industrial Use with Protection of Groundwater Overlay SCOs (6 NYCCR Tables 375-6.8(a) and (b). Comparison of analytical results and regulatory standards evaluated whether the concentration of each analyzed substance exceeded the SCO as specified by the NYSDEC. According to the NYSDEC Soil Cleanup Guidance, soil concentrations that are higher than the SCOs are not necessarily a health or environmental concern. When an SCO is exceeded, the degree of public health or environmental concern depends on several factors, including the magnitude of the exceedance, the accuracy of the exposure estimates, other sources of exposure to the contaminant, and the strength and quality of the available toxicological information on the contaminant.

3.2.2 NYSDEC Ambient Water Quality Standards and Guidance Values

Analytical results for groundwater samples were compared to the NYSDEC Ambient Water Quality Standards and Guidance Values. The standards and guidance values are ambient water quality values that were developed in order to protect New York's waters by the NYSDEC according to the authority of the Environmental Conservation Law and 6 NYCCR Parts 700-706, Water Quality Regulations. Regulatory values used for comparisons are found in Table 1 of the NYSDEC Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values, issued June 1998. Comparison of analytical results and regulatory standards evaluated whether the concentration of each analyzed substance exceeded the statewide standard or guidance value as specified by the NYSDEC.

3.2.3 NYDOH Soil Vapor Intrusion Guidance

Analytical results for the soil vapor samples were evaluated in accordance with the NYSDEC Guidance Document DER-10, the New York State Department of Health Guidance for Evaluation Soil Vapor Intrusion in the State of New York dated October 2006, as amended (Soil Vapor Intrusion Guidance Document).

3.2 Soil Boring Investigation Results

The soil boring investigation included screening in the field for indications of contamination, and analytical analyses of approximately 42 soil samples (including two duplicates) at 40 soil boring locations. Table 1 presents the soil data and identifies the constituents that exceeded the applicable SCO. Laboratory analytical data packages are provided in Appendix C.

No PCBs were detected in soil samples collected during the Phase II ESA. Ten VOCs, pesticides/herbicides, , metals and total cyanide were detected in samples across the Site, although not at concentrations that exceeded Industrial Use SCOs. 1,4-dioxane and PFAS were detected in one and four samples, respectively. Two SVOCs, benzo(a)pyrene and dibenzo(a,h)anthracene, were detected above Industrial Use SCOs in seven soil boring locations and eight soil samples (including 1 duplicate sample). These constituents were detected in sample locations TT-SB-05, TT-SB-07, TT-SB-12, TT-SB-13, , TT-SB-38, TT-SB-39, TT-SB-40, and S-DUP-02 (collected at TT-SB-24).

The results of the comparison of soil sample results to Industrial Use SCOs are as follows:

- Benzo(a)pyrene was detected in 33 of 42 samples, ranging from 22.9 to 9,330 ug/kg, and exceeded the NYSDEC Industrial Use SCO in eight (8) samples.
- Dibenzo(a,h)anthracene was detected in 24 of 42 samples, ranging from 19.2 to 1,530 ug/kg, and exceeded the NYSDEC Industrial Use SCO in one (1) sample.

3.3 Groundwater Investigation Results

The groundwater investigation included low-flow sampling from 11 temporary monitoring wells installed at the Site. Table 2 presents the groundwater data and identifies the constituents that exceeded the applicable NYSDEC Ambient Water Quality Standards and Guidance Values, and the complete analytical laboratory data packages are presented in Appendix C.

No pesticides/herbicides, or PCBS were detected in groundwater. One VOC (benzene) was detected, but not at concentrations above the NYSDEC Ambient Water Quality Standards and Guidance Values. 1,4 dioxane and PFAS were detected at several groundwater samples. SVOCs were detected in seven groundwater samples, and five SVOCs were detected at concentrations above the NYSDEC Ambient Water Quality Standards and Guidance Values at three locations. The SVOCs exceeding standards included benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. These SVOCs were detected above standards in sample locations TT-SB-13GW, TT-SB-30GW, and TT-SB-31GW. Metals were detected in all analyzed groundwater samples. Excluding commonly occurring metals such as aluminum, iron, calcium, sodium, and magnesium, six metals were detected at concentrations above the NYSDEC Ambient Water Quality Standards and Guidance Values at six locations. The metals exceeding standards included antimony, arsenic, beryllium, chromium, manganese, and nickel. These metals were detected above standards in sample locations TT-SB-02GW, TT-SB-06GW, TT-SB-20GW, TT-SB-23GW, TT-SB-27GW, and TT-SB-30GW.

The results of the comparison of groundwater sample results to NYSDEC Ambient Water Quality Standards and Guidance Values are as follows:

- Benzo(a)anthracene was detected in 2 of 12 samples, ranging from 0.47 to 0.76 ug/L, and exceeded its NYSDEC Ambient Water Quality Standards and Guidance Values in both samples.
- Benzo(b)fluoranthene was detected in 2 of 12 samples, ranging from 0.61 to 0.9 ug/L, and exceeded its NYSDEC Ambient Water Quality Standards and Guidance Values in both samples.
- Benzo(k)fluoranthene was detected in 2 of 12 samples, ranging from 0.21 to 0.38 ug/L, and exceeded its NYSDEC Ambient Water Quality Standards and Guidance Values in both samples.
- Chrysene was detected in 2 of 12 samples, ranging from 0.37 to 0.64 ug/L, and exceeded its NYSDEC Ambient Water Quality Standards and Guidance Values in both samples.
- Indeno(1,2,3-cd)Pyrene was detected in 3 of 12 samples, ranging from 0.57 to 1.1 ug/L, and exceeded its NYSDEC Ambient Water Quality Standards and Guidance Values in all three (3) samples.
- Antimony was detected in one sample, at a concentration of 6.2 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values.
- Arsenic was detected in 9 of 11 samples, ranging from 3.1 to 66.6 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values at one location.
- Beryllium was detected in 5 of 11 samples, ranging from 1.1 to 7.1 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values at one location.
- Chromium was detected in 4 of 11 samples, ranging from 11.7 to 140 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values at one location.
- Manganese was detected in all 11 samples, ranging from 20.5 to 10,700 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values at six (6) locations.
- Nickel was detected in 5 of 11 samples, ranging from 11.2 to 206 ug/L, exceeding its NYSDEC Ambient Water Quality Standards and Guidance Values at one location.

3.4 Findings for Soil Vapor Intrusion Sampling

A total of 68 VOCs were analyzed for the TO-15 suite of parameters. Of those 68 analyzed VOCs, 46 were detected at 13 of the soil vapor sample locations. Results of the detected VOCs are shown in Table 3. All the soil vapor samples were collected in outdoor locations or within open air decommissioned warehouses. Therefore, none of the samples were compared to indoor air quality screening values.

There were several VOCs that were detected above ambient air concentrations at multiple locations:

- Benzene was detected at concentrations ranging from 0.7 to 45.4 ug/m³,
- Cyclohexane was detected at concentrations ranging from 0.27 to 372 ug/m³,
- Ethylbenzene was detected at concentrations ranging from 0.42 to 2.9 ug/m³,
- Heptane was detected at concentrations ranging from 0.49 to 422 ug/m³,
- Hexane was detected at concentrations ranging from 0.49 to 206 ug/m³,
- Methyl ethyl ketone was detected at concentrations ranging from 0.41 to 121 ug/m³,
- Toluene was detected at concentrations ranging from 1.5 to 51.6 ug/m³, and
- Xylenes (total) was detected at concentrations ranging from 0.91 to 136 ug/m³.

One ambient air sample was collected as part of the sampling event. There were 17 VOCs that were detected in the ambient air sample.

3.5 Summary of Findings

Tetra Tech performed a Phase II ESA consisting of a limited geophysical survey; the completion of 40 soil borings, installation of 11 temporary monitoring wells and 13 soil vapor intrusion sampling points, and sampling of the soil, groundwater, soil vapor and ambient air for parameters of environmental concern. The results of the Phase II ESI are as follows:

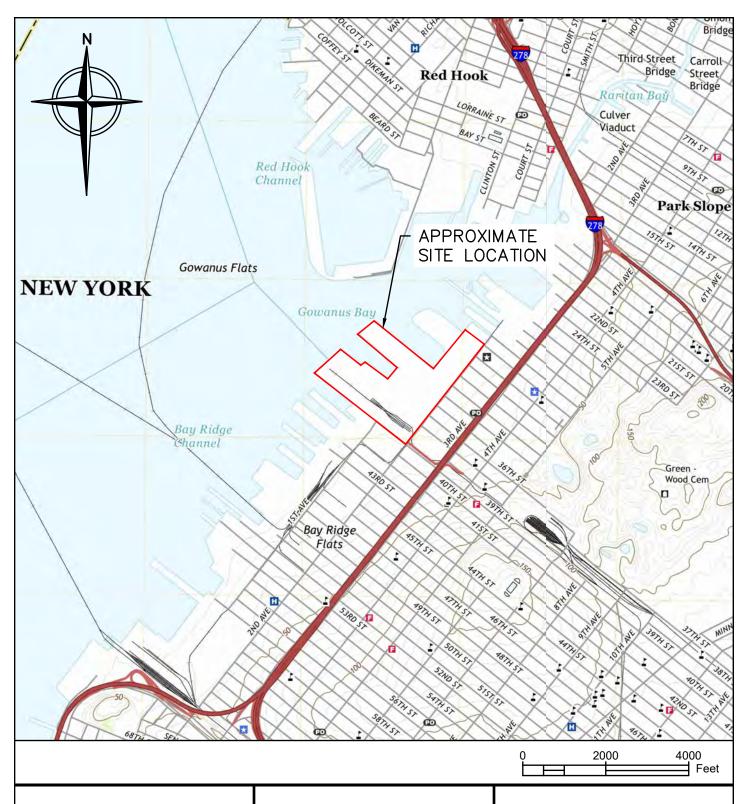
- No PCBs were detected in soil samples collected during the Phase II ESA. Ten VOCs, pesticides/herbicides, , metals and total cyanide were detected in samples across the Site, although not at concentrations that exceeded Industrial Use SCOs. 1,4-dioxane and PFAS were detected in one and four samples, respectively. Two SVOCs, benzo(a)pyrene and dibenzo(a,h)anthracene, were detected above Industrial Use SCOs in seven soil boring locations and eight soil samples (including 1 duplicate sample). These constituents were detected in sample locations TT-SB-05, TT-SB-07, TT-SB-12, TT-SB-13, , TT-SB-38, TT-SB-39, TT-SB-40, and S-DUP-02 (collected at TT-SB-24).
- No pesticides/herbicides, or PCBS were detected in groundwater. One VOC (benzene) was
 detected, but not at concentrations above the NYSDEC Ambient Water Quality Standards and
 Guidance Values. 1,4 dioxane and PFAS were detected at several groundwater samples. SVOCs
 were detected in seven groundwater samples, and five SVOCs were detected at concentrations

above the NYSDEC Ambient Water Quality Standards and Guidance Values at three locations. The SVOCs exceeding standards included benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. These SVOCs were detected above standards in sample locations TT-SB-13GW, TT-SB-30GW, and TT-SB-31GW. Metals were detected in all analyzed groundwater samples. Excluding commonly occurring metals such as aluminum, iron, calcium, sodium, and magnesium, six metals were detected at concentrations above the NYSDEC Ambient Water Quality Standards and Guidance Values at six locations. The metals exceeding standards included antimony, arsenic, beryllium, chromium, manganese, and nickel. These metals were detected above standards in sample locations TT-SB-02GW, TT-SB-06GW, TT-SB-23GW, TT-SB-27GW, and TT-SB-30GW.

 The soil vapor intrusion investigation indicated that 46 of the 68 analyzed VOCs were detected at 13 of the soil vapor intrusion sample locations. VOCs that were detected at elevated concentrations included benzene, cyclohexane, ethylbenzene, heptane, hexane, methyl ethyl ketone, toluene, and xylenes (total).

4.0 CONCLUSIONS AND RECOMENDATIONS

Based on the results of Tetra Tech's Phase II ESA, Tetra Tech concludes that there are exceedances of the applicable regulatory standards for VOCs, SVOCs, and metals in Site soils, groundwater, and soil vapor. Therefore, this site should be considered for entry into the New York Brownfield Cleanup Program.


5.0 REFERENCES

- AECOM, 2018 Phase I Environmental Site Assessment, South Brooklyn Marine Terminal, Second Avenue between 33rd and 39th Streets, Brooklyn, New York.
- AECOM, 2018, Phase II Limited Site Investigation Results Report, South Brooklyn Marine Terminal.
- AECOM, 2018, Subsurface Exploration Report, 269 37th Street, Brooklyn, New York.
- TRC Companies, 2019, Phase II Environmental Site Investigation (ESI) Summary Report, NYCEDC South Brooklyn Marine Terminal.
- TRC Companies, 2004, Supplemental Site Investigation Report, South Brooklyn Marine Terminal, Brooklyn, New York.
- New York State Department of Environmental Conservation (DEC): CP-51/Soil Cleanup Guidance. October 21, 2010. (https://www.dec.ny.gov/docs/remediation hudson pdf/cpsoil.pdf)
- New York State Department of Environmental Conservation (DEC): DER-10 Technical Guidance for Site investigation and Remediation. May 3, 2010. (http://www.dec.ny.gov/regulations/67386.html).
- New York State Department of Health (NYSDOH): Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006, updated August 2015 and September 2013 (https://www.health.ny.gov/environmental/investigations/soil gas/svi guidance/).

5-1

FIGURES

TETRA TECH, INC. 6 CENTURY DRIVE, SUITE 3 PARSIPPANY, NJ 07054 (973) 630-8000 FIGURE 1 - SITE LOCATION MAP

SOUTH BROOKLYN MARINE TERMINAL 2ND AVENUE BROOKLYN, NY 11232

EQUINOR WIND US LLC 120 LONG RIDGE ROAD, SUITE 3EO1 STAMFORD, CT 06902

Tables

	i e		1						1	
Soil Boring Location	NY SCO -	NY SCO -	TT-SB-01	TT-SB-02	TT-SB-03	TT-SB-04	TT-SB-05	S DUP-01	TT-SB-06	TT-SB-07
Sample Depth in feet bgs	Commercial	Industrial	5.5-6.0	7.0-9.0	7.0-9.0	7.5-9.5	6.5-8.5		5.0-7.0	6.0-8.0
Sampling Date	W/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/18/2021	11/18/2021	11/19/2021	11/19/2021	11/19/2021	11/19/2021	11/22/2021	11/22/2021
Volatile Organic Compounds (ug/kg)							<u> </u>			
Acetone	500000	1000000	ND (4.1)	ND (4.6)	ND (4.0)	5.5 J	18.8	20.7	10.2	8.9 J
Benzene	44000	89000	ND (0.46)	ND (0.51)	ND (0.44)	ND (0.42)	ND (0.49)	ND (0.42)	ND (0.39)	3.8
Bromochloromethane	-	-	ND (0.56)	ND (0.63)	ND (0.54)	ND (0.52)	ND (0.60)	ND (0.52)	ND (0.48)	ND (0.60)
Bromodichloromethane	-	-	ND (0.43)	ND (0.48)	ND (0.41)	ND (0.40)	ND (0.46)	ND (0.40)	ND (0.37)	ND (0.46)
Bromoform	-	-	ND (1.4) ^a	ND (1.5) ^a	ND (1.3) ^a	ND (1.3)	ND (1.5)	ND (1.3)	ND (1.2)	ND (1.4)
Bromomethane	-	-	ND (0.76)	ND (0.85)	ND (0.73)	ND (0.71) a	ND (0.82)	ND (0.71)	ND (0.65)	ND (0.81)
2-Butanone (MEK)	500000	1000000	ND (2.4)	ND (2.7)	ND (2.3)	ND (2.3)	ND (2.6)	ND (2.3)	ND (2.1)	ND (2.6)
Carbon disulfide	-	-	ND (0.54)	ND (0.60)	ND (0.51)	ND (0.50)	0.76 J	1.2 J	ND (0.46)	0.68 J
Carbon tetrachloride	22000	44000	ND (0.62)	ND (0.69)	ND (0.59)	ND (0.57)	ND (0.66)	ND (0.58)	ND (0.53)	ND (0.66)
Chlorobenzene	500000	1000000	ND (0.46)	ND (0.51)	ND (0.44)	ND (0.43)	ND (0.49)	ND (0.43)	ND (0.39)	ND (0.49)
Chloroethane	-	-	ND (0.59)	ND (0.66)	ND (0.57)	ND (0.55)	ND (0.63) a	ND (0.55) a	ND (0.51) a	ND (0.63) a
Chloroform	350000	700000	ND (0.52)	ND (0.58)	ND (0.50)	ND (0.48)	ND (0.56)	ND (0.48)	ND (0.44)	ND (0.55)
Chloromethane	-	-	ND (2.0)	ND (2.2)	ND (1.9)	ND (1.8)	ND (2.1)	ND (1.8)	ND (1.7)	ND (2.1)
Cyclohexane	-	-	ND (0.66)	ND (0.73)	ND (0.63)	ND (0.61)	ND (0.70)	ND (0.61)	ND (0.56)	ND (0.70)
1,2-Dibromo-3-chloropropane	-	-	ND (0.69)	ND (0.78)	ND (0.66)	ND (0.64)	ND (0.74)	ND (0.65)	ND (0.59)	ND (0.74)
Dibromochloromethane	-	-	ND (0.56)	ND (0.63)	ND (0.54)	ND (0.52)	ND (0.60)	ND (0.52)	ND (0.48)	ND (0.60)
1,2-Dibromoethane	-	-	ND (0.42)	ND (0.47)	ND (0.40)	ND (0.39)	ND (0.45)	ND (0.39)	ND (0.36)	ND (0.45)
1,2-Dichlorobenzene	500000	1000000	ND (0.55)	ND (0.61)	ND (0.52)	ND (0.51)	ND (0.59) b	ND (0.51) b	ND (0.47) b	ND (0.58) b
1,3-Dichlorobenzene	280000	560000	ND (0.50)	ND (0.55)	ND (0.47)	ND (0.46)	ND (0.53) b	ND (0.46) b	ND (0.42) b	ND (0.53) b
1,4-Dichlorobenzene	130000	250000	ND (0.49)	ND (0.55)	ND (0.47)	ND (0.46)	ND (0.53)	ND (0.46)	ND (0.42)	ND (0.53)
Dichlorodifluoromethane	-	-	ND (0.73)	ND (0.81)	ND (0.70)	ND (0.67)	ND (0.78)	ND (0.68)	ND (0.62)	ND (0.77)
1,1-Dichloroethane	240000	480000	ND (0.50)	ND (0.55)	ND (0.47)	ND (0.46)	ND (0.53)	ND (0.46)	ND (0.42)	ND (0.53)
1,2-Dichloroethane	30000	60000	ND (0.47)	ND (0.53)	ND (0.45)	ND (0.44)	ND (0.50)	ND (0.44)	ND (0.40)	ND (0.50)
1,1-Dichloroethene	500000	1000000	ND (0.66)	ND (0.73)	ND (0.63)	ND (0.61)	ND (0.70)	ND (0.61)	ND (0.56)	ND (0.70)
cis-1,2-Dichloroethene	500000	1000000	ND (0.84)	ND (0.94)	ND (0.80)	ND (0.78)	ND (0.90)	ND (0.78)	ND (0.72)	ND (0.89)
trans-1,2-Dichloroethene	500000	1000000	ND (0.61)	ND (0.68)	ND (0.58)	ND (0.57)	ND (0.66)	ND (0.57)	ND (0.52)	ND (0.65)
1,2-Dichloropropane	-	-	ND (0.47)	ND (0.53)	ND (0.45)	ND (0.44)	ND (0.51)	ND (0.44)	ND (0.41)	ND (0.50)
cis-1,3-Dichloropropene	-	-	ND (0.48)	ND (0.53)	ND (0.45)	ND (0.44)	ND (0.51)	ND (0.44)	ND (0.41)	ND (0.51)
trans-1,3-Dichloropropene	-	-	ND (0.46)	ND (0.51)	ND (0.44)	ND (0.42)	ND (0.49)	ND (0.43)	ND (0.39)	ND (0.49)
Ethylbenzene	390000	780000	ND (0.45)	ND (0.51)	ND (0.43)	ND (0.42)	ND (0.49)	ND (0.42)	ND (0.39)	ND (0.48)
Freon 113	-	-	ND (2.7)	ND (3.0)	ND (2.6)	ND (2.5)	ND (2.9)	ND (2.5)	ND (2.3)	ND (2.8)
2-Hexanone	-	-	ND (2.1)	ND (2.4)	ND (2.0)	ND (2.0)	ND (2.3)	ND (2.0)	ND (1.8)	ND (2.3)
Isopropylbenzene	-	-	ND (1.4)	ND (1.6)	ND (1.4)	ND (1.3)	ND (1.5)	ND (1.3)	ND (1.2)	ND (1.5)
Methyl Acetate Methylcyclohexane	-	-	ND (1.4) ND (0.88)	ND (1.6) ND (0.98)	ND (1.3) ND (0.84)	ND (1.3)	ND (1.5)	ND (1.3)	ND (1.2)	ND (1.5)
Methyl Tert Butyl Ether	500000	1000000	ND (0.88) ND (0.47)	ND (0.98) ND (0.52)	ND (0.84) ND (0.45)	ND (0.81)	ND (0.94)	ND (0.82)	ND (0.75)	ND (0.93)
4-Methyl-2-pentanone(MIBK)	500000	1000000	ND (0.47)	ND (0.52)	ND (0.43)	ND (0.43) ND (2.1)	ND (0.50) ND (2.4)	ND (0.44) ND (2.1)	ND (0.40) ND (1.9)	ND (0.50) ND (2.4)
Methylene chloride	500000	1000000	ND (2.6)	ND (2.9)	ND (2.5)	ND (2.1) ND (2.4)	ND (2.4) ND (2.8)	ND (2.1) ND (2.4)	ND (1.9) ND (2.2)	ND (2.4) ND (2.8)
Styrene	-	-	ND (0.40)	ND (0.45)	ND (0.38)	ND (2.4)	ND (2.8)	ND (2.4)	ND (2.2) ND (0.34)	ND (2.8) ND (0.43)
1.1.2.2-Tetrachloroethane	-	-	ND (0.60)	ND (0.43)	ND (0.57)	ND (0.56)	ND (0.43)	ND (0.56)	ND (0.54)	ND (0.43)
Tetrachloroethene	150000	300000	ND (0.58)	ND (0.65)	ND (0.56)	ND (0.54)	ND (0.62)	ND (0.54)	ND (0.51)	ND (0.62)
Toluene	500000	1000000	ND (0.53)	ND (0.59)	ND (0.50)	ND (0.49)	ND (0.56)	ND (0.49)	ND (0.45)	1.5
1,2,3-Trichlorobenzene	-	-	ND (2.5)	ND (2.8)	ND (2.4)	ND (2.3)	ND (2.7)	ND (2.3)	ND (2.1)	ND (2.7)
1,2,4-Trichlorobenzene	-	-	ND (2.5)	ND (2.8)	ND (2.4)	ND (2.3)	ND (2.7)	ND (2.3)	ND (2.1)	ND (2.7)
1,1,1-Trichloroethane	500000	1000000	ND (0.48)	ND (0.54)	ND (0.46)	ND (0.45)	ND (0.52)	ND (0.45)	ND (0.41)	ND (0.51)
1,1,2-Trichloroethane	-	-	ND (0.55)	ND (0.62)	ND (0.53)	ND (0.51)	ND (0.59)	ND (0.52)	ND (0.47)	ND (0.59)
Trichloroethene	200000	400000	ND (0.76)	ND (0.85)	ND (0.73)	ND (0.71)	ND (0.82)	ND (0.71)	ND (0.65)	ND (0.81)
Trichlorofluoromethane	-	-	ND (0.68)	ND (0.76)	ND (0.65)	ND (0.63)	ND (0.73) °	ND (0.64) °	ND (0.59) °	ND (0.73) °
Vinyl chloride	13000	27000	ND (0.48)	ND (0.54)	ND (0.46)	ND (0.45)	ND (0.52)	ND (0.45)	ND (0.41)	ND (0.51)
m,p-Xylene	-	-	ND (0.90)	ND (1.0)	ND (0.86)	ND (0.83)	ND (0.96)	ND (0.84)	ND (0.77)	ND (0.95)
o-Xylene	-	-	ND (0.46)	ND (0.51)	ND (0.44)	ND (0.42)	ND (0.49)	0.51 J	ND (0.39)	ND (0.49)
Xylene (total)	500000	1000000	ND (0.46)	ND (0.51)	ND (0.44)	ND (0.42)	ND (0.49)	0.51 J	ND (0.39)	ND (0.49)

Soil Boring Location		NY SCO -	TT-SB-01	TT-SB-02	TT-SB-03	TT-SB-04	TT-SB-05	S DUP-01	TT-SB-06	TT-SB-07
Sample Depth in feet bgs	Commercial	Industrial	5.5-6.0	7.0-9.0	7.0-9.0	7.5-9.5	6.5-8.5		5.0-7.0	6.0-8.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/18/2021	11/18/2021	11/19/2021	11/19/2021	11/19/2021	11/19/2021	11/22/2021	11/22/2021
PFAS Compounds (ug/kg)										
Perfluorobutanoic acid	-	-	ND (0.43)	ND (0.41)	ND (0.40)	ND (0.39)	ND (0.49)	ND (0.44)	ND (0.40)	ND (0.42)
Perfluoropentanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorohexanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluoroheptanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorooctanoic acid Perfluorononanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorodecanoic acid	-	-	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.25) ND (0.25)	ND (0.32) ND (0.32)	ND (0.29) ND (0.29)	ND (0.27) ND (0.27)	ND (0.28) ND (0.28)
Perfluoroundecanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorododecanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorotridecanoic acid	-	-	ND (0.30)	ND (0.29)	ND (0.28)	ND (0.27)	ND (0.34)	ND (0.31)	ND (0.28)	ND (0.29)
Perfluorotetradecanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorobutanesulfonic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorohexanesulfonic acid Perfluoroheptanesulfonic acid	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Perfluorooctanesulfonic acid	-	-	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.25) ND (0.25)	ND (0.32) ND (0.32)	ND (0.29) ND (0.29)	ND (0.27) ND (0.27)	ND (0.28) ND (0.28)
Perfluorodecanesulfonic acid	-	_	ND (0.28)	ND (0.27) ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32) ND (0.32)	ND (0.29)	ND (0.27) ND (0.27)	ND (0.28)
PFOSA	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
MeFOSAA	-	-	ND (0.56)	ND (0.54)	ND (0.53)	ND (0.51)	ND (0.64)	ND (0.58)	ND (0.53)	ND (0.55)
EtFOSAA	-	-	ND (0.56)	ND (0.54)	ND (0.53)	ND (0.51)	ND (0.64)	ND (0.58)	ND (0.53)	ND (0.55)
6:2 Fluorotelomer sulfonate	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
8:2 Fluorotelomer sulfonate	-	-	ND (0.28)	ND (0.27)	ND (0.26)	ND (0.25)	ND (0.32)	ND (0.29)	ND (0.27)	ND (0.28)
Semi Volatile Organic Compounds (ug/kg)			ND (40)	ND (40)	ND (47)	ND (47)	ND (04)	ND (40)	ND (40)	ND (40)
2-Chlorophenol 4-Chloro-3-methyl phenol	-	-	ND (18) ND (22)	ND (18) ND (22)	ND (17) ND (21)	ND (17) ND (21)	ND (21) ND (26)	ND (18) ND (23)	ND (18) ND (22)	ND (19) ND (23)
2,4-Dichlorophenol	-	-	ND (22)	ND (31)	ND (21)	ND (21)	ND (36)	ND (31)	ND (31)	ND (32)
2,4-Dimethylphenol	-	-	ND (65)	ND (65)	ND (61)	ND (60)	ND (75)	ND (65)	ND (65)	ND (67)
2,4-Dinitrophenol	-	-	ND (140) ^a	ND (140) b	ND (130) ^a	ND (130) ^a	ND (160) ^a	ND (140) ^a	ND (140) ^a	ND (140) ^a
4,6-Dinitro-o-cresol	-	-	ND (39) ^a	ND (39) b	ND (37) ^a	ND (36) ^a	ND (45) ^a	ND (39) ^a	ND (39) ^a	ND (40) ^a
2-Methylphenol	-	-	ND (23)	ND (23)	ND (22)	ND (22)	ND (27)	ND (23)	ND (23)	ND (24)
3&4-Methylphenol	-	-	ND (30)	ND (30)	ND (28)	ND (28)	ND (35)	ND (30)	ND (30)	ND (31)
2-Nitrophenol	-	-	ND (24) ^a	ND (24) b	ND (23)	ND (22)	ND (28) ^a	ND (24) ^a	ND (24) ^a	ND (25) ^a
4-Nitrophenol	-	-	ND (97)	ND (97)	ND (92)	ND (90)	ND (110)	ND (98)	ND (97)	ND (100)
Pentachlorophenol	6700	55000	ND (34)	ND (34)	ND (32)	ND (32)	ND (40)	ND (35)	ND (34)	ND (35)
Phenol	-	-	ND (19)	ND (19)	ND (18)	ND (18)	ND (22)	ND (19)	ND (19)	ND (20)
2,3,4,6-Tetrachlorophenol	-	-	ND (24)	ND (24) ^b	ND (23)	ND (22)	ND (28)	ND (24)	ND (24)	ND (25)
2,4,5-Trichlorophenol	-	-	ND (27)	ND (27)	ND (26)	ND (25)	ND (32)	ND (28)	ND (27)	ND (28)
2,4,6-Trichlorophenol Acenaphthene	500000	1000000	ND (22) 14.8 J	ND (22) 31.0 J	ND (21) ND (12)	ND (20) ND (12)	ND (25) 237	ND (22) 144	ND (22) ND (13)	ND (22) 307
Acenaphthylene	500000	1000000	28.5 J	ND (19)	ND (12) ND (17)	ND (12) ND (17)	178	157	ND (13)	203
Acetophenone	-	-	ND (7.8)	ND (7.9) ^b	ND (7.4)	ND (7.2)	ND (9.1) ^a	ND (7.9) ^a	ND (7.8) ^a	23.5 J ^d
Anthracene	500000	1000000	45.4	88.1	ND (21)	ND (21)	528	360	ND (22)	790
Atrazine	-	-	ND (16)	ND (16) ^c	ND (15) a	ND (14) ^a	ND (18) ^a	ND (16) ^a	ND (16) a	ND (16) ^a
Benzo(a)anthracene	5600	11000	127	230	14.8 J	27.6 J	1270	861	33.5 J	2120
Benzo(a)pyrene	1000	1100	121	192	ND (16)	25.0 J	1160	746	40	1850
Benzo(b)fluoranthene	5600	11000	172	250	15.2 J	36.7	1370	942	44.6	2370
Benzo(g,h,i)perylene	500000	1000000	88.9	106	ND (17)	ND (17)	690	432	22.2 J	1050
Benzo(k)fluoranthene 4-Bromophenyl phenyl ether	56000	110000	59 ND (14)	98.3	ND (16)	ND (16)	571	387 ND (14)	20.1 J	902 ND (14)
Butyl benzyl phthalate	-	-	ND (14) ND (8.9)	ND (14) ND (8.9)	ND (13) ND (8.4)	ND (13) ND (8.2)	ND (16) ND (10)	ND (14) ND (9.0)	ND (14) ND (8.9)	ND (14) ND (9.1)
1,1'-Biphenyl	-	-	69.4 J	ND (8.9) ND (5.0)	ND (8.4) ND (4.7)	ND (8.2) ND (4.6)	28.8 J	16.1 J	ND (8.9) ND (5.0)	37.9 J
Benzaldehyde	-	-	ND (9.0)	ND (9.1)	ND (8.5)	ND (8.3)	ND (10)	ND (9.1)	ND (9.0)	ND (9.3)
2-Chloronaphthalene	-	-	ND (8.7)	ND (8.7)	ND (8.2)	ND (8.0)	ND (10)	ND (8.7)	ND (8.7)	ND (8.9)
4-Chloroaniline	-	-	ND (13)	ND (13)	ND (12)	ND (12)	ND (15)	ND (13)	ND (13)	ND (13)
Carbazole	-	-	20.4 J	28.5 J	ND (5.0)	ND (4.9)	158	108	ND (5.3)	273
Caprolactam	-	-	ND (14)	ND (14)	ND (14)	ND (13)	ND (17)	ND (15)	ND (14)	ND (15)
Chrysene	56000	110000	157	230	12.3 J	27.7 J	1430	926	30.8 J	2330
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	-	-	ND (7.8)	ND (7.8)	ND (7.4)	ND (7.2)	ND (9.0)	ND (7.9)	ND (7.8)	ND (8.0)
pia(z-onioroeuryr)eurer	-	-	ND (16) ND (13)	ND (16) ND (13)	ND (15) ND (12)	ND (15) ND (12)	ND (18) ND (15)	ND (16) ND (13)	ND (16) ND (13)	ND (16) ND (13)
2.2'-Oxybis(1-chloropropage)										וער (וט)
2,2'-Oxybis(1-chloropropane) 4-Chlorophenyl phenyl ether	-	-	ND (13)	ND (12)	ND (11)	ND (11)	ND (14)	ND (12)	ND (12)	ND (12)

	NY SCO -	NY SCO -	TT-SB-01	TT-SB-02	TT-SB-03	TT-SB-04	TT-SB-05	S DUP-01	TT-SB-06	TT-SB-07
Soil Boring Location								3 501 -01		
Sample Depth in feet bgs	Commercial	Industrial	5.5-6.0	7.0-9.0	7.0-9.0	7.5-9.5	6.5-8.5		5.0-7.0	6.0-8.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/18/2021	11/18/2021	11/19/2021	11/19/2021	11/19/2021	11/19/2021	11/22/2021	11/22/2021
2,6-Dinitrotoluene	-	-	ND (18)	ND (18)	ND (17)	ND (17)	ND (21)	ND (18)	ND (18)	ND (19)
3,3'-Dichlorobenzidine	-	-	ND (30)	ND (30)	ND (29)	ND (28)	ND (35)	ND (31)	ND (30)	ND (31)
1,4-Dioxane	-	-	ND (24)	ND (24)	ND (23)	ND (22)	ND (28)	ND (24)	ND (24)	ND (25)
Dibenzo(a,h)anthracene Dibenzofuran	560	1100	24.3 J	35.4 J	ND (15)	ND (15)	204	139	ND (16)	338 223
Di-n-butyl phthalate	350000	1000000	25.0 J ND (5.9)	16.2 J ND (6.0)	ND (14) ND (5.6)	ND (14) ND (5.5)	169 ND (6.9)	87.5 ND (6.0)	ND (15) ND (5.9)	ND (6.1)
Di-n-octyl phthalate	-	-	ND (9.1)	ND (9.1)	ND (8.6)	ND (8.4)	ND (0.9)	ND (9.1)	ND (9.1)	ND (9.3)
Diethyl phthalate	-	-	ND (7.8)	ND (7.8)	ND (7.3)	ND (7.2)	ND (9.0)	ND (7.8)	ND (7.8)	ND (8.0)
Dimethyl phthalate	-	-	ND (6.5)	ND (6.5)	ND (6.1)	ND (6.0)	ND (7.5)	ND (6.5)	ND (6.5)	ND (6.7)
bis(2-Ethylhexyl)phthalate		-	139	99.5	ND (8.0)	34.5 J	173	1170	ND (8.5)	173
Fluoranthene Fluorene	500000	1000000	216	463	19.6 J	47.2	2600	1790	52.6	3770
Hexachlorobenzene	500000 6000	1000000 12000	21.3 J ND (9.2)	39.4 ND (9.2)	ND (16) ND (8.7)	ND (15) ND (8.5)	269 ND (11)	175 ND (9.3)	ND (17) ND (9.2)	243 ND (9.5)
Hexachlorobutadiene	-	12000	ND (9.2) ND (15)	ND (9.2) ND (15) ^b	ND (8.7) ND (14)	ND (8.5)	ND (11) ND (17) ^a	ND (9.3) ND (15) ^a	ND (9.2) ND (15) ^a	ND (9.5) ND (15) ^a
Hexachlorocyclopentadiene	-	-	ND (13)	ND (15)	ND (14)	ND (14)	ND (17) ND (17)	ND (15)	ND (15) ND (14)	ND (15)
Hexachloroethane	-	-	ND (18)	ND (18)	ND (17)	ND (17)	ND (21)	ND (18)	ND (18)	ND (19)
Indeno(1,2,3-cd)pyrene	5600	11000	119	127	ND (16)	19.0 J	881	558	28.7 J	1350
Isophorone	-	-	ND (7.8)	ND (7.8)	ND (7.4)	ND (7.2)	ND (9.0)	ND (7.9)	ND (7.8)	ND (8.0)
2-Methylnaphthalene	-	-	298	13.4 J	ND (7.8)	ND (7.6)	76.1	40.5	ND (8.2)	139
2-Nitroaniline 3-Nitroaniline	-	-	ND (8.6)	ND (8.6) ^b	ND (8.1)	ND (7.9)	ND (10) a	ND (8.7) a	ND (8.6) a	ND (8.8) a
4-Nitroaniline	-	-	ND (9.1) ND (9.4)	ND (9.1) ND (9.5)	ND (8.6) ND (8.9)	ND (8.4) ND (8.7)	ND (11) ND (11)	ND (9.2) ND (9.5)	ND (9.1) ND (9.4)	ND (9.4) ND (9.7)
Naphthalene	500000	1000000	160	10.6 J	ND (8.9) ND (9.7)	ND (8.7) ND (9.5)	201	93.3	ND (9.4) ND (10)	ND (9.7) 245
Nitrobenzene	-	-	ND (14)	ND (14)	ND (3.7)	ND (3.3)	ND (16)	ND (14)	ND (14)	ND (14)
N-Nitroso-di-n-propylamine	-	-	ND (11)	ND (11) b	ND (9.9)	ND (9.7)	ND (12) a	ND (11) a	ND (11) ^a	ND (11) a
N-Nitrosodiphenylamine	_	-	ND (13)	ND (13)	ND (13)	ND (12)	ND (15)	ND (13)	ND (13)	ND (14)
Phenanthrene	500000	1000000	181	356	15.2 J	26.1 J	1720	1190	17.2 J	2680
Pyrene	500000	1000000	224	446	22.6 J	51.9	2790	1850	59.8	3930
1,2,4,5-Tetrachlorobenzene	-	-	ND (9.2)	ND (9.3)	ND (8.7)	ND (8.6)	ND (11)	ND (9.3)	ND (9.2)	ND (9.5)
1,4 Dioxane (ug/kg)										
1,4-Dioxane	-	-	ND (1.8)	ND (1.8)	ND (1.7)	ND (1.7)	ND (2.1)	ND (1.8)	ND (1.8)	ND (1.9)
Pesticides and herbicides (ug/kg)	202	1100	ND (0.55)	115 (0.04)	ND (0.50)	ND (0.50)	115 (0.70)		115 (0.57)	
Aldrin	680	1400	ND (0.55)	ND (0.61)	ND (0.56)	ND (0.58)	ND (0.70)	1.5 °	ND (0.57)	2.1 e
alpha-BHC	3400	6800	ND (0.54)	ND (0.61)	ND (0.55)	ND (0.57)	ND (0.69)	ND (0.62)	ND (0.57)	1.1 °
beta-BHC	3000	14000	ND (0.60)	ND (0.67)	ND (0.61)	ND (0.63)	ND (0.76)	ND (0.69)	ND (0.63)	ND (0.63)
delta-BHC	500000	1000000	ND (0.64)	ND (0.72)	ND (0.65)	ND (0.67)	ND (0.81)	ND (0.73)	ND (0.67)	ND (0.67)
gamma-BHC (Lindane)	9200	23000	ND (0.49)	ND (0.55)	ND (0.50)	ND (0.52)	2.8 ^e	7.9 ^e	ND (0.51)	9.5 °
alpha-Chlordane	24000	47000	ND (0.54)	ND (0.60)	ND (0.54)	ND (0.56)	ND (0.68)	6.9	ND (0.56)	21.3
gamma-Chlordane	-	-	ND (0.30)	ND (0.34)	ND (0.31)	ND (0.32)	2.5 °	4.9 ^e	ND (0.32)	23.5
Dieldrin	1400	28000	ND (0.46)	ND (0.51)	ND (0.46)	ND (0.48)	ND (0.58)	1.6 ^e	ND (0.48)	1.0 °
4,4'-DDD	92000	180000	ND (0.61)	ND (0.68)	ND (0.62)	1.4	20.2	29.5	ND (0.64)	5.7 ^e
4,4'-DDE	62000	120000	1.5	ND (0.65)	ND (0.59)	0.9	5.8	9	ND (0.61)	4.1
4,4'-DDT	47000	94000	ND (0.59)	ND (0.66)	ND (0.60)	7.3	2.2 e	4.5 ^e	ND (0.62)	4.2 °
Endrin	89000	410000	ND (0.52)	ND (0.58)	ND (0.52)	ND (0.54)	ND (0.66)	0.92 °	ND (0.54)	ND (0.54)
Endosulfan sulfate	200000	920000	ND (0.52)	ND (0.58)	ND (0.53)	ND (0.55)	ND (0.66)	ND (0.59)	ND (0.54)	ND (0.54)
Endrin aldehyde	-	-	ND (0.38)	ND (0.42)	ND (0.38)	ND (0.40)	ND (0.48)	ND (0.43)	ND (0.39)	ND (0.40)
Endosulfan-l	200000	920000	ND (0.38)	ND (0.43)	ND (0.39)	ND (0.40)	ND (0.49)	ND (0.44)	ND (0.40)	ND (0.40)
Endosulfan-II	200000	920000	ND (0.42)	ND (0.46)	ND (0.42)	ND (0.44)	ND (0.53)	4.8	ND (0.43)	ND (0.43)
Heptachlor	15000	29000	ND (0.58)	ND (0.64)	ND (0.58)	ND (0.60)	ND (0.73)	ND (0.66)	ND (0.60)	ND (0.60)
Heptachlor epoxide	-	-	ND (0.47)	ND (0.52)	ND (0.47)	ND (0.49)	ND (0.59)	ND (0.53)	ND (0.49)	1.5
Methoxychlor	-	-	ND (0.53)	ND (0.59)	ND (0.54)	ND (0.56)	ND (0.67)	ND (0.61)	ND (0.55)	ND (0.55)
Endrin ketone	-	-	ND (0.48)	ND (0.54)	ND (0.49)	ND (0.51)	ND (0.61)	ND (0.55)	ND (0.50)	3.3 °
Toxaphene 2.4-D	-	-	ND (16) ND (7.9)	ND (17) ND (8.3)	ND (16) ND (7.8)	ND (16)	ND (20)	ND (18) ND (31)	ND (16) ND (8.1)	ND (16)
2,4-D 2,4,5-TP (Silvex)	500000	1000000	ND (7.9) ND (2.0)	ND (8.3) ND (2.1)	ND (7.8) ND (2.0)	ND (7.8) ND (2.0)	ND (36) ND (9.2)	ND (31) ND (7.8)	ND (8.1) ND (2.1)	ND (33) ND (8.4)
2,4,5-T (Silvex)	500000	-	3.6	ND (2.1) ND (1.8)	ND (2.0) ND (1.7)	ND (2.0) ND (1.7)	ND (9.2) ND (8.1)	ND (7.8) ND (6.9)	ND (2.1)	ND (8.4) ND (7.4)
∠,+,,,,-1	-	-	3.0	(פ.1) שאו	(1.7) טא	(۱.7) שאו	110 (0.1)	110 (0.0)	115 (1.0)	(1.7)

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	NY SCO -	NY SCO -	TT-SB-01	TT-SB-02	TT-SB-03	TT-SB-04	TT-SB-05	S DUP-01	TT-SB-06	TT-SB-07
Soil Boring Location	111 000 -	W1 000 -	11-35-01	11-35-02	11-35-03	11-35-04	11-35-03	3 201 -01	11-35-00	11-35-07
Sample Depth in feet bgs	Commercial	Industrial	5.5-6.0	7.0-9.0	7.0-9.0	7.5-9.5	6.5-8.5		5.0-7.0	6.0-8.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/18/2021	11/18/2021	11/19/2021	11/19/2021	11/19/2021	11/19/2021	11/22/2021	11/22/2021
PCBs (ug/kg)							•		•	
Aroclor 1016	1000	25000	ND (16)	ND (17) a	ND (16) a	ND (16) a	ND (20)	ND (18)	ND (16)	ND (16)
Aroclor 1221	1000	25000	ND (21)	ND (23)	ND (21)	ND (22)	ND (26)	ND (24)	ND (22)	ND (22)
Aroclor 1232	1000	25000	ND (21)	ND (24)	ND (22)	ND (22)	ND (27)	ND (24)	ND (22)	ND (22)
Aroclor 1242	1000	25000	ND (14)	ND (15)	ND (14)	ND (14)	ND (17)	ND (16)	ND (14)	ND (14)
Aroclor 1248	1000	25000	ND (30)	ND (33)	ND (30)	ND (31)	ND (38)	ND (34)	ND (31)	ND (31)
Aroclor 1254	1000	25000	ND (18)	ND (20)	ND (18)	ND (19)	ND (23)	ND (20)	ND (19)	ND (19)
Aroclor 1260	1000	25000	ND (14)	ND (16) a	ND (14) a	ND (15) a	ND (18)	ND (16)	ND (15)	ND (15)
Aroclor 1268	1000	25000	ND (14)	ND (16)	ND (14)	ND (15)	ND (18)	ND (16)	ND (15)	ND (15)
Aroclor 1262	1000	25000	ND (22)	ND (24)	ND (22)	ND (23)	ND (28)	ND (25)	ND (23)	ND (23)
Metals (mg/kg)										
Aluminum	-	-	6820	7900	3240	4340	5910	5420	4600	4920
Antimony	-	-	<2.3	<2.3	<2.0	<2.0	<1.7	<2.2	<2.2	<2.2
Arsenic	16	16	10.3	6.2	2.6	2.9	4.7	4.3	2.2	5.7
Barium	400	10000	114	90.8	<20	39	658	812	37.1	92.5
Beryllium	590	2700	0.62	0.45	0.24	0.31	0.44	0.43	0.53	0.44
Cadmium	9.3	60	<0.58	<0.56	<0.50	<0.50	0.54	0.65	<0.55	<0.55
Calcium	-	-	4240	13900	2260	2150	24400	32000	2290	65100
Chromium	_	_	16.9	12.2	12.6	15.2	13.6	12.4	11.7	10.5
Cobalt	_	_	7.7	5.6	<5.0	5.3	<4.4	<5.6	<5.5	<5.5
Copper	270	10000	69.3	31	9.4	16.8	39.2	29.2	10.5	32.7
Iron	-	10000	21900	14800	8360	16100	11400	11100	8890	17000
Lead	1000	3900	342	270	11.3	20.3	363	337	15.8	169
Magnesium	-	-	2270	3150	3570	3940	4160	3740	2240	3430
Manganese	10000	10000	284	270	95.9	193	256	255	170	248
Mercury	2.8	5.7	0.082	0.18	0.067	0.037	0.33	0.34	0.07	0.16
Nickel	310	10000	27.3	14.1	39.2	35.4	13.3	12.5	16.9	17.7
Potassium	- 310	-	<1200	<1100	<1000	<1000	1110	<1100	<1100	<1100
Selenium	1500	6800	<2.3	<2.3	<2.0	<2.0	<1.7	<2.2	<2.2	<2.2
Silver	1500	6800	0.95	0.82	<0.50	0.6	0.8	<1.1 ^f	<0.55	<2.7 ¹
Sodium	1300	-	<1200	<1100	<1000	<1000	<870	<1.1	<1100	<1100
Thallium	-	-	<1.2	<1.1	<1.0	<1.0	<0.87	<1.1	<1.1	<1.1
	-	•	22.8	20.5	12.3	14.8		20.4	17	17.4
Vanadium Zinc	10000	10000	22.8 178	95.2	12.3 25.7	14.8 37.4	21.3 370	422	32.4	17.4
			<0.23 ^d	95.2 <0.32 ^d	<0.23 ^d					
Cyanide	27	10000	~0.23	~U.JZ	~U.ZJ	<0.23 ^b	<0.30 ^g	<0.28 ^g	<0.22 ^g	<0.23 ^g

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

- No criteria NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

^b Associated CCV outside of control limits high,sample was ND.
^c Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

					ı					
Soil Boring Location	NY SCO -	NY SCO -	TT-SB-08	TT-SB-09	TT-SB-10	TT-SB-11	TT-SB-12	TT-SB-13	TT-SB-14	TT-SB-15
Sample Depth in feet bgs	Commercial	Industrial	7.0-9.0	5.0-7.0	7.0-9.0	6.5-8.5	7.0-9.0	7.5-9.5	7.5-9.5	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/22/2021	11/23/2021	11/23/2021	11/23/2021	11/24/2021	11/29/2021	11/29/2021	11/29/2021
Volatile Organic Compounds (ug/kg)				<u> </u>		I.	I.		I.	
Acetone	500000	1000000	23.2	22.6	22.6	25.7	50.2	ND (3.6)	ND (4.6)	6.9 J
Benzene	44000	89000	ND (0.90)	ND (0.41)	2.5	ND (0.43)	ND (0.52)	ND (0.39)	ND (0.50)	ND (0.51)
Bromochloromethane	-	-	ND (1.1)	ND (0.51)	ND (0.81)	ND (0.52)	ND (0.64)	ND (0.48)	ND (0.62)	ND (0.63)
Bromodichloromethane	-	-	ND (0.85)	ND (0.39)	ND (0.62)	ND (0.40)	ND (0.49)	ND (0.37)	ND (0.47)	ND (0.48)
Bromoform	-	-	ND (2.7)	ND (1.2)	ND (2.0)	ND (1.3)	ND (1.5)	ND (1.2)	ND (1.5)	ND (1.5)
Bromomethane	-	-	ND (1.5)	ND (0.69)	ND (1.1)	ND (0.72)	ND (0.87)	ND (0.66)	ND (0.84)	ND (0.86)
2-Butanone (MEK)	500000	1000000	ND (4.8)	ND (2.2)	ND (3.5)	3.8 J	ND (2.8)	ND (2.1)	ND (2.7)	ND (2.7)
Carbon disulfide	-	-	1.9 J	ND (0.49)	2.1 J	ND (0.50)	ND (0.61)	ND (0.46)	ND (0.59)	ND (0.60)
Carbon tetrachloride	22000	44000	ND (1.2)	ND (0.56)	ND (0.90)	ND (0.58)	ND (0.70)	ND (0.53)	ND (0.68)	ND (0.69)
Chlorobenzene	500000	1000000	ND (0.91)	ND (0.42)	ND (0.67)	ND (0.43)	ND (0.52)	ND (0.40)	ND (0.51)	ND (0.51)
Chloroethane	-	-	ND (1.2) ^a	ND (0.54) a	ND (0.86)	ND (0.55)	ND (0.67)	ND (0.51)	ND (0.65)	ND (0.66)
Chloroform	350000	700000	ND (1.0)	ND (0.47)	ND (0.76)	ND (0.49)	ND (0.59)	ND (0.45)	ND (0.57)	ND (0.58)
Chloromethane	-	-	ND (3.9)	ND (1.8)	ND (2.9)	ND (1.8)	ND (2.2)	ND (1.7)	ND (2.2)	ND (2.2)
Cyclohexane	-	-	ND (1.3)	ND (0.60)	ND (0.96)	ND (0.62)	ND (0.75)	ND (0.57)	ND (0.72)	ND (0.74)
1,2-Dibromo-3-chloropropane	-	-	ND (1.4)	ND (0.63)	ND (1.0)	ND (0.65)	ND (0.79)	ND (0.60)	ND (0.76)	ND (0.78)
Dibromochloromethane	-	-	ND (1.1)	ND (0.51)	ND (0.81)	ND (0.52)	ND (0.64)	ND (0.48)	ND (0.62)	ND (0.63)
1,2-Dibromoethane	-	-	ND (0.83)	ND (0.38)	ND (0.61)	ND (0.39)	ND (0.48)	ND (0.36)	ND (0.46)	ND (0.47)
1,2-Dichlorobenzene	500000	1000000	ND (1.1) ^b	ND (0.50) ^b	ND (0.79)	ND (0.51)	ND (0.62)	ND (0.47)	ND (0.60)	ND (0.61)
1,3-Dichlorobenzene	280000	560000	ND (0.98) ^b	ND (0.45) b	ND (0.72)	ND (0.46)	ND (0.56)	ND (0.43)	ND (0.55)	ND (0.56)
1,4-Dichlorobenzene	130000	250000	ND (0.98)	ND (0.45)	ND (0.72)	ND (0.46)	ND (0.56)	ND (0.43)	ND (0.54)	ND (0.55)
Dichlorodifluoromethane	-	-	ND (1.4)	ND (0.66)	ND (1.1)	ND (0.68)	ND (0.83)	ND (0.63)	ND (0.80)	ND (0.81)
1,1-Dichloroethane 1,2-Dichloroethane	240000 30000	480000	ND (0.98)	ND (0.45)	ND (0.72)	ND (0.46)	ND (0.56)	ND (0.43)	ND (0.55)	ND (0.55)
•		60000	ND (0.93)	ND (0.43)	ND (0.68)	ND (0.44)	ND (0.53)	ND (0.41)	ND (0.52)	ND (0.53)
1,1-Dichloroethene	500000	1000000	ND (1.3)	ND (0.59)	ND (0.95)	ND (0.61)	ND (0.74)	ND (0.57)	ND (0.72)	ND (0.73)
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	500000 500000	1000000	ND (1.7)	ND (0.76)	ND (1.2)	ND (0.79)	ND (0.96)	ND (0.73)	ND (0.93)	ND (0.94)
1,2-Dichloropropane	-	1000000	ND (1.2)	ND (0.55)	ND (0.89)	ND (0.57)	ND (0.69)	ND (0.53)	ND (0.67)	ND (0.68)
cis-1,3-Dichloropropene	-	-	ND (0.93)	ND (0.43)	ND (0.69)	ND (0.44)	ND (0.54)	ND (0.41)	ND (0.52)	ND (0.53)
trans-1,3-Dichloropropene	-	-	ND (0.94) ND (0.90)	ND (0.43) ND (0.41)	ND (0.69) ND (0.67)	ND (0.44)	ND (0.54) ND (0.52)	ND (0.41) ND (0.40)	ND (0.52) ND (0.50)	ND (0.53) ND (0.51)
Ethylbenzene	390000	780000	ND (0.90)	ND (0.41)	ND (0.67)	ND (0.43) ND (0.42)	ND (0.52)	ND (0.40)	ND (0.50)	ND (0.51)
Freon 113	-	-	ND (5.3)	ND (0.41)	ND (3.9)	ND (0.42)	ND (3.0)	ND (0.39)	ND (0.50)	ND (0.51)
2-Hexanone	-	-	ND (4.2)	ND (1.9)	ND (3.1)	ND (2.0)	ND (3.0)	ND (2.3)	ND (2.3)	ND (2.4)
Isopropylbenzene	-	-	ND (2.8)	ND (1.3)	ND (2.1)	ND (1.3)	ND (1.6)	ND (1.2)	ND (1.6)	ND (1.6)
Methyl Acetate	-	_	ND (2.7)	ND (1.3)	ND (2.0)	ND (1.3)	ND (1.6)	ND (1.2)	ND (1.5)	ND (1.6)
Methylcyclohexane	-	_	ND (1.7)	ND (0.79)	ND (1.3)	ND (0.82)	ND (1.0)	ND (0.76)	ND (0.96)	ND (0.98)
Methyl Tert Butyl Ether	500000	1000000	ND (0.93)	ND (0.43)	ND (0.68)	ND (0.44)	ND (0.53)	ND (0.41)	ND (0.52)	ND (0.53)
4-Methyl-2-pentanone(MIBK)	-	-	ND (4.5)	ND (2.1)	ND (3.3)	ND (2.1)	ND (2.6)	ND (2.0)	ND (2.5)	ND (2.5)
Methylene chloride	500000	1000000	ND (5.2)	ND (2.4)	ND (3.8)	ND (2.4)	ND (3.0)	ND (2.3)	ND (2.9)	ND (2.9)
Styrene	-	-	ND (0.79)	ND (0.36)	ND (0.58)	ND (0.38)	ND (0.46)	ND (0.35)	ND (0.44)	ND (0.45)
1,1,2,2-Tetrachloroethane	-	-	ND (1.2)	ND (0.54)	ND (0.87)	ND (0.56)	ND (0.68)	ND (0.52)	ND (0.66)	ND (0.67)
Tetrachloroethene	150000	300000	ND (1.1)	ND (0.53)	ND (0.84)	ND (0.54)	ND (0.66)	ND (0.50)	ND (0.64)	ND (0.65)
Toluene	500000	1000000	ND (1.0)	ND (0.48)	1.5	ND (0.49)	ND (0.60)	ND (0.45)	ND (0.58)	ND (0.59)
1,2,3-Trichlorobenzene	-	-	ND (4.9)	ND (2.3)	ND (3.6)	ND (2.3)	ND (2.8)	ND (2.2)	ND (2.8)	ND (2.8)
1,2,4-Trichlorobenzene	-		ND (4.9)	ND (2.3)	ND (3.6)	ND (2.3)	ND (2.8)	ND (2.2)	ND (2.8)	ND (2.8)
1,1,1-Trichloroethane	500000	1000000	ND (0.95)	ND (0.44)	ND (0.70)	ND (0.45)	ND (0.55)	ND (0.42)	ND (0.53)	ND (0.54)
1,1,2-Trichloroethane	-		ND (1.1)	ND (0.50)	ND (0.81)	ND (0.52)	ND (0.63)	ND (0.48)	ND (0.61)	ND (0.62)
Trichloroethene	200000	400000	ND (1.5)	ND (0.69)	ND (1.1)	ND (0.71)	ND (0.87)	ND (0.66)	ND (0.84)	ND (0.85)
Trichlorofluoromethane	-	-	ND (1.4) °	ND (0.62) ^c	ND (1.0)	ND (0.64)	ND (0.78)	ND (0.59)	ND (0.75)	ND (0.77)
Vinyl chloride	13000	27000	ND (0.95)	ND (0.44)	ND (0.70)	ND (0.45)	ND (0.55)	ND (0.42)	ND (0.53)	ND (0.54)
m,p-Xylene	-	-	ND (1.8)	ND (0.81)	ND (1.3)	ND (0.84)	ND (1.0)	ND (0.78)	ND (0.99)	ND (1.0)
o-Xylene	500000	-	ND (0.91)	ND (0.42)	ND (0.67)	0.61 J	ND (0.52)	ND (0.40)	ND (0.50)	ND (0.51)
Xylene (total)	500000	1000000	ND (0.91)	ND (0.42)	ND (0.67)	0.61 J	ND (0.52)	ND (0.40)	ND (0.50)	ND (0.51)

	NY SCO -	NY SCO -	TT-SB-08	TT-SB-09	TT-SB-10	TT-SB-11	TT-SB-12	TT-SB-13	TT-SB-14	TT-SB-15
Soil Boring Location	Commercial	Industrial	7.0-9.0	5.0-7.0	7.0-9.0					7.5-9.5
Sample Depth in feet bgs	Commercial	muustriai	7.0-9.0	5.0-7.0	7.0-9.0	6.5-8.5	7.0-9.0	7.5-9.5	7.5-9.5	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/22/2021	11/23/2021	11/23/2021	11/23/2021	11/24/2021	11/29/2021	11/29/2021	11/29/2021
PFAS Compounds (ug/kg)										
Perfluorobutanoic acid	-	-	ND (0.41)	ND (0.40)	ND (0.44)	ND (0.42)	ND (0.43)	ND (0.41)	ND (0.42)	ND (0.41)
Perfluoropentanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorohexanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluoroheptanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorooctanoic acid Perfluorononanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	1.7
Perfluorodecanoic acid	-	-	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.29) ND (0.29)	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)
Perfluoroundecanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorododecanoic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorotridecanoic acid	-	-	ND (0.28)	ND (0.28)	ND (0.31)	ND (0.30)	ND (0.30)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorotetradecanoic acid	•	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorobutanesulfonic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorohexanesulfonic acid Perfluoroheptanesulfonic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Perfluorooctanesulfonic acid	-	-	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.29) 0.36 J	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.28) 0.86	ND (0.27) ND (0.27)
Perfluorodecanesulfonic acid	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
PFOSA	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
MeFOSAA		-	ND (0.53)	ND (0.53)	ND (0.58)	ND (0.56)	ND (0.57)	ND (0.55)	ND (0.55)	ND (0.54)
EtFOSAA	=	-	ND (0.53)	ND (0.53)	ND (0.58)	ND (0.56)	ND (0.57)	ND (0.55)	ND (0.55)	ND (0.54)
6:2 Fluorotelomer sulfonate 8:2 Fluorotelomer sulfonate	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
	-	-	ND (0.27)	ND (0.26)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)	ND (0.27)
Semi Volatile Organic Compounds (ug/kg) 2-Chlorophenol			ND (17)	ND (18)	ND (19)	ND (18)	ND (19)	ND (18)	ND (18)	ND (18)
4-Chloro-3-methyl phenol	-	-	ND (17)	ND (18)	ND (19)	ND (18)	ND (19)	ND (16)	ND (18)	ND (16)
2,4-Dichlorophenol	-	-	ND (30)	ND (31)	ND (32)	ND (32)	ND (33)	ND (31)	ND (31)	ND (31)
2,4-Dimethylphenol		-	ND (63)	ND (65)	ND (67)	ND (66)	ND (68)	ND (65)	ND (66)	ND (64)
2,4-Dinitrophenol	-	-	ND (130) a	ND (140) a	ND (140) a	ND (140)	ND (140)	ND (140)	ND (140)	ND (140)
4,6-Dinitro-o-cresol	-	-	ND (38) a	ND (39) a	ND (40) a	ND (40)	ND (41)	ND (39)	ND (39)	ND (39)
2-Methylphenol	-	-	ND (23)	ND (24)	ND (24)	ND (24)	ND (24)	ND (23)	ND (24)	ND (23)
3&4-Methylphenol	-	-	ND (29)	ND (30)	ND (31)	ND (31)	ND (31)	ND (30)	ND (30)	ND (30)
2-Nitrophenol	-	-	ND (23) ^a	ND (24) ^a	ND (25) a	ND (25)	ND (25)	ND (24)	ND (24)	ND (24)
4-Nitrophenol	-	-	ND (94)	ND (98)	ND (100)	ND (99) a	ND (100) a	ND (97) a	ND (98) ^a	ND (96) ^a
Pentachlorophenol	6700	55000	ND (33)	ND (35) h	ND (35)	ND (35)	ND (36)	ND (34)	ND (35)	ND (34)
Phenol	-	-	ND (18)	ND (19)	ND (20)	ND (19)	ND (20)	ND (19)	ND (19)	ND (19)
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	-	-	ND (23) ND (26)	ND (24) ND (28)	ND (25) ND (28)	ND (25) ND (28)	ND (25) ND (29)	ND (24) ND (27)	ND (24) ND (28)	ND (24) ND (27)
2,4,6-Trichlorophenol	-	-	ND (21)	ND (22)	ND (22)	ND (20)	ND (23)	ND (27)	ND (22)	ND (27)
Acenaphthene	500000	1000000	179	39.8	107	212	1120	1780	ND (13)	ND (12)
Acenaphthylene	500000	1000000	ND (18)	62.9	121	50.5	6290	233	ND (19)	ND (18)
Acetophenone	-	-	ND (7.6) ^a	ND (7.9)	ND (8.1) a	ND (8.0)	ND (8.2)	ND (7.8)	ND (7.9)	ND (7.8)
Anthracene	500000	1000000	169	92.6	244	341	7000	3060	ND (23)	ND (22)
Atrazine	-	-	ND (15) ^a	ND (16) ^a	ND (16) ^a	ND (16)	ND (16)	ND (16)	ND (16)	ND (15)
Benzo(a)anthracene	5600	11000	106	156	634	758	7870	10000	10.0 J	68.5
Benzo(a)pyrene	1000	1100	107	190	574	757	9330	9080	ND (17)	48.1
Benzo(b)fluoranthene Benzo(g,h,i)perylene	5600 500000	11000 1000000	121 63.1	236	698 316	938 503	7170 1540	11000	ND (16)	68.7 28.3 J
Benzo(k)fluoranthene	56000	110000	46.1	143 82.5	281	304	1540 1540	6040 4110	ND (18) ND (17)	28.3 J 30.2 J
4-Bromophenyl phenyl ether	-	-	ND (14)	ND (14)	ND (15)	ND (14)	ND (15)	ND (14)	ND (17)	ND (14)
Butyl benzyl phthalate	-	-	ND (8.6)	ND (9.0)	ND (9.2)	ND (9.1)	ND (9.3)	ND (8.9)	ND (9.0)	ND (8.8)
1,1'-Biphenyl	-	-	26.8 J	11.5 J	11.7 J	29.7 J	1330	104	ND (5.0)	5.4 J
Benzaldehyde	-	-	ND (8.8)	ND (9.1)	ND (9.3)	ND (9.2)	ND (9.5)	ND (9.0)	ND (9.1)	ND (9.0)
2-Chloronaphthalene	-	-	ND (8.4)	ND (8.8)	ND (9.0)	ND (8.8)	ND (9.1)	ND (8.7)	ND (8.8)	ND (8.6)
4-Chloroaniline	-	-	ND (13)	ND (13)	ND (14)	ND (13)	ND (14)	ND (13)	ND (13)	ND (13)
Carbazole Caprolactam	-	-	ND (5.1)	16.1 J	40.5 J	90.1 ND (15)	42.3 J	946	ND (5.3)	5.4 J
Chrysene	56000	110000	ND (14) 124	ND (15) 208	ND (15) 686	ND (15) 791	ND (15) 7730	ND (14) ^a 9330	ND (15) ^a ND (12)	ND (14) ^a 72.8
bis(2-Chloroethoxy)methane	-	-	ND (7.6)	ND (7.9)	ND (8.1)	ND (7.9)	ND (8.2)	ND (7.8)	ND (7.9)	72.8 ND (7.7)
bis(2-Chloroethyl)ether	-	-	ND (15)	ND (16)	ND (16)	ND (16)	ND (0.2)	ND (16)	ND (16)	ND (16)
2,2'-Oxybis(1-chloropropane)	-	-	ND (13)	ND (13)	ND (14)	ND (13)	ND (14)	ND (13)	ND (13)	ND (13)
4-Chlorophenyl phenyl ether	-	-	ND (11)	ND (12)	ND (12)	ND (12)				
2,4-Dinitrotoluene	-	-	ND (11) a	ND (11) a	ND (12) a	ND (12)	ND (12)	ND (11)	ND (11)	ND (11)

	NY SCO -	NY SCO -	TT-SB-08	TT-SB-09	TT-SB-10	TT-SB-11	TT-SB-12	TT-SB-13	TT-SB-14	TT-SB-15
Soil Boring Location										
Sample Depth in feet bgs	Commercial	Industrial	7.0-9.0	5.0-7.0	7.0-9.0	6.5-8.5	7.0-9.0	7.5-9.5	7.5-9.5	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/22/2021	11/23/2021	11/23/2021	11/23/2021	11/24/2021	11/29/2021	11/29/2021	11/29/2021
2.6-Dinitrotoluene	-	-	ND (18)	ND (18)	ND (19)	ND (19)	ND (19)	ND (18)	ND (18)	ND (18)
3,3'-Dichlorobenzidine	-	-	ND (29)	ND (31)	ND (31)	ND (31)	ND (32)	ND (30)	ND (31)	ND (30)
1,4-Dioxane	-	-	ND (23)	ND (24)	ND (25)	ND (25) ^b	ND (25) ^b	ND (24)	ND (24)	ND (24)
Dibenzo(a,h)anthracene Dibenzofuran	560	1100	19.2 J	35.9 J 20.0 J	95.3	141 123	343	1530	ND (16)	ND (16)
Di-n-butyl phthalate	350000	1000000	173 ND (5.8)	ND (6.0)	85.5 ND (6.1)	123 54.6 J	324 ND (6.2)	802 ND (5.9)	ND (15) ND (6.0)	ND (15) ND (5.9)
Di-n-octyl phthalate	-	-	ND (8.8)	ND (9.2)	ND (9.4)	ND (9.2)	ND (9.5)	ND (9.1)	ND (9.2)	ND (9.0)
Diethyl phthalate	-	-	ND (7.5)	ND (7.8)	ND (8.0)	ND (7.9)	ND (8.2)	ND (7.8)	ND (7.8)	ND (7.7)
Dimethyl phthalate	-	-	ND (6.3)	ND (6.5)	ND (6.7)	ND (6.6)	ND (6.8)	ND (6.5)	ND (6.6)	ND (6.4)
bis(2-Ethylhexyl)phthalate		-	111	326	160	186	317	ND (8.5)	12.7 J	10.2 J
Fluoranthene	500000	1000000	262	302	1140	1880	14400	21600	17.1 J	176
Fluorene Hexachlorobenzene	500000 6000	1000000 12000	339 ND (8.9)	22.7 J ND (9.3)	83.7 ND (9.5)	223 ND (9.4)	7210 ND (9.7)	1420 ND (9.2)	ND (17) ND (9.3)	ND (17) ND (9.1)
Hexachlorobutadiene	-	12000	ND (8.9) ND (14) ^a	ND (9.3) ND (15)	ND (9.5) ND (15) a	ND (9.4) ND (15)	ND (9.7) ND (15)	ND (9.2) ND (15)	ND (9.3) ND (15)	ND (9.1) ND (15)
Hexachlorocyclopentadiene	-	-	ND (14)	ND (15) h	ND (15)	ND (15)	ND (15)	ND (13)	ND (15) a	ND (14) ^a
Hexachloroethane	-	-	ND (17)	ND (18)	ND (19)	ND (18)	ND (19)	ND (14)	ND (18)	ND (14)
Indeno(1,2,3-cd)pyrene	5600	11000	77.7	160	400	594	1730	6880	ND (17)	27.8 J
Isophorone	-	-	ND (7.6)	ND (7.9)	ND (8.1)	ND (7.9)	ND (8.2)	ND (7.8)	ND (7.9)	ND (7.7)
2-Methylnaphthalene	-	-	1050	16.6 J	37.7 J	99.4	3300	281	ND (8.3)	8.3 J
2-Nitroaniline 3-Nitroaniline	-	-	ND (8.3) a	ND (8.7)	ND (8.9) a	ND (8.8)	ND (9.0)	ND (8.6)	ND (8.7)	ND (8.5)
4-Nitroaniline	-	-	ND (8.8) ND (9.2)	ND (9.2) ND (9.5)	ND (9.4) ND (9.8)	ND (9.3) ND (9.6)	ND (9.6) ND (9.9)	ND (9.1) ND (9.4)	ND (9.2) ND (9.5)	ND (9.0) ND (9.4)
Naphthalene	500000	1000000	70	24.8 J	106	91	1290	840	10.2 J	30.7 J
Nitrobenzene	-	-	ND (14)	ND (14)	ND (15)	ND (14)	ND (15)	ND (14)	ND (14)	ND (14)
N-Nitroso-di-n-propylamine	-	-	ND (10) a	ND (11)	ND (11) a	ND (11)	ND (11)	ND (11)	ND (11)	ND (10)
N-Nitrosodiphenylamine	-	-	ND (13)	ND (13)	ND (14)	ND (14)	ND (14)	ND (13)	ND (13)	ND (13)
Phenanthrene	500000	1000000	943	141	539	1400	37400	12400	12.3 J	98.8
Pyrene	500000	1000000	267	408	1260	1790	29100	18800	16.3 J	156
1,2,4,5-Tetrachlorobenzene	-	-	ND (9.0)	ND (9.3)	ND (9.6)	ND (9.4)	ND (9.7)	ND (9.2)	ND (9.4)	ND (9.2)
1,4 Dioxane (ug/kg) 1,4-Dioxane	1		ND (1.8)	ND (1.8)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.8)	ND (1.8)
Pesticides and herbicides (ug/kg)	-	-	ND (1.0)	ND (1.6)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.0)	ND (1.0)
Aldrin	680	1400	ND (0.54)	0.96 ^e	ND (0.62)	ND (0.62)	ND (0.61)	ND (0.56)	ND (0.59)	ND (0.61)
alpha-BHC	3400	6800	ND (0.54)	ND (0.58)	ND (0.61)	1.3	ND (0.60)	ND (0.55)	ND (0.59)	ND (0.60)
beta-BHC	3000	14000	ND (0.60)	ND (0.65)	ND (0.68)	ND (0.68)	ND (0.67)	ND (0.61)	ND (0.65)	ND (0.67)
delta-BHC	500000	1000000	ND (0.63)	ND (0.69)	ND (0.73)	ND (0.73)	ND (0.71)	ND (0.65)	ND (0.69)	ND (0.71)
gamma-BHC (Lindane)	9200	23000	ND (0.49)	ND (0.53)	ND (0.56)	5.2	ND (0.54)	ND (0.50)	ND (0.53)	ND (0.54)
alpha-Chlordane	24000	47000	ND (0.53)	6.8	ND (0.61)	2.2	ND (0.60)	ND (0.55)	ND (0.58)	ND (0.59)
gamma-Chlordane	-	-	ND (0.30)	6.8	ND (0.34)	8.8	ND (0.33)	ND (0.31)	ND (0.33)	ND (0.33)
Dieldrin	1400	28000	ND (0.45)	0.90 °	ND (0.52)	3	ND (0.51)	5.3 ^b	ND (0.49)	ND (0.51)
4,4'-DDD	92000	180000	ND (0.60)	8.7	1.1 e	108	ND (0.68)	ND (0.62)	ND (0.66)	ND (0.68)
4,4'-DDE	62000	120000	0.82	3.7	2.2	14.3	ND (0.65)	2.2 b	ND (0.63)	ND (0.65)
4,4'-DDT	47000	94000	ND (0.58)	2	0.86 ^e	10.1	ND (0.65)	18.8	ND (0.64)	ND (0.65)
Endrin	89000	410000	ND (0.51)	ND (0.56)	ND (0.59)	ND (0.59)	ND (0.57)	10.4 b	ND (0.56)	ND (0.57)
Endosulfan sulfate	200000	920000	ND (0.51)	ND (0.56)	ND (0.59)	ND (0.59)	ND (0.58)	ND (0.53)	ND (0.56)	ND (0.58)
Endrin aldehyde	-	-	ND (0.37)	ND (0.41)	ND (0.43)	ND (0.43)	ND (0.42)	ND (0.38)	ND (0.41)	ND (0.42)
Endosulfan-I	200000	920000	ND (0.38)	ND (0.41)	ND (0.44)	ND (0.44)	ND (0.43)	ND (0.39)	ND (0.41)	ND (0.42)
Endosulfan-II	200000	920000	ND (0.41)	ND (0.45)	ND (0.47)	3.8	ND (0.46)	12.3 ^b	ND (0.45)	ND (0.46)
Heptachlor	15000	29000	ND (0.57)	0.94	ND (0.65)	ND (0.65)	ND (0.64)	ND (0.58)	ND (0.62)	ND (0.64)
Heptachlor epoxide	-	-	ND (0.46)	1.8 1	ND (0.53)	5.6	ND (0.52)	ND (0.48)	ND (0.50)	ND (0.52)
Methoxychlor	_	-	ND (0.52)	ND (0.57)	4.1	ND (0.60)	ND (0.59)	ND (0.54)	ND (0.57)	ND (0.59)
Endrin ketone	_	-	ND (0.48)	ND (0.52)	ND (0.55)	ND (0.55)	ND (0.53)	ND (0.49)	ND (0.52)	ND (0.53)
Toxaphene	-	-	ND (15)	ND (17)	ND (18)	ND (18)	ND (17)	ND (16)	ND (17)	ND (17)
2,4-D	-	-	ND (31)	ND (32)	ND (33)	ND (33)	ND (34)	ND (8.2)	ND (8.3)	ND (7.7)
2,4,5-TP (Silvex)	500000	1000000	ND (7.8)	ND (8.2)	ND (8.4)	ND (8.3)	ND (8.6)	ND (2.1)	ND (2.1)	ND (1.9)
2,4,5-T	-	-	ND (6.9)	ND (7.2)	ND (7.4)	ND (7.3)	ND (7.6)	ND (1.8)	ND (1.9)	ND (1.7)

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	NY SCO -	NY SCO -	TT-SB-08	TT-SB-09	TT-SB-10	TT-SB-11	TT-SB-12	TT-SB-13	TT-SB-14	TT-SB-15
Soil Boring Location										
Sample Depth in feet bgs	Commercial	Industrial	7.0-9.0	5.0-7.0	7.0-9.0	6.5-8.5	7.0-9.0	7.5-9.5	7.5-9.5	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/22/2021	11/23/2021	11/23/2021	11/23/2021	11/24/2021	11/29/2021	11/29/2021	11/29/2021
PCBs (ug/kg)										
Aroclor 1016	1000	25000	ND (15)	ND (17)	ND (18)	ND (18)	ND (17)	ND (16)	ND (17)	ND (17)
Aroclor 1221	1000	25000	ND (20)	ND (22)	ND (23)	ND (23)	ND (23)	ND (21)	ND (22)	ND (23)
Aroclor 1232	1000	25000	ND (21)	ND (23)	ND (24)	ND (24)	ND (24)	ND (22)	ND (23)	ND (24)
Aroclor 1242	1000	25000	ND (14)	ND (15)	ND (15)	ND (16)	ND (15)	ND (14)	ND (15)	ND (15)
Aroclor 1248	1000	25000	ND (29)	ND (32)	ND (34)	ND (34)	ND (33)	ND (30)	ND (32)	ND (33)
Aroclor 1254	1000	25000	ND (18)	ND (19)	ND (20)	ND (20)	ND (20)	ND (18)	ND (19)	ND (20)
Aroclor 1260	1000	25000	ND (14)	ND (15)	ND (16)	ND (16)	ND (16)	ND (14)	ND (15)	ND (16)
Aroclor 1268	1000	25000	ND (14)	ND (15)	ND (16)	ND (16)	ND (16)	ND (14)	ND (15)	ND (16)
Aroclor 1262	1000	25000	ND (22)	ND (24)	ND (25)	ND (25)	ND (24)	ND (22)	ND (24)	ND (24)
Metals (mg/kg)										
Aluminum	-	-	8770	7740	9560	5050	6280	7770	4360	3340
Antimony	-	-	<2.2	<2.2	<2.3	<2.3	2.9	<2.2	<2.2	<2.3
Arsenic	16	16	<2.2	6.4	4.5	4.7	8.5	7.7	4.2	4.9
Barium	400	10000	85.1	69.5	78.5	95.3	240	34.3	35.8	60.2
Beryllium	590	2700	0.81	0.56	0.62	0.48	0.36	0.6	0.41	0.31
Cadmium	9.3	60	<0.55	<0.55	3	<0.57	5.1 °	< 0.55	< 0.55	<0.57
Calcium	-	-	30700	21800	30100	7380	49000	1960	1840	948
Chromium	-	-	17.6	15.5	17.1	33.2	23.8	16.6	9.6	10.1
Cobalt	-	-	12.8	6	5.7	7.6	7.1	7.4	5.9	7.9
Copper	270	10000	44.4	36.2	15.5	90.5	124 °	19.1	26	58.9
Iron	_	-	16800	13800	14700	11900	29300	17900	11900	14900
Lead	1000	3900	31.8	71.4	73.3	526	266 °	33.9	33.4	160
Magnesium	_	_	17900	3030	8400	3730	5970	2610	1160	989
Manganese	10000	10000	313	253	390	180	323 °	181	181	246
Mercury	2.8	5.7	0.28	0.15	0.11	2.5	0.54	0.081	0.051	0.61
Nickel	310	10000	23.6	19.6	21.7	29.6	26.2	16.8	16.5	17.2
Potassium	-	-	3080	1170	2370	<1100	<1200	1420	<1100	<1100
Selenium	1500	6800	<2.2	<2.2	<2.3	<2.3	<12 °	<2.2	<2.2	<2.3
Silver	1500	6800	<1.1 ^f	0.87	<1.1 '	<0.57	<2.9 °	0.66	<0.55	0.63
Sodium	-	-	<1100	<1100	<1100	<1100	<1200	<1100	<1100	<1100
Thallium	-	-	<1.1	<1.1	<1.1	<1.1	<5.8 °	<1.1	<1.1	<1.1
Vanadium	-	-	30.3	24.2	22.7	17.9	25.5	22.9	15.4	16
Zinc	10000	10000	230	63.7	569	459	1220	53.8	44.4	82.9
Cyanide	27	10000	<0.21 ^g	<0.22 ^g	<0.23 ^g	<0.34 ^d	<0.30 ^d	<0.27	0.32	0.48

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

- No criteria NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

[®] Associated CCV outside of control limits high,sample was ND. [©] Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

Soil Boring Location	NY SCO -	NY SCO -	TT-SB-16	TT-SB-17	TT-SB-18	TT-SB-19	TT-SB-20	TT-SB-21	TT-SB-22	TT-SB-23
Sample Depth in feet bgs	Commercial	Industrial	7.5-9.5	7.0-9.0	7.0-9.0	7.0-9.0	6.5-8.5	6.5-8.5	6.5-8.5	7.5-9.5
	ICD E4 (40/40)/C	ICD E4 (40/40)/C								
Sampling Date	NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/29/2021	11/29/2021	11/29/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021
Volatile Organic Compounds (ug/kg)										
Acetone	500000	1000000	ND (3.5)	ND (3.5)	4.1 J	ND (3.6)	ND (3.9)	9.7	5.1 J	7.0 J
Benzene	44000	89000	ND (0.38)	ND (0.38)	ND (0.43)	ND (0.39)	ND (0.43)	ND (0.43)	ND (0.41)	ND (0.43)
Bromochloromethane	-	-	ND (0.47)	ND (0.47)	ND (0.52)	ND (0.48)	ND (0.53)	ND (0.53)	ND (0.50)	ND (0.53)
Bromodichloromethane	•	-	ND (0.36)	ND (0.36)	ND (0.40)	ND (0.37)	ND (0.41)	ND (0.40)	ND (0.38)	ND (0.41)
Bromoform	-	-	ND (1.1)	ND (1.1)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.3)	ND (1.2)	ND (1.3)
Bromomethane		-	ND (0.64)	ND (0.64)	ND (0.71)	ND (0.66)	ND (0.72)	ND (0.72)	ND (0.68)	ND (0.73)
2-Butanone (MEK)	500000	1000000	ND (2.0)	ND (2.0)	ND (2.3)	ND (2.1)	ND (2.3)	ND (2.3)	ND (2.2)	ND (2.3)
Carbon disulfide	-	-	ND (0.45)	ND (0.45)	ND (0.50)	ND (0.46)	ND (0.51)	ND (0.50)	ND (0.48)	ND (0.51)
Carbon tetrachloride	22000	44000	ND (0.52)	ND (0.52)	ND (0.58)	ND (0.53)	ND (0.58)	ND (0.58)	ND (0.55)	ND (0.59)
Chlorobenzene	500000	1000000	ND (0.39)	ND (0.39)	ND (0.43)	ND (0.40)	ND (0.43)	ND (0.43)	ND (0.41)	ND (0.44)
Chloroethane	-	-	ND (0.50)	ND (0.50)	ND (0.55)	ND (0.51)	ND (0.56)	ND (0.56)	ND (0.53)	ND (0.56)
Chloroform	350000	700000	ND (0.44)	ND (0.44)	ND (0.48)	ND (0.45)	ND (0.49)	ND (0.49)	ND (0.46)	ND (0.49)
Chloromethane	-	-	ND (1.6)	ND (1.6)	ND (1.8)	ND (1.7)	ND (1.9)	ND (1.8)	ND (1.8)	ND (1.9)
Cyclohexane	-	-	ND (0.55)	ND (0.55)	ND (0.61)	ND (0.57)	ND (0.62)	ND (0.62)	ND (0.59)	ND (0.62)
1,2-Dibromo-3-chloropropane	-	-	ND (0.58)	ND (0.58)	ND (0.65)	ND (0.60)	ND (0.66)	ND (0.65)	ND (0.62)	ND (0.66)
Dibromochloromethane	-	-	ND (0.47)	ND (0.47)	ND (0.52)	ND (0.48)	ND (0.53)	ND (0.53)	ND (0.50)	ND (0.53)
1,2-Dibromoethane	-	-	ND (0.35)	ND (0.35)	ND (0.39)	ND (0.36)	ND (0.40)	ND (0.40)	ND (0.38)	ND (0.40)
1,2-Dichlorobenzene	500000	1000000	ND (0.46)	ND (0.46)	ND (0.51)	ND (0.47)	ND (0.52)	ND (0.51)	ND (0.49)	ND (0.52)
1,3-Dichlorobenzene	280000	560000	ND (0.42)	ND (0.42)	ND (0.46)	ND (0.43)	ND (0.47)	ND (0.47)	ND (0.44)	ND (0.47)
1,4-Dichlorobenzene	130000	250000	ND (0.42)	ND (0.41)	ND (0.46)	ND (0.43)	ND (0.47)	ND (0.47)	ND (0.44)	ND (0.47)
Dichlorodifluoromethane	-	-	ND (0.61)	ND (0.61)	ND (0.68)	ND (0.63)	ND (0.69)	ND (0.68)	ND (0.65)	ND (0.69)
1,1-Dichloroethane 1,2-Dichloroethane	240000 30000	480000	ND (0.42)	ND (0.42)	ND (0.46)	ND (0.43)	ND (0.47)	ND (0.47)	ND (0.44)	ND (0.47)
,		60000	ND (0.40)	ND (0.39)	ND (0.44)	ND (0.41)	ND (0.44)	ND (0.44)	ND (0.42)	ND (0.45)
1,1-Dichloroethene cis-1,2-Dichloroethene	500000	1000000	ND (0.55)	ND (0.55)	ND (0.61)	ND (0.56)	ND (0.62)	ND (0.62)	ND (0.59)	ND (0.62)
trans-1,2-Dichloroethene	500000 500000	1000000	ND (0.71)	ND (0.70)	ND (0.78)	ND (0.72)	ND (0.79)	ND (0.79)	ND (0.75)	ND (0.80)
1,2-Dichloropropane	500000	1000000	ND (0.51)	ND (0.51)	ND (0.57)	ND (0.53)	ND (0.58)	ND (0.58)	ND (0.55)	ND (0.58)
cis-1,3-Dichloropropene	-	-	ND (0.40)	ND (0.40)	ND (0.44)	ND (0.41)	ND (0.45)	ND (0.45)	ND (0.42)	ND (0.45)
trans-1,3-Dichloropropene	-	-	ND (0.40) ND (0.38)	ND (0.40) ND (0.38)	ND (0.44) ND (0.43)	ND (0.41)	ND (0.45) ND (0.43)	ND (0.45) ND (0.43)	ND (0.42) ND (0.41)	ND (0.45) ND (0.43)
Ethylbenzene	390000	780000	ND (0.38)	ND (0.38)	ND (0.43) ND (0.42)	ND (0.39) ND (0.39)	ND (0.43)	ND (0.43)	ND (0.41)	ND (0.43)
Freon 113	-	-	ND (0.36)	ND (0.36)	ND (0.42) ND (2.5)	ND (0.39)	ND (0.43)	ND (0.43) ND (2.5)	ND (0.40)	ND (0.43)
2-Hexanone	-	-	ND (1.8)	ND (1.8)	ND (2.0)	ND (1.8)	ND (2.0)	ND (2.0)	ND (1.9)	ND (2.0)
Isopropylbenzene	-	-	ND (1.2)	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)
Methyl Acetate	-	-	ND (1.2)	ND (1.2)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.3)	ND (1.2)	ND (1.3)
Methylcyclohexane	-	-	ND (0.74)	ND (0.73)	ND (0.82)	ND (0.75)	ND (0.83)	ND (0.82)	ND (0.78)	ND (0.83)
Methyl Tert Butyl Ether	500000	1000000	ND (0.39)	ND (0.39)	ND (0.44)	ND (0.40)	ND (0.44)	ND (0.44)	ND (0.42)	ND (0.45)
4-Methyl-2-pentanone(MIBK)	-	-	ND (1.9)	ND (1.9)	ND (2.1)	ND (2.0)	ND (2.1)	ND (2.1)	ND (2.0)	ND (2.2)
Methylene chloride	500000	1000000	ND (2.2)	ND (2.2)	ND (2.4)	ND (2.3)	ND (2.5)	ND (2.5)	ND (2.3)	ND (2.5)
Styrene	-	-	ND (0.34)	ND (0.34)	ND (0.38)	ND (0.35)	ND (0.38)	ND (0.38)	ND (0.36)	ND (0.38)
1,1,2,2-Tetrachloroethane	-	-	ND (0.50)	ND (0.50)	ND (0.56)	ND (0.52)	ND (0.57)	ND (0.56)	ND (0.54)	ND (0.57)
Tetrachloroethene	150000	300000	ND (0.49)	ND (0.49)	ND (0.54)	ND (0.50)	ND (0.55)	ND (0.55)	ND (0.52)	ND (0.55)
Toluene	500000	1000000	ND (0.44)	ND (0.44)	ND (0.49)	ND (0.45)	ND (0.50)	ND (0.49)	ND (0.47)	ND (0.50)
1,2,3-Trichlorobenzene	-	-	ND (2.1)	ND (2.1)	ND (2.3)	ND (2.2)	ND (2.4)	ND (2.4)	ND (2.2)	ND (2.4)
1,2,4-Trichlorobenzene	-	-	ND (2.1)	ND (2.1)	ND (2.3)	ND (2.2)	ND (2.4)	ND (2.4)	ND (2.2)	ND (2.4)
1,1,1-Trichloroethane	500000	1000000	ND (0.41)	ND (0.41)	ND (0.45)	ND (0.42)	ND (0.46)	ND (0.46)	ND (0.43)	ND (0.46)
1,1,2-Trichloroethane Trichloroethene	200000	400000	ND (0.47)	ND (0.46)	ND (0.52)	ND (0.48)	ND (0.52)	ND (0.52)	ND (0.49)	ND (0.53)
	200000	400000	ND (0.64)	ND (0.64)	ND (0.71)	ND (0.66)	ND (0.72)	ND (0.72)	ND (0.68)	ND (0.72)
Trichlorofluoromethane	12000	-	ND (0.58)	ND (0.57)	ND (0.64)	ND (0.59)	ND (0.65)	ND (0.64)	ND (0.61)	ND (0.65)
Vinyl chloride	13000	27000	ND (0.40)	ND (0.40)	ND (0.45)	ND (0.41)	ND (0.45)	ND (0.45)	ND (0.43)	ND (0.46)
m n-Yvlene	_		NID (C ZC)							
m,p-Xylene o-Xylene	-	-	ND (0.75) ND (0.39)	ND (0.75) ND (0.38)	ND (0.84) ND (0.43)	ND (0.77) ND (0.39)	ND (0.85) ND (0.43)	ND (0.84) ND (0.43)	ND (0.80) ND (0.41)	ND (0.85) ND (0.44)

Soil Boring Location	NY SCO -	NY SCO -	TT-SB-16	TT-SB-17	TT-SB-18	TT-SB-19	TT-SB-20	TT-SB-21	TT-SB-22	TT-SB-23
Sample Depth in feet bgs	Commercial	Industrial	7.5-9.5	7.0-9.0	7.0-9.0	7.0-9.0	6.5-8.5	6.5-8.5	6.5-8.5	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/29/2021	11/29/2021	11/29/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021
PFAS Compounds (ug/kg)										
Perfluorobutanoic acid	-	-	ND (0.44)	ND (0.40)	ND (0.43)	ND (0.42)	ND (0.44)	ND (0.44)	ND (0.45)	ND (0.44)
Perfluoropentanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorohexanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluoroheptanoic acid Perfluorooctanoic acid	-	-	ND (0.29) ND (0.29)	ND (0.26) ND (0.26)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)
Perfluorononanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27) ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorodecanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluoroundecanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorododecanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorotridecanoic acid	-	-	ND (0.31)	ND (0.28)	ND (0.30)	ND (0.29)	ND (0.31)	ND (0.31)	ND (0.31)	ND (0.31)
Perfluorotetradecanoic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorobutanesulfonic acid Perfluorohexanesulfonic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluoroheptanesulfonic acid	-	-	ND (0.29) ND (0.29)	ND (0.26) ND (0.26)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)	ND (0.29) ND (0.29)
Perfluorooctanesulfonic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Perfluorodecanesulfonic acid	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
PFOSA	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
MeFOSAA	-	-	ND (0.58)	ND (0.53)	ND (0.56)	ND (0.55)	ND (0.58)	ND (0.58)	ND (0.59)	ND (0.58)
EtFOSAA	-	-	ND (0.58)	ND (0.53)	ND (0.56)	ND (0.55)	ND (0.58)	ND (0.58)	ND (0.59)	ND (0.58)
6:2 Fluorotelomer sulfonate 8:2 Fluorotelomer sulfonate	-	-	ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Semi Volatile Organic Compounds (ug/kg)			ND (0.29)	ND (0.26)	ND (0.28)	ND (0.27)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
2-Chlorophenol	-	-	ND (18)	ND (18)	ND (18)	ND (18)	ND (18)	ND (19)	ND (19)	ND (19)
4-Chloro-3-methyl phenol	-	-	ND (22)	ND (22)	ND (23)	ND (22)	ND (23)	ND (23)	ND (24)	ND (23)
2,4-Dichlorophenol	-	-	ND (31)	ND (31)	ND (32)	ND (30)	ND (32)	ND (32)	ND (33)	ND (32)
2,4-Dimethylphenol	-	-	ND (64)	ND (64)	ND (66)	ND (63)	ND (66)	ND (67)	ND (69)	ND (67)
2,4-Dinitrophenol	-	-	ND (140)	ND (130)	ND (140)	ND (130)	ND (140)	ND (140)	ND (150)	ND (140)
4,6-Dinitro-o-cresol	-	-	ND (38)	ND (38)	ND (40)	ND (38)	ND (40)	ND (40)	ND (42)	ND (41)
2-Methylphenol	-	-	ND (23)	ND (23)	ND (24)	ND (23)	ND (24)	ND (24)	ND (25)	ND (24)
3&4-Methylphenol	-	-	ND (30)	ND (29)	ND (30)	ND (29)	ND (30)	ND (31)	ND (32)	ND (31)
2-Nitrophenol	-	-	ND (24)	ND (24)	ND (24)	ND (24)	ND (24)	ND (25)	ND (26)	ND (25)
4-Nitrophenol	-		ND (96) a	ND (96) a	ND (99) a	ND (95) a	ND (99) a	ND (100) ^a	ND (100) ^a	ND (100) a
Pentachlorophenol	6700	55000	ND (34)	ND (34)	ND (35)	ND (33)	ND (35)	ND (36)	ND (37)	ND (36)
Phenol 2,3,4,6-Tetrachlorophenol	-	-	ND (19)	ND (19)	ND (19)	ND (19)	ND (19)	ND (20)	ND (20)	ND (20)
2,4,5-Trichlorophenol	-	-	ND (24) ND (27)	ND (24) ND (27)	ND (24) ND (28)	ND (24) ND (27)	ND (25) ND (28)	ND (25) ND (28)	ND (26) ND (29)	ND (25) ND (28)
2,4,6-Trichlorophenol	-	-	ND (21)	ND (21)	ND (22)	ND (21)	ND (22)	ND (23)	ND (23)	ND (23)
Acenaphthene	500000	1000000	ND (12)	ND (12)	ND (13)	ND (12)	ND (13)	ND (13)	ND (13)	ND (13)
Acenaphthylene	500000	1000000	ND (18)	ND (18)	ND (19)	ND (18)	ND (19)	ND (19)	ND (20)	ND (19)
Acetophenone	-	-	ND (7.7)	ND (7.7)	ND (8.0)	ND (7.7)	ND (8.0)	ND (8.1)	ND (8.4)	ND (8.1)
Anthracene	500000	1000000	ND (22)	ND (22)	ND (23)	ND (22)	ND (23)	ND (23)	ND (24)	ND (23)
Atrazine	-	-	ND (15)	ND (15)	ND (16)	ND (15)	ND (16)	ND (16)	ND (17)	ND (16)
Benzo(a)anthracene	5600	11000	ND (10)	38.7	22.2 J	33.3 J	54.8	26.4 J	ND (11)	ND (11)
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1100	ND (16)	29.4 J	ND (17)	22.9 J	48.9	29.2 J	ND (18)	ND (17)
Benzo(g,h,i)perylene	5600 500000	11000 1000000	ND (16) ND (18)	36.2 21.3 J	18.5 J ND (18)	25.4 J ND (18)	60.4 36.5 J	27.2 J 20.3 J	ND (17) ND (19)	ND (17) ND (19)
Benzo(k)fluoranthene	56000	1100000	ND (18) ND (17)	21.3 J 17.6 J	ND (18) ND (17)	ND (18) ND (17)	24.2 J	20.3 J ND (18)	ND (19) ND (18)	ND (19) ND (18)
4-Bromophenyl phenyl ether	-	-	ND (14)	ND (14)	ND (17)	ND (17)	ND (14)	ND (15)	ND (15)	ND (15)
Butyl benzyl phthalate	-	-	ND (8.8)	ND (8.7)	ND (9.0)	ND (8.7)	ND (9.0)	ND (9.2)	ND (9.5)	ND (9.2)
1,1'-Biphenyl	-	-	ND (4.9)	ND (4.9)	ND (5.1)	ND (4.9)	ND (5.1)	ND (5.2)	ND (5.3)	ND (5.2)
Benzaldehyde	-	-	ND (8.9)	ND (8.9)	ND (9.2)	ND (8.8)	ND (9.2)	ND (9.4)	ND (9.7)	ND (9.4)
2-Chloronaphthalene	-	-	ND (8.5)	ND (8.5)	ND (8.8)	ND (8.5)	ND (8.8)	ND (9.0)	ND (9.3)	ND (9.0)
4-Chloroaniline Carbazole	-	-	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)	ND (14)	ND (14)	ND (14)
Caprolactam	-	-	ND (5.2)	ND (5.2)	ND (5.4)	ND (5.2)	ND (5.4)	ND (5.5) ND (15) ^a	ND (5.6)	ND (5.5)
Chrysene	56000	110000	ND (14) ^a ND (11)	ND (14) ^a 36.4	ND (15) ^a 17.5 J	ND (14) ^a 27.6 J	ND (15) ^a 53.4	ND (15) ° 26.7 J	ND (15) ^a ND (12)	ND (15) ^a ND (12)
bis(2-Chloroethoxy)methane	-	-	ND (11) ND (7.7)	ND (7.7)	ND (7.9)	ND (7.6)	ND (7.9)	ND (8.1)	ND (12) ND (8.3)	ND (12) ND (8.1)
bis(2-Chloroethyl)ether	-	-	ND (15)	ND (1.7)	ND (16)	ND (7.0)	ND (16)	ND (16)	ND (17)	ND (16)
2,2'-Oxybis(1-chloropropane)	-	-	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)	ND (14)	ND (14)	ND (14)
4-Chlorophenyl phenyl ether	-	-	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (12)	ND (13)	ND (12)
2,4-Dinitrotoluene	-	_	ND (11)	ND (11)	ND (11)	ND (11)	ND (11)	ND (12)	ND (12)	ND (12)

Sample Depth in reet bgs	NY SCO - Commercial	NY SCO -	TT-SB-16	TT-SB-17	TT-SB-18	TT-SB-19	TT-SB-20	TT-SB-21	TT-SB-22	
Sample Depth in reet bgs	Commercial							55 22	11-30-22	TT-SB-23
		Industrial	7.5-9.5	7.0-9.0	7.0-9.0	7.0-9.0	6.5-8.5	6.5-8.5	6.5-8.5	7.5-9.5
	/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/29/2021	11/29/2021	11/29/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021
2.6-Dinitrotoluene	-	-	ND (18)	ND (18)	ND (19)	ND (18)	ND (19)	ND (19)	ND (20)	ND (19)
3,3'-Dichlorobenzidine	-	-	ND (30)	ND (30)	ND (31)	ND (30)	ND (31)	ND (32)	ND (32)	ND (32)
1,4-Dioxane	-	-	ND (24)	ND (25)	ND (26)	ND (25)				
Dibenzo(a,h)anthracene Dibenzofuran	560 350000	1100 1000000	ND (16) ND (15)	ND (16) ND (15)	ND (16) ND (15)	ND (16) ND (14)	ND (16) ND (15)	ND (17) ND (15)	ND (17) ND (16)	ND (17) ND (15)
Di-n-butyl phthalate	-	-	ND (5.9)	ND (5.8)	ND (6.0)	ND (5.8)	ND (6.0)	ND (6.2)	ND (6.3)	ND (6.2)
Di-n-octyl phthalate	-	-	ND (8.9)	ND (8.9)	ND (9.2)	ND (8.9)	ND (9.2)	ND (9.4)	ND (9.7)	ND (9.4)
Diethyl phthalate	-	-	ND (7.6)	ND (7.6)	ND (7.9)	ND (7.6)	ND (7.9)	ND (8.1)	ND (8.3)	ND (8.1)
Dimethyl phthalate bis(2-Ethylhexyl)phthalate	-	-	ND (6.4)	ND (6.4)	ND (6.6)	ND (6.3)	ND (6.6)	ND (6.7)	ND (6.9)	ND (6.7)
Fluoranthene	500000	1000000	ND (8.4) ND (16)	19.3 J 67	ND (8.7) 35.2 J	ND (8.3) 46.8	ND (8.7) 110	ND (8.8) 24.3 J	ND (9.1) ND (17)	ND (8.9) ND (17)
Fluorene	500000	1000000	ND (16)	ND (16)	ND (17)	ND (16)	ND (17)	ND (17)	ND (17)	ND (17)
Hexachlorobenzene	6000	12000	ND (9.1)	ND (9.1)	ND (9.4)	ND (9.0)	ND (9.4)	ND (9.6)	ND (9.8)	ND (9.6)
Hexachlorobutadiene	-	-	ND (14)	ND (14)	ND (15)	ND (14)	ND (15)	ND (15)	ND (16)	ND (15)
Hexachlorocyclopentadiene	-	-	ND (14) a	ND (14) a	ND (15) a	ND (14) ^a	ND (15) a	ND (15) a	ND (15) a	ND (15) a
Hexachloroethane		-	ND (18)	ND (19)	ND (19)	ND (19)				
Indeno(1,2,3-cd)pyrene Isophorone	5600	11000	ND (17)	22.5 J	ND (17)	ND (17)	39.4	20.6 J	ND (18)	ND (18)
2-Methylnaphthalene	-	-	ND (7.7) ND (8.1)	ND (7.7) ND (8.1)	ND (7.9) ND (8.4)	ND (7.6) ND (8.0)	ND (7.9) ND (8.4)	ND (8.1) ND (8.5)	ND (8.3) ND (8.8)	ND (8.1) ND (8.6)
2-Nitroaniline	-	-	ND (8.5)	ND (8.1)	ND (8.4)	ND (8.4)	ND (8.7)	ND (8.9)	ND (9.2)	ND (8.9)
3-Nitroaniline	-	-	ND (9.0)	ND (9.0)	ND (9.2)	ND (8.9)	ND (9.3)	ND (9.5)	ND (9.7)	ND (9.5)
4-Nitroaniline	-	-	ND (9.3)	ND (9.3)	ND (9.6)	ND (9.2)	ND (9.6)	ND (9.8)	ND (10)	ND (9.8)
Naphthalene	500000	1000000	ND (10)	ND (11)	ND (11)	ND (11)				
Nitrobenzene	-	-	ND (14)	ND (15)	ND (15)	ND (15)				
N-Nitroso-di-n-propylamine	-	-	ND (10)	ND (10)	ND (11)	ND (10)	ND (11)	ND (11)	ND (11)	ND (11)
N-Nitrosodiphenylamine Phenanthrene	500000	1000000	ND (13)	ND (13)	ND (14)	ND (13)	ND (14)	ND (14)	ND (14)	ND (14)
Pyrene	500000	1000000	ND (12) ND (11)	41.8 65.4	14.7 J 28.7 J	31.1 J 46.1	66.3 91.4	23.1 J 25.1 J	ND (13) ND (12)	ND (13) ND (12)
1,2,4,5-Tetrachlorobenzene	-	-	ND (9.1)	ND (9.1)	ND (9.4)	ND (9.0)	ND (9.4)	ND (9.6)	ND (9.9)	ND (9.6)
1,4 Dioxane (ug/kg)			(0)	(0)	(5)	112 (010)	112 (511)	(6.6)	112 (010)	(5.5)
1,4-Dioxane	-	-	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
Pesticides and herbicides (ug/kg)										
Aldrin	680	1400	ND (0.56)	ND (0.54)	ND (0.60)	ND (0.56)	ND (0.59)	ND (0.63)	ND (0.63)	ND (0.62)
alpha-BHC	3400	6800	ND (0.55)	ND (0.53)	ND (0.59)	ND (0.56)	ND (0.58)	ND (0.62)	ND (0.62)	ND (0.61)
beta-BHC	3000	14000	ND (0.61)	ND (0.59)	ND (0.65)	ND (0.62)	ND (0.65)	ND (0.69)	ND (0.69)	ND (0.68)
delta-BHC	500000	1000000	ND (0.65)	ND (0.63)	ND (0.69)	ND (0.66)	ND (0.69)	ND (0.74)	ND (0.74)	ND (0.72)
gamma-BHC (Lindane)	9200	23000	ND (0.50)	ND (0.48)	ND (0.53)	ND (0.50)	ND (0.53)	ND (0.57)	ND (0.56)	ND (0.55)
alpha-Chlordane	24000	47000	ND (0.55)	ND (0.53)	ND (0.58)	ND (0.55)	ND (0.58)	ND (0.62)	ND (0.62)	ND (0.61)
gamma-Chlordane	-	-	ND (0.31)	ND (0.30)	ND (0.33)	ND (0.31)	ND (0.33)	ND (0.35)	ND (0.35)	ND (0.34)
Dieldrin	1400	28000	ND (0.47)	ND (0.45)	ND (0.50)	ND (0.47)	ND (0.49)	ND (0.53)	ND (0.53)	ND (0.52)
4,4'-DDD	92000	180000	ND (0.62)	ND (0.60)	ND (0.66)	ND (0.63)	ND (0.66)	ND (0.71)	ND (0.70)	ND (0.69)
4,4'-DDE	62000	120000	ND (0.60)	ND (0.57)	ND (0.63)	ND (0.60)	ND (0.63)	ND (0.67)	ND (0.67)	ND (0.66)
4,4'-DDT	47000	94000	ND (0.60)	ND (0.58)	ND (0.64)	ND (0.61)	ND (0.64)	ND (0.68)	ND (0.68)	ND (0.67)
Endrin	89000	410000	ND (0.53)	ND (0.51)	ND (0.56)	ND (0.53)	ND (0.56)	ND (0.60)	ND (0.59)	ND (0.58)
Endosulfan sulfate	200000	920000	ND (0.53)	ND (0.51)	ND (0.56)	ND (0.53)	ND (0.56)	ND (0.60)	ND (0.60)	ND (0.59)
Endrin aldehyde	-	-	ND (0.39)	ND (0.37)	ND (0.41)	ND (0.39)	ND (0.41)	ND (0.44)	ND (0.43)	ND (0.43)
Endosulfan-l	200000	920000	ND (0.39)	ND (0.38)	ND (0.42)	ND (0.39)	ND (0.41)	ND (0.44)	ND (0.44)	ND (0.43)
Endosulfan-II	200000	920000	ND (0.42)	ND (0.41)	ND (0.45)	ND (0.43)	ND (0.45)	ND (0.48)	ND (0.48)	ND (0.47)
Heptachlor	15000	29000	ND (0.59)	ND (0.56)	ND (0.62)	ND (0.59)	ND (0.62)	ND (0.66)	ND (0.66)	ND (0.65)
Heptachlor epoxide	-	-	ND (0.48)	ND (0.46)	ND (0.51)	ND (0.48)	ND (0.50)	ND (0.54)	ND (0.54)	ND (0.53)
Methoxychlor	-	-	ND (0.54)	ND (0.52)	ND (0.58)	ND (0.54)	ND (0.57)	ND (0.61)	ND (0.61)	ND (0.60)
Endrin ketone	-	-	ND (0.49)	ND (0.47)	ND (0.52)	ND (0.49)	ND (0.52)	ND (0.56)	ND (0.55)	ND (0.54)
Toxaphene 2.4-D	-	-	ND (16) ND (8.0)	ND (15) ND (7.8)	ND (17) ND (7.5)	ND (16) ND (7.7)	ND (17) ND (8.0)	ND (18) ND (8.5)	ND (18) ND (8.4)	ND (18) ND (8.5)
4,T-U	500000	1000000	ND (8.0) ND (2.0)	ND (7.8) ND (2.0)	ND (7.5) ND (1.9)	ND (7.7) ND (1.9)	ND (8.0) ND (2.0)	ND (8.5) ND (2.2)	ND (8.4) ND (2.1)	ND (8.5) ND (2.1)
2,4,5-TP (Silvex)	30000	100000	.10 (2.0)	110 (2.0)	110 (1.0)	ND (1.7)	ND (1.8)	110 (2.2)	110 (2.1)	ND (1.9)

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	NY SCO -	NY SCO -	TT-SB-16	TT-SB-17	TT-SB-18	TT-SB-19	TT-SB-20	TT-SB-21	TT-SB-22	TT-SB-23
Soil Boring Location				-						
Sample Depth in feet bgs	Commercial	Industrial	7.5-9.5	7.0-9.0	7.0-9.0	7.0-9.0	6.5-8.5	6.5-8.5	6.5-8.5	7.5-9.5
Sampling Date	NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	11/29/2021	11/29/2021	11/29/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021	11/30/2021
	NT OICH 373-0	141 OKK 373-0								
PCBs (ug/kg)										
Aroclor 1016	1000	25000	ND (16)	ND (15)	ND (17)	ND (16)	ND (17)	ND (18)	ND (18)	ND (18)
Aroclor 1221	1000	25000	ND (21)	ND (20)	ND (22)	ND (21)	ND (22)	ND (24)	ND (24)	ND (23)
Aroclor 1232	1000	25000	ND (22)	ND (21)	ND (23)	ND (22)	ND (23)	ND (25)	ND (24)	ND (24)
Aroclor 1242	1000	25000	ND (14)	ND (13)	ND (15)	ND (14)	ND (15)	ND (16)	ND (16)	ND (15)
Aroclor 1248	1000	25000	ND (30)	ND (29)	ND (32)	ND (30)	ND (32)	ND (34)	ND (34)	ND (34)
Aroclor 1254	1000	25000	ND (18)	ND (18)	ND (19)	ND (18)	ND (19)	ND (21)	ND (21)	ND (20)
Aroclor 1260	1000	25000	ND (14)	ND (14)	ND (15)	ND (15)	ND (15)	ND (16)	ND (16)	ND (16)
Aroclor 1268	1000	25000	ND (14)	ND (14)	ND (15)	ND (14)	ND (15)	ND (16)	ND (16)	ND (16)
Aroclor 1262	1000	25000	ND (22)	ND (21)	ND (24)	ND (22)	ND (23)	ND (25)	ND (25)	ND (25)
Metals (mg/kg)										
Aluminum	-	-	6240	4620	7770	4200	3720	9700	6780	6910
Antimony	-	-	<2.3	<2.2	<2.2	<2.2	<2.2	<2.3	<2.3	<2.3
Arsenic	16	16	2.4	2.4	7.7	2.9	5.3	4.4	4.6	3.4
Barium	400	10000	33.7	32.6	34.3	<22	365	35.9	32.8	42.4
Beryllium	590	2700	0.51	0.44	0.6	0.33	0.35	0.58	0.54	0.52
Cadmium	9.3	60	<0.57	< 0.55	< 0.55	<0.56	<0.56	<0.58	<0.58	<0.58
Calcium	-	-	1340	1890	1960	632	1400	1100	2650	2540
Chromium	-	-	14.9	12.9	16.6	8.2	12.3	14.4	12.7	13.3
Cobalt	-	-	6.6	5.7	7.4	<5.6	<5.6	6.6	6.3	6
Copper	270	10000	11.7	13	19.1	11.6	61.1	12.8	13	10.4
Iron	_	-	11200	9690	17900	9140	11100	16100	13600	13300
Lead	1000	3900	8.7	22.2	33.9	20.4	377	16.4	15.2	11.7
Magnesium	-	_	2470	2050	2610	1290	1760	2300	2930	2490
Manganese	10000	10000	167	180	181	141	167	273	258	257
Mercury	2.8	5.7	<0.037	< 0.033	0.081	0.64	0.24	0.067	0.071	<0.037
Nickel	310	10000	23	21.8	16.8	10.2	17.9	13.8	15	14.2
Potassium		-	<1100	<1100	1420	<1100	<1100	<1200	1200	<1200
Selenium	1500	6800	<2.3	<2.2	<2.2	<2.2	<2.2	<2.3	<2.3	<2.3
Silver	1500	6800	<0.57	<0.55	0.66	<0.56	<0.56	<0.58	<0.58	<0.58
Sodium	-	-	<1100	<1100	<1100	<1100	<1100	<1200	<1200	<1200
Thallium	-	_	<1.1	<1.1	<1.1	<1.1	<1.1	<1.2	<1.2	<1.2
Vanadium	-	_	21.2	17.5	22.9	13.9	15.4	21.2	20.4	19.2
Zinc	10000	10000	32.2	40.3	53.8	27.8	323	35.8	40.3	29.5
Cyanide	27	10000	<0.32	0.32	<0.31	<0.28	0.6	<0.28	<0.24	<0.32

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

- No criteria NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

⁸ Associated CCV outside of control limits high,sample was ND.
⁸ Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

Page 12 of 24

				1	1		Г	1	1	
Soil Boring Location	NY SCO -	NY SCO -	TT-SB-24	TT-SB-25	TT-SB-26	TT-SB-27	S DUP-02	TT-SB-28	TT-SB-29	TT-SB-30
Sample Depth in feet bgs	Commercial	Industrial	6.5-8.5	7.0-9.0	6.0-8.0	5.0-7.0		7.0-9.0	4.0-6.0	7.0-9.0
Sampling Date	W/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/2/2021
Volatile Organic Compounds (ug/kg)							l			
Acetone	500000	1000000	19.1	ND (3.7)	23.6	ND (3.8)	14.9	9.7	4.7 J	8.8 J
Benzene	44000	89000	ND (0.46)	ND (0.41)	ND (0.43)	ND (0.42)	ND (0.41)	ND (0.42)	ND (0.46)	ND (0.44)
Bromochloromethane	-	-	ND (0.56)	ND (0.51)	ND (0.53)	ND (0.52)	ND (0.51)	ND (0.52)	ND (0.57)	ND (0.55)
Bromodichloromethane	-	-	ND (0.43)	ND (0.39)	ND (0.40)	ND (0.40)	ND (0.39)	ND (0.40)	ND (0.43)	ND (0.42)
Bromoform	-	-	ND (1.4)	ND (1.2)	ND (1.3)	ND (1.3)	ND (1.2)	ND (1.3)	ND (1.4)	ND (1.3)
Bromomethane	-	-	ND (0.77)	ND (0.69)	ND (0.72)	ND (0.71)	ND (0.69)	ND (0.71)	ND (0.77)	ND (0.74)
2-Butanone (MEK)	500000	1000000	ND (2.4)	ND (2.2)	4.5 J	ND (2.3)	ND (2.2)	ND (2.3)	ND (2.5)	ND (2.4)
Carbon disulfide	-	-	ND (0.54)	ND (0.48)	0.81 J	ND (0.50)	ND (0.49)	ND (0.50)	ND (0.54)	ND (0.52)
Carbon tetrachloride	22000	44000	ND (0.62)	ND (0.56)	ND (0.58)	ND (0.57)	ND (0.56)	ND (0.58)	ND (0.62)	ND (0.60)
Chlorobenzene	500000	1000000	ND (0.46)	ND (0.42)	ND (0.43)	ND (0.43)	ND (0.42)	ND (0.43)	ND (0.46)	ND (0.45)
Chloroethane	-	-	ND (0.59)	ND (0.53)	ND (0.56)	ND (0.55)	ND (0.54)	ND (0.55)	ND (0.60)	ND (0.58)
Chloroform	350000	700000	ND (0.52)	ND (0.47)	ND (0.49)	ND (0.48)	ND (0.47)	ND (0.48)	ND (0.52)	ND (0.51)
Chloromethane	-	-	ND (2.0)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (2.0)	ND (1.9)
Cyclohexane	-	-	ND (0.66)	ND (0.59)	ND (0.62)	ND (0.61)	ND (0.60)	ND (0.61)	ND (0.66)	ND (0.64)
1,2-Dibromo-3-chloropropane	-	-	ND (0.70)	ND (0.63)	ND (0.65)	ND (0.64)	ND (0.63)	ND (0.65)	ND (0.70)	ND (0.68)
Dibromochloromethane	-	-	ND (0.56)	ND (0.51)	ND (0.53)	ND (0.52)	ND (0.51)	ND (0.52)	ND (0.57)	ND (0.55)
1,2-Dibromoethane	-	-	ND (0.42)	ND (0.38)	ND (0.40)	ND (0.39)	ND (0.38)	ND (0.39)	ND (0.42)	ND (0.41)
1,2-Dichlorobenzene	500000	1000000	ND (0.55)	ND (0.49)	ND (0.52)	ND (0.51)	ND (0.50)	ND (0.51)	ND (0.55)	ND (0.53)
1,3-Dichlorobenzene	280000	560000	ND (0.50)	ND (0.45)	ND (0.47)	ND (0.46)	ND (0.45)	ND (0.46)	ND (0.50)	ND (0.48)
1,4-Dichlorobenzene	130000	250000	ND (0.50)	ND (0.45)	ND (0.47)	ND (0.46)	ND (0.45)	ND (0.46)	ND (0.50)	ND (0.48)
Dichlorodifluoromethane	-	-	ND (0.73)	ND (0.66)	ND (0.69)	ND (0.68)	ND (0.66)	ND (0.68)	ND (0.73)	ND (0.71)
1,1-Dichloroethane	240000	480000	ND (0.50)	ND (0.45)	ND (0.47)	ND (0.46)	ND (0.45)	ND (0.46)	ND (0.50)	ND (0.48)
1,2-Dichloroethane	30000	60000	ND (0.47)	ND (0.43)	ND (0.44)	ND (0.44)	ND (0.43)	ND (0.44)	ND (0.47)	ND (0.46)
1,1-Dichloroethene	500000	1000000	ND (0.66)	ND (0.59)	ND (0.62)	ND (0.61)	ND (0.59)	ND (0.61)	ND (0.66)	ND (0.64)
cis-1,2-Dichloroethene	500000	1000000	ND (0.84)	ND (0.76)	ND (0.79)	ND (0.78)	ND (0.76)	ND (0.78)	ND (0.85)	ND (0.82)
trans-1,2-Dichloroethene	500000	1000000	ND (0.61)	ND (0.55)	ND (0.58)	ND (0.57)	ND (0.55)	ND (0.57)	ND (0.62)	ND (0.59)
1,2-Dichloropropane	-	-	ND (0.48)	ND (0.43)	ND (0.45)	ND (0.44)	ND (0.43)	ND (0.44)	ND (0.48)	ND (0.46)
cis-1,3-Dichloropropene	-	-	ND (0.48)	ND (0.43)	ND (0.45)	ND (0.44)	ND (0.43)	ND (0.44)	ND (0.48)	ND (0.46)
trans-1,3-Dichloropropene Ethylbenzene	390000	-	ND (0.46)	ND (0.41)	ND (0.43)	ND (0.42)	ND (0.41)	ND (0.43)	ND (0.46)	ND (0.44)
Freon 113	390000	780000	ND (0.46)	ND (0.41)	0.90 J	ND (0.42) ND (2.5)	ND (0.41)	ND (0.42)	ND (0.46)	ND (0.44) ND (2.6)
2-Hexanone		-	ND (2.7) ND (2.1)	ND (2.4) ND (1.9)	ND (2.5) ND (2.0)	ND (2.5) ND (2.0)	ND (2.4) ND (1.9)	ND (2.5) ND (2.0)	ND (2.7) ND (2.1)	ND (2.6) ND (2.1)
Isopropylbenzene		-	ND (2.1)	ND (1.3)	ND (2.0)	ND (2.0)	ND (1.3)	ND (2.0)	ND (2.1)	ND (2.1)
Methyl Acetate	_	-	ND (1.4)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.4)	ND (1.4)
Methylcyclohexane	-	-	ND (0.88)	ND (0.79)	ND (0.83)	ND (0.81)	ND (0.79)	ND (0.82)	ND (0.88)	ND (0.85)
Methyl Tert Butyl Ether	500000	1000000	ND (0.47)	ND (0.42)	ND (0.44)	ND (0.44)	ND (0.43)	ND (0.44)	ND (0.47)	ND (0.46)
4-Methyl-2-pentanone(MIBK)	-	-	ND (2.3)	ND (2.1)	ND (2.1)	ND (2.1)	ND (2.1)	ND (2.1)	ND (2.3)	ND (2.2)
Methylene chloride	500000	1000000	ND (2.6)	ND (2.4)	ND (2.5)	ND (2.4)	ND (2.4)	ND (2.4)	ND (2.6)	ND (2.5)
Styrene	-	-	ND (0.40)	ND (0.36)	ND (0.38)	ND (0.37)	ND (0.36)	ND (0.37)	ND (0.41)	ND (0.39)
1,1,2,2-Tetrachloroethane	-	-	ND (0.60)	ND (0.54)	ND (0.57)	ND (0.56)	ND (0.54)	ND (0.56)	ND (0.60)	ND (0.58)
Tetrachloroethene	150000	300000	ND (0.58)	ND (0.52)	ND (0.55)	ND (0.54)	ND (0.53)	ND (0.54)	ND (0.59)	ND (0.56)
Toluene	500000	1000000	ND (0.53)	ND (0.48)	ND (0.50)	ND (0.49)	ND (0.48)	ND (0.49)	ND (0.53)	ND (0.51)
1,2,3-Trichlorobenzene	-	-	ND (2.5)	ND (2.3)	ND (2.4)	ND (2.3)	ND (2.3)	ND (2.3)	ND (2.5)	ND (2.4)
1,2,4-Trichlorobenzene	-	-	ND (2.5)	ND (2.3)	ND (2.4)	ND (2.3)	ND (2.3)	ND (2.3)	ND (2.5)	ND (2.4)
1,1,1-Trichloroethane	500000	1000000	ND (0.49)	ND (0.44)	ND (0.46)	ND (0.45)	ND (0.44)	ND (0.45)	ND (0.49)	ND (0.47)
1,1,2-Trichloroethane	-	-	ND (0.56)	ND (0.50)	ND (0.52)	ND (0.51)	ND (0.50)	ND (0.52)	ND (0.56)	ND (0.54)
Trichloroethene	200000	400000	ND (0.77)	ND (0.69)	ND (0.72)	ND (0.71)	ND (0.69)	ND (0.71)	ND (0.77)	ND (0.74)
Trichlorofluoromethane	-	-	ND (0.69)	ND (0.62)	ND (0.65)	ND (0.64)	ND (0.62)	ND (0.64)	ND (0.69)	ND (0.67)
Vinyl chloride	13000	27000	ND (0.48)	ND (0.44)	ND (0.45)	ND (0.45)	ND (0.44)	ND (0.45)	ND (0.49)	ND (0.47)
m,p-Xylene	•	-	ND (0.90)	ND (0.81)	1.3	ND (0.83)	ND (0.81)	ND (0.84)	ND (0.90)	ND (0.87)
o-Xylene	-	-	0.74 J	ND (0.41)	0.95	ND (0.43)	ND (0.42)	ND (0.43)	ND (0.46)	ND (0.45)
Xylene (total)	500000	1000000	0.74 J	ND (0.41)	2.3	ND (0.43)	ND (0.42)	ND (0.43)	ND (0.46)	ND (0.45)

Call Barbard and barbar	NY SCO -	NY SCO -	TT-SB-24	TT-SB-25	TT-SB-26	TT-SB-27	S DUP-02	TT-SB-28	TT-SB-29	TT-SB-30
Soil Boring Location Sample Depth in feet bgs	Commercial	Industrial	6.5-8.5	7.0-9.0	6.0-8.0	5.0-7.0		7.0-9.0	4.0-6.0	7.0-9.0
Sample Depth in feet ugs										
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/2/2021
PFAS Compounds (ug/kg)								I.		
Perfluorobutanoic acid	-	-	ND (0.42)	ND (0.43)	ND (0.41)	ND (0.43)				
Perfluoropentanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluorohexanoic acid Perfluoroheptanoic acid	-	-	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.28)	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.27)	ND (0.28)
Perfluorooctanoic acid	-	-	ND (0.28)	ND (0.28)	ND (0.28) ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.27) ND (0.27)	ND (0.28) ND (0.28)
Perfluorononanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluorodecanoic acid		-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluoroundecanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluorododecanoic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluorotridecanoic acid Perfluorotetradecanoic acid	-	-	ND (0.30)	ND (0.30)	ND (0.29)	ND (0.29)	ND (0.29) ND (0.28)	ND (0.30)	ND (0.29)	ND (0.30)
Perfluorobutanesulfonic acid	-	-	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)	ND (0.28)	ND (0.28) ND (0.28)	ND (0.27) ND (0.27)	ND (0.28)
Perfluorohexanesulfonic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28) ND (0.28)					
Perfluoroheptanesulfonic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Perfluorooctanesulfonic acid		-	ND (0.28)	ND (0.28)	ND (0.28)	0.35 J	ND (0.28)	ND (0.28)	ND (0.27)	ND (0.28)
Perfluorodecanesulfonic acid	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
PFOSA	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
MeFOSAA EtFOSAA	-	-	ND (0.56)	ND (0.56)	ND (0.55)	ND (0.55)	ND (0.55) ND (0.55)	ND (0.56)	ND (0.54)	ND (0.57)
6:2 Fluorotelomer sulfonate	-	-	ND (0.56) ND (0.28)	ND (0.56) ND (0.28)	ND (0.55) ND (0.28)	ND (0.55) ND (0.28)	ND (0.56) ND (0.28)	ND (0.56) ND (0.28)	ND (0.54) ND (0.27)	ND (0.57) ND (0.28)
8:2 Fluorotelomer sulfonate	-	-	ND (0.28)	ND (0.27)	ND (0.28)					
Semi Volatile Organic Compounds (ug/kg)			140 (0.20)	ND (0.20)	ND (0.20)	140 (0.20)		14D (0.20)	ND (0.21)	ND (0.20)
2-Chlorophenol	-	-	ND (18)							
4-Chloro-3-methyl phenol	•	-	ND (22)	ND (23)	ND (22)	ND (22)				
2,4-Dichlorophenol	-	-	ND (31)							
2,4-Dimethylphenol	•	-	ND (65)	ND (64)	ND (65)	ND (64)	ND (64)	ND (66)	ND (65)	ND (65)
2,4-Dinitrophenol	-	-	ND (140)							
4,6-Dinitro-o-cresol	-	-	ND (39)	ND (40)	ND (39)	ND (39)				
2-Methylphenol 3&4-Methylphenol	-	-	ND (23) ND (30)	ND (23)	ND (23)	ND (23)	ND (23)	ND (24)	ND (23)	ND (23)
2-Nitrophenol	-	-	ND (30)	ND (30) ND (24)						
4-Nitrophenol	-	-	ND (98)	ND (97)	ND (97)	ND (97)	ND (97)	ND (99)	ND (97)	ND (97)
Pentachlorophenol	6700	55000	ND (34)	ND (35)	ND (34)	ND (34)				
Phenol	-	-	ND (19)							
2,3,4,6-Tetrachlorophenol	-	-	ND (24)							
2,4,5-Trichlorophenol	-	-	ND (27)	ND (28)	ND (27)	ND (27)				
2,4,6-Trichlorophenol	٠	-	ND (22)							
Acenaphthene	500000	1000000	32.0 J	21.8 J	3590	ND (12)	53.5	ND (13)	ND (13)	ND (13)
Acenaphthylene	500000	1000000	23.4 J	ND (18)	25.6 J	ND (18)	91	ND (19)	ND (19)	ND (18)
Acetophenone Anthracene	-	4000000	ND (7.9)	ND (7.8)	ND (7.8)	ND (7.8)	ND (7.8)	ND (7.9)	ND (7.8)	ND (7.8)
	500000	1000000	91.4 ND (16)	48 ND (15)	153 ND (16)	ND (22)	303 ND (15)	ND (23)	ND (22)	28.5 J
Atrazine Benzo(a)anthracene	-	11000	ND (16)	ND (15)	ND (16)	ND (15)	ND (15)	ND (16)	ND (16)	ND (16)
Benzo(a)pyrene	5600 1000	11000 1100	381 364	97.6 80.3	96.4 74.5	ND (10) ND (16)	1780 1560	ND (10) ND (17)	43.9 33.8 J	75.6 65.5
Benzo(b)fluoranthene	5600	11000	454	99.6	99.2	ND (16)	1940	ND (17)	50.4	81
Benzo(g,h,i)perylene	500000	1000000	258	48.4	55.6	ND (18)	892	ND (18)	18.2 J	39.8
Benzo(k)fluoranthene	56000	110000	160	39.9	30.5 J	ND (17)	690	ND (17)	ND (17)	28.7 J
4-Bromophenyl phenyl ether		-	ND (14)							
Butyl benzyl phthalate	-	-	ND (8.9)	ND (8.8)	ND (8.9)	ND (8.8)	ND (8.8)	ND (9.0)	ND (8.9)	ND (8.9)
1,1'-Biphenyl Benzaldehyde	-	-	ND (5.0)	ND (5.0) ND (9.0)	26.3 J	ND (5.0) ND (9.0)	ND (5.0)	ND (5.1)	ND (5.0) ND (9.1)	ND (5.0)
2-Chloronaphthalene	-	-	ND (9.1) ND (8.7)	ND (9.0) ND (8.6)	ND (9.1) ND (8.7)	ND (9.0) ND (8.6)	ND (9.0) ND (8.6)	ND (9.2) ND (8.8)	ND (9.1) ND (8.7)	ND (9.0) ND (8.6)
4-Chloroaniline	-	-	ND (13)	ND (0.0)	ND (13)	ND (13)	ND (13)	ND (0.0)	ND (8.7)	ND (13)
Carbazole	-	-	28.4 J	18.7 J	96.6	ND (5.2)	45.3 J	ND (5.4)	ND (5.3)	12.3 J
Caprolactam	-	-	ND (14)	ND (15)	ND (14)	ND (14)				
Chrysene	56000	110000	381	91.2	98.9	ND (11)	1700	ND (12)	44	77.7
bis(2-Chloroethoxy)methane	-	-	ND (7.8)	ND (7.7)	ND (7.8)	ND (7.7)	ND (7.7)	ND (7.9)	ND (7.8)	ND (7.8)
bis(2-Chloroethyl)ether	-	-	ND (16)							
2,2'-Oxybis(1-chloropropane) 4-Chlorophenyl phenyl ether	-	-	ND (13)							
2,4-Dinitrotoluene	-	-	ND (12)							
2,4-Dinitrotoluene	-	-	ND (11)							

	NY SCO -	NY SCO -	TT-SB-24	TT-SB-25	TT-SB-26	TT-SB-27	S DUP-02	TT-SB-28	TT-SB-29	TT-SB-30
Soil Boring Location							3 DOP-02			
Sample Depth in feet bgs	Commercial	Industrial	6.5-8.5	7.0-9.0	6.0-8.0	5.0-7.0		7.0-9.0	4.0-6.0	7.0-9.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/2/2021
2.6-Dinitrotoluene	-	-	ND (18)	ND (18)	ND (18)	ND (18)	ND (18)	ND (19)	ND (18)	ND (18)
3,3'-Dichlorobenzidine	-	-	ND (31)	ND (30)	ND (30)	ND (30)	ND (30)	ND (31)	ND (30)	ND (30)
1,4-Dioxane	-	-	ND (24)	ND (24)	ND (24)	ND (24)	ND (24)	ND (24)	ND (24)	ND (24)
Dibenzo(a,h)anthracene Dibenzofuran	560	1100	86.3	29.0 J	32.6 J	ND (16)	281	ND (16)	21.4 J	27.0 J
Di-n-butyl phthalate	350000	1000000	16.7 J ND (6.0)	ND (15) ND (5.9)	1570 ND (6.0)	ND (15) ND (5.9)	24.5 J ND (5.9)	ND (15) ND (6.0)	ND (15) ND (6.0)	ND (15) ND (5.9)
Di-n-octyl phthalate	-	-	ND (9.1)	ND (9.0)	ND (9.1)	ND (9.0)	ND (9.0)	ND (9.2)	ND (9.1)	ND (9.0)
Diethyl phthalate	-	-	ND (7.8)	ND (7.7)	ND (7.8)	ND (7.7)	ND (7.7)	ND (7.9)	ND (7.8)	ND (7.7)
Dimethyl phthalate	-	-	ND (6.5)	ND (6.4)	ND (6.5)	ND (6.4)	ND (6.4)	ND (6.6)	ND (6.5)	ND (6.5)
bis(2-Ethylhexyl)phthalate	-	-	ND (8.6)	ND (8.5)	68.6 J	ND (8.5)	ND (8.5)	ND (8.6)	ND (8.5)	ND (8.5)
Fluoranthene	500000	1000000	752	221	415	ND (16)	3090	ND (16)	80.3	151
Fluorene Hexachlorobenzene	500000 6000	1000000 12000	26.9 J ND (9.3)	20.6 J ND (9.2)	1350 ND (9.2)	ND (17) ND (9.2)	45.7 ND (9.2)	ND (17) ND (9.3)	ND (17) ND (9.2)	ND (17) ND (9.2)
Hexachlorobutadiene	-	12000	ND (9.3)	ND (9.2) ND (15)	ND (9.2) ND (15)	ND (9.2) ND (15)	ND (9.2) ND (15)	ND (9.3) ND (15)	ND (9.2) ND (15)	ND (9.2) ND (15)
Hexachlorocyclopentadiene	-	-	ND (15)	ND (13)	ND (15)	ND (14)	ND (14)	ND (15)	ND (15)	ND (14)
Hexachloroethane	-	-	ND (18)	ND (14)	ND (18)	ND (14)	ND (18)	ND (18)	ND (18)	ND (18)
Indeno(1,2,3-cd)pyrene	5600	11000	311	76.4	76.1	ND (17)	1110	ND (17)	40.9	59
Isophorone	-	-	ND (7.8)	ND (7.7)	ND (7.8)	ND (7.7)	ND (7.7)	ND (7.9)	ND (7.8)	ND (7.8)
2-Methylnaphthalene	-	-	ND (8.3)	ND (8.2)	446	ND (8.2)	ND (8.2)	ND (8.3)	ND (8.3)	ND (8.2)
2-Nitroaniline 3-Nitroaniline	-	-	ND (8.6)	ND (8.5)	ND (8.6)	ND (8.5)	ND (8.5)	ND (8.7)	ND (8.6)	ND (8.6)
3-Nitroaniline 4-Nitroaniline	-	-	ND (9.1) ND (9.5)	ND (9.1) ND (9.4)	ND (9.1) ND (9.5)	ND (9.0) ND (9.4)	ND (9.0) ND (9.4)	ND (9.2) ND (9.6)	ND (9.1) ND (9.5)	ND (9.1) ND (9.4)
Naphthalene	500000	1000000	ND (9.5) ND (10)	ND (9.4) ND (10)	372	ND (9.4) ND (10)	10.1 J	ND (9.6)	ND (9.5)	11.7 J
Nitrobenzene	-	-	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)	ND (14)
N-Nitroso-di-n-propylamine	-	-	ND (11)	ND (10)	ND (11)	ND (10)	ND (10)	ND (11)	ND (11)	ND (10)
N-Nitrosodiphenylamine	-	-	ND (13)	ND (13)	ND (13)	ND (13)	ND (13)	ND (14)	ND (13)	ND (13)
Phenanthrene	500000	1000000	362	208	1810	ND (12)	1050	ND (12)	36.8 J	139
Pyrene	500000	1000000	801	187	328	ND (12)	3030	ND (12)	81.4	161
1,2,4,5-Tetrachlorobenzene	-	-	ND (9.3)	ND (9.2)	ND (9.3)	ND (9.2)	ND (9.2)	ND (9.4)	ND (9.3)	ND (9.2)
1,4 Dioxane (ug/kg)										
1,4-Dioxane	-	-	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)	ND (1.8)
Pesticides and herbicides (ug/kg)	000	4400		h	NB (0.00)	h	ND (0.50)	h	ND (0.50)	h
Aldrin	680	1400	1.9 ^a	ND (0.55) b	ND (0.60)	ND (0.61) b	ND (0.56)	ND (0.57) b	ND (0.58)	ND (0.57) b
alpha-BHC	3400	6800	ND (0.53)	ND (0.54) b	1.9 a	ND (0.60) b	ND (0.56)	ND (0.56) b	ND (0.57)	ND (0.56) b
beta-BHC	3000	14000	ND (0.59)	ND (0.60) b	ND (0.65)	ND (0.67) ^b	ND (0.62)	ND (0.62) ^b	ND (0.64)	ND (0.62) b
delta-BHC	500000	1000000	ND (0.63)	ND (0.64) b	ND (0.69)	ND (0.71) b	ND (0.66)	ND (0.66) b	ND (0.67)	ND (0.66) b
gamma-BHC (Lindane)	9200	23000	2.3 ^a	ND (0.49) b	ND (0.53)	ND (0.55) b	2.1 a	ND (0.51) b	ND (0.52)	ND (0.51) b
alpha-Chlordane	24000	47000	2.8	ND (0.54) b	ND (0.58)	ND (0.60) b	ND (0.55)	ND (0.55) b	ND (0.57)	ND (0.56) b
gamma-Chlordane	4400	-	2.4 ^a	ND (0.30) b	2.0 ^a	ND (0.34) b	ND (0.31)	ND (0.31) b	ND (0.32)	ND (0.31) b
Dieldrin	1400	28000	1.1 ^a	ND (0.46) b	ND (0.50)	ND (0.51) b	ND (0.47)	ND (0.47) b	ND (0.48)	ND (0.47) b
4,4'-DDD	92000	180000	5.8	ND (0.61) b	17.9	ND (0.68) b	3.2	ND (0.63) b	ND (0.64)	ND (0.63) b
4,4'-DDE	62000	120000	5.7	ND (0.58) b	5.4	ND (0.65) ^b	3.1	ND (0.60) b	ND (0.62)	ND (0.60) ^b
4,4'-DDT	47000	94000	3.5 °	ND (0.59) b	ND (0.64)	ND (0.66) b	ND (0.61)	ND (0.61) b	ND (0.62)	ND (0.61) b
Endrin	89000	410000	ND (0.51)	ND (0.52) b	ND (0.56)	ND (0.58) b	ND (0.53)	ND (0.53) b	ND (0.55)	ND (0.54) b
Endosulfan sulfate	200000	920000	ND (0.51)	ND (0.52) b	ND (0.56)	ND (0.58) b	ND (0.53)	ND (0.54) b	ND (0.55)	ND (0.54) b
Endrin aldehyde	-	-	ND (0.37)	ND (0.38) b	ND (0.41)	ND (0.42) b	ND (0.39)	ND (0.39) b	ND (0.40)	ND (0.39) b
Endosulfan-I	200000	920000	ND (0.38)	ND (0.38) b	ND (0.42)	ND (0.43) b	ND (0.39)	ND (0.40) b	ND (0.40)	ND (0.40) b
Endosulfan-II	200000	920000	2.7	ND (0.41) b	ND (0.45)	ND (0.46) b	ND (0.43)	ND (0.43) b	ND (0.44)	ND (0.43) b
Heptachlor	15000	29000	ND (0.56)	ND (0.57) b	ND (0.62)	ND (0.64) ^b	ND (0.59)	ND (0.59) b	ND (0.61)	ND (0.59) b
Heptachlor epoxide	-	-	0.84 ^a	ND (0.47) b	ND (0.51)	ND (0.52) ^b	ND (0.48)	ND (0.48) ^b	ND (0.49)	ND (0.48) ^b
Methoxychlor	-	-	ND (0.52)	ND (0.53) b	ND (0.57)	ND (0.59) b	ND (0.54)	ND (0.55) b	ND (0.56)	ND (0.55) b
Endrin ketone	-	-	ND (0.47)	ND (0.48)	ND (0.52)	ND (0.54)	ND (0.49)	ND (0.50)	ND (0.51)	ND (0.50)
Toxaphene	-	-	ND (15)	ND (15)	ND (17)	ND (17)	ND (16)	ND (16)	ND (16)	ND (16)
2,4-D 2,4,5-TP (Silvex)	500000	1000000	ND (7.9) ND (2.0)	ND (7.4) ND (1.9)	ND (7.5) ND (1.9)	ND (8.2) ND (2.1)	ND (7.4) ND (1.9)	ND (7.8) ND (2.0)	ND (7.8) ND (2.0)	ND (7.7) ND (1.9)
2,4,5-TP (Silvex) 2,4,5-T	500000	1000000	ND (2.0) ND (1.8)	ND (1.9) ND (1.7)			ND (1.9) ND (1.7)		ND (2.0) ND (1.7)	ND (1.9) ND (1.7)
۷,4,5-۱	•	-	(פ.ו) שוו ((۱.7) טאו	ND (1.7)	ND (1.8)	(۱.7) שאו	ND (1.7)	(۱.7) טאו	(۱.7) טא

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	NY SCO -	NY SCO -	TT-SB-24	TT-SB-25	TT-SB-26	TT-SB-27	S DUP-02	TT-SB-28	TT-SB-29	TT-SB-30
Soil Boring Locat	ion	555	55 2.	55 25	55 25		0 20. 02			55 55
Sample Depth in feet	bgs Commercial	Industrial	6.5-8.5	7.0-9.0	6.0-8.0	5.0-7.0		7.0-9.0	4.0-6.0	7.0-9.0
Sampling D	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/1/2021	12/2/2021
PCBs (ug/kg)										
Aroclor 1016	1000	25000	ND (17)	ND (15)	ND (17)	ND (17)	ND (17)	ND (16)	ND (16)	ND (16)
Aroclor 1221	1000	25000	ND (22)	ND (21)	ND (22)	ND (23)	ND (22)	ND (21)	ND (22)	ND (21)
Aroclor 1232	1000	25000	ND (23)	ND (21)	ND (23)	ND (24)	ND (23)	ND (22)	ND (22)	ND (22)
Aroclor 1242	1000	25000	ND (15)	ND (14)	ND (15)	ND (15)	ND (15)	ND (14)	ND (14)	ND (14)
Aroclor 1248	1000	25000	ND (32)	ND (30)	ND (32)	ND (33)	ND (32)	ND (31)	ND (31)	ND (31)
Aroclor 1254	1000	25000	ND (19)	ND (18)	ND (19)	ND (20)	ND (19)	ND (18)	ND (19)	ND (19)
Aroclor 1260	1000	25000	ND (15)	ND (14)	ND (15)	ND (16)	ND (15)	ND (15)	ND (15)	ND (15)
Aroclor 1268	1000	25000	ND (15)	ND (14)	ND (15)	ND (16)	ND (15)	ND (14)	ND (15)	ND (15)
Aroclor 1262	1000	25000	ND (23)	ND (22)	ND (24)	ND (24)	ND (23)	ND (22)	ND (23)	ND (23)
Metals (mg/kg)										
Aluminum	-	-	4260	6110	4270	7040	4840	5460	5590	5590
Antimony	-	-	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.2	<2.2
Arsenic	16	16	2.8	5.2	3.9	3.2	3.5	2.8	3.1	3.8
Barium	400	10000	49.9	37	81.7	35.1	71.5	29.5	31.1	69.2
Beryllium	590	2700	0.24	0.38	0.28	0.52	0.29	0.46	0.49	0.48
Cadmium	9.3	60	<0.56	<0.58	<0.58	<0.59	<0.58	<0.57	<0.55	<0.56
Calcium	-	-	35300	1080	29800	1120	25100	1780	1660	4280
Chromium	-	-	10.3	11.7	9.2	12.7	12.8	12.7	11.1	13.4
Cobalt	-	-	<5.6	<5.8	<5.8	<5.9	<5.8	<5.7	<5.5	<5.6
Copper	270	10000	12.6	37.5	10.7	11.3	15.4	9.3	16	126
Iron	-	-	9130	11200	9130	11900	9810	11700	11200	12900
Lead	1000	3900	87.1	55.2	53.6	25	115	16.1	13.4	164
Magnesium	-	-	7890	2180	8370	2080	6320	3260	2430	2720
Manganese	10000	10000	193	239	582	232	195	301	276	174
Mercury	2.8	5.7	0.24	0.079	0.06	<0.029	0.13	<0.035	0.072	0.26
Nickel	310	10000	17.2	14.5	12.6	13.4	16.7	19.8	13.4	24.3
Potassium	-	-	<1100	<1200	<1200	<1200	<1200	1100	1100	1460
Selenium	1500	6800	<2.3	<2.3	<2.3	<2.3	<2.3	<2.3	<2.2	<2.2
Silver	1500	6800	<0.56	<0.58	<0.58	<0.59	<0.58	<0.57	<0.55	<0.56
Sodium	-	-	<1100	<1200	<1200	<1200	<1200	<1100	<1100	<1100
Thallium	-	-	<1.1	<1.2	<1.2	<1.2	<1.2	<1.1	<1.1	<1.1
Vanadium		_	15.1	17.4	21.4	21.1	15.1	18.6	17	19.6
Zinc	10000	10000	48.5	50.9	77	35.8	69.4	34.2	32.3	100
Cyanide	27	10000	<0.23	1.9	<0.23	<0.23	<0.23	<0.22	<0.33	<0.27

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

- No criteria NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

⁸ Associated CCV outside of control limits high,sample was ND.
⁸ Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

Soil Boring Location	NY SCO -	NY SCO -	TT-SB-31	TT-SB-32	TT-SB-33	TT-SB-34	TT-SB-35	TT-SB-36	TT-SB-37	TT-SB-38
Sample Depth in feet bgs	Commercial	Industrial	6.0-8.0	7.0-9.0	4.5-6.5	4.0-6.0	3.0-5.0	6.0-8.0	7.0-9.0	7.5-9.5
Sample Depth in feet bgs			5.5 5.5				5.0.0	515 515		1.0 2.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/2/2021	12/2/2021	12/2/2021	12/3/2021	12/3/2021	12/3/2021	12/3/2021	12/6/2021
Volatile Organic Compounds (ug/kg)			j						l	
Acetone	500000	1000000	4.3 J	ND (3.7)	17	ND (3.9)	ND (4.2)	ND (4.3)	ND (4.0)	11.5 J
Benzene	44000	89000	ND (0.38)	ND (0.41)	ND (0.45)	ND (0.43)	ND (0.46)	ND (0.48)	ND (0.44)	ND (0.54)
Bromochloromethane	-	-	ND (0.47)	ND (0.50)	ND (0.56)	ND (0.53)	ND (0.57)	ND (0.59)	ND (0.55)	ND (0.66)
Bromodichloromethane	-	-	ND (0.36)	ND (0.39)	ND (0.43)	ND (0.40)	ND (0.44)	ND (0.45)	ND (0.42)	ND (0.51)
Bromoform	-	-	ND (1.1)	ND (1.2)	ND (1.4)	ND (1.3)	ND (1.4)	ND (1.4)	ND (1.3)	ND (1.6)
Bromomethane	-	-	ND (0.65)	ND (0.69)	ND (0.76)	ND (0.72)	ND (0.78)	ND (0.80)	ND (0.74)	ND (0.90)
2-Butanone (MEK)	500000	1000000	ND (2.1)	ND (2.2)	ND (2.4)	ND (2.3)	ND (2.5)	ND (2.5)	ND (2.4)	ND (2.9)
Carbon disulfide	-	-	0.57 J	ND (0.48)	ND (0.53)	ND (0.50)	ND (0.55)	ND (0.56)	ND (0.52)	ND (0.63) ^a
Carbon tetrachloride	22000	44000	ND (0.52)	ND (0.56)	ND (0.61)	ND (0.58)	ND (0.63)	ND (0.65)	ND (0.60)	ND (0.73)
Chlorobenzene	500000	1000000	ND (0.39)	ND (0.41)	ND (0.46)	ND (0.43)	ND (0.47)	ND (0.48)	ND (0.45)	ND (0.54)
Chloroethane	-	-	ND (0.50)	ND (0.53)	ND (0.59)	ND (0.56)	ND (0.60)	ND (0.62)	ND (0.58)	ND (0.70)
Chloroform	350000	700000	ND (0.44)	ND (0.47)	ND (0.52)	ND (0.49)	ND (0.53)	ND (0.54)	ND (0.51)	ND (0.61)
Chloromethane	-	-	ND (1.7)	ND (1.8)	ND (1.9)	ND (1.8)	ND (2.0)	ND (2.1)	ND (1.9)	ND (2.3)
Cyclohexane	-	-	ND (0.55)	ND (0.59)	ND (0.65)	ND (0.62)	ND (0.67)	ND (0.69)	ND (0.64)	ND (0.78)
1,2-Dibromo-3-chloropropane	-	-	ND (0.59)	ND (0.63)	ND (0.69)	ND (0.65)	ND (0.71)	ND (0.73)	ND (0.68)	ND (0.82)
Dibromochloromethane	-	-	ND (0.47)	ND (0.50)	ND (0.56)	ND (0.53)	ND (0.57)	ND (0.59)	ND (0.55)	ND (0.66)
1,2-Dibromoethane	-	-	ND (0.36)	ND (0.38)	ND (0.42)	ND (0.40)	ND (0.43)	ND (0.44)	ND (0.41)	ND (0.50)
1,2-Dichlorobenzene	500000	1000000	ND (0.46)	ND (0.49)	ND (0.54)	ND (0.51)	ND (0.56)	ND (0.57)	ND (0.53)	ND (0.65)
1,3-Dichlorobenzene	280000	560000	ND (0.42)	ND (0.45)	ND (0.49)	ND (0.47)	ND (0.51)	ND (0.52)	ND (0.48)	ND (0.59)
1,4-Dichlorobenzene	130000	250000	ND (0.42)	ND (0.44)	ND (0.49)	ND (0.47)	ND (0.50)	ND (0.52)	ND (0.48)	ND (0.58)
Dichlorodifluoromethane	-	-	ND (0.61)	ND (0.65)	ND (0.72)	ND (0.69)	ND (0.74)	ND (0.76)	ND (0.71)	ND (0.86)
1,1-Dichloroethane 1,2-Dichloroethane	240000 30000	480000	ND (0.42)	ND (0.45)	ND (0.49)	ND (0.47)	ND (0.50)	ND (0.52)	ND (0.48)	ND (0.59)
		60000	ND (0.40)	ND (0.42)	ND (0.47)	ND (0.44)	ND (0.48)	ND (0.49)	ND (0.46)	ND (0.56)
1,1-Dichloroethene cis-1,2-Dichloroethene	500000	1000000	ND (0.55)	ND (0.59)	ND (0.65)	ND (0.62)	ND (0.67)	ND (0.69)	ND (0.64)	ND (0.78) a
trans-1,2-Dichloroethene	500000 500000	1000000	ND (0.71)	ND (0.76)	ND (0.83)	ND (0.79)	ND (0.86)	ND (0.88)	ND (0.82)	ND (0.99)
1,2-Dichloropropane	500000	1000000	ND (0.52)	ND (0.55)	ND (0.61)	ND (0.58)	ND (0.62)	ND (0.64)	ND (0.59)	ND (0.72)
cis-1,3-Dichloropropene	-	-	ND (0.40)	ND (0.43)	ND (0.47)	ND (0.45)	ND (0.48)	ND (0.50)	ND (0.46)	ND (0.56)
trans-1,3-Dichloropropene	-	-	ND (0.40) ND (0.39)	ND (0.43) ND (0.41)	ND (0.47) ND (0.45)	ND (0.45) ND (0.43)	ND (0.48) ND (0.47)	ND (0.50) ND (0.48)	ND (0.46) ND (0.44)	ND (0.56) ND (0.54)
Ethylbenzene	390000	780000	ND (0.39)	ND (0.41)	ND (0.45) ND (0.45)	ND (0.43)	ND (0.47) ND (0.46)	ND (0.48)	ND (0.44) ND (0.44)	ND (0.54)
Freon 113	-	760000	ND (0.36)	ND (0.41)	ND (0.43)	ND (0.43)	ND (0.46)	ND (0.47)	ND (0.44)	ND (0.54)
2-Hexanone	-	_	ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (2.2)	ND (2.2)	ND (2.1)	ND (3.2)
Isopropylbenzene	-	-	ND (1.2)	ND (1.3)	ND (1.4)	ND (1.3)	ND (1.4)	ND (1.5)	ND (1.4)	ND (1.7)
Methyl Acetate	-	-	ND (1.2)	ND (1.3)	ND (1.4)	ND (1.3)	ND (1.4)	ND (1.5)	ND (1.4)	ND (1.6)
Methylcyclohexane	-	-	ND (0.74)	ND (0.79)	ND (0.87)	ND (0.82)	ND (0.89)	ND (0.92)	ND (0.85)	ND (1.0)
Methyl Tert Butyl Ether	500000	1000000	ND (0.40)	ND (0.42)	ND (0.47)	ND (0.44)	ND (0.48)	ND (0.49)	ND (0.46)	ND (0.56)
4-Methyl-2-pentanone(MIBK)	-	-	ND (1.9)	ND (2.0)	ND (2.3)	ND (2.1)	ND (2.3)	ND (2.4)	ND (2.2)	ND (2.7)
Methylene chloride	500000	1000000	ND (2.2)	ND (2.4)	ND (2.6)	ND (2.5)	ND (2.7)	ND (2.7)	3.2 J	ND (3.1)
Styrene	-	-	ND (0.34)	ND (0.36)	ND (0.40)	ND (0.38)	ND (0.41)	ND (0.42)	ND (0.39)	ND (0.48)
1,1,2,2-Tetrachloroethane	-	-	ND (0.51)	ND (0.54)	ND (0.60)	ND (0.56)	ND (0.61)	ND (0.63)	ND (0.58)	ND (0.71)
Tetrachloroethene	150000	300000	ND (0.49)	ND (0.52)	ND (0.58)	ND (0.55)	ND (0.59)	ND (0.61)	ND (0.56)	ND (0.69)
Toluene	500000	1000000	ND (0.44)	ND (0.47)	ND (0.52)	ND (0.49)	ND (0.54)	ND (0.55)	ND (0.51)	ND (0.62)
1,2,3-Trichlorobenzene	-	-	ND (2.1)	ND (2.3)	ND (2.5)	ND (2.4)	ND (2.5)	ND (2.6)	ND (2.4)	ND (3.0)
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	500000	4000000	ND (2.1)	ND (2.3)	ND (2.5)	ND (2.4)	ND (2.5)	ND (2.6)	ND (2.4)	ND (3.0)
1,1,2-Trichloroethane	500000	1000000	ND (0.41)	ND (0.44)	ND (0.48)	ND (0.46)	ND (0.49)	ND (0.51)	ND (0.47)	ND (0.57)
Trichloroethene	200000	400000	ND (0.47) ND (0.64)	ND (0.50) ND (0.69)	ND (0.55) ND (0.76)	ND (0.52) ND (0.72)	ND (0.56) ND (0.78)	ND (0.58) ND (0.80)	ND (0.54) ND (0.74)	ND (0.66) ND (0.90)
Trichlorofluoromethane	200000	400000	ND (0.64) ND (0.58)	ND (0.69) ND (0.62)	ND (0.76) ND (0.68)	ND (0.72) ND (0.64)	ND (0.78) ND (0.70)	ND (0.80) ND (0.72)	ND (0.74) ND (0.67)	ND (0.90) ND (0.81)
Vinyl chloride	13000	27000	ND (0.58) ND (0.41)	ND (0.62)	ND (0.68) ND (0.48)	ND (0.64) ND (0.45)	ND (0.70) ND (0.49)	ND (0.72) ND (0.50)	ND (0.67) ND (0.47)	(/
m,p-Xylene	-	2/000	ND (0.41) ND (0.76)	ND (0.43) ND (0.81)	ND (0.48) ND (0.89)	ND (0.45) ND (0.84)	ND (0.49) ND (0.91)	ND (0.50) ND (0.94)	ND (0.47) ND (0.87)	ND (0.57) ND (1.1)
o-Xylene	-	-	ND (0.76)	ND (0.81)	ND (0.89)	ND (0.84)	ND (0.91) ND (0.47)	ND (0.94) ND (0.48)	ND (0.87) ND (0.45)	ND (1.1) ND (0.54)
Xylene (total)	500000	1000000	ND (0.39)	ND (0.41)	ND (0.46)	ND (0.43)	ND (0.47)	ND (0.48)	ND (0.45)	ND (0.54)
, (/	222000	1000000	(פנ.ט) חמו	ND (0.41)	(0.40) עמו	(0.43) טאו	ND (0.47)	ND (0.48)	(C4.0) UNI	(46.0) טאו

				T						
Soil Boring Location	NY SCO -	NY SCO -	TT-SB-31	TT-SB-32	TT-SB-33	TT-SB-34	TT-SB-35	TT-SB-36	TT-SB-37	TT-SB-38
Sample Depth in feet bgs	Commercial	Industrial	6.0-8.0	7.0-9.0	4.5-6.5	4.0-6.0	3.0-5.0	6.0-8.0	7.0-9.0	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/2/2021	12/2/2021	12/2/2021	12/3/2021	12/3/2021	12/3/2021	12/3/2021	12/6/2021
PFAS Compounds (ug/kg)										
Perfluorobutanoic acid	-	-	ND (0.42)	ND (0.45)	ND (0.42)	ND (0.47)	ND (0.40)	ND (0.41)	ND (0.39)	ND (0.44)
Perfluoropentanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorohexanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluoroheptanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorooctanoic acid Perfluorononanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorodecanoic acid	-	-	ND (0.27) ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26) ND (0.26)	ND (0.29)
Perfluoroundecanoic acid	-	-	ND (0.27)	ND (0.29) ND (0.29)	ND (0.28) ND (0.28)	ND (0.31) ND (0.31)	ND (0.27) ND (0.27)	ND (0.27) ND (0.27)	ND (0.26)	ND (0.29) ND (0.29)
Perfluorododecanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorotridecanoic acid	-	-	ND (0.29)	ND (0.31)	ND (0.30)	ND (0.33)	ND (0.28)	ND (0.29)	ND (0.27)	ND (0.31)
Perfluorotetradecanoic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorobutanesulfonic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorohexanesulfonic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluoroheptanesulfonic acid Perfluorooctanesulfonic acid	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Perfluorooctanesulionic acid	-	-	ND (0.27) ND (0.27)	ND (0.29) ND (0.29)	ND (0.28) ND (0.28)	ND (0.31) ND (0.31)	ND (0.27) ND (0.27)	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.29) ND (0.29)
PFOSA	-	-	ND (0.27) ND (0.27)	ND (0.29) ND (0.29)	ND (0.28) ND (0.28)	ND (0.31) ND (0.31)	ND (0.27) ND (0.27)	ND (0.27) ND (0.27)	ND (0.26) ND (0.26)	ND (0.29) ND (0.29)
MeFOSAA	-	-	ND (0.27)	ND (0.29)	ND (0.56)	ND (0.51)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.58)
EtFOSAA	-	-	ND (0.55)	ND (0.59)	ND (0.56)	ND (0.62)	ND (0.53)	ND (0.55)	ND (0.51)	ND (0.58)
6:2 Fluorotelomer sulfonate	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
8:2 Fluorotelomer sulfonate	-	-	ND (0.27)	ND (0.29)	ND (0.28)	ND (0.31)	ND (0.27)	ND (0.27)	ND (0.26)	ND (0.29)
Semi Volatile Organic Compounds (ug/kg)	Î									
2-Chlorophenol 4-Chloro-3-methyl phenol	-	-	ND (18)	ND (19)	ND (17)	ND (19)	ND (34)	ND (17)	ND (17)	ND (18)
2,4-Dichlorophenol	-	-	ND (22) ND (31)	ND (23) ND (32)	ND (22) ND (30)	ND (24) ND (34)	ND (43) ND (60)	ND (21) ND (30)	ND (21) ND (29)	ND (23) ND (32)
2,4-Dimethylphenol	-	-	ND (64)	ND (68)	ND (63)	ND (34)	ND (120)	ND (62)	ND (29) ND (61)	ND (66)
2,4-Dinitrophenol	-	-	ND (140)	ND (140)	ND (130)	ND (150) ^a	ND (260) b	ND (130) ^a	ND (130) ^a	ND (140) ^b
4,6-Dinitro-o-cresol	_	_	ND (39)	ND (41)	ND (38)	ND (42) ^a	ND (75) b	ND (37) ^a	ND (37) ^a	ND (40) b
2-Methylphenol	-	-	ND (23)	ND (24)	ND (23)	ND (25)	ND (45)	ND (22)	ND (22)	ND (24)
3&4-Methylphenol	-	-	ND (30)	ND (31)	ND (29)	ND (32)	ND (57)	ND (29)	ND (28)	ND (30)
2-Nitrophenol	-	-	ND (24)	ND (25)	ND (23)	ND (26) a	ND (46) b	ND (23) a	ND (23) a	ND (24) b
4-Nitrophenol	-	-	ND (97)	ND (100)	ND (94)	ND (100)	ND (190)	ND (94)	ND (92)	ND (99)
Pentachlorophenol	6700	55000	ND (34)	ND (36)	ND (33)	ND (37)	ND (66)	ND (33)	ND (32)	ND (35)
Phenol	-	-	ND (19)	ND (20)	ND (18)	ND (21)	ND (36)	ND (18)	ND (18)	ND (19)
2,3,4,6-Tetrachlorophenol	-	-	ND (24)	ND (25)	ND (23)	ND (26) ^a	ND (46) ^b	ND (23) a	ND (23) a	ND (25) b
2,4,5-Trichlorophenol	-	-	ND (27)	ND (28)	ND (26)	ND (29)	ND (52)	ND (26)	ND (26)	ND (28)
2,4,6-Trichlorophenol Acenaphthene	-	-	ND (22)	ND (23)	ND (21)	ND (23)	ND (42)	ND (21)	ND (21)	ND (22)
Acenaphthylene	500000 500000	1000000 1000000	17.8 J ND (18)	ND (13) ND (19)	27.8 J 90.9	72.5 43.2	83 73.3	ND (12) ND (18)	ND (12) ND (18)	233 78.1
Acetophenone	500000	1000000	ND (7.8)	ND (19)	ND (7.6)	ND (8.4) ^a	ND (15) ^b	ND (7.5) a	ND (7.4) a	ND (8.0) ^b
Anthracene	500000	1000000	51.5	ND (8.2)	146	294	274	ND (7.5) ND (21)	ND (7.4) ND (21)	619
Atrazine	-	-	ND (15)	ND (16)	ND (15)	ND (17) ^a	ND (30) °	ND (21)	ND (15) ^a	ND (16) ^b
Benzo(a)anthracene	5600	11000	381	14.9 J	746	1020	852	36.7	37.5	1120
Benzo(a)pyrene	1000	1100	461	ND (17)	965	870	762	36.4	35.2	1130
Benzo(b)fluoranthene	5600	11000	568	ND (17)	985	994	986	39.5	39.3	1470
Benzo(g,h,i)perylene	500000	1000000	356	ND (19)	593	504	474	21.6 J	21.9 J	664
Benzo(k)fluoranthene	56000	110000	204	ND (18)	361	406	403	17.7 J	ND (16)	570
4-Bromophenyl phenyl ether Butyl benzyl phthalate	-	-	ND (14)	ND (15)	ND (14)	ND (15)	ND (27)	ND (14)	ND (13)	ND (14)
1,1'-Biphenyl	-	-	ND (8.8) ND (5.0)	ND (9.3) ND (5.2)	ND (8.6) 5.5 J	ND (9.6) 12.3 J	ND (17) 10.5 J	ND (8.5) ND (4.8)	ND (8.4) ND (4.7)	ND (9.0) 44.4 J
Benzaldehyde	-	-	ND (9.0)	ND (5.2) ND (9.4)	ND (8.8)	ND (9.7)	ND (17)	ND (4.8) ND (8.7)	ND (4.7) ND (8.6)	ND (9.2)
2-Chloronaphthalene	-	-	ND (8.6)	ND (9.0)	ND (8.4)	ND (9.3)	ND (17)	ND (8.3)	ND (8.2)	ND (8.8)
4-Chloroaniline	-	-	ND (13)	ND (14)	ND (13)	ND (14)	ND (25)	ND (13)	ND (12)	ND (13)
Carbazole	-	-	7.5 J	ND (5.5)	15.7 J	71.5 J	93.8 J	ND (5.1)	ND (5.0)	293
Caprolactam	-	-	ND (14)	ND (15)	ND (14)	ND (16) ^a	ND (28)	ND (14) ^a	ND (14) ^a	ND (15)
Chrysene	56000	110000	362	ND (12)	702	1140	862	34.2 J	29.9 J	1150
bis(2-Chloroethoxy)methane	-	-	ND (7.7)	ND (8.1)	ND (7.6)	ND (8.4)	ND (15)	ND (7.5)	ND (7.4)	ND (7.9)
bis(2-Chloroethyl)ether 2,2'-Oxybis(1-chloropropane)	-	-	ND (16)	ND (16)	ND (15)	ND (17)	ND (30)	ND (15)	ND (15)	ND (16)
4-Chlorophenyl phenyl ether	-	-	ND (13) ND (12)	ND (14) ND (12)	ND (13) ND (11)	ND (14) ND (13)	ND (25) ND (23)	ND (13) ND (11)	ND (12) ND (11)	ND (13) ND (12)
2,4-Dinitrotoluene	-	-	ND (12)	ND (12)	ND (11)	ND (13)	ND (23)	ND (11) a	ND (11) a	ND (12)
Z,T-Diriti Ololuciic	-	-	(וו) שאו	ND (12)	ואף (דו)	ND (12)	ND (22)	IND (11)	IND (11)	אה (۱۱)

	NY SCO -	NY SCO -	TT-SB-31	TT-SB-32	TT-SB-33	TT-SB-34	TT-SB-35	TT-SB-36	TT-SB-37	TT-SB-38
Soil Boring Location										
Sample Depth in feet bgs	Commercial	Industrial	6.0-8.0	7.0-9.0	4.5-6.5	4.0-6.0	3.0-5.0	6.0-8.0	7.0-9.0	7.5-9.5
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/2/2021	12/2/2021	12/2/2021	12/3/2021	12/3/2021	12/3/2021	12/3/2021	12/6/2021
2.6-Dinitrotoluene	-	-	ND (18)	ND (19)	ND (18)	ND (20)	ND (35)	ND (18)	ND (17)	ND (19)
3,3'-Dichlorobenzidine	-	-	ND (30)	ND (32)	ND (29)	ND (33)	ND (58)	ND (29)	ND (29)	ND (31)
1,4-Dioxane	-	-	ND (24)	ND (25)	ND (23)	ND (26)	ND (46)	ND (23)	ND (23)	ND (24)
Dibenzo(a,h)anthracene Dibenzofuran	560	1100	104 ND (45)	ND (17)	157 34.7 J	145	161	ND (15)	ND (15)	219 237
Di-n-butyl phthalate	350000	1000000	ND (15) ND (5.9)	ND (15) ND (6.2)	34.7 J ND (5.8)	68.0 J 21.2 JB	55.2 J ND (11)	ND (14) 21.1 JB	ND (14) 42.5 JB	13.6 JB
Di-n-octyl phthalate	-	-	ND (9.0)	ND (9.5)	ND (8.8)	ND (9.8)	ND (11)	ND (8.7)	ND (8.6)	ND (9.2)
Diethyl phthalate		-	ND (7.7)	ND (8.1)	ND (7.5)	ND (8.4)	ND (15)	ND (7.5)	ND (7.3)	ND (7.9)
Dimethyl phthalate	-	-	ND (6.4)	ND (6.8)	ND (6.3)	ND (7.0)	ND (12)	ND (6.2)	ND (6.1)	ND (6.6)
bis(2-Ethylhexyl)phthalate	-	-	64.1 J	ND (8.9)	ND (8.3)	57.6 J	230	50.9 J	39.8 J	56.0 J
Fluoranthene	500000	1000000	545	17.2 J	1200	1760	1760	57.2	53.4	2170
Fluorene Hexachlorobenzene	500000 6000	1000000 12000	ND (17) ND (9.2)	ND (17) ND (9.6)	35.8 ND (8.9)	56.1 ND (9.9)	84.3 ND (18)	ND (16) ND (8.9)	ND (16) ND (8.7)	322 ND (9.4)
Hexachlorobutadiene	-	12000	ND (9.2) ND (15)	ND (9.6) ND (15)	ND (8.9) ND (14)	ND (9.9) ND (16)	ND (18) ND (28) ^b	ND (8.9)	ND (8.7)	ND (9.4) ND (15) ^b
Hexachlorocyclopentadiene	-	-	ND (14)	ND (15)	ND (14)	ND (16) a	ND (28)	ND (14) a	ND (14) a	ND (15) ND (15)
Hexachloroethane	-	-	ND (18)	ND (19)	ND (18)	ND (19)	ND (35)	ND (14)	ND (14) ND (17)	ND (18)
Indeno(1,2,3-cd)pyrene	5600	11000	429	ND (18)	735	579	559	23.8 J	23.6 J	806
Isophorone	-	-	ND (7.7)	ND (8.1)	ND (7.6)	ND (8.4)	ND (15)	ND (7.5)	ND (7.4)	ND (7.9)
2-Methylnaphthalene	-	-	ND (8.2)	ND (8.6)	8.7 J	34.1 J	28.8 J	ND (7.9)	ND (7.8)	157
2-Nitroaniline 3-Nitroaniline	-	-	ND (8.5)	ND (9.0)	ND (8.3)	ND (9.3) a	ND (16) ^b	ND (8.3) a	ND (8.1) a	ND (8.7) b
4-Nitroaniline	-	-	ND (9.0) ND (9.4)	ND (9.5) ND (9.8)	ND (8.8) ND (9.2)	ND (9.8) ND (10)	ND (17)	ND (8.8) ND (9.1)	ND (8.6) ND (8.9)	ND (9.3)
Naphthalene	500000	1000000	ND (9.4) ND (10)	ND (9.8)	23.7 J	72.9	ND (18) 32.0 J	ND (9.1) ND (9.9)	ND (8.9) ND (9.7)	ND (9.6) 273
Nitrobenzene	-	-	ND (14)	ND (15)	ND (14)	ND (15)	ND (27)	ND (14)	ND (13)	ND (14)
N-Nitroso-di-n-propylamine	-	-	ND (10)	ND (11)	ND (10)	ND (11) a	ND (20) b	ND (10) a	ND (10) a	ND (11) b
N-Nitrosodiphenylamine	-	-	ND (13)	ND (14)	ND (13)	ND (14)	ND (26)	ND (13)	ND (13)	ND (14)
Phenanthrene	500000	1000000	136	ND (13)	282	1180	1210	16.2 J	24.8 J	2010
Pyrene	500000	1000000	644	17.7 J	1350	2050	1630	61.6	54.8	2180
1,2,4,5-Tetrachlorobenzene	-	-	ND (9.2)	ND (9.7)	ND (9.0)	ND (10)	ND (18)	ND (8.9)	ND (8.8)	ND (9.4)
1,4 Dioxane (ug/kg)										
1,4-Dioxane	-	-	2.06 J	2.09 J	ND (1.8)	ND (2.0)	ND (3.5)	ND (1.8)	ND (1.7)	ND (1.9)
Pesticides and herbicides (ug/kg)	000	1100	ND (0.55)	h	h	ND (0.00)	ND (0.50)	115 (0.57)	ND (0.50)	
Aldrin	680	1400	ND (0.55)	ND (0.63) b	ND (0.60) b	ND (0.63)	ND (0.58)	ND (0.57)	ND (0.53)	2.1 e
alpha-BHC	3400	6800	ND (0.54)	ND (0.62) b	ND (0.59) b	ND (0.62)	ND (0.57)	ND (0.56)	ND (0.52)	ND (0.59)
beta-BHC	3000	14000	ND (0.60)	ND (0.69) b	ND (0.65) b	ND (0.69)	ND (0.63)	ND (0.63)	ND (0.58)	ND (0.65)
delta-BHC	500000	1000000	ND (0.64)	ND (0.73) b	ND (0.69) b	ND (0.74)	ND (0.67)	ND (0.67)	ND (0.62)	ND (0.69)
gamma-BHC (Lindane)	9200	23000	ND (0.49)	ND (0.56) b	ND (0.53) b	ND (0.56)	ND (0.52)	ND (0.51)	ND (0.48)	ND (0.53)
alpha-Chlordane	24000	47000	14.6 ^a	ND (0.62) b	ND (0.58) b	ND (0.62)	4.0 ^d	ND (0.56)	ND (0.52)	ND (0.58)
gamma-Chlordane	-	-	21.2	ND (0.35) b	ND (0.33) b	ND (0.35)	3.9	ND (0.31)	ND (0.29)	ND (0.33)
Dieldrin	1400	28000	4.1 a	ND (0.53) b	ND (0.50) b	ND (0.53)	1.7 ^d	ND (0.48)	ND (0.44)	1.1 e
4,4'-DDD	92000	180000	ND (0.61)	ND (0.70) b	ND (0.66) b	2.3 ^d	3.5	ND (0.64)	ND (0.59)	4.8
4,4'-DDE	62000	120000	6.8	ND (0.67) b	ND (0.63) b	ND (0.67)	11.7 ^d	ND (0.61)	ND (0.57)	4.3
4,4'-DDT	47000	94000	2.7 °	ND (0.68) b	ND (0.64) b	6.3 ^d	22.1	ND (0.61)	ND (0.57)	4.8
Endrin	89000	410000	ND (0.52)	ND (0.59) b	ND (0.56) b	ND (0.60)	ND (0.55)	ND (0.54)	ND (0.50)	ND (0.56)
Endosulfan sulfate	200000	920000	ND (0.52)	ND (0.60) b	ND (0.57) b	ND (0.60)	ND (0.55)	ND (0.54)	ND (0.50)	ND (0.56)
Endrin aldehyde	-	-	ND (0.38)	ND (0.43) b	ND (0.41) b	ND (0.43)	ND (0.40)	ND (0.39)	ND (0.37)	ND (0.41)
Endosulfan-l	200000	920000	ND (0.38)	ND (0.44) b	ND (0.42) b	ND (0.44)	ND (0.40)	ND (0.40)	ND (0.37)	ND (0.42)
Endosulfan-II	200000	920000	ND (0.41)	ND (0.48) b	ND (0.45) b	ND (0.48)	ND (0.44)	ND (0.43)	ND (0.40)	ND (0.45)
Heptachlor	15000	29000	3.2	ND (0.66) b	ND (0.62) b	ND (0.66)	ND (0.61)	ND (0.60)	ND (0.56)	ND (0.62)
Heptachlor epoxide	-	-	3.0 a	ND (0.54) b	ND (0.51) b	ND (0.54)	ND (0.49)	ND (0.49)	ND (0.45)	ND (0.51)
Methoxychlor	-	-	ND (0.53)	ND (0.61) b	ND (0.58) b	ND (0.61)	ND (0.56)	ND (0.55)	ND (0.51)	ND (0.57)
Endrin ketone	-	-	ND (0.48)	ND (0.55)	ND (0.52)	ND (0.55)	8.9	ND (0.50)	ND (0.47)	ND (0.52)
Toxaphene	-	-	ND (15)	ND (18)	ND (17)	ND (18)	ND (16)	ND (16)	ND (15)	ND (17)
2,4-D 2,4,5-TP (Silvex)	500000	1000000	ND (7.6) ND (1.9)	ND (8.4) ND (2.1)	ND (8.0) ND (2.0)	ND (8.8) ND (2.2)	ND (7.3) ND (1.8)	ND (7.2) ND (1.8)	ND (7.5) ND (1.9)	ND (7.8) ND (2.0)
2,4,5-TP (Slivex) 2,4,5-T	500000	-	ND (1.9) ND (1.7)	ND (2.1) ND (1.9)	ND (2.0) ND (1.8)	ND (2.2) ND (2.0)	ND (1.8) ND (1.6)	ND (1.8) ND (1.6)	ND (1.9) ND (1.7)	ND (2.0) ND (1.7)
۷,4,√-۱	•	-	(۱.7) שאו	(1.9) טאו	(פ.ד) שאו	ND (2.0)	(ס.ו) שאו	(ס.ו) שאו	(۱.7) טאו	(۱.7) אט (

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	NY SCO -	NY SCO -	TT-SB-31	TT-SB-32	TT-SB-33	TT-SB-34	TT-SB-35	TT-SB-36	TT-SB-37	TT-SB-38
Soil Boring Location	1 11 000	W1 000 -	11-35-31	11-35-32	11-55-55	11-30-34	11-35-33	11-35-30	11-32-37	11-35-30
Sample Depth in feet bչ	Commercial Commercial	Industrial	6.0-8.0	7.0-9.0	4.5-6.5	4.0-6.0	3.0-5.0	6.0-8.0	7.0-9.0	7.5-9.5
Sampling Dat	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/2/2021	12/2/2021	12/2/2021	12/3/2021	12/3/2021	12/3/2021	12/3/2021	12/6/2021
PCBs (ug/kg)										
Aroclor 1016	1000	25000	ND (17)	ND (18)	ND (17)	ND (18)	ND (16)	ND (16)	ND (15)	ND (17)
Aroclor 1221	1000	25000	ND (22)	ND (24)	ND (22)	ND (24)	ND (22)	ND (22)	ND (20)	ND (22)
Aroclor 1232	1000	25000	ND (23)	ND (24)	ND (23)	ND (24)	ND (22)	ND (22)	ND (21)	ND (23)
Aroclor 1242	1000	25000	ND (15)	ND (16)	ND (15)	ND (16)	ND (14)	ND (14)	ND (13)	ND (15)
Aroclor 1248	1000	25000	ND (32)	ND (34)	ND (32)	ND (34)	ND (31)	ND (31)	ND (29)	ND (32)
Aroclor 1254	1000	25000	ND (19)	ND (21)	ND (19)	ND (21)	ND (19)	ND (19)	ND (17)	ND (19)
Aroclor 1260	1000	25000	ND (15)	ND (16)	ND (15)	ND (16)	ND (15)	ND (15)	ND (14)	ND (15)
Aroclor 1268	1000	25000	ND (15)	ND (16)	ND (15)	ND (16)	ND (15)	ND (15)	ND (14)	ND (15)
Aroclor 1262	1000	25000	ND (23)	ND (25)	ND (24)	ND (25)	ND (23)	ND (23)	ND (21)	ND (24)
Metals (mg/kg)										
Aluminum	-	-	4560	5170	5120	6160	4250	2760	2410	7760
Antimony	-	-	<2.3	<2.5	<2.3	<2.5	<2.1	<2.2	<2.2	<2.4
Arsenic	16	16	<2.3	2.7	3.2	4.2	<10 ^e	3.2	<2.2	9.4 ^f
Barium	400	10000	34.8	48.3	35.8	31.8	<100 ^e	<22	<22	425
Beryllium	590	2700	0.38	0.46	0.37	0.39	<1.0 ^e	<0.22	<0.22	0.52
Cadmium	9.3	60	<0.58	<0.62	<0.58	< 0.63	<2.6 ^e	<0.55	<0.54	0.69
Calcium	-	-	8460	1910	1760	16500	77500	626	4160	30900
Chromium	-	-	10.9	11.9	12	15.1	7.9 ^e	6.8	7.4	16.4
Cobalt	-	-	<5.8	<6.2	<5.8	<6.3	<26 ^e	<5.5	<5.4	6.5
Copper	270	10000	15.4	12.2	22.7	17.6	19.4 ^e	3.8	5.9	45.5 ^f
Iron	-	-	10400	11500	10000	14800	7910	8390	6040	25500
Lead	1000	3900	32.2	19.4	45	180	79.1	8.7	11.3	563
Magnesium	-	-	3060	2430	2180	3180	6380	1870	1720	4230
Manganese	10000	10000	136	274	167	223	301	97	77.2	261 ^f
Mercury	2.8	5.7	0.038	<0.030	0.1	0.22	0.18	0.075	0.056	0.4
Nickel	310	10000	17.7	13.9	20.8	21.7	-	14.3	18.9	26.4
Potassium	-	-	<1200	1270	<1200	<1300	<1000	<1100	<1100	1390
Selenium	1500	6800	<2.3	<2.5	<2.3	<2.5	<10 °	<2.2	<2.2	<4.8 ^f
Silver	1500	6800	<0.58	<0.62	<0.58	<0.63	<2.6 °	<0.55	<0.54	<1.2 ^f
Sodium	-	-	<1200	2510	<1200	<1300	<1000	<1100	<1100	<1200
Thallium	-	-	<1.2	<1.2	<1.2	<1.3	<5.1 °	<1.1	<1.1	<2.4 ^f
Vanadium	-	_	18.5	19.2	16.2	23	21	9.3	9.5	25
Zinc	10000	10000	46.4	36.2	47.9	46.3	70.2	18.3	20.3	342
Cyanide	27	10000	<0.26	<0.27	<0.25	<0.27	<0.23	<0.21	<0.25	0.38

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram

mg/kg - milligrams per kilogram

- No criteria NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

⁸ Associated CCV outside of control limits high,sample was ND.
⁸ Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

Soil Boring Location	NY SCO -	NY SCO -	TT-SB-39	TT-SB-40
Sample Depth in feet bgs	Commercial	Industrial	6.5-8.5	6.0-8.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/6/2021	12/6/2021
Volatile Organic Compounds (ug/kg)				
Acetone	500000	1000000	10.1 J	19.4
Benzene	44000	89000	ND (0.49)	ND (0.45)
Bromochloromethane	-	-	ND (0.61)	ND (0.56)
Bromodichloromethane	-	-	ND (0.46)	ND (0.43)
Bromoform	-	-	ND (1.5)	ND (1.4)
Bromomethane	-	-	ND (0.83)	ND (0.76)
2-Butanone (MEK)	500000	1000000	ND (2.6)	ND (2.4)
Carbon disulfide	-	-	ND (0.58) a	0.90 J ^b
Carbon tetrachloride	22000	44000	ND (0.67)	ND (0.61)
Chlorobenzene	500000	1000000	ND (0.50)	ND (0.46)
Chloroethane	-	-	ND (0.64)	ND (0.59)
Chloroform	350000	700000	ND (0.56)	ND (0.52)
Chloromethane	-	-	ND (2.1)	ND (1.9)
Cyclohexane	-	-	ND (0.71)	ND (0.65)
1,2-Dibromo-3-chloropropane	-	-	ND (0.75)	ND (0.69)
Dibromochloromethane	-	-	ND (0.61)	ND (0.56)
1,2-Dibromoethane	-	-	ND (0.46)	ND (0.42)
1,2-Dichlorobenzene	500000	1000000	ND (0.59)	ND (0.54)
1,3-Dichlorobenzene	280000	560000	ND (0.54)	ND (0.49)
1,4-Dichlorobenzene	130000	250000	ND (0.54)	ND (0.49)
Dichlorodifluoromethane	-	-	ND (0.79)	ND (0.72)
1,1-Dichloroethane	240000	480000	ND (0.54)	ND (0.49)
1,2-Dichloroethane	30000	60000	ND (0.51)	ND (0.47)
1,1-Dichloroethene	500000	1000000	ND (0.71) a	ND (0.65) a
cis-1,2-Dichloroethene	500000	1000000	ND (0.91)	ND (0.83)
trans-1,2-Dichloroethene	500000	1000000	ND (0.66)	ND (0.61)
1,2-Dichloropropane	-	-	ND (0.51)	ND (0.47)
cis-1,3-Dichloropropene	-	-	ND (0.51)	ND (0.47)
trans-1,3-Dichloropropene	-	-	ND (0.50)	ND (0.45)
Ethylbenzene	390000	780000	ND (0.49)	ND (0.45)
Freon 113	-	-	ND (2.9)	ND (2.7)
2-Hexanone	-	-	ND (2.3)	ND (2.1)
Isopropylbenzene	-	-	ND (1.5)	ND (1.4)
Methyl Acetate	-	-	ND (1.5)	ND (1.4)
Methylcyclohexane Methyl Tert Butyl Ether		4000000	ND (0.95)	ND (0.87)
4-Methyl-2-pentanone(MIBK)	500000	1000000	ND (0.51)	ND (0.47)
Methylene chloride	500000	4000000	ND (2.5)	ND (2.3)
Styrene	500000	1000000	ND (2.8)	ND (2.6)
1.1.2.2-Tetrachloroethane	-	-	ND (0.44)	ND (0.40)
Tetrachloroethene	150000	300000	ND (0.65) ND (0.63)	ND (0.60) ND (0.58)
Toluene	500000	1000000	ND (0.63) ND (0.57)	ND (0.58) ND (0.52)
1.2.3-Trichlorobenzene	-	100000	ND (0.57)	ND (0.52)
1,2,4-Trichlorobenzene	-		ND (2.7)	ND (2.5)
1,1,1-Trichloroethane	500000	1000000	ND (0.52)	ND (0.48)
1,1,2-Trichloroethane	-	-	ND (0.60)	ND (0.55)
Trichloroethene	200000	400000	ND (0.83)	ND (0.76)
Trichlorofluoromethane	-	-	ND (0.74)	ND (0.68)
Vinyl chloride	13000	27000	ND (0.52)	ND (0.48)
m,p-Xylene	-	-	ND (0.97)	ND (0.48)
				(0.00)
o-Xylene	-	_	ND (0.50)	ND (0.45)

Call Daving Leaghing	NY SCO -	NY SCO -	TT-SB-39	TT-SB-40
Soil Boring Location	Commercial	Industrial	6.5-8.5	6.0-8.0
Sample Depth in feet bgs		audi.iai	0.5 0.5	0.0 0.0
Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/6/2021	12/6/2021
PFAS Compounds (ug/kg)				
Perfluorobutanoic acid	-	-	ND (0.42)	ND (0.42)
Perfluoropentanoic acid Perfluorohexanoic acid	-	-	ND (0.28)	ND (0.28)
Perfluoroheptanoic acid	-	-	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)
Perfluorooctanoic acid	-	-	ND (0.28)	ND (0.28)
Perfluorononanoic acid	-	-	ND (0.28)	ND (0.28)
Perfluorodecanoic acid Perfluoroundecanoic acid	-	-	ND (0.28)	ND (0.28)
Perfluorododecanoic acid	-	-	ND (0.28) ND (0.28)	ND (0.28)
Perfluorotridecanoic acid	-	-	ND (0.26)	ND (0.28) ND (0.30)
Perfluorotetradecanoic acid	-	-	ND (0.28)	ND (0.28)
Perfluorobutanesulfonic acid	-	-	ND (0.28)	ND (0.28)
Perfluorohexanesulfonic acid	-	-	ND (0.28)	ND (0.28)
Perfluoroheptanesulfonic acid Perfluorooctanesulfonic acid	-	-	ND (0.28)	ND (0.28)
Perfluorodecanesulfonic acid	-	-	ND (0.28) ND (0.28)	ND (0.28) ND (0.28)
PFOSA	-	-	ND (0.28)	ND (0.28)
MeFOSAA	-	-	ND (0.56)	ND (0.56)
EtFOSAA	-	-	ND (0.56)	ND (0.56)
6:2 Fluorotelomer sulfonate 8:2 Fluorotelomer sulfonate	-	-	ND (0.28)	ND (0.28)
Semi Volatile Organic Compounds (ug/kg)	-	-	ND (0.28)	ND (0.28)
2-Chlorophenol	_	-	ND (88)	ND (18)
4-Chloro-3-methyl phenol	-	-	ND (110)	ND (23)
2,4-Dichlorophenol	-	-	ND (150)	ND (32)
2,4-Dimethylphenol	-	-	ND (320)	ND (67)
2,4-Dinitrophenol	-	-	ND (670) ^c	ND (140) ^b
4,6-Dinitro-o-cresol	-	-	ND (190) ^c	ND (40) b
2-Methylphenol 3&4-Methylphenol	-	-	ND (110)	ND (24)
2-Nitrophenol	-	-	ND (150) ND (120) °	ND (31) ND (25) ^b
4-Nitrophenol	-	-	ND (120) ND (480)	ND (25)
Pentachlorophenol	6700	55000	ND (170)	ND (35)
Phenol	-	-	ND (93)	ND (20)
2,3,4,6-Tetrachlorophenol	-	-	ND (120)	ND (25) b
2,4,5-Trichlorophenol	-	-	ND (130)	ND (28)
2,4,6-Trichlorophenol	-	-	ND (110)	ND (22)
Acenaphthylene	500000	1000000	258	347
Acenaphthylene Acetophenone	500000	1000000	ND (91)	250
Anthracene	500000	1000000	ND (38) ^c 604	ND (8.0) ^b 894
Atrazine	-	-	ND (77) °	ND (16) ^b
Benzo(a)anthracene	5600	11000	1300	1860
Benzo(a)pyrene	1000	1100	1300	1970
Benzo(b)fluoranthene	5600	11000	1780	2490
Benzo(g,h,i)perylene Benzo(k)fluoranthene	500000	1000000	670	1200
4-Bromophenyl phenyl ether	56000	110000	610 ND (60)	904 ND (44)
Butyl benzyl phthalate	-	-	ND (69) ND (44)	ND (14) ND (9.1)
1,1'-Biphenyl	-	-	43.5 J	40.3 J
Benzaldehyde	-	-	ND (44)	ND (9.3)
2-Chloronaphthalene	-	-	ND (43)	ND (8.9)
4-Chloroaniline	-	-	ND (64)	ND (13)
Carbazole Caprolactam	-	-	271 J	297 ND (15)
Caprolaciam Chrysene	56000	110000	ND (71) ° 1280	ND (15) 2130
bis(2-Chloroethoxy)methane	-	-	ND (38)	ND (8.0)
bis(2-Chloroethyl)ether	-	-	ND (77)	ND (16)
2,2'-Oxybis(1-chloropropane)	-	-	ND (64)	ND (13)
4-Chlorophenyl phenyl ether	-	-	ND (58)	ND (12)
2,4-Dinitrotoluene	-	-	ND (55) ^c	ND (12) b

Sampling Date 2.6-Dinitrotoluene 3,3-Dichlorobenzidine 4,4-Dioxane Dibenzo(a,h)anthracene Dibenzo(an)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Di-n-octyl phthalate Di-n-otyl phthala	Commercial //CP-51 (10/10)(6 NYCRR 375-6 550000 500000	Industrial w/CP-51 (10/10)(6 NYCRR 375-6 1100 1000000 1000000 1000000 12000 11000	6.5-8.5 12/6/2021 ND (90) ° ND (150) ND (150) ND (120) 250 237 J 126 J ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38) ND (38)	ND (19) ND (31) ND (25) 350 384 ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (8.7) 5110 469 ND (9.5) ND (15) ND (15) ND (15)
Sampling Date W. C. Dinitrotoluene 3,3'-Dichlorobenzidine ,4-Dioxane Dibenzo(a,h)anthracene Dibenzofuran Din-butyl phthalate Din-octyl phthalate Dinethyl phthalate Dinethyl phthalate Disethyl phthalate		w/CP-51 (10/10)(6 NYCRR 375-6 1100 1000000 1000000 1000000 120000	ND (90) ° ND (150) ND (150) ND (120) 250 237 J 126 J ND (45) ND (32) 465 2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38)	ND (19) ND (31) ND (25) 350 384 ND (6.1) ND (9.3) ND (8.0) ND (8.7) ND (8.7) ND (8.7) ND (9.5) ND (15) ND (15) ND (15) ND (19)
3,3'-Dichlorobenzidine ,4-Dioxane Dibenzo(a,h)anthracene Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Diethyl phthalate Diethy	- -560 350000 - - - - 500000 500000 6000 - - - 56000	- 1100 1000000 	ND (150) ND (120) 250 237 J 126 J ND (45) ND (32) 465 2900 ND (72) c ND (71) d ND (89) c 961 ND (38)	ND (31) ND (25) 350 384 ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (8.7) S110 469 ND (9.5) ND (15) ND (15) ND (15)
	560 350000 - - - - 500000 6000 - - - 5600	- 1100 1000000 	ND (120) 250 237 J 126 J ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) c ND (71) d ND (89) c 961 ND (38)	ND (25) 350 384 ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (8.7) 5110 469 ND (9.5) ND (15) ND (15) ND (15)
Dibenzo(a,h)anthracene Dibenzofuran Dibenzofuran Dibenzofuran Di-n-butyl phthalate Di-n-octyl	560 350000 - - - - 500000 500000 6000 - - - - 56000	1100 1000000 - - - - - 1000000 1000000 12000 - - - 111000	250 237 J 126 J ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) c ND (71) d ND (89) c 961 ND (38)	350 384 ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (8.7) 5110 469 ND (9.5) ND (15) ND (15) ND (15)
Dibenzofuran Din-butyl phthalate Din-octyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diethyl phthalate Diese	350000 - - - 500000 500000 6000 - - - 56000 -	1000000	237 J 126 J ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38)	384 ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (6.7) 5110 469 ND (9.5) ND (15) ND (15) ND (15)
Di-n-butyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Di-n-ctyl phthalate Dinethyl phthalate Dinethy	- - - - 500000 500000 6000 - - - 5600	- - - - 1000000 1000000 12000 - - - - 11000	126 J ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) c ND (71) d ND (89) c 961 ND (38)	ND (6.1) ND (9.3) ND (8.0) ND (6.7) ND (8.7) S110 469 ND (9.5) ND (15) ND (15) ND (15)
Di-n-octyl phthalate Diethyl phthalate Diethyl phthalate Dis(2-Ethylhexyl)phthalate Dis(2-Ethylhexyl)p	- 500000 500000 6000 - - - 5600	- - 1000000 1000000 12000 - - - - 11000	ND (45) ND (38) ND (32) 465 2900 363 ND (45) ND (72) c ND (71) d ND (89) c 961 ND (38)	ND (9.3) ND (8.0) ND (6.7) ND (8.7) 5110 469 ND (9.5) ND (15) ND (15) ND (15)
Diethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Dimethyl phthalate Disig(2-Ethylhexyl)phthalate Disig(2-E	- 500000 500000 6000 - - - 5600	- 1000000 1000000 12000 - - - - 11000	ND (38) ND (32) 465 2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38)	ND (8.0) ND (6.7) ND (8.7) 5110 469 ND (9.5) ND (15) ND (15) ND (19)
ois(2-Ethylhexyl)phthalate	500000 500000 60000 - - - 56000	- 1000000 1000000 12000 - - - - 11000	465 2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38)	ND (8.7) 5110 469 ND (9.5) ND (15) b ND (15) ND (19)
Fluoranthene Fluorene -dexachlorobenzene -dexachlorobutadiene -dexachlorocyclopentadiene -dexachlorocyclopentadiene -dexachlorocethane -deno(1,2,3-cd)pyrene sophorone -Methylnaphthalene -Nitroaniline -Initroaniline -Initroaniline -laytopantiene -	500000 6000 - - - 5600 - -	1000000 12000 - - - 11000 - -	2900 363 ND (45) ND (72) ° ND (71) d ND (89) ° 961 ND (38)	5110 469 ND (9.5) ND (15) b ND (15) ND (19)
Fluorene lexachlorobenzene dexachlorobutadiene lexachlorocyclopentadiene lexachlorocyclopentadiene dexachloroethane ndeno(1,2,3-cd)pyrene sophorone 2-Methylnaphthalene 2-Nitroaniline shitroaniline laphthalene litrobenzene	500000 6000 - - - 5600 - -	1000000 12000 - - - 11000 - -	363 ND (45) ND (72) ° ND (71) ° ND (89) ° 961 ND (38)	469 ND (9.5) ND (15) b ND (15) ND (19)
dexachlorobenzene dexachlorobutadiene dexachlorobutadiene dexachloroethane dexachloroethane ndeno(1,2,3-cd)pyrene sophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitrobenzene	6000 - - - - 5600 - -	12000 - - - 11000 - -	ND (45) ND (72) ° ND (71) ^d ND (89) ° 961 ND (38)	ND (9.5) ND (15) b ND (15) ND (19)
dexachlorobutadiene dexachlorocyclopentadiene dexachlorocyclopentadiene dexachloroethane deno(1,2,3-cd)pyrene sophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline daphthalene ditrobenzene	- - - 5600 - -	- - - 11000 - -	ND (72) ° ND (71) ^d ND (89) ° 961 ND (38)	ND (15) ^b ND (15) ND (19)
dexachlorocyclopentadiene dexachloroethane deno(1,2,3-cd)pyrene sophorone dethylnaphthalene devitroaniline depthylnaphthalene depthylnaphthalene depthylnaphthalene depthylnaphthalene depthylnaphthalene depthylnaphthalene	- 5600 - -	- - 11000 - -	ND (71) ^d ND (89) ^c 961 ND (38)	ND (15) ND (19)
Hexachloroethane Indeno(1,2,3-cd)pyrene Sophorone 2-Methylnaphthalene 2-Nitroaniline Indiroaniline Indiroaniline Japhthalene Vitrobenzene	5600 - - -	11000 - -	ND (89) ^c 961 ND (38)	ND (19)
sophorone 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 3-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline	-	-	961 ND (38)	
2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline 1-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline 4-Nitroaniline	-			
2-Nitroaniline 3-Nitroaniline I-Nitroaniline Vaphthalene Vitrobenzene	-		167 I	ND (8.0)
3-Nitroaniline I-Nitroaniline Naphthalene litrobenzene				86.3
I-Nitroaniline Vaphthalene Vitrobenzene	-	-	ND (42) °	ND (8.8) b
Naphthalene Nitrobenzene		-	ND (45) ND (46)	ND (9.3) ND (9.7)
Nitrobenzene	500000	1000000	279	265
	-	-	ND (69)	ND (14)
N-Nitroso-di-n-propylamine	-	_	ND (52) °	ND (11) b
N-Nitrosodiphenylamine	-	_	ND (65)	ND (14)
Phenanthrene	500000	1000000	2090	4870
Pyrene	500000	1000000	2680	5670
,2,4,5-Tetrachlorobenzene	-	-	ND (45)	ND (9.5)
,4 Dioxane (ug/kg)				1
,4-Dioxane	-	-	ND (8.9)	ND (1.9)
Pesticides and herbicides (ug/kg)	222	4.400		•
Aldrin	680	1400	1.2 e	2.6 ^e
alpha-BHC	3400	6800	ND (0.56)	0.74 °
peta-BHC	3000	14000	ND (0.62)	ND (0.66)
delta-BHC	500000 9200	1000000 23000	ND (0.66)	ND (0.70)
gamma-BHC (Lindane)			3.1 e	3.1 e
alpha-Chlordane	24000	47000	ND (0.56)	5.5 °
gamma-Chlordane	- 1400		ND (0.31)	ND (0.33)
Dieldrin	1400	28000	ND (0.47)	2.2 ^e
I,4'-DDD	92000	180000	9.5	49.2
I,4'-DDE	62000	120000	14.8	12.7 ^e
I,4'-DDT	47000	94000	ND (0.61)	10.5
Endrin Endrin	89000	410000	ND (0.54)	ND (0.56)
Endosulfan sulfate	200000	920000	ND (0.54)	ND (0.57)
Endrin aldehyde	-	-	ND (0.39)	ND (0.41)
Endosulfan-I	200000	920000	ND (0.40)	ND (0.42)
Endosulfan-II	200000	920000	ND (0.43)	5.6
Heptachlor Lantachlar an avida	15000	29000	ND (0.59)	ND (0.63)
Heptachlor epoxide	-	-	ND (0.48)	ND (0.51)
Methoxychlor	-	-	ND (0.55)	ND (0.58)
Endrin ketone	-	-	ND (0.50)	ND (0.53)
Foxaphene 2.4-D	-	-	ND (16)	ND (17)
2,4-D 2,4,5-TP (Silvex)	500000	1000000	ND (39) ND (9.9)	ND (8.2) ND (2.1)
2,4,5-TP (Slivex)	500000	1000000	ND (9.9) ND (8.7)	ND (2.1) ND (1.8)

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

	oring Location	NY SCO - Commercial	NY SCO - Industrial	TT-SB-39 6.5-8.5	TT-SB-40 6.0-8.0
,	Sampling Date	w/CP-51 (10/10)(6 NYCRR 375-6	w/CP-51 (10/10)(6 NYCRR 375-6	12/6/2021	12/6/2021
PCBs (ug/kg)					
Aroclor 1016		1000	25000	ND (16)	ND (17)
Aroclor 1221		1000	25000	ND (21)	ND (23)
Aroclor 1232		1000	25000	ND (22)	ND (23)
Aroclor 1242		1000	25000	ND (14)	ND (15)
Aroclor 1248		1000	25000	ND (31)	ND (32)
Aroclor 1254		1000	25000	ND (19)	ND (20)
Aroclor 1260		1000	25000	ND (15)	ND (15)
Aroclor 1268		1000	25000	ND (15)	ND (15)
Aroclor 1262		1000	25000	ND (23)	ND (24)
Metals (mg/kg)					
Aluminum		-	-	6390	6240
Antimony		-	-	<2.2	<2.2
Arsenic		16	16	5.2	6.4
Barium		400	10000	63.4	738
Beryllium		590	2700	0.42	0.37
Cadmium		9.3	60	<0.55	0.64
Calcium		-	-	43100	34400
Chromium		-	-	13.1	18.7
Cobalt		-	-	6.1	<5.4
Copper		270	10000	28.6	26.6
Iron			-	12800	11600
Lead		1000	3900	79.4	374
Magnesium		-	-	7350	5560
Manganese		10000	10000	202	271
Mercury		2.8	5.7	0.086	0.11
Nickel		310	10000	23.9	17.2
Potassium		-	-	1250	<1100
Selenium		1500	6800	<2.2	<2.2
Silver		1500	6800	1.1	1.1
Sodium		-	-	<1100	<1100
Thallium		-	-	<1.1	<1.1
Vanadium			-	23.8	21.3
Zinc		10000	10000	68.5	455
Cyanide		27	10000	<0.32	<0.24

bgs - Feet below the ground surface

NYSDEC - New York State Department of Environmental Conservation

SCO - Soil Cleanup Objective

ND - Not detected at or above the quantitation limit

ug/kg - micrograms per kilogram mg/kg - milligrams per kilogram

- No criteria

NA - Not Analyzed

Values shaded blue detected above quantitation limit
Values shaded in orange exceeded the NYSDEC - Commercial Use SCO w/ CP-51
Values shaded in green exceeded the NYSDEC - Industrial Use SCO w/ CP-51

⁶ Associated CCV outside of control limits high,sample was ND. ⁶ Associated CCV outside of control limits high,sample was ND.

^d Sample prepped within holding time, but run out of holding time.

Location ID		TT-SB-02GW	TT-SB-06GW	TT-SB-12GW	TT-SB-13GW	TT-SB-18GW	TT-SB-20GW
Sampling Date	NYSDEC Ambient Water Quality Standards and Guidance Values*	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/6/2021
Volatile Organic Compounds (ug/L)							•
Acetone	50	ND (3.1) a	ND (3.1) a	ND (3.1)	ND (3.1) a	ND (3.1)	ND (3.1)
Benzene	1	ND (0.43)	ND (0.43)	0.73	ND (0.43)	ND (0.43)	ND (0.43)
Bromochloromethane	5	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)
Bromodichloromethane	50	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)
Bromoform	50	ND (0.63)	ND (0.63)	ND (0.63)	ND (0.63)	ND (0.63)	ND (0.63)
Bromomethane	5	ND (1.6) ^a	ND (1.6) a	ND (1.6)	ND (1.6) ^a	ND (1.6)	ND (1.6)
2-Butanone (MEK)	50	ND (6.9) a	ND (6.9) ^a	ND (6.9) a	ND (6.9) a	ND (6.9) a	ND (6.9) a
Carbon disulfide		ND (0.46)	ND (0.46)	ND (0.46)	ND (0.46)	0.47 J	ND (0.46)
Carbon tetrachloride	5	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.55)	ND (0.55)
Chlorobenzene	5	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)
Chloroethane	5	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)	ND (0.73)
Chloroform	7	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
Chloromethane	5	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)	ND (0.76)
Cyclohexane	-	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)
1,2-Dibromo-3-chloropropane	0.04	ND (0.53)	ND (0.53)	ND (0.53) b	ND (0.53)	ND (0.53) b	ND (0.53) b
Dibromochloromethane	50	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)
1,2-Dibromoethane	0.0006	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)	ND (0.48)
1.2-Dichlorobenzene	3	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
1,3-Dichlorobenzene	3	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)
1,4-Dichlorobenzene	3	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)
Dichlorodifluoromethane	5	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)	ND (0.56)
1,1-Dichloroethane	5	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)	ND (0.57)
1,2-Dichloroethane	0.6	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)
1,1-Dichloroethene	5	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)
cis-1,2-Dichloroethene	5	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)
trans-1,2-Dichloroethene	5	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)
1,2-Dichloropropane	1	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)
cis-1,3-Dichloropropene	0.4	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)
trans-1,3-Dichloropropene	0.4	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)	ND (0.43)
Ethylbenzene	5	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)
Freon 113	-	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.58)	ND (0.58)
2-Hexanone	50	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Isopropylbenzene	5	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)
Methyl Acetate	-	ND (0.80)	ND (0.80)	ND (0.80) a	ND (0.80)	ND (0.80) a	ND (0.80) a
Methylcyclohexane	-	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)	ND (0.60)
Methyl Tert Butyl Ether	-	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)
4-Methyl-2-pentanone(MIBK)		ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
Methylene chloride	5	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Styrene	5	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)
1,1,2,2-Tetrachloroethane	5	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)	ND (0.65)
Tetrachloroethene	5	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)
Toluene	5	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
1,2,3-Trichlorobenzene	5	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,2,4-Trichlorobenzene	5	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)	ND (0.50)
1,1,1-Trichloroethane	5	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)
1,1,2-Trichloroethane	1	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
Trichloroethene	5	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)	ND (0.53)
Trichlorofluoromethane	5	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
Vinyl chloride	2	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)	ND (0.79)
m,p-Xylene	•	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)	ND (0.78)
o-Xylene		ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)
Xylene (total)	5	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)	ND (0.59)

Location ID		TT-SB-02GW	TT-SB-06GW	TT-SB-12GW	TT-SB-13GW	TT-SB-18GW	TT-SB-20GW
Sampling Date	NYSDEC Ambient Water Quality Standards and Guidance Values*	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/6/2021
PFAS Compounds (ug/kg)							
Perfluorobutanoic acid	-	6.4	10.4	5.4	2.9 J	7.5	3.7
Perfluoropentanoic acid	-	1.8 J	4.1	1.7 J	1.6 J	2.2	ND (0.93)
Perfluorohexanoic acid	-	1.8 J	3.4	2.9	1.7 J	2.4	ND (0.93)
Perfluoroheptanoic acid	-	2.9	3.2	4.3	4.9	4.1	1.7 J
Perfluorooctanoic acid	10	61.8	28.8	26.6	23.9	33.4	12.9
Perfluorononanoic acid	-	1.1 J	1.5 J	0.96 J	ND (0.93)	ND (0.93)	2.8
Perfluorodecanoic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluoroundecanoic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluorododecanoic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluorotridecanoic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluorotetradecanoic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluorobutanesulfonic acid	-	1.2 J	1.6 J	ND (0.93)	1.1 J	2.4	1.0 J
Perfluorohexanesulfonic acid	-	1.1 J	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluoroheptanesulfonic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
Perfluorooctanesulfonic acid	10	2.7	2.3	11.6	2.7	ND (0.93)	8.9
Perfluorodecanesulfonic acid	-	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)	ND (0.93)
PFOSA	-	ND (1.9)	ND (1.9)	ND (9.3)	ND (1.9)	ND (9.3)	ND (1.9)
MeFOSAA	-	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
EtFOSAA	-	ND (1.9)	ND (1.9)	2.7 J	ND (1.9)	ND (1.9)	ND (1.9)
6:2 Fluorotelomer sulfonate	-	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
8:2 Fluorotelomer sulfonate	-	ND (1.9)		ND (1.9)	ND (1.9)	ND (1.9)	ND (1.9)
Semi-Volatile Organic Compounds (ug/L)							
2-Chlorophenol	-	ND (0.86)	ND (0.86)	ND (0.84)	ND (0.84)	ND (0.84)	ND (0.84)
4-Chloro-3-methyl phenol	-	ND (0.94)	ND (0.94)	ND (0.91)	ND (0.91)	ND (0.91)	ND (0.91)
2,4-Dichlorophenol	1	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)
2,4-Dimethylphenol	1	ND (2.6)	ND (2.6)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
2,4-Dinitrophenol	1	ND (1.6) b	ND (1.6) b	ND (1.6)	ND (1.6) b	ND (1.6)	ND (1.6)
4,6-Dinitro-o-cresol	-	ND (1.4) b	ND (1.4) b	ND (1.3)	ND (1.3) b	ND (1.3)	ND (1.3)
2-Methylphenol	-	ND (0.93)	ND (0.93)	ND (0.91)	ND (0.91)	ND (0.91)	ND (0.91)
3&4-Methylphenol		ND (0.93)	ND (0.93)	ND (0.90)	ND (0.90)	ND (0.90)	ND (0.90)
2-Nitrophenol		ND (1.0) b	ND (1.0) b	ND (0.98)	ND (0.98) b	ND (0.98)	ND (0.98)
4-Nitrophenol		ND (1.0)	ND (1.2)	ND (1.2)	ND (0.90)	ND (1.2)	ND (1.2)
Pentachlorophenol	1	ND (1.5)	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.4)
Phenol	1	ND (0.41)	ND (0.41)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)
2,3,4,6-Tetrachlorophenol	-	ND (0.41)	ND (0.41)	ND (1.5)	ND (1.5) ^b	ND (1.5)	ND (1.5)
			ND (1.5) ND (1.4)	ND (1.4)	ND (1.5) ND (1.4)	ND (1.4)	ND (1.4)
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	-	ND (1.4) ND (0.97)	ND (1.4) ND (0.97)	ND (1.4) ND (0.94)	ND (1.4) ND (0.94)	ND (1.4) ND (0.94)	ND (1.4) ND (0.94)
Acenaphthene	20	ND (0.97) ND (0.20)	ND (0.97)	1.2	ND (0.94) ND (0.19)	ND (0.94) ND (0.19)	ND (0.94) ND (0.19)
Acenaphthylene	-	ND (0.20) ND (0.14)	ND (0.20) ND (0.14)	ND (0.14)	ND (0.19) ND (0.14)	ND (0.19) ND (0.14)	ND (0.19)
Acetophenone		ND (0.22) b	ND (0.22) b	ND (0.21)	ND (0.21) b	ND (0.21)	ND (0.21)
Anthracene	50	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)
Atrazine	-	ND (0.47) b	ND (0.47) b	ND (0.46)	ND (0.46) b	ND (0.46)	ND (0.46)
Benzaldehyde	-	ND (0.30)	ND (0.30)	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)
Benzo(a)anthracene	0.002	ND (0.21)	ND (0.21)	ND (0.21)	0.76 J	ND (0.21)	ND (0.21)
Benzo(a)pyrene	-	ND (0.22)	ND (0.22)	ND (0.22)	0.65 J	ND (0.22)	ND (0.22)
Benzo(b)fluoranthene	0.002	ND (0.22)	ND (0.22)	ND (0.21)	0.90 J	ND (0.21)	ND (0.21)
Benzo(g,h,i)perylene	-	ND (0.36)	ND (0.36)	ND (0.35)	0.46 J	ND (0.35)	ND (0.35)
Benzo(k)fluoranthene	0.002	ND (0.22)	ND (0.22)	ND (0.21)	0.38 J	ND (0.21)	ND (0.21)
4-Bromophenyl phenyl ether	-	ND (0.43)	ND (0.43)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
Butyl benzyl phthalate	50	ND (0.48)	ND (0.48)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)
1,1'-Biphenyl	-	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)
2-Chloronaphthalene	-	ND (0.25)	ND (0.25)	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)
4-Chloroaniline	5	ND (0.36)	ND (0.36)	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)

Location ID	NYSDEC Ambient Water	TT-SB-02GW	TT-SB-06GW	TT-SB-12GW	TT-SB-13GW	TT-SB-18GW	TT-SB-20GW
	Quality Standards and						
	Guidance Values*						
Sampling Date	Guidance Values	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/6/2021
Carbazole	-	ND (0.24)	ND (0.24)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)
Caprolactam	-	ND (0.68)	ND (0.68)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)
Chrysene	0.002	ND (0.19)	ND (0.19)	ND (0.18)	0.64 J	ND (0.18)	ND (0.18)
ois(2-Chloroethoxy)methane	5	ND (0.29)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)
ois(2-Chloroethyl)ether	1	ND (0.26)	ND (0.26)	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)
2,2'-Oxybis(1-chloropropane)	-	ND (0.42)	ND (0.42)	ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)
4-Chlorophenyl phenyl ether	-	ND (0.39)	ND (0.39)	ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)
2,4-Dinitrotoluene	5	ND (0.58) b	ND (0.58) b	ND (0.56)	ND (0.56) b	ND (0.56)	ND (0.56)
2.6-Dinitrotoluene	5	ND (0.50) b	ND (0.50) b	ND (0.49)	ND (0.49) b	ND (0.49)	ND (0.49)
3,3'-Dichlorobenzidine	-	ND (0.53)	ND (0.53)	ND (0.52)	ND (0.52)	ND (0.52)	ND (0.52)
Dibenzo(a,h)anthracene	-	ND (0.35)	ND (0.35)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)
Dibenzofuran	-	ND (0.23)	ND (0.23)	0.39 J	ND (0.22)	ND (0.22)	ND (0.22)
Di-n-butyl phthalate	50	ND (0.52)	ND (0.52)	ND (0.51)	ND (0.51)	ND (0.51)	ND (0.51)
Di-n-octyl phthalate	-	ND (0.25)	ND (0.25)	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)
Diethyl phthalate	50	ND (0.28)	ND (0.28)	ND (0.24)	ND (0.27)	ND (0.24)	ND (0.24)
Dimethyl phthalate	50	ND (0.23)	ND (0.23)	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)
bis(2-Ethylhexyl)phthalate	5	ND (0.23)	ND (0.23)	ND (1.7)	ND (0.22)	ND (0.22)	ND (0.22)
-luoranthene	50	ND (0.18)	ND (0.18)	0.23 J	1.5	ND (0.17)	ND (0.17)
Fluorene	50	ND (0.18)	ND (0.18)	0.23 J	ND (0.17)	ND (0.17)	ND (0.17)
Hexachlorobenzene	0.04	ND (0.16)	ND (0.16)	ND (0.33)	ND (0.33)	ND (0.17)	ND (0.33)
Hexachlorobutadiene	0.5	ND (0.52) b	ND (0.52) b	ND (0.50)	ND (0.50) b	ND (0.50)	ND (0.50)
Hexachlorocyclopentadiene	5	ND (0.52) ND (2.9)	ND (0.52) ND (2.9)	ND (2.8)	ND (0.50) ND (2.8)	ND (2.8)	ND (2.8)
	5			ND (2.8)		ND (2.8)	ND (2.8)
Hexachloroethane		ND (0.41) b	ND (0.41) b	. ,	ND (0.40) b		. ,
ndeno(1,2,3-cd)pyrene	0.002	ND (0.35)	ND (0.35)	ND (0.34)	0.57 J	ND (0.34)	ND (0.34)
sophorone	50	ND (0.29)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)
2-Methylnaphthalene	50	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)
2-Nitroaniline	5	ND (0.29) b	ND (0.29) b	ND (0.28)	ND (0.28) b	ND (0.28)	ND (0.28)
3-Nitroaniline	5	ND (0.41)	ND (0.41)	ND (0.39)	ND (0.39)	ND (0.39)	ND (0.39)
1-Nitroaniline	5	ND (0.46)	ND (0.46)	ND (0.45)	ND (0.45)	ND (0.45)	ND (0.45)
Naphthalene	10	ND (0.24)	ND (0.24)	1	ND (0.24)	ND (0.24)	ND (0.24)
Nitrobenzene	0.4	ND (0.68) b	ND (0.68) b	ND (0.66)	ND (0.66) b	ND (0.66)	ND (0.66)
N-Nitroso-di-n-propylamine	-	ND (0.51) b	ND (0.51) b	ND (0.49)	ND (0.49) b	ND (0.49)	ND (0.49)
N-Nitrosodiphenylamine	50	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)
Phenanthrene	50	ND (0.18)	ND (0.18)	0.54 J	0.65 J	ND (0.18)	ND (0.18)
Pyrene	50	ND (0.23)	ND (0.23)	ND (0.22)	1.5	ND (0.22)	ND (0.22)
1,2,4,5-Tetrachlorobenzene	-	ND (0.39)	ND (0.39)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)
1,4 Dioxane (ug/l)							
1,4-Dioxane	1	0.117	ND (0.053)	0.0615 J	0.0784 J	ND (0.051)	ND (0.051)
Pesticides and herbicides (ug/l) (ug/l)							
Aldrin	0.01	ND (0.0041)	ND (0.0041)	ND (0.0041)	ND (0.0043)	ND (0.0041)	ND (0.0042)
alpha-BHC	0.05	ND (0.0042)	ND (0.0042)	ND (0.0042)	ND (0.0043)	ND (0.0042)	ND (0.0042)
peta-BHC	0.05	ND (0.0064)	ND (0.0064)	ND (0.0064)	ND (0.0067)	ND (0.0064)	ND (0.0065)
delta-BHC	0.05	ND (0.0053)	ND (0.0053)	ND (0.0053)	ND (0.0055)	ND (0.0053)	ND (0.0054)
gamma-BHC (Lindane)	0.05	ND (0.0048)	ND (0.0048)	ND (0.0048)	ND (0.0050)	ND (0.0048)	ND (0.0049)
alpha-Chlordane	-	ND (0.0039)	ND (0.0039)	ND (0.0039)	ND (0.0041)	ND (0.0039)	ND (0.0040)
gamma-Chlordane	0.1	ND (0.0034)	ND (0.0034)	ND (0.0034)	ND (0.0035)	ND (0.0034)	ND (0.0035)
Dieldrin	0.01	ND (0.0061)	ND (0.0061)	ND (0.0061)	ND (0.0064)	ND (0.0061)	ND (0.0063)
1,4'-DDD	0.01	ND (0.0046)	ND (0.0046)	ND (0.0046)	ND (0.0048)	ND (0.0046)	ND (0.0047)
1,4'-DDE	0.01	ND (0.0040)	ND (0.0040)	ND (0.0040)	ND (0.0042)	ND (0.0040)	ND (0.0041)
1,4'-DDT	0.01	ND (0.0055)	ND (0.0055)	ND (0.0055)	ND (0.0057)	ND (0.0055)	ND (0.0056)
Endrin	0.01	ND (0.0048)	ND (0.0048)	ND (0.0048)	ND (0.0050)	ND (0.0048)	ND (0.0049)
Endosulfan sulfate	0.1	ND (0.0044)	ND (0.0044)	ND (0.0044)	ND (0.0045)	ND (0.0044)	ND (0.0044)
Endrin aldehyde	-	ND (0.0054)	ND (0.0054)	ND (0.0054)	ND (0.0056)	ND (0.0054)	ND (0.0055)
ndrin ketone	-	ND (0.0050)	ND (0.0050)	ND (0.0050)	ND (0.0052)	ND (0.0050)	ND (0.0051)
ndosulfan-l	0.1	ND (0.0042)	ND (0.0042)	ND (0.0042)	ND (0.0044)	ND (0.0042)	ND (0.0043)
Endosulfan-II	0.1	ND (0.0039)	ND (0.0039)	ND (0.0039)	ND (0.0041)	ND (0.0039)	ND (0.0040)
Heptachlor	0.01	ND (0.0036)	ND (0.0036)	ND (0.0036)	ND (0.0037)	ND (0.0036)	ND (0.0037)
Heptachlor epoxide	0.01	ND (0.0048)	ND (0.0048)	ND (0.0048)	ND (0.0050)	ND (0.0048)	ND (0.0049)
Methoxychlor	35	ND (0.0054)	ND (0.0054)	ND (0.0054)	ND (0.0056)	ND (0.0054)	ND (0.0055)
oxaphene	-	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.13)
2,4-D	4.4	ND (0.077)	ND (0.083)	ND (0.081)	ND (0.078)	ND (0.081)	ND (0.080)
		NID (0.040)	ND (0.052)	ND (0.054)	ND (0.049)	ND (0.051)	ND (0.050)
2,4,5-TP (Silvex) 2,4,5-T	0.26 35	ND (0.048) ND (0.015)	ND (0.052) ND (0.016)	ND (0.051) ND (0.016)	ND (0.049)	ND (0.031)	ND (0.030)

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

Laurette III		TT CD 02CH	TT CD OCCUM	TT CD 42011	TT CD 42CW	TT CD 400W	TT CD 20011
Location ID	NYSDEC Ambient Water	TT-SB-02GW	TT-SB-06GW	TT-SB-12GW	TT-SB-13GW	TT-SB-18GW	TT-SB-20GW
	Quality Standards and						
	Guidance Values*						
Sampling Date	Guidance Values	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/7/2021	12/6/2021
PCBs (ug/l)							•
Aroclor 1016	-	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)
Aroclor 1221	-	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.35)	ND (0.34)	ND (0.34)
Aroclor 1232	-	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)
Aroclor 1242	-	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.19)	ND (0.18)	ND (0.19)
Aroclor 1248	-	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)
Aroclor 1254	-	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.34)	ND (0.33)	ND (0.34)
Aroclor 1260	-	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.13)	ND (0.12)	ND (0.12)
Aroclor 1268	-	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)
Aroclor 1262	-	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.16)
Metals (ug/L)							
Aluminum	2000	1920	596	<200	437	NA	25600
Antimony	6	<6.0	<6.0	<6.0	<6.0	NA	6.2
Arsenic	50	6.3	30.1 °	<15 °	3.1	NA	25.2
Barium	2000	<200	577	<200	<200	NA	474
Beryllium	3	<1.0	<1.0	2	<1.0	NA	2.2
Cadmium	10	<3.0	<3.0	<3.0	<3.0	NA	6.2
Calcium	-	170000	229000	210000	107000	NA	72600
Chromium	100	<10	<10	<10	<10	NA	56
Cobalt	-	<50	<50	<50	<50	NA	<50
Copper	1000	<10	<10	<10	<10	NA	93
Iron	600	5970	20200	806	868	NA	42500
Lead	25	11.9	6.2	<15 °	135	NA	253
Magnesium	35000	31900	58800	276000	27000	NA	25000
Manganese	600	2210	6880	27.6	96.4	NA	4550
Mercury	1.4	<0.20	<0.20	<0.20	<0.20	NA	<0.60
Nickel	200	<10	<10	<10	<10	NA	85.2
Potassium	-	14900	19600	189000	13000	NA	16700
Selenium	20	<10	<10	<10	<10	NA	<10
Silver	100	<10	<10	<10	<10	NA	<10
Sodium	-	118000	308000	3760000	107000	NA	88100
Thallium	0.5	<10	<50 °	<10	<10	NA	<10
Vanadium	-	<50	<50	<50	<50	NA NA	77.9
Zinc	5000	60.5	<20	39.5	100	NA	416

μg/L - micrograms per liter NYSDEC - New York State Department of Environmental Conservation

*Ambient water quality guidance value

NA - Not Analyzed

- No criteria

- NO criteria
ND- Indicates that the analyte was not detected above the sample-specific reporting limit
Values shaded in orange exceeded the NYSDEC Ground Water Quality Standards

a Associated CCV outside of control limits high, sample was ND.

^b Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

^c Elevated detection limit due to dilution required for high interfering element.

Location ID		TT-SB-22GW	TT-SB-23GW	TT-SB-27GW	TT-SB-30GW	TT-SB-31GW	GW-DUP01
Location ID	NYSDEC Ambient Water	11-3B-22GW	11-3B-23GW	11-3B-2/GW	11-36-30GW	11-30-31GW	GW-DOP01
	Quality Standards and						
	Guidance Values*						
Sampling Date		12/6/2021	12/7/2021	12/6/2021	12/6/2021	12/6/2021	12/7/2021
Volatile Organic Compounds (ug/L)					1		
Acetone	50	16.6	7.6 J	ND (3.1)	ND (3.1)	7.1 J	ND (3.1)
Benzene	1	ND (0.43)	0.55	ND (0.43)	ND (0.43)	ND (0.43)	0.74
Bromochloromethane	5	ND (0.48)					
Bromodichloromethane	50	ND (0.45)					
Bromoform	50	ND (0.63)					
Bromomethane	5	ND (1.6)					
2-Butanone (MEK)	50	ND (6.9) ^a					
Carbon disulfide	-	ND (0.46)	0.46 J				
Carbon tetrachloride	5	ND (0.55)					
Chlorobenzene Chloroethane	5 5	ND (0.56) ND (0.73)					
Chloroform	7	ND (0.73) ND (0.50)					
Chloromethane	5	ND (0.30)	ND (0.30)	ND (0.30)	ND (0.50)	ND (0.30)	ND (0.30)
Cyclohexane	-	ND (0.78)					
1,2-Dibromo-3-chloropropane	0.04	ND (0.53) b					
Dibromochloromethane	50	ND (0.56)					
1,2-Dibromoethane	0.0006	ND (0.48)					
1.2-Dichlorobenzene	3	ND (0.53)					
1.3-Dichlorobenzene	3	ND (0.54)					
1,4-Dichlorobenzene	3	ND (0.51)					
Dichlorodifluoromethane	5	ND (0.56)					
1,1-Dichloroethane	5	ND (0.57)					
1,2-Dichloroethane	0.6	ND (0.60)					
1,1-Dichloroethene	5	ND (0.59)					
cis-1,2-Dichloroethene	5	ND (0.51)					
trans-1,2-Dichloroethene	5	ND (0.54)					
1,2-Dichloropropane	1	ND (0.51)					
cis-1,3-Dichloropropene	0.4	ND (0.47)					
trans-1,3-Dichloropropene	0.4	ND (0.43)					
Ethylbenzene	5	ND (0.60)					
Freon 113 2-Hexanone	50	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58) ND (2.0)	ND (0.58)	ND (0.58) ND (2.0)
Isopropylbenzene	5	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0) ND (0.65)	ND (2.0)
Methyl Acetate	-	ND (0.80) a	ND (0.80) ^a				
Methylcyclohexane	-	ND (0.60)					
Methyl Tert Butyl Ether		ND (0.51)					
4-Methyl-2-pentanone(MIBK)	-	ND (1.9)					
Methylene chloride	5	ND (1.0)					
Styrene	5	ND (0.49)					
1,1,2,2-Tetrachloroethane	5	ND (0.65)					
Tetrachloroethene	5	ND (0.90)					
Toluene	5	ND (0.53)					
1,2,3-Trichlorobenzene	5	ND (0.50)					
1,2,4-Trichlorobenzene	5	ND (0.50)					
1,1,1-Trichloroethane	5	ND (0.54)					
1,1,2-Trichloroethane	1	ND (0.53)					
Trichloroethene	5	ND (0.53)					
Trichlorofluoromethane	5	ND (0.40)					
Vinyl chloride	2	ND (0.79)					
m,p-Xylene	-	ND (0.78)					
o-Xylene	5	ND (0.59)					
Xylene (total)	5	ND (0.59)					

Location ID		TT-SB-22GW	TT-SB-23GW	TT-SB-27GW	TT-SB-30GW	TT-SB-31GW	GW-DUP01
Location is	NYSDEC Ambient Water	11-30-22044	11-30-23000	11-30-2700	11-30-30044	11-3D-31GW	GW-D0101
	Quality Standards and						
	Guidance Values*						
Sampling Date		12/6/2021	12/7/2021	12/6/2021	12/6/2021	12/6/2021	12/7/2021
PFAS Compounds (ug/kg)		12.7	9.4	11.4	13.9	16.5	4.6
Perfluorobutanoic acid	-	7.4	9.4 5.9	11.4 8.8	13.9	16.5 5.4	4.6 1.9
Perfluoropentanoic acid	-	6.1	5.9	8.8 7.6	10.6	5.4 11.2	1.9
Perfluorohexanoic acid	-	3.7	11.4	6	3.9	3.6	3.7
Perfluoroheptanoic acid Perfluorooctanoic acid	10	19.2	11.4	17.4	12.7	13.5	26.8
Perfluorononanoic acid	-	2.8	1.1 J	2.5	ND (0.93)	2.4	1.0 J
Perfluorodecanoic acid	-	2.8	ND (0.93)	ND (0.93)	ND (0.93)	2.4	ND (0.93)
Perfluoroundecanoic acid	-	1.9	ND (0.93)				
Perfluorododecanoic acid	-	1.1 J	ND (0.93)				
Perfluorotridecanoic acid	-	ND (0.93)					
Perfluorotetradecanoic acid	-	ND (0.93)					
Perfluorobutanesulfonic acid	-	ND (0.93)	4.1	2.1	1.0 J	2.8	ND (0.93)
Perfluorohexanesulfonic acid	-	ND (0.93)	2.2	1.1 J	ND (0.93)	1.2 J	ND (0.93)
Perfluoroheptanesulfonic acid		ND (0.93)					
Perfluorooctanesulfonic acid	10	15.4	3.6	29.6	ND (0.93)	28.5	12
Perfluorodecanesulfonic acid	-	ND (0.93)					
PFOSA	-	ND (1.9)	ND (9.3)	ND (9.3)	ND (1.9)	ND (1.9)	ND (9.3)
MeFOSAA	-	ND (1.9)					
EtFOSAA	-	ND (1.9)	3.3 J				
6:2 Fluorotelomer sulfonate	-	ND (1.9)					
8:2 Fluorotelomer sulfonate	-	ND (1.9)					
Semi-Volatile Organic Compounds (ug/L)			\ -7	\ -/		\ -/	\ -/
2-Chlorophenol	-	ND (0.84)	ND (0.85)	ND (0.84)	ND (0.84)	ND (0.85)	ND (0.85)
4-Chloro-3-methyl phenol	-	ND (0.91)	ND (0.92)	ND (0.91)	ND (0.91)	ND (0.92)	ND (0.92)
2,4-Dichlorophenol	1	ND (1.3)					
2,4-Dimethylphenol	1	ND (2.5)					
2,4-Dinitrophenol	1	ND (1.6)					
4.6-Dinitro-o-cresol	-	ND (1.3)					
2-Methylphenol	-	ND (0.91)	ND (0.92)	ND (0.91)	ND (0.91)	ND (0.92)	ND (0.92)
3&4-Methylphenol	-	ND (0.90)	ND (0.91)	ND (0.90)	ND (0.90)	ND (0.91)	ND (0.91)
2-Nitrophenol	-	ND (0.98)	ND (0.99)	ND (0.98)	ND (0.98)	ND (0.99)	ND (0.99)
4-Nitrophenol	-	ND (1.2)					
Pentachlorophenol	1	ND (1.4)					
Phenol	1	ND (0.40)					
2,3,4,6-Tetrachlorophenol	-	ND (1.5)					
2,4,5-Trichlorophenol	-	ND (1.4)					
2,4,6-Trichlorophenol	-	ND (0.94)	ND (0.95)	ND (0.94)	ND (0.94)	ND (0.95)	ND (0.95)
Acenaphthene	20	ND (0.19)	ND (0.20)	ND (0.19)	ND (0.19)	0.26 J	1.1
Acenaphthylene	-	ND (0.14)					
Acetophenone	-	ND (0.21)					
Anthracene	50	ND (0.22)					
Atrazine	-	ND (0.46)					
Benzaldehyde		ND (0.40)	ND (0.30)	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.30)
Benzo(a)anthracene	0.002	ND (0.29) ND (0.21)	ND (0.30) ND (0.21)	ND (0.29) ND (0.21)	ND (0.29) ND (0.21)	0.47 J	ND (0.30) ND (0.21)
Benzo(a)pyrene	0.002	0.68 J	ND (0.21)	ND (0.21)	ND (0.21)	1.1	ND (0.21)
Benzo(a)pyrene Benzo(b)fluoranthene	0.002	ND (0.21)	ND (0.22) ND (0.21)	ND (0.22) ND (0.21)	ND (0.22) ND (0.21)	0.61 J	ND (0.22) ND (0.21)
Benzo(g,h,i)perylene	0.002	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	0.61 J	ND (0.21)
Benzo(k)fluoranthene	0.002	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	0.41 J	ND (0.33)
4-Bromophenyl phenyl ether	0.002	ND (0.21)	ND (0.42)	ND (0.21) ND (0.41)	ND (0.21)	ND (0.42)	ND (0.42)
Butyl benzyl phthalate	50	ND (0.41)	ND (0.42) ND (0.47)	ND (0.41)	ND (0.41) ND (0.47)	ND (0.42) ND (0.47)	ND (0.42) ND (0.47)
1,1'-Biphenyl	-	ND (0.47)	ND (0.47) ND (0.22)	ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)
2-Chloronaphthalene	-	ND (0.24)					

Location ID		TT-SB-22GW	TT-SB-23GW	TT-SB-27GW	TT-SB-30GW	TT-SB-31GW	GW-DUP01
	NYSDEC Ambient Water						
	Quality Standards and Guidance Values*						
Sampling Date	Guidance values	12/6/2021	12/7/2021	12/6/2021	12/6/2021	12/6/2021	12/7/2021
Carbazole	-	ND (0.23)	ND (0.24)	ND (0.23)	ND (0.23)	ND (0.24)	ND (0.24)
Caprolactam	-	ND (0.66)	ND (0.67)	ND (0.66)	ND (0.66)	ND (0.67)	ND (0.67)
Chrysene	0.002	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	0.37 J	ND (0.18)
bis(2-Chloroethoxy)methane	5	ND (0.28)	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.29)	ND (0.29)
bis(2-Chloroethyl)ether	1	ND (0.25)	ND (0.26)	ND (0.25)	ND (0.25)	ND (0.26)	ND (0.26)
2,2'-Oxybis(1-chloropropane)	-	ND (0.41)	ND (0.42)	ND (0.41)	ND (0.41)	ND (0.42)	ND (0.42)
4-Chlorophenyl phenyl ether 2.4-Dinitrotoluene	<u>-</u> 5	ND (0.37)	ND (0.38)	ND (0.37)	ND (0.37)	ND (0.38)	ND (0.38)
2.4-Dinitrotoluene		ND (0.56) ND (0.49)	ND (0.57) ND (0.49)	ND (0.56) ND (0.49)	ND (0.56)	ND (0.57)	ND (0.57) ND (0.49)
7.5	5	ND (0.49) ND (0.52)					
3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene	-	ND (0.34)	ND (0.32)	ND (0.52) ND (0.34)	ND (0.52) ND (0.34)	0.69 J	ND (0.34)
Dibenzofuran		ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (0.23)	0.36 J
Di-n-butyl phthalate	50	ND (0.51)					
Di-n-octyl phthalate	-	ND (0.24)					
Diethyl phthalate	50	ND (0.27)					
Dimethyl phthalate	50	ND (0.22)					
bis(2-Ethylhexyl)phthalate	5	ND (1.7)					
Fluoranthene	50	ND (0.17)	ND (0.18)	ND (0.17)	ND (0.17)	0.70 J	ND (0.18)
Fluorene	50	ND (0.17)	ND (0.18)	ND (0.17)	ND (0.17)	0.21 J	ND (0.18)
Hexachlorobenzene	0.04	ND (0.33)	ND (0.34)	ND (0.33)	ND (0.33)	ND (0.34)	ND (0.34)
Hexachlorobutadiene	0.5	ND (0.50)	ND (0.51)	ND (0.50)	ND (0.50)	ND (0.51)	ND (0.51)
Hexachlorocyclopentadiene	5	ND (2.8)	ND (2.9)	ND (2.8)	ND (2.8)	ND (2.9)	ND (2.9)
Hexachloroethane	5	ND (0.40)					
Indeno(1,2,3-cd)pyrene	0.002 50	ND (0.34)	ND (0.34)	ND (0.34)	0.73 J	1.1 ND (0.20)	ND (0.34) ND (0.29)
Isophorone 2-Methylnaphthalene	50	ND (0.28)	ND (0.29) ND (0.22)	ND (0.28) ND (0.21)	ND (0.28) ND (0.21)	ND (0.29) ND (0.22)	ND (0.29) ND (0.22)
2-Nitroaniline	5	ND (0.28)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.22)	ND (0.22)
3-Nitroaniline	5	ND (0.20)	ND (0.40)	ND (0.20)	ND (0.20)	ND (0.40)	ND (0.40)
4-Nitroaniline	5	ND (0.45)					
Naphthalene	10	1.1	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)	0.89 J
Nitrobenzene	0.4	ND (0.66)					
N-Nitroso-di-n-propylamine	-	ND (0.49)	ND (0.50)	ND (0.49)	ND (0.49)	ND (0.50)	ND (0.50)
N-Nitrosodiphenylamine	50	ND (0.23)					
Phenanthrene	50	ND (0.18)	ND (0.18)	0.26 J	ND (0.18)	0.63 J	0.52 J
Pyrene	50	ND (0.22)	ND (0.23)	ND (0.22)	ND (0.22)	0.70 J	ND (0.23)
1,2,4,5-Tetrachlorobenzene	-	ND (0.38)					
1,4 Dioxane (ug/l) 1.4-Dioxane	1						
*	1	ND (0.051)	0.0537 J	ND (0.051)	ND (0.051)	ND (0.052)	ND (0.052)
Pesticides and herbicides (ug/l) (ug/l) Aldrin	0.01	ND (0.0042)	ND (0.0047)	ND (0.0041)	ND (0.0042)	ND (0.0041)	ND (0.0041)
alpha-BHC	0.01	ND (0.0042)	ND (0.0047)	ND (0.0041)	ND (0.0042)	ND (0.0041)	ND (0.0041)
beta-BHC	0.05	ND (0.0042)	ND (0.0047)	ND (0.0041)	ND (0.0042)	ND (0.0042)	ND (0.0042)
delta-BHC	0.05	ND (0.0054)	ND (0.0060)	ND (0.0052)	ND (0.0054)	ND (0.0053)	ND (0.0053)
gamma-BHC (Lindane)	0.05	ND (0.0049)	ND (0.0054)	ND (0.0047)	ND (0.0049)	ND (0.0048)	ND (0.0048)
alpha-Chlordane	-	ND (0.0040)	ND (0.0045)	ND (0.0039)	ND (0.0040)	ND (0.0039)	ND (0.0039)
gamma-Chlordane	0.1	ND (0.0035)	ND (0.0039)	ND (0.0033)	ND (0.0035)	ND (0.0034)	ND (0.0034)
Dieldrin	0.01	ND (0.0063)	ND (0.0070)	ND (0.0060)	ND (0.0063)	ND (0.0061)	ND (0.0061)
4,4'-DDD	0.01	ND (0.0047)	ND (0.0052)	ND (0.0045)	ND (0.0047)	ND (0.0046)	ND (0.0046)
4,4'-DDE	0.01	ND (0.0041)	ND (0.0046) ND (0.0062)	ND (0.0040)	ND (0.0041)	ND (0.0040)	ND (0.0040)
4,4'-DDT Endrin	0.01 0.01	ND (0.0056) ND (0.0049)	ND (0.0062) ND (0.0055)	ND (0.0054) ND (0.0048)	ND (0.0056) ND (0.0049)	ND (0.0055) ND (0.0048)	ND (0.0055) ND (0.0048)
Endosulfan sulfate	0.01	ND (0.0049)	ND (0.0050)	ND (0.0048)	ND (0.0049)	ND (0.0044)	ND (0.0044)
Endrin aldehyde	-	ND (0.0055)	ND (0.0061)	ND (0.0053)	ND (0.0055)	ND (0.0054)	ND (0.0054)
Endrin ketone	-	ND (0.0051)	ND (0.0056)	ND (0.0049)	ND (0.0051)	ND (0.0050)	ND (0.0050)
Endosulfan-l	0.1	ND (0.0043)	ND (0.0048)	ND (0.0041)	ND (0.0043)	ND (0.0042)	ND (0.0042)
Endosulfan-II	0.1	ND (0.0040)	ND (0.0044)	ND (0.0038)	ND (0.0040)	ND (0.0039)	ND (0.0039)
Heptachlor	0.01	ND (0.0037)	ND (0.0041)	ND (0.0035)	ND (0.0037)	ND (0.0036)	ND (0.0036)
Heptachlor epoxide	0.01	ND (0.0049)	ND (0.0055)	ND (0.0047)	ND (0.0049)	ND (0.0048)	ND (0.0048)
Methoxychlor	35	ND (0.0055)	ND (0.0061)	ND (0.0053)	ND (0.0055)	ND (0.0054)	ND (0.0054)
Toxaphene	- 44	ND (0.13)	ND (0.15)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)
2,4-D 2,4,5-TP (Silvex)	4.4 0.26	ND (0.074) ND (0.047)	ND (0.080) ND (0.050)	ND (0.083) ND (0.052)	ND (0.080) ND (0.050)	ND (0.081) ND (0.051)	ND (0.080) ND (0.050)
2,4,5-TP (Silvex) 2,4,5-T	35	ND (0.047) ND (0.014)	ND (0.050) ND (0.015)	ND (0.052) ND (0.016)	ND (0.050) ND (0.015)	ND (0.051) ND (0.016)	ND (0.050) ND (0.015)
4,7,0°1	ວບ	140 (0.014)	140 (0.013)	(טוט.טן שאו	(פוט.ט) שאו	(טוטט) שאו	(פוט.ט) שאו

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

Location ID	NYSDEC Ambient Water	TT-SB-22GW	TT-SB-23GW	TT-SB-27GW	TT-SB-30GW	TT-SB-31GW	GW-DUP01
	Quality Standards and						
	Guidance Values*						
Sampling Date	Guidance Values	12/6/2021	12/7/2021	12/6/2021	12/6/2021	12/6/2021	12/7/2021
PCBs (ug/l)							
Aroclor 1016	-	ND (0.16)	ND (0.18)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.16)
Aroclor 1221	-	ND (0.34)	ND (0.38)	ND (0.32)	ND (0.35)	ND (0.32)	ND (0.34)
Aroclor 1232	-	ND (0.21)	ND (0.24)	ND (0.20)	ND (0.22)	ND (0.20)	ND (0.21)
Aroclor 1242	-	ND (0.19)	ND (0.21)	ND (0.18)	ND (0.19)	ND (0.18)	ND (0.18)
Aroclor 1248	-	ND (0.10)	ND (0.11)	ND (0.097)	ND (0.10)	ND (0.097)	ND (0.10)
Aroclor 1254	-	ND (0.34)	ND (0.38)	ND (0.32)	ND (0.34)	ND (0.32)	ND (0.33)
Aroclor 1260	-	ND (0.12)	ND (0.14)	ND (0.12)	ND (0.13)	ND (0.12)	ND (0.12)
Aroclor 1268	-	ND (0.14)	ND (0.16)	ND (0.13)	ND (0.14)	ND (0.13)	ND (0.14)
Aroclor 1262	-	ND (0.16)	ND (0.18)	ND (0.15)	ND (0.16)	ND (0.15)	ND (0.15)
Metals (ug/L)							
Aluminum	2000	7540	70900	5230	3950	1280	<200
Antimony	6	<6.0	<30 °	<6.0	<6.0	<6.0	<6.0
Arsenic	50	9.6	66.6 °	8.7	9.4	3.2	<15 °
Barium	2000	<200	1390	422	<200	<200	<200
Beryllium	3	<1.0	7.1 °	<1.0	1.1	<1.0	2
Cadmium	10	<3.0	<15 °	<3.0	3	<3.0	<3.0
Calcium	-	44100	318000	259000	155000	118000	219000
Chromium	100	11.9	140	11.7	<10	<10	<10
Cobalt	-	<50	98.4	<50	<50	<50	<50
Copper	1000	17.7	233 °	22.6	45.8	<10	<10
Iron	600	10000	376000	10600	10100	1940	275
Lead	25	20.3	258 °	73.5	26.6	12.1	<15 °
Magnesium	35000	5430	86600	38100	52000	8100	283000
Manganese	600	297	10700 °	2150	2770	463	20.5
Mercury	1.4	<0.20	0.8	<0.20	<0.20	<0.20	<0.20
Nickel	200	11.2	206	21	15.1	<10	<10
Potassium	-	<10000	38500	19900	11500	12000	193000
Selenium	20	<10	<50 °	<10	<10	<10	<10
Silver	100	<10	<50 °	<10	<10	<10	<10
Sodium	-	16000	170000	201000	494000	166000	4010000
Thallium	0.5	<10	<50 °	<10	<10	<10	<10
Vanadium	-	<50	209	<50	<50	<50	<50
Zinc	5000	56.8	501	48.9	53.7	<20	<20

μg/L - micrograms per liter NYSDEC - New York State Department of Environmental Conservation

*Ambient water quality guidance value

NA - Not Analyzed

- No criteria

ND: Indicates that the analyte was not detected above the sample-specific report

Values shaded in orange exceeded the NYSDEC Ground Water Quality Standards

* Associated CCV outside of control limits high, sample was ND.

^b Associated CCV outside of control limits high, sample was ND. This compound

^c Elevated detection limit due to dilution required for high interfering element.

Table 3 Summary of Soil Sampling Results

Phase II Environmental Site Assessment South Brooklyn Marine Terminal

				_		_	_	_		_			_		
Sample ID		TT-SB-33SV	TT-SB-32SV	TT-SB-25SV	TT-SB-24SV	TT-SB-39SV	TT-SB-37SV	TT-SB-19SV	TT-SB-14SV	TT-SB-16SV	TT-SB-36SV	TT-SB-02SV	TT-SB-17SV	TT-SB-21SV	TT-SB-A
Lab Sample ID		JD36521-1	JD36521-2	JD36521-3	JD36521-4	JD36521-5	JD36521-6	JD36521-8	JD36521-9	JD36521-10	JD36521-11	JD36521-12	JD36521-13	JD36521-14	JD36521-7
Date Sampled	NYSDOH Air	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021	12/8/2021
	Guideline Values	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Soil Vapor	Ambient Air
Matrix		Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
MS Volatiles (TO-15) - ug/m	•	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.	comp.
Acetone (2-Propanone)	-	49.2	12	56.8	75.8	86	12	39.7	47.5	41.6	26.1	3.8	4.8	12	4.3
1,3-Butadiene	-	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.082)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.18)	ND (0.082)
Benzene	-	5.1	1.2	0.7	3.1	45.4	4.2	ND (0.038)	2.3	3.2	1.9	7.7	3	2.9	0.77
Bromodichloromethane	-	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.14)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.32)	ND (0.14)
Bromoform	-	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.31)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.38)	ND (0.69)	ND (0.31)
Bromomethane	-	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.070)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.15)	ND (0.070)
Bromoethene Benzyl Chloride	-	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.079) ND (0.23)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.096) ND (0.29)	ND (0.17) ND (0.52)	ND (0.079) ND (0.23)
Carbon disulfide	-	80	5.9	1.6	408	476	2.4	0.34 J	ND (0.23)	17	1.6	0.37 J	4	ND (0.32)	ND (0.23)
Chlorobenzene	-	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.097)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.22)	ND (0.097)
Chloroethane	-	ND (0.13)	1.7	ND (0.13)	ND (0.13)	ND (0.10)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.23)	ND (0.10)
Chloroform	-	ND (0.098)	9.8	0.49 J	ND (0.098)	ND (0.078)	0.78 J	ND (0.098)	0.88 J	1.7	2	1.3	24	ND (0.18)	ND (0.078)
Chloromethane	-	0.31 J	1.2	ND (0.031)	0.41	0.27 J	ND (0.031)	ND (0.031)	ND (0.031)	0.20 J	ND (0.031)	ND (0.031)	ND (0.031)	0.74	0.87
3-Chloropropene	-	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.10)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.22)	ND (0.10)
2-Chlorotoluene	-	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.10)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.23)	ND (0.10)
Carbon tetrachloride	-	ND (0.15)	1.5	ND (0.15)	ND (0.15)	ND (0.12)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.26)	ND (0.12)
Cyclohexane	-	372	1.3	7.9 ND (0.049)	56.5	134 ND (0.038)	ND (0.076)	ND (0.076)	ND (0.076)	1.9	0.55 J	0.38 J	2.1	11 ND (0.085)	0.27 J
1,1-Dichloroethane 1,1-Dichloroethylene	-	ND (0.049) ND (0.067)	1.1 ND (0.067)	ND (0.049) ND (0.067)	ND (0.049) ND (0.067)	ND (0.038)	ND (0.049) ND (0.067)	ND (0.049) ND (0.067)	0.61 J ND (0.067)	ND (0.049) ND (0.067)	4 ND (0.067)	ND (0.049) ND (0.067)	6.5 ND (0.067)	ND (0.085) ND (0.12)	ND (0.038) ND (0.052)
1,1-Diction decriylene	-	(/ססיס) מיי	140 (0.007)	140 (0.007)	(/מטיט) שאו	_	(/סטיטן שאו	140 (0.007)	140 (0.007)	140 (0.007)	(/מטיט) שאו	140 (0.007)	140 (0.007)	140 (0.12)	140 (0.052)
1,2-Dibromoethane (EDB)	-	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.11)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.25)	ND (0.11)
1,2-Dichloroethane	-	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.069)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.085)	ND (0.25)	ND (0.069)
1,2-Dichloropropane			` ,	, ,		ND (0.069)		· ·				ND (0.088)	` ′	ND (0.16)	ND (0.069)
1,4-Dioxane	-	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.15)	0.86	ND (0.19)	1.1	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.34)	ND (0.15)
Dichlorodifluoromethane	-	0.99	1.4	1.6	1.9	1.7	2.1	1.2	1.2	1.6	1.3	0.94 J	1.2	1.5 J	1.8
Dibromochloromethane	-	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.23)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.51)	ND (0.23)
tuana 1.2 Diablamaathulana		ND (0.030)	ND (0.030)	ND (0.030)	0.62.1	7.4	ND (0.030)	ND (0.030)	ND (0.030)	ND (0.030)	ND (0.030)	ND (0.030)	ND (0.030)	ND (0.0E3)	ND (0.033)
trans-1,2-Dichloroethylene	-	ND (0.029)	ND (0.029)	ND (0.029)	0.63 J	7.1	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.029)	ND (0.052)	ND (0.023)
cis-1,2-Dichloroethylene	-	ND (0.048)	ND (0.048)	ND (0.048)	5.9	4.8	ND (0 048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0 048)	ND (0.083)	ND (0.037)
cis-1,3-Dichloropropene	-	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.091)	ND (0.073)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.048)	ND (0.083)	ND (0.037)
m-Dichlorobenzene	-	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.090)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.20)	ND (0.090)
o-Dichlorobenzene	-	ND (0.13)	0.84	ND (0.13)	ND (0.13)	ND (0.10)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.23)	ND (0.10)
p-Dichlorobenzene	-	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.084)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.19)	ND (0.084)
trans-1,3-Dichloropropene	-	ND (0.091)	ND (0.091)	ND (0.091)	ND (0.091)			ND (0.091)	ND (0.091)	ND (0.091)		· · · · ·	ND (0.091)	ND (0.16)	ND (0.073)
Ethanol	-	3.8	3	21.7	11	7	4.9	7.7	12	7.7	5.3	2.3	4	14	11
Ethylbenzene	-	ND (0.065)	1.2	0.61 J	10	2.9 15	1.3	0.52 J	1.4	0.96	0.87	0.83 J	1.4 ND (0.14)	0.42 J 30	ND (0.052) 65.1
Ethyl Acetate 4-Ethyltoluene	-	ND (0.14) 21	4.3 2.7	8.3 0.98	10 2.1	ND (0.12)	20	1.4	2.6	4.3 1.7	5 2.3	2.2	2.6	ND (0.26)	ND (0.12)
Freon 113	-	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.12)	4.6	0.29 J	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.24)	ND (0.12)
Freon 114	-	ND (0.13)	ND (0.13)	ND (0.13)	1.1	ND (0.11)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.24)	ND (0.11)
Heptane	-	422	0.78 J	1.7	4.9	120	1.2	2	3.6	3.6	1.6	0.49 J	0.94	3.5	ND (0.057)
Hexachlorobutadiene	-	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.38)	1.6	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.87)	ND (0.38)
Hexane	-	76.8	1.1	1.6	5.3	206	1.6	0.95	2.5	4.2	1.4	0.99	1.7	7.8	0.49 J
2-Hexanone	-	ND (0.15)	ND (0.15)	7.8	13	ND (0.12)	ND (0.15)	19	ND (0.15)	22	13	1.9	ND (0.15)	ND (0.27)	ND (0.12)
Isopropyl Alcohol	-	1.2	0.88	6.4	1.2	1.4	1.5	0.79	2.7	0.93	0.86	0.47 J	1.1	1.8	2.2
Methylene chloride	60	0.73	0.87	0.8	2.3	1.1	1.4	0.52 J	ND (0.052)	ND (0.052)	ND (0.052)	0.69	ND (0.052)	ND (0.090)	0.83
Methyl ethyl ketone Methyl Isobutyl Ketone	-	13 ND (0.15)	6.8 ND (0.15)	70.2 ND (0.15)	92.9 ND (0.15)	81.7 ND (0.12)	16 ND (0.15)	107 ND (0.15)	119 ND (0.15)	121 ND (0.15)	72 ND (0.15)	5 ND (0.15)	8.6 ND (0.15)	2.9 ND (0.26)	0.41 J ND (0.12)
Methyl Tert Butyl Ether	-	ND (0.13)	ND (0.13)	2.7	ND (0.13)	ND (0.12)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.13)	ND (0.26)	ND (0.12)
Methylmethacrylate	-	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.003)	ND (0.034)	ND (0.003)	ND (0.14)	ND (0.14)	ND (0.003)	ND (0.003)	ND (0.14)	ND (0.14)	ND (0.12)	ND (0.034)
Propylene	-	58.6	17	11	ND (0.027)	ND (0.022)	ND (0.027)	10	16	27.1	ND (0.027)	ND (0.027)	5.2	ND (0.048)	` ´
Styrene	-	ND (0.081)	0.89	0.60 J	0.55 J	0.43 J	0.72 J	0.77 J	0.60 J	0.94	0.55 J	0.85	1.1		ND (0.064)
1,1,1-Trichloroethane	-	ND (0.18)	21	ND (0.18)	ND (0.18)	ND (0.15)	ND (0.18)	4.9	1.3	3.4	3.1	1.1	29	ND (0.32)	ND (0.15)
1,1,2,2-Tetrachloroethane	-	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.15)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.34)	ND (0.15)
1,1,2-Trichloroethane	-	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.13)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.16)	ND (0.29)	ND (0.13)
1,2,4-Trichlorobenzene	-	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.53)	0.97	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (1.2)	ND (0.53)
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	-	11 16	2.6 0.74 J	0.93 J ND (0.17)	1.6 ND (0.17)	1.2 0.46 J	2.3 0.79 J	1.3 ND (0.17)	2.1 0.64 J	1.3 ND (0.17)	2.7	2 0.54 J	2.2 0.59 J	ND (0.29) ND (0.29)	ND (0.13) ND (0.13)
2,2,4-Trimethylpentane	-	ND (0.10)	0.74 J 0.65 J	0.65 J	75.7	58.4	0.79 J 0.56 J	ND (0.17) ND (0.10)	1.1	1.4	ND (0.10)	ND (0.10)	1.7	ND (0.29) ND (0.18)	0.43 J
Tertiary Butyl Alcohol	-	2.8	3.6	2.8	4.2	3	3.3	2.8	8.8	4.5	2.8	0.73	2.1	ND (0.076)	ND (0.033)
Tetrachloroethylene	-	2.8	5.3	8.1	4.7	5	11	2	5.8	5.8	1.9	2.9	5.1	ND (0.37)	0.36
Tetrahydrofuran	-	ND (0.15)	0.35 J	ND (0.15)	ND (0.15)	ND (0.12)	14	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	0.77	ND (0.27)	ND (0.12)
Toluene	-	51.6	3.4	1.7	2.8	11	4.9	1.5	3.4	4.9	2.1	2	5.3	2.3	1.5
Trichloroethylene	-	ND (0.10)	0.7	12	ND (0.10)	ND (0.081)	1.5	ND (0.10)	ND (0.10)	1	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.18)	ND (0.081)
Trichlorofluoromethane	-	ND (0.16)	0.96	1	0.62	0.46	20	0.62	0.55 J	1.3	1.1	ND (0.16)	0.9	1.1	1.1
Vinyl chloride	-	ND (0.056)	ND (0.056)	ND (0.056)	0.87	95.3	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.056)	ND (0.10)	ND (0.046)
Vinyl Acetate	-	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.095)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.21)	ND (0.095)
m,p-Xylene	-	91.2	4.8	1.9	4.1	6.5	5.2	2.2	4.8	3.3	3.1	2.9	4.8	1.3 J	0.91
o-Yylene	_	<i>1</i> E 2	רכן	Λ 01	7 /		7 ()	በ 07	. ,	1 3	7 /	17	7 ()	ND 10 131	K 1 1 1 1 1 1 1
o-Xylene Xylenes (total)	-	45.2 136	2.2 6.9	0.91 2.7	1.7 5.6	ND (0.061) 6.5	1.9 6.9	0.87 3	6.9	1.3 4.8	1.4 4.3	1.2 4.1	1.9 6.5	ND (0.13) 1.3 J	ND (0.061) 0.91

Note

ug/m³ - micrograms per cubic meter

NYSDOH - New York State Department of Health

Values in bold were detected

ND - The compound was not detected at the indicated concentration.

J - Estimated value as given concentration below the quantification limit

⁻ No criteria

Appendix A – Soil Boring Logs

					Fie	ld Boring	g Log Sheet				
$\overline{}$				Project:		BMT - Equi		te Started		/18/202	
77 -1	TETR	A TECH Project #				94-1247-00		ompleted:	11		
				Boring #:		TT-SB-01		li i	,	9.0'bgs.	
				Total Depth (ft): Geologist:		10'bgs. A.Valli	Ground Elev	ordinate:		NA	
				Driller:		Cascade/A		ordinate:			
	Drilling/Sampling Me					eoProbe 77		S Datum:		NAD83	
	Blow USCS Soil										
	Depth	Count	Recovery							PID	
Sample ID	(ft)	per/6"	(ft)	or Material	Color	Lithology	Description 0.0-1.0' Concrete	Time	Date	(ppm)	Comment Cleared to 5'
				CONCRETE	Gt		1.0-1.5' F-M SAND, some Brick				using hand to
TT-SB-01					Dk.Br./Bl		and Metal, little Silt and F Gravel				and air knife.
0-5			NA	FILL			1.5-5.0' F-M SAND and F GRAVEL,	12:00	11/18/2021	0.0	
			1		Bl.		little Brick, Concrete and Ash, Tr			0.0	
	5.0		1				Silt.			0.0	
							5.0-10.0' F SAND, some Silt and F			0.0	
TT-SB-01			26"	CIA	D		Gravel, little Brick.	44.50	44 /40 /2024		Collected Soil
5-10 Run#1			26"	SW	Br.			11:50	11/18/2021		Sample TT-SB- 6.5-8.5 @ 122
	10.0									0.0	
							End of Boring at 10'bgs.				
			-								
	15.0		1								
			4								
			1								
	20.0										
			-								
			1								
	25.0		1								
	25.0										
	25.0										
	25.0										

30.0 35.0 40.0 45.0 Notes: Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor Date Started 11/18/2021 Project: 11/18/2021 194-1247-0003 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-02 9.0'bgs. Groundwater Depth (ft): NA 10'bgs. Total Depth (ft): Ground Elevation (ft): Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: NAD83 Drilling/Sampling Method: GeoProbe 7728 GPS Datum:

Sample ID	Depth (ft)	Blow Count per/6"	Recovery (ft)	USCS Soil Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments
	(1-5)	100.70	(1.5)	CONCRETE	Gt		0.0-1.0' Concrete		2 0.00	0.0	Cleared to 5' using
TT-SB-02			NA		Bl.		1.0-3.0' F-M SAND, some F-M Gravel and Ash, little Silt.	13:28	11/18/2021		hand tools and air knife.
0-5	5.0			FILL	Br.		3.0-5.0' F-M SAND and F GRAVEL, little Brick, Concrete and Ash, Tr Silt.			0.0	
TT-SB-02 5-10 Run#1	10.0		26"	SW	Br.		5.0-10.0' F SAND, some F-M Gravel and Silt.	13:36	11/18/2021	0.0 0.0 0.0	Collected Soil Sample TT-SB-02- 7.0-9.0 @ 1340
TT-SB-02 10-15 Run#2	15.0		32"	SW	Gr./Br.		10.0-15.0' F-M SAND, little Silt, Saturated.	13:45	11/18/2021	0.0 0.0 0.0 0.0 0.0	
	20.0						End of Boring at 15'bgs. Installed soil vapor point				
	25.0										
	30.0										
	35.0										
	45.0										

Notes: Collected GW Sample (TT-SB-02GW) on 12/07/2021 @ 1535

Collected SV Samplie (TT-SB-02SV) on 12/09/2021 @0920

Patched on 12/09/2021

BORING NUMBER: TT-SB-03 Field Boring Log Sheet SBMT - Equinor Project: **Date Started** 11/19/2021 194-1247-0003 Date Completed: 11/19/2021 Project #: **TETRA TECH** 9.0'bgs. TT-SB-03 Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Recovery Depth Count Classicfication PID Sample ID per/6" or Material Color Lithology (ft) (ft) Time Date (ppm) Description Comments CONCRETE Gr. 0.0-1.0' Concrete Cleared to 5' using hand tools and air 1.0-2.0' F SAND, little Silt and F 0.0 knife. Gravel, tr Metal and Concrete. TT-SB-03 0 NA 9:08 11/19/2021 2.0-5.0' F-M SAND, some F-M Br. 0.0 Gravel, Brick and Concrete, tr. Silt. 0.0 FILL 5.0 0.0 5.0-7.0' Br. F SAND, some F Collected Soil Sample 0.0 Gravel, Brick and Conrete, tr. Silt. TT-SB-03-7.0-9.0 Br. TT-SB-03 0.0 @ 09:26 5-10 42" 9:10 11/19/2021 7.0-10.0' Gr.Br. F-M SAND, little 0.0 Run#1 Silt and F Gravel. Wet at 9.0' SW Gr./Br. 0.0 10.0 0.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0

Notes: Patched on 11/19/2021

35.0

40.0

45.0

BORING NUMBER: TT-SB-04 Field Boring Log Sheet SBMT - Equinor 11/19/2021 Date Started Project: Project #: 194-1247-0003 Date Completed: 11/19/2021 **TETRA TECH** TT-SB-04 9.5'bgs. Boring #: Groundwater Depth (ft): NA 10'bgs. Total Depth (ft): Ground Elevation (ft): Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: GeoProbe 7728 Drilling/Sampling Method: GPS Datum: NAD83 Blow **USCS Soil** Depth Count Recovery Classicfication PID Sample ID (ft) per/6" (ft) or Material Color Lithology **Description** Time Date (ppm) Comments Cleared to 5' using 0.0-2.0' Concrete 0.0 CONCRETE Gr. hand tools and air 0.0 TT-SB-04 knife. 2.0-5.0' F-M SAND, some F-M NA 10:23 11/19/2021 0.0 0-5 Gravel, Brick and Concrete, tr. Silt. 0.0 5.0 0.0 5.0-9.5' Br. F SAND, some F-M Collected Soil Sample 0.0 FILL Gravel, Brick, Metal and Conrete, TT-SB-04-7.5-9.5 0.0 little Silt @ 10:41 Br. TT-SB-04 0.0 5-10 40" 10:30 11/19/2021 0.0 Run#1 9.5-10.0' Gr.Br. F-M SAND, little SW Gr./Br. 0.0 Silt and F Gravel. 10.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Notes: Patched on 11/19/2021

Field Boring Log Sheet SBMT - Equinor 11/19/2021 Project: Date Started 194-1247-0003 11/19/2021 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-05 Groundwater Depth (ft): 8.5'bgs. NA 10'bgs. Ground Elevation (ft): Total Depth (ft): Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: NAD83 GeoProbe 7728 Drilling/Sampling Method: GPS Datum:

Sample ID	Depth (ft)	Blow Count per/6"		USCS Soil Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments
				ASPHALT	Bl.		0.0-0.5'6" Asphalt and subbase.				Cleared to 5' using
							0.5-6.0' Br. F SAND and Brick			0.0	hand tools and air
TT-SB-05 0-5			NA					13:30	11/19/2021	0.0	knife.
0-5				FILL	Br.					0.0	
	5.0									0.0	
										0.0	Collected Soil Sample
			1				6.0-9.0' Fine SAND, some Gravel,			0.0	TT-SB-05- 6.5-8.5
TT-SB-05				SW	Br.		Brick and wood, little Silt.				@ 13:50 (w/ Dupicate Sample DUP-01)
5-10			43"	3**	ы.			13:44	11/19/2021	11.0	
Run#1							9.0-10.0' Gr.Br. F-M SAND, little			0.0	•
	400			SP	Gr./Br.		Silt and F Gravel.			0.0	
	10.0										
							End of Boring at 10'bgs.				
	15.0		-								
			1								
	20.0										
	25.0										
		-									
	30.0										
	30.0										
			1								
			1								
			1								
	35.0										
]								
	40.0										
			4								
			-								
	45.0		-								
Notes: Patche		<u> </u> 10/2021	<u> </u>			l					<u> </u>

Notes: Patched on 11/19/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/22/2021 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-06 7.0'bgs. Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Depth Recovery Classicfication PID Count per/6" (ft) or Material Color Lithology Sample ID (ft) Time Date (ppm) Description **Comments** ASPHALT 0.0-0.5' Asphalt and subbase. Cleared to 5' using BI. 0.0 hand tools and air 0.5-5.0' F SAND, some F-M Gravel, 0.0 TT-SB-06 0 knife. Concrete and Brick, little Silt. 9:15 11/22/2021 0.0 NA FILL Br. 0.0 5.0 0.0 Collected Soil Sample 5.0-7.0' Fine SAND, little F Gravel 0.0 SW Rd Br. and Silt. TT-SB-06-5.0-7.0 0.0 TT-SB-06 @ 13:50 5-10 41" 7.0-10.0' F-M SAND, some F 9:22 11/22/2021 0.0 Run#1 SP Dk. Br. Gravel, tr. Silt, Wet. 0.0 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected GW sample TT-SB-06GW on 12/07/2021 @ 14:20 Patched on 12/09/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/22/2021 194-1247-0003 11/22/2021 Project #: Date Completed: **TETRA TECH** TT-SB-07 8.0'bgs. Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Depth Recovery Classicfication PID Count Sample ID (ft) per/6 (ft) or Material Color Lithology Time Date (ppm) Description **Comments** ASPHALT 0.0-0.5' Asphalt and subbase. Cleared to 5' using BI. 0.0 0.5-5.0' F SAND, Gravel Brick and 0.0 hand tools and air TT-SB-07 knife. NA Concrete, little Silt and Wood. 12:05 11/22/2021 0.0 0-5 Dk. Br. 0.0 FILL 5.0 0.0 5.0-6.0' Fine SAND, some F Collected Soil Sample 0.0 Bl. Gravel, Concrete and Wood. TT-SB-07-6.0-8.0 0.0 TT-SB-07 @ 12:23 5-10 32" 6.0-10.0' F-M SAND, some F-M 12:11 11/22/2021 0.0 Run#1 SP Bl. Gravel. Saturated 0.0 10.0 0.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Notes: Patched on 11/22/2021

	Field Boring Log Sheet Project: SBMT - Equinor Date Started 11/22/2021													
TŁ	TETF	RA T		Project: Project #: Boring #: Total Depth (ft): Geologist: Driller:	19 C	MT - Equir 94-1247-00 TT-SB-08 10'bgs. A.Valli ascade/AD	Date Constitution of the C	ompleted: Depth (ft): ation (ft): ordinate: ordinate:	11	/22/202 9.0'bgs. NA	21			
			Drilling/Sa	ampling Method:	Ge	eoprobe //	28 GP	S Datum:		NAD83				
Sample ID	Depth (ft)	Blow Count per/6"	Recovery (ft)	USCS Soil Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments			
				ASPHALT	Bl.		0.0-0.5' Asphalt and subbase.				Cleared to 5' using			
TT-SB-08 0-5	5.0		NA	FILL	Dk. Br/Bl.		0.5-5.0' F SAND, some F Gravel, little concrete, petro odor.	13:40	11/22/2021		hand tools and air knife.			
TT-SB-08 5-10			29"	SW	Gr.		5.0-7.0' Fine SAND, some F-M Gravel, little Brick, gasoline odor.	13:50	11/22/2021	18.0 32.7	Collected Soil Sample TT-SB-08- 7.0-9.0 @ 14:04 High			
S-10 Run#1	10.0		29	SP	Gr./Br.		7.0-10.0' F-M SAND, little F Gravel and Silt. Saturated @ 9.0'bgs	13:50	11/22/2021	61.1 3.2	PID at 7.5'			
							End of Boring at 10'bgs.							
	45.0													
	15.0													
	20.0													
	25.0													
	30.0													
	35.0													
	40.0													
	40.0													
Notes: Patche	45.0 ed on 11/2	2/2021												
	·													

Field Boring Log Sheet SBMT - Equinor 11/23/2021 Project: **Date Started** 194-1247-0003 11/23/2021 Project #: Date Completed: **TETRA TECH** 7.0'bgs. TT-SB-09 Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): $\mathsf{N}\mathsf{A}$ Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Classicfication Recovery Depth Count PID Sample ID (ft) per/6" (ft) or Material Color Lithology Time Date (ppm) **Description** Comments 0.0-0.5' Asphalt and subbase. Cleared to 5' using **ASPHALT** hand tools and air 0.5-6.0' F SAND, F Gravel, 0.0 TT-SB-09 knife. NA concrete, brick and wood, slight 8:45 11/23/2021 0.0 0-5 petro odor. FILL Dk. Br/Bl. 8.0 5.0 2.3 Collected Soil Sample 3.2 TT-SB-09-5.0-7.0 6.0-8.0' F SAND, some F Gravel, TT-SB-09 @ 09:15 High little brick and wood, slight petro SW 5-10 44" 8:51 11/23/2021 0.0 PID at 5.5' odor. Wet @ 7.0'bgs Run#1 8.0-10.0' F-M SAND, little F 0.0 SP Gr./Br. Gravel, tr Silt. Saturated 10.0 0.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Patched on 11/23/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/23/2021 194-1247-0003 11/23/2021 Project #: Date Completed: **TETRA TECH** TT-SB-10 9.0'bgs. Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Depth Recovery Classicfication PID Count Lithology Sample ID (ft) per/6 (ft) or Material Color Time Date (ppm) Description **Comments** ASPHALT 0.0-0.5' Asphalt and subbase. Cleared to 5' using BI. 0.0 hand tools and air 0.5-3.0' F SAND and GRAVEL, little 0.0 TT-SB-10 knife. NA concrete and brick. 10:45 11/23/2021 0.0 0-5 FILL BI. 3.0-4.5' Brick 0.0 5.0 0.0 5.0-7.0' F SAND and brick, little F Collected Soil Sample 2.5 SW Br. Gravel TT-SB-10-7.0-9.0 3.2 TT-SB-10 @ 11:06 5-10 34" 7.0-10.0' F SAND and F-M Gravel, 10:51 11/23/2021 3.7 Run#1 SP Bl. some wood and asphalt. 0.6 10.0 0.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Notes: Patched on 11/23/2021

	Project: SBMT - Equinor Date Started 11/23/2021													
				Project:				e Started	11	./23/202	21			
	TETE	RA T	ECH	Project #:		94-1247-00		mpleted:		./23/202				
				Boring #:		TT-SB-11	Groundwater D			8.5'bgs.				
				Total Depth (ft): Geologist:		10'bgs. A.Valli	Ground Elev	ation (ft): ordinate:		NA				
				Driller:	C	Cascade/AD		ordinate:						
			Drilling/Sa	ampling Method:		eoProbe 77		S Datum:		NAD83				
		Blow		USCS Soil										
	Depth	Count	Recovery	Classicfication						PID				
Sample ID	(ft)	per/6"	(ft)	or Material	Color	Lithology	Description	Time	Date	(ppm)	Cleared to 51 using			
				ASPHALT	Bl.		0.0-0.5' Asphalt and subbase. 0.5-3.0' Compacted Gravel				Cleared to 5' using hand tools and air			
TT-SB-11 0-5			NA					13:15	11/23/2021		knife.			
0-5				FILL	Br.		3.0-6.0' F SAND, some F Gravel,			0.0				
	5.0						brick and concrete.			1.2	Callagtad Cail Carrenta			
							6.0-8.0' F SAND, some F Gravel,				Collected Soil Sample TT-SB-11- 6.5-8.5			
TT-SB-11			40"	sw	BI.	133133131313313313313313313313313313313	little Silt, Moist, slight petro odor	12.20	44 /22 /2024	1.0	@ 13:35 PID in			
5-10 Run#1			48"			-		13:20	11/23/2021		Headspace - 10.5			
	40.0			SP	Bl./Dk.Br.		8.0-10.0' F-M SAND, little F Gravel, tr. Silt - Wet at 8.5'bgs			0.6				
	10.0						End of Boring at 10'bgs.			0.0				
	15.0													
	15.0													
	20.0													
	20.0													
	25.0													
	23.0													
	30.0													
	30.0													
	35.0													
	40.0													
	45.0													
Notes: Patche		3/2021		<u>, </u>		1			<u> </u>					

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/24/2021 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** TT-SB-12 9.0'bgs. Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Classicfication Depth Recovery PID Count per/6" or Material Color Sample ID (ft) (ft) Lithology Time Date (ppm) Description **Comments** ASPHALT 0.0-0.5'6" Asphalt and subbase. Cleared to 5' using BI. 0.0 hand tools and air 0.5-5.0' F SAND and F-M Gravel, 0.0 TT-SB-12 knife. some brick, wood and concrete. 8:30 11/24/2021 NA 0.0 0-5 BI. 0.0 5.0 FILL 0.0 5.0-8.0' F SAND, some F-M Gravel, Collected Soil Sample 0.0 little brick, wood and concrete. TT-SB-12-7.0-9.0 Bl./Br. 0.0 TT-SB-12 @ 09:08 5-10 22" 8:55 11/24/2021 0.0 Run#1 8.0-10.0' F-M SAND, some F-M 0.0 SP Dk.Br. Gravel - Wet at 9.0'bgs 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected GW sample TT-SB-12GW on 12/07/2021 @ 11:05 (w/GW duplicate sample GW-DUP01 Patched on 12/07/2021

BORING NUMBER: TT-SB-13 Field Boring Log Sheet SBMT - Equinor 11/29/2021 Project: Date Started 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** 9.5'bgs. TT-SB-13 Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83

Sample ID	Depth (ft)	Blow Count per/6"	Recovery (ft)	USCS Soil Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments
oumpic 12	(1.5)	po.,, o	(13)	ASPHALT	BI.		0.0-1.0' 6" Asphalt and 4" subbase.		2410	0.0	Cleared to 5' using hand tools and air
TT-SB-13			NA				1.0-5.0' F SAND, some F-M	8:22	11/29/2021	0.0	knife.
0-5				FILL	BI.		Gravel, brick and concrete, little Silt.			0.0	
	5.0						5.0-9.0' F SAND, some F-M Gravel,				Collected Soil Sample
TT-SB-13 5-10			30"	SW	Bl./Br.		little brick and concrete.	9:00	11/29/2021		TT-SB-13- 7.5-9.5 @ 09:10
Run#1				SP	Dk.Br.	-	9.0-10.0' F-M SAND, little F-M	3.00	11, 23, 2021	0.0	
	10.0			Jr .	DK.DI.		Gravel - Wet at 9.5'bgs End of Boring at 10'bgs.			0.0	
							Installed 1" Temp well to 15'bgs				
							(10' of 0.020 slot Screen and 5' of Riser)				
	15.0		1				,				
			-								
	20.0										
			1								
	25.0		1								
			-								
	30.0										
	35.0		-								
	40.0										
	45.0										
	45.0	L		n 12/07/2021 @ :							

Notes: Collected GW sample TT-SB-13GW on 12/07/2021 @ 13:20 Patched on 12/09/2021

BORING NUMBER: TT-SB-14 Field Boring Log Sheet SBMT - Equinor Project: Date Started 11/29/2021 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** 9.5'bgs. TT-SB-14 Groundwater Depth (ft): Boring #: Ground Elevation (ft): Total Depth (ft): 10'bgs. NA A.Valli X Coordinate: Geologist: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 GPS Datum: NAD83 Drilling/Sampling Method: Blow **USCS Soil**

Sample ID	Depth (ft)	Count per/6"	Recovery (ft)	Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments
Jumpie 12	(1.0)	pc./ 0	(10)				0.0-1.0' 6" Asphalt and 4"	111110	Dute		Cleared to 5' using
				ASPHALT	BI.		subbase.				hand tools and air
TT-SB-14			NA				1.0-5.5' F SAND and F-M Gravel,	9:49	11/29/2021	0.0	knife.
0-5			NA		BI.		some brick and concrete.	9.49	11/29/2021	0.0	
	F 0			FILL						0.0	•
	5.0									0.0	Collected Soil Sample
			1				5.5-6.5' F SAND, little F Gravel and				TT-SB-14- 7.5-9.5
TT-SB-14				SW	Br.		Silt				@ 10:09
5-10			45"	FILL	BI.		6.5-7.5' ASH	9:57	11/29/2021	0.0	
Run#1				SW	Br.		7.5-8.5' F SAND, little Silt.			0.0	
	100			SP	Dk.Br.		8.5-10.0' F-M SAND, little F-M			0.0	
	10.0						Gravel, tr. Silt - Wet at 9.5'bgs End of Boring at 10'bgs.				
							Installed Soil Vapor point				
	15.0										
	20.0		ł								
	25.0										
	25.0										
	30.0										
			1								
	35.0										
	40.0		ļ								
	40.0										
			1								
			1								
]								
	45.0										

Notes: Collected SV sample TT-SB-14SV on 12/08/2021 @ 16:32

Patched on 12/09/2021

Field Boring Log Sheet											
TETRA TECH Project #: Boring #: Total Depth (ft): Geologist:				Project: Project #: Boring #: Total Depth (ft): Geologist: Driller: ampling Method:	SBMT - Equinor 194-1247-0003 TT-SB-15 10'bgs. A.Valli Cascade/ADT GeoProbe 7728		Date Conduction Groundwater I Ground Elev X Conduction Y Conduction Y Conduction Y Conduction The part of t	Date Started Date Completed: Groundwater Depth (ft): Ground Elevation (ft): X Coordinate: Y Coordinate: GPS Datum:		11/29/2021 : 9.5'bgs. : NA	
	Depth	Blow Count	Recovery	USCS Soil Classicfication						PID	
Sample ID	(ft)	per/6"	(ft)	or Material	Color	Lithology	Description	Time	Date	(ppm)	
				ASPHALT	Bl.		0.0-1.0' 6" Asphalt and 4" subbase. (Geo-Mat)		· '	0.0	Cleared to 5' using hand tools and air
TT-SB-15			NA NA		Gr.		1.0-2.0' F-M SAND and F-M Gravel.	10:33	11/29/2021	0.0	knife.
0-5			ING.				2.0-5.0' F SAND, some F-M Gravel,	_	11/29/2021	0.0	
	5.0	 '		FILL	l <u>.</u> .		little Silt and Concrete.		·	0.0	
					BI.		5.0-8.5' F SAND and ASH, some F-		 	0.0	Collected Soil Sample
TT-SB-15 5-10		 '	36"		l		M Gravel.	11:01	11/29/2021	0.0	TT-SB-15- 7.5-9.5 @ 11:09
Run#1				SP	Br.		8.5-10.0' F-M SAND, some F		12, 23, 2321	0.0	<u> </u>
	10.0	 '			<u> </u>		Gravel - Wet at 9.5'bgs End of Boring at 10'bgs.	<u> </u>	<u> </u>	0.0	
] '		l				'		<u> </u>
! 	<u> </u>	 	'		l	<u> </u>			·		
<u> </u>	15.0				<u></u>				<u> </u>		1
! 	<u> </u>	 			l				·		
	30.0		'		l				<u>'</u>		
	20.0	 				+			<u> </u>		
] '		l				·]
· · · · · · · · · · · · · · · · · · ·		 	'		l				!		•
	25.0		<u> </u>			<u> </u>			<u> </u>		
		 '	'		l	 			<u>'</u>		1
ļ] '		l				<u>'</u>]
	30.0	 			l				·		
	30.0										
ļ			'		l				<u>'</u>		1
					l				·		
	35.0		 '						<u> </u>		
		 			l	 			·		1
			'		l				·		1
	40.0				l	 			<u>'</u>		1
	<u> </u>	 '			l				·		1
					l				·]
Notes: Patche	45.0 ed on 11/2	29/2021						<u> </u>	<u> </u>	<u> </u>	
	u c ,	-5,									

BORING NUMBER: TT-SB-16 Field Boring Log Sheet SBMT - Equinor Date Started 11/29/2021 Project: 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-16 9.5'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow Classicfication Depth Count Recovery PID Lithology Sample ID per/6 or Material Date (ft) (ft) Color Time Description (ppm) Comments 0.0-0.5' 4" Asphalt and 2" Cleared to 5' using **ASPHALT** Bl. 0.0 hand tools and air subbase. knife. 0.5-5.0' F SAND, some F Gravel. TT-SB-16 0.0 11/29/2021 11:45 NA 0-5 0.0 SP Br. 0.0 5.0 0.0

5.0-8.0' F SAND, little Silt and F 0.0 Collected Soil Sample Gravel. TT-SB-16-7.5-9.5 0.0 @ 12:11 SW 0.0 TT-SB-16 5-10 39" Rd. Br. 8.0-9.0' F SAND, some Silt, little F 12:00 11/29/2021 0.0 Run#1 Gravel. Moist 9.0-10.0' F-M SAND, some F SP 0.0 Gravel - Wet at 9.5'bgs 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0

Notes: Collected SV sample TT-SB-16SV on 12/08/2021 @ 16:49

Patched on 12/09/2021

Field Boring Log Sheet											
TŁ	Project: Project #: Boring #: Total Depth (ft): Geologist:			SBMT - Equinor 194-1247-0003 TT-SB-17 10'bgs. A.Valli		Date Co Groundwater D Ground Elevi X Co	Date Started Date Completed: Groundwater Depth (ft): Ground Elevation (ft): X Coordinate:		12/9/2021 9.0'bgs. NA		
Driller:					Cascade/ADT GeoProbe 7728			Y Coordinate: GPS Datum:			
Sample ID	Depth (ft)	Blow Count per/6"	Recovery (ft)	USCS Soil Classicfication or Material	Color	Lithology	Description	Time	Date	PID (ppm)	Comments
		•		Concrete	Gr.		0.0-0.5' Re-enforced Concrete				Cleared to 5' using
TT-SB-17 0-5			NA	FILL	Bl.	_	0.5-3.0' F SAND and F-M Gravel, some Ash and Concrete. 3.0-7.0' F SAND, some F-M Gravel,	13:38	11/29/2021	0.0	hand tools and air knife.
	5.0			SP	Br.		little Silt.			0.0 0.0 0.0	Collected Soil Sample TT-SB-17- 7.0-9.0
TT-SB-17 5-10 Run#1			39"	SP	Br.		7.0-10.0' F-M SAND, some F Gravel, little Silt. Wet@9.0'bgs	13:45	11/29/2021	0.0	@ 13:55
	10.0									0.0	
							End of Boring at 10'bgs. Installed Soil Vapor point				
	15.0										
	13.0										
	20.0										
	25.0										
	30.0										
	35.0										
	40.0										
Notes: Collec	45.0 ted SV sar	nple TT-S	B-17SV on 1	.2/08/2021 @ 17:	39						
Patched on 12/09/2021											

BORING NUMBER: TT-SB-18 Field Boring Log Sheet Project: SBMT - Equinor Date Started 11/29/2021 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-18 9.0'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Depth Recovery Classicfication Count PID per/6" Lithology (ppm) Sample ID (ft) (ft) or Material Color Time Date Description Comments 0.0-0.5' 4" Asphalt and 2" Subbase Cleared to 5' using **ASPHALT** Gr. 0.0 hand tools and air knife. 0.5-4.0' F SAND, some F-M Gravel, 0.0 TT-SB-18 11/29/2021 14:40 NA Brick and Concrete. 0-5 FILL Dk. Br. 0.0 0.0

5.0 4.0-8.0' F SAND, little F Gravel and 0.0 Silt. 0.0 Collected Soil Sample SW Br. TT-SB-18-7.0-9.0 0.0 @ 14:56 TT-SB-18 0.0 5-10 45" 8.0-10.0' F-M SAND, little F 11/29/2021 14:42 0.0 Run#1 Gravel, tr. Silt. Wet@9.0'bgs SW Gr. 0.0 10.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0

Notes: Collected GW sample TT-SB-18GW on 12/07/2021 @ 12:15 Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor Date Started 11/30/2021 Project: 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-19 9.0'bgs. Boring #: Groundwater Depth (ft): 10'bgs. NA Total Depth (ft): Ground Elevation (ft): Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Classicfication Depth Count Recovery PID Lithology Sample ID per/6 or Material Date (ft) (ft) Color **Time** Description (ppm) Comments 0.0-0.67' 4" Asphalt and 2" Cleared to 5' using **ASPHALT** Gr. 0.0 Subbase. hand tools and air knife. 0.67-5.0' F SAND and F-M Gravel, 0.0 TT-SB-19 NA 8:30 11/30/2021 some Ash and Concrete. 0-5 0.0 SP Br. 0.0 5.0 0.0 5.0-6.0' F SAND, little Silt, tr. F **Collected Soil Sample** SM Br. 0.0 TT-SB-19-7.0-9.0 Gravel @ 08:48 6.0-6.5' F SAND, some Silt, little FILL Br. 0.0 Brick and F Gravel. TT-SB-19 6.5-8.0' F SAND, little Silt, tr. F 39" 11/29/2021 8:35 5-10 0.0 SM Br. Run#1 8.0-9.0' F SAND, some Silt, little FILL 0.0 Br. Brick and F Gravel, Moist. 9.0-10.0' F-M SAND, some F 0.0 SP Gr. 10.0 Gravel, little Silt, Wet End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-19SV on 12/08/2021 @ 16:29 Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor 11/30/2021 Project: **Date Started** 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** 8.5'bgs. TT-SB-20 Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 **USCS Soil** Blow Depth Count Recovery Classicfication PID Sample ID (ft) per/6" (ft) or Material Color Lithology Time Date Description (ppm) **Comments** 0.0-0.33' 4" Asphalt Cleared to 5' using **ASPHALT** BI. 0.0 hand tools and air CONCRETE 0.33-1.5' Concrete 0.0 Gr. TT-SB-20 knife. 1.5-5.0' F SAND, some F Gravel 9:18 11/30/2021 NA 0.0 0-5 little Silt. 0.0 SW Br. 5.0 0.0 5.0-6.0' F SAND, some F-M Gravel, Collected Soil Sample FILL Bl. 0.0 TT-SB-20-Brick and Concrete. 6.5-8.5 TT-SB-20 @ 09:36 6.0-8.0' F SAND, some F Gravel, 0.0 36" SW Dk. Br. 11/30/2021 5-10 9:24 little Silt. 0.0 Run#1 8.0-10.0' F SAND, some Silt and F-0.0 SP Br. M Gravel. Wet at 8.5'bgs. 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected GW sample TT-SB-20GW on 12/06/2021 @ 13:20 Patched on 12/07/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/30/2021 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-21 8.5'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Depth Recovery Classicfication PID Count per/6 Lithology (ppm) Sample ID (ft) (ft) or Material Color Time Date Description Comments 0.0-0.67' 6" Asphalt and 2" Cleared to 5' using **ASPHALT** Gr. Subbase. hand tools and air knife. 0.67-5.0' F SAND, some Silt and F-0.0 TT-SB-21 11/30/2021 NA 10:10 M Gravel, little Brick and 0-5 0.0 Br. Concrete. 0.0 5.0 0.0 5.0-10.0' F SAND and Silt, littel F Collected Soil Sample FILL 0.0 Gravel, tr. Brick. Wet at 8.5'bgs TT-SB-21-6.5-8.5 0.0 TT-SB-21 @ 10:28 5-10 43" Gr./Br. 10:16 11/30/2021 0.7 Run#1 0.0 10.0 0.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-21SV on 12/08/2021 @ 17:46 Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor 11/30/2021 Project: **Date Started** 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** 8.5'bgs. TT-SB-22 Groundwater Depth (ft): Boring #: Total Depth (ft): 10'bgs. Ground Elevation (ft): NA A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 **USCS Soil** Blow Depth Count Recovery Classicfication PID (ppm) Sample ID (ft) per/6" (ft) or Material Color Lithology Time Date Description **Comments** 0.0-0.8' 6" Asphalt, 4" Subbase Cleared to 5' using **ASPHALT** 0.0 hand tools and air CONCRETE 0.8-1.5' Concrete 0.0 Gr. TT-SB-22 knife. 1.5-5.0' F SAND, some F-M Gravel, 11:16 11/30/2021 NA 0.0 0-5 little Silt and Brick. 0.0 FILL Br. 5.0 0.0 5.0-6.0' F SAND, some Silt, little F Collected Soil Sample SW 0.0 TT-SB-22- 6.5-8.5 Gravel. TT-SB-22 @ 11:33 SM Dk. Br. 6.0-7.0' F SAND, some Silt, little 0.0 36" 11/30/2021 5-10 11:22 7.0-10.0' F SAND, little Silt and F 0.0 Run#1 Gravel. Wet at 8.5' SP Dk. Br. 0.0 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected GW sample TT-SB-22GW on 12/06/2021 @ 15:22 Patched on 12/07/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 11/30/2021 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** TT-SB-23 9.5'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Depth Recovery Classicfication PID Count per/6" or Material Color Sample ID (ft) (ft) Lithology Time Date (ppm) Description **Comments** 0.0-0.5' 6" Asphalt **ASPHALT** Bl. 0.0 Cleared to 5' using 0.5-1.5' 4" Concrete, 4" hand tools and air CONCRETE 0.0 Gr. knife. Cobblestone 1.5-2.0' F SAND, some F-M Gravel, FILL Br. 0.0 Brick and Concrete. TT-SB-23 11/30/2021 13:09 NA 0-5 CONCRETE Gr. 2.0-2.33' 4" Concrete 0.0 2.33-5.0' F SAND, some F Gravel, little Silt and Brick. FILL 0.0 Br. 5.0 5.0-7.0' F SAND, little Silt and F Collected Soil Sample 0.0 SW Br. TT-SB-23-7.5-9.5 Gravel. 0.0 TT-SB-23 7.0-8.0' F SAND and Silt, little @ 13:30 11/30/2021 5-10 29" SM 13:16 0.0 Clay, Moist Run#1 8.0.0-10.0' F SAND, little Silt Wet 0.0 SM Br. 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 Notes: Collected GW sample TT-SB-23GW on 12/07/2021 @ 08:32 Patched on 12/07/2021

Field Boring Log Sheet SBMT - Equinor Date Started 12/1/2021 Project: 194-1247-0003 12/9/2021 Date Completed: Project #: **TETRA TECH** Boring #: TT-SB-24 Groundwater Depth (ft): 8.5'bgs. 10'bgs. Ground Elevation (ft): NA Total Depth (ft): Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow Depth Count Recovery Classicfication PID Lithology Sample ID per/6 or Material (ft) (ft) Color Time Date (ppm) Description Comments 0.0-0.67' 6" Asphalt and 4" Cleared to 5' using **ASPHALT** Gr. 0.0 Subbase. hand tools and air knife. 0.67-5.0' F-M SAND, some F-M 0.0 TT-SB-24 12/1/2021 NA 8:16 Gravel, Brick and Concrete. 0-5 0.0 FILL Dk. Br. 0.0 5.0 0.0 5.0-7.0' F SAND, some F-M Gravel, **Collected Soil Sample** 0.0 Brick and Concrete, Little Wood. TT-SB-24- 6.5-8.5 FILL @ 08:51 w/duplicate 0.0 TT-SB-24 sample SDUP-02 7.0-8.0' F SAND, some Silt, tr. 12/1/2021 36" 8:30 5-10 SM Br. 1.2 Clay, moist Run#1 8.0-10.0' F SAND, some Silt, little 2.1 Brick and concrete, Wet at FILL 0.0 8.5'bgs.. 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-24SV on 12/08/2021 @ 15:00 Patched on 12/09/2021

Field Boring Log Sheet Project: SBMT - Equinor Date Started 12/1/2021 194-1247-0003 12/9/2021 Date Completed: Project #: **TETRA TECH** TT-SB-25 Boring #: Groundwater Depth (ft): 9.0'bgs. 10'bgs. Total Depth (ft): Ground Elevation (ft): NA A.Valli X Coordinate: Geologist: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 NAD83 GPS Datum: **USCS Soil** Blow Recovery Classicfication **Depth** Count PID Lithology Sample ID (ft) per/6" (ft) or Material Color Time Date (ppm) Description Comments 0.0-1.33' 6" Asphalt and 2" Cleared to 5' using **ASPHALT** Gr. Subbase, 8" cobblestone. hand tools and air knife. 1.33-5.0' F-M SAND, some F-M TT-SB-25 0.0 12/1/2021 NA 9:30 Gravel, Brick and Concrete. 0-5 0.0 FILL Br. 0.0 5.0 0.0 5.0-6.0' F SAND, some Silt, little F-Collected Soil Sample SW Br. 0.0 TT-SB-25-M Gravel. 7.0-9.0 @ 09:52 6.0-7.0' F-M SAND, little F Gravel SW Br. 0.0 and Silt. TT-SB-25 7.0-8.0' F SAND and SILT, little 26" 9:37 12/1/2021 5-10 0.0 SM Br. Run#1 Clay. 8.0-10.0' F-M SAND and F-M 0.0 GRAVEL, little Silt, Wet at 9.0'bgs SP Gr/Bl 0.0 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-25SV on 12/08/2021 @ 14:57 Patched on 12/09/2021

Field Boring Log Sheet 12/1/2021 SBMT - Equinor **Date Started** Project: 194-1247-0003 12/9/2021 Date Completed: Project #: **TETRA TECH** Boring #: TT-SB-26 Groundwater Depth (ft): 9.0'bgs. 10'bgs. Ground Elevation (ft): NA Total Depth (ft): Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow **Depth** Recovery Classicfication Lithology per/6 Sample ID (ft) or Material Color **Time** Date (ft) Description (ppm) Comments 0.0-0.5' 4" Asphalt, 2" Subbase. Cleared to 5' using **ASPHALT** 0.0 Gr. hand tools and air 0.5-2.0' F SAND, some F-M Gravel. knife. 0.0 TT-SB-26 FILL Br. 12/1/2021 10:25 NA Slight Petro Odor. 0-5 5.7 2.0-5.0' F SAND, little F Gravel and SW Gr. 5.0 Silt. Petro Odor. 11.8 5.0-8.0' F SAND, some Silt and F 18.0 Collected Soil Sample Gr. Gravel. Strong Petro Odor. 24.0 TT-SB-26-6.0-8.0 SM @ 10:38 36.8 TT-SB-26 8.0-9.5' F SAND and F-M Gravel, 25" 10:30 12/1/2021 5-10 Br. SP 5.8 Run#1 moist @ 9.0'bgs. 9.5-10.0' F SAND, some Silt and F SP Br. 1.1 Gravel. Wet. 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 Notes: Could not Collect SV sample TT-SB-26SV - SV point flooded Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor 12/1/2021 Project: Date Started 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-27 Groundwater Depth (ft): 7.0'bgs. 10'bgs. Ground Elevation (ft): NA Total Depth (ft): Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GPS Datum: NAD83 Drilling/Sampling Method: GeoProbe 7728 Blow **USCS Soil Depth** Count Recovery Classicfication PID Lithology Sample ID per/6" or Material Color Time (ft) (ft) Description Date (ppm) Comments ASPHALT BI. 0.0-0.83' Asphalt Cleared to 5' using 0.0 hand tools and air 0.83-1.5' Concrete CONCRETE Gr. 0.0 TT-SB-27 knife. NA 1.5-5.0' F SAND, little Silt and F 11:25 12/1/2021 0.0 0-5 Gravel. SW Br. 0.0 5.0 0.0 5.0-8.0' F SAND, some Silt, little F 0.0 **Collected Soil Sample** SM Br. Gravel. Wet at 7.0'bgs TT-SB-27- 5.0-7.0 0.0 TT-SB-27 @ 11:47 8.0-8.5' F-M SAND and F Gravel. SP 12/1/2021 0.0 28" Br. 11:34 5-10 Run#1 8.5-10.0' F SAND, some Silt, little F 0.0 SM Br. Gravel. 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 45.0 Notes: Collected GW sample TT-SB-27GW on 12/06/2021 @ 12:01 Patched on 12/07/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 12/1/2021 194-1247-0003 Date Completed: 12/1/2021 Project #: **TETRA TECH** TT-SB-28 8.0'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: GeoProbe 7728 GPS Datum: NAD83 Drilling/Sampling Method: **USCS Soil** Blow Recovery Depth Count Classicfication PID Lithology Sample ID (ft) per/6" (ft) or Material Color Time Date (ppm) Description **Comments ASPHALT** BI. 0.0-0.83' 6" Asphalt, 4" Subbase 0.0 Cleared to 5' using hand tools and air 0.83-2.0' F SAND, little F Gravel FILL Bl. 0.0 knife. and Brick. TT-SB-28 2.0-3.0' Concrete 12/1/2021 NA CONCRETE 13:23 0.0 Gr. 0-5 FILL BI. 3.0-4.0' ASH 0.0 3.0-5.0' F SAND, some Silt, little F FILL 0.0 BI. 5.0 Gravel, Brick and Concrete. 5.0-7.0' F SAND, some Silt, little F Collected Soil Sample 0.0 SM Br. Gravel. TT-SB-28-7.0-9.0 0.0 TT-SB-28 @ 13:47 7.0-8.0' F SAND, little Silt and F 0.0 5-10 29" Dk. Br. 13:32 12/1/2021 SW Gravel. Saturated @ 8' bgs 0.0 Run#1 8.0-10.0' F SAND, some F Gravel, 0.0 SW Br. little Silt. 10.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 Notes: Patched on 12/01/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 12/1/2021 194-1247-0003 Date Completed: 12/1/2021 Project #: **TETRA TECH** TT-SB-29 7.0'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow Depth Count Classicfication PID Recovery Lithology per/6 or Material Sample ID (ft) (ft) Color Time Date (ppm) Description Comments **ASPHALT** Bl. 0.0-0.5' Asphalt 0.0 Cleared to 5' using CONCRETE 0.5-1.5' Concrete hand tools and air Gr. 0.0 knife. 1.5-3.0' F SAND, some F Gravel, 0.0 TT-SB-29 SP Br. little Silt. 12/1/2021 NA 14:34 0-5 3.0-4.0' ASH FILL Bl. 0.0 4.0-5.0' F SAND, some Silt, little F FILL 0.0 Br. 5.0 Gravel, Brick and Concrete. 5.0-7.0' F SAND, some Silt, little F Collected Soil Sample 0.0 SM Br. TT-SB-29-Gravel, Moist @ 6.0'bgs 4.0-6.0 0.0 TT-SB-29 @ 14:56 7.0-9.0' F SAND, little Silt and F 0.0 5-10 34" SW Dk. Br. 14:40 12/1/2021 Gravel. Saturated 0.0 Run#1 9.0-10.0' F SAND, little Silt and F Rd. Br. SW 0.0 Gravel. 10.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 Notes: Patched on 12/01/2021

BORING NUMBER: TT-SB-30 Field Boring Log Sheet SBMT - Equinor **Date Started** 12/2/2021 Project: 12/7/2021 194-1247-0003 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-30 Groundwater Depth (ft): 9.0'bgs. 10'bgs. Total Depth (ft): Ground Elevation (ft): A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 GPS Datum: NAD83 Blow **USCS Soil** Classicfication **Depth** Count Recovery PID Lithology Sample ID (ft) per/6" or Material Color Time Date (ft) Description (ppm) Comments **ASPHALT** BI. 0.0-0.5' Asphalt 0.0 Cleared to 5' using 0.5-1.5' Concrete hand tools and air CONCRETE 0.0 Gr. knife. 1.5-3.0' F-M SAND, some F-M TT-SB-30 NA 8:36 12/2/2021 SP Br. 0.0 Gravel. 0-5 2.0-7.0' F-M SAND and F Gravel, 0.0 little Brick and Concrete.. 5.0 0.0 FILL Bl. Collected Soil Sample 0.0 TT-SB-30-7.0-9.0 TT-SB-30 0.0 @ 08:53 7.5-10.0' F SAND, some Silt, little F 5-10 27" 8:42 12/2/2021 0.0 Gravel. Moist @ 9.0'bgs Run#1 SP Br. 0.0 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0

Notes: Collected GW sample TT-SB-30GW on 12/06/2021 @ 10:37

Patched on 12/07/2021

Field Boring Log Sheet SBMT - Equinor Project: **Date Started** 12/2/2021 194-1247-0003 12/7/2021 Project #: Date Completed: **TETRA TECH** TT-SB-31 8.0'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA Geologist: A.Valli X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 GPS Datum: NAD83 Drilling/Sampling Method: **USCS Soil** Blow Depth Recovery Classicfication Count PID Lithology Sample ID (ft) per/6" (ft) or Material Color Time Date (ppm) Description Comments **ASPHALT** Bl. 0.0-0.5' Asphalt 0.0 Cleared to 5' using 0.5-1.0' Concrete hand tools and air CONCRETE 0.0 Gr. knife. 1.0-5.0' F-M SAND, some F Gravel, TT-SB-31 NA 9:50 12/2/2021 0.0 little Silt. 0-5 SW Br. 0.0 5.0 0.0 5.0-7.0' F-M SAND, some F-M Collected Soil Sample 0.0 Br./Bl. SP TT-SB-31-6.0-8.0 Gravel 0.0 TT-SB-31 @ 10:50 7.0-8.0' F SAND, little F Gravel and 12/2/2021 5-10 42" SM 10:41 0.0 Silt. Run#1 8.0-10.0' F-M SAND, some F-M 0.0 SP Br. Gravel, Wet at 8.0'bgs 10.0 0.0 End of Boring at 10'bgs. Installed 1" Temp well to 15'bgs (10' of 0.020 slot Screen and 5' of Riser) 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected GW sample TT-SB-31GW on 12/06/2021 @ 08:45 Patched on 12/07/2021

Field Boring Log Sheet SBMT - Equinor 12/2/2021 **Date Started** Project: 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-32 Groundwater Depth (ft): 9.0'bgs. Ground Elevation (ft): NA Total Depth (ft): 10'bgs. A.Valli X Coordinate: Geologist: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow **Depth** Classicfication Count Recovery per/6 Lithology or Material Sample ID (ft) Color Time Date (ft) Description (ppm) Comments ASPHALT Bl. 0.0-0.33' Asphalt 0.0 hand tools and air CONCRETE 0.33-0.83' Concrete 0.0 Gr. knife. 0.83-2.0' F-M SAND and F-M TT-SB-32 Gravel, some Brick and Concrete. 12/2/2021 NA 11:26 FILL BL. 0.0 0-5 2.0-5.0' F SAND, some Silt, little F 0.0 SW Br. 5.0 Gravel. 0.0 Collected Soil Sample 5.0-7.0' F SAND, little Silt and F 0.0 SW Br. Gravel. TT-SB-32-0.0 TT-SB-32 @ 11:47 7.0-8.0' F SAND, and SILT, little 23" 11:35 12/2/2021 5-10 SM 0.0 Clay, moist. Run#1 8.0-10.0' F-M SAND, some F 0.0 SP Br. 10.0 Gravel, little Silt. Wet at 9.0'bgs. 0.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 Notes: Collected SV sample TT-SB-32SV on 12/08/2021 @ 14:53 Patched on 12/09/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 12/2/2021 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** TT-SB-33 6.5'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA A.Valli X Coordinate: Geologist: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Depth Classicfication Count Recovery PID Sample ID (ft) per/6 or Material Color Lithology (ft) Time Date (ppm) Description Comments 0.0-2.5' 4" Asphalt, 2" Subbase, 6' 0.0 Cleared to 5' using ASPHALT/ Concrete, 4" Asphalt, 2" Subbase, hand tools and air Bl./Gr CONCRETE 0.0 knife. 5" Concrete. TT-SB-33 13:20 12/2/2021 NA 2.5-5.0' F SAND, some F Gravel, 0-5 0.0 little Silt. SP Dk. Br. 0.7 5.0 0.0 5.0-10.0' F SAND, some F Gravel, Collected Soil Sample 0.0 4.5-6.5 little Silt. Wet at 6.5'bgs. TT-SB-33-0.0 TT-SB-33 @ 13:38 5-10 33" SP Dk. Br. 13:29 12/2/2021 0.0 Run#1 0.0 10.0 0.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 Notes: Collected SV sample TT-SB-33SV on 12/08/2021 @ 14:50 Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor 12/3/2021 Project: **Date Started** 194-1247-0003 12/3/2021 Project #: Date Completed: TETRA TECH Boring #: TT-SB-34 Groundwater Depth (ft): 6.0'bgs. Total Depth (ft): 10'bgs. NA Ground Elevation (ft): A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 NAD83 GPS Datum: **USCS Soil** Blow Classicfication **Depth** Count Recovery PID Lithology Sample ID per/6" or Material (ft) Color Time Date (ft) Description (ppm) Comments ASPHALT 0.0-1' 11" Asphalt Cleared to 5' using Bl. 0.0 hand tools and air 1-3.0' 24" Concrete 0.0 CONCRETE TT-SB-34 Gr. knife. 12/3/2021 NA 8:00 0.0 0-5 3.0-8.0' F SAND, little Gravel and F 0.0 5.0 Gravel. Moist @ 6.0'bgs 0.0 Collected Soil Sample 0.0 SM Br. 0.0 TT-SB-34-4.0-6.0 TT-SB-34 @ 08:15 0.0 24" 5-10 12/3/2021 8:05 8.0-10.0' F-M SAND, some F 0.0 Run#1 Gravel. Wet. SW Dk. Br. 0.0 10.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Patched on 12/03/2021

					F	ield Bori	ing Log Sheet				
			_	Project:	SE	BMT - Equi	nor Dat	e Started	1	2/3/202	1
	TETE	RA T	ECH	Project #:	19	94-1247-00	Date Co	mpleted:	1	2/3/202	1
It			LCII	Boring #:		TT-SB-35	Groundwater D	epth (ft):		5.0'bgs.	
				Total Depth (ft):		10'bgs.	Ground Elev	ation (ft):		NA	
				Geologist:		A.Valli		ordinate:			
				Driller:		Cascade/A		ordinate:			
			Drilling/Sa	ampling Method:	Ge	eoProbe 77	728 GP	S Datum:		NAD83	
		Blow		USCS Soil							
	Depth	Count	Recovery	Classicfication						PID	
Sample ID	(ft)	per/6"	(ft)	or Material	Color	Lithology	Description	Time	Date	(ppm)	Comments
				ASPHALT	Bl.		0.0-1.25' 11" Asphalt, 4" Subbase.				Cleared to 5' using
						-					hand tools and air knife.
TT-SB-35 0-5			NA	CONCRETE	Gr.		1.25-2.1' Concrete	9:25	12/3/2021	0.0	Killie.
0-3							2.1-7.0' F SAND, some F-M Gravel, Brick and Concrete little Silt,			0.0	
	5.0			FILL	Br.		Wood and Metal. Wet at 5.0'bgs.			0.0	
					5						Collected Soil Sample
											TT-SB-35- 3.0-5.0
TT-SB-35							7.0-10.0' F-M SAND, some F			0.0	@ 09:47
5-10			34"				Gravel. Wet.	9:35	12/3/2021	0.0	
Run#1				SW	Dk. Br.					0.0	
	10.0									0.0	
	10.0						End of Boring at 10'bgs.				
							End of Borning at 10 bgs.				
	15.0										
	20.0										
	20.0										
	25.0										
	30.0										
	30.0					1					
	35.0										
	40.0										
Notes: Patche)3/2021				<u> </u>				I	<u> </u>
3.55.16	- - / \	, -									

Field Boring Log Sheet SBMT - Equinor **Date Started** 12/3/2021 Project: 194-1247-0003 12/9/2021 Project #: Date Completed: **TETRA TECH** Boring #: TT-SB-36 Groundwater Depth (ft): 8.0'bgs. 10'bgs. Ground Elevation (ft): NA Total Depth (ft): Geologist: A.Valli X Coordinate: Cascade/ADT Driller: Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: **USCS Soil** Blow Depth Count Recovery Classicfication PID per/6 Lithology Sample ID (ft) or Material Color Time Date (ft) Description (ppm) Comments ASPHALT 0.0-0.33' Asphalt Cleared to 5' using Bl. 0.0 hand tools and air CONCRETE 0.33-2.33' Concrete Gr. 0.0 TT-SB-36 knife. NA 2.33-5.0' F SAND, little Silt, tr. F 10:54 12/3/2021 0.0 0-5 Gravel. SM 0.0 5.0 0.0 5.0-10.0' F SAND, little Silt, tr. F 0.0 Collected Soil Sample Gravel. Wet at 8.0'bgs. TT-SB-36-6.0-8.0 0.0 TT-SB-36 @ 1107 33" 5-10 11:00 12/3/2021 0.0 SM Br. Run#1 0.0 10.0 0.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 Notes: Collected SV sample TT-SB-36SV on 12/08/2021 @ 16:56 Patched on 12/09/2021

Field Boring Log Sheet SBMT - Equinor 12/3/2021 Project: **Date Started** 194-1247-0003 Date Completed: 12/9/2021 Project #: **TETRA TECH** Boring #: TT-SB-37 Groundwater Depth (ft): 9.0'bgs. 10'bgs. Total Depth (ft): NA Ground Elevation (ft): A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 NAD83 GPS Datum: **USCS Soil** Blow **Depth** Count Recovery Classicfication PID Lithology per/6 or Material Sample ID (ft) Color Time Date (ft) Description (ppm) Comments CONCRETE 0.0-0.5' Concrete Cleared to 5' using Gr. 0.0 hand tools and air 0.5-5.0' F SAND, some F-M Gravel, 0.0 TT-SB-37 knife. little Silt and Brick. 12:03 12/3/2021 0.0 NA 0-5 FILL Br. 0.0 5.0 0.0 5.0-5.5' 4" Concrete Collected Soil Sample FILL Gr. 0.0 5.5-7.5' F SAND, little F Gravel and 0.0 TT-SB-37-7.0-9.0 SM Br. TT-SB-37 @ 12:18 Silt. 0.0 5-10 33" 12/3/2021 12:07 7.5-10.0' F SAND, some F Gravel, 0.0 Run#1 little Silt and Brick. Wet at 9.0'bgs. FILL 0.0 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-37SV on 12/08/2021 @ 15:56 Patched on 12/09/2021

					F	ield Bor	ing Log S	Sheet				
			<u> </u>	Project:	SI	BMT - Equi	nor	Dat	e Started	1	2/6/202	21
	TETE	RA T	FCH	Project #:	1	94-1247-00	003	Date Co	mpleted:	1	2/6/202	21
				Boring #:		TT-SB-38		Groundwater D			9.5'bgs.	
				Total Depth (ft):		10'bgs.		Ground Elev			NA	
				Geologist:		A.Valli	<u> </u>		ordinate:			
			Drilling/S	Driller: ampling Method:		Cascade/AI eoProbe 77			ordinate: S Datum:		NAD83	
			Di lilling/ 30			eoriobe 77	720	- GP	3 Datuiii.		INADOS	
	Donth	Blow Count	Recovery	USCS Soil Classicfication							PID	
Sample ID	Depth (ft)	per/6"	(ft)	or Material	Color	Lithology		Description	Time	Date	(ppm)	Comments
							0.0-1.75' 1	1" Asphalt, 4" Subbase,				Cleared to 5' using
				ASPHALT	BI.		4" Asphalt,	2" Subbase			0.0	hand tools and air
TT-SB-38												knife.
0-5			NA				8	SAND, some F-M ck and Concrete little	8:22	12/6/2021	0.0	-
				FILL	Br.		Silt.	ok and concrete little			0.0	
	5.0										0.0	
											0.0	Collected Soil Sample
				FILL	Bl.		6.0-7.0' AS				0.0	TT-SB-38- 7.5-9.5
TT-SB-38			32"	SW	Bl.		7.0-8.0' F S little Silt.	AND, some F Gravel,	0.42	12/5/2021	0.0	@ 08:42
5-10 Run#1			32"	FILL	Rd.		8.0-9.0' BR	ICK	8:42	12/6/2021	0.0	•
								SAND, little F Brick and				•
	10.0			FILL	Bl.		Silt Wet at				0.0	
							End o	f Boring at 10'bgs.				
							-					-
												-
	15.0						1					-
												_
	20.0		1									-
	20.0											
]
												-
	25.0											
							1					·
]					j l
] [
	30.0											
							-				-	-
							1					·
							1					j l
	35.0]					
		<u> </u>					-					-
							1					- I
	40.0						1					†
Notes: Patche	ed on 12/0	06/2021				-	-				•	•

Field Boring Log Sheet SBMT - Equinor 12/6/2021 Project: **Date Started** 194-1247-0003 Date Completed: 12/9/2021 Project #: **TETRA TECH** Boring #: TT-SB-39 Groundwater Depth (ft): 8.5'bgs. 10'bgs. Total Depth (ft): NA Ground Elevation (ft): A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: Drilling/Sampling Method: GeoProbe 7728 NAD83 GPS Datum: **USCS Soil** Blow Classicfication **Depth** Count Recovery PID Lithology Sample ID per/6 or Material (ft) Color Time Date (ft) Description (ppm) Comments ASPHALT 0.0-1.2' 10" Asphalt, 4" Subbase Cleared to 5' using Bl. 0.0 hand tools and air 1.2-5.0' F SAND, some F Gravel, 0.0 TT-SB-39 knife. Brick, and Concrete, little Silt and 9:15 12/6/2021 0.0 NA 0-5 FILL Br. 0.0 5.0 0.0 5.0-10.0' F SAND, some F Gravel Collected Soil Sample 0.0 and Brick, little Silt, Concrete and TT-SB-39-6.5-8.5 0.0 TT-SB-39 Wood. @ 10:24 with 0.0 42" 5-10 FILL Br./Bl. 10:02 12/6/2021 MS/MSD 0.0 Run#1 0.0 10.0 End of Boring at 10'bgs. Installed Soil Vapor point 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Collected SV sample TT-SB-39SV on 12/08/2021 @ 15:52 Patched on 12/09/2021

Field Boring Log Sheet Project: SBMT - Equinor **Date Started** 12/6/2021 194-1247-0003 12/6/2021 Project #: Date Completed: **TETRA TECH** TT-SB-40 9.0'bgs. Boring #: Groundwater Depth (ft): Total Depth (ft): 10'bgs. Ground Elevation (ft): NA A.Valli Geologist: X Coordinate: Driller: Cascade/ADT Y Coordinate: GeoProbe 7728 NAD83 Drilling/Sampling Method: GPS Datum: Blow **USCS Soil** Depth Count Recovery Classicfication PID Lithology Sample ID per/6 (ft) (ft) or Material Color Time Date Description (ppm) Comments ASPHALT BI. 0.0-1.2' 8" Asphalt, 6" Subbase 0.0 Cleared to 5' using 1.2-4.0' F SAND, some F-M Gravel, hand tools and air 0.0 TT-SB-40 knife. little Silt. 11:33 12/6/2021 NA SP Br. 0.0 0-5 0.0 5.0 4.0-6.0' Brick and Concrete 0.0 FILL Rd./Gr. 0.0 Collected Soil Sample 6.0-8.0' F-M SAND, some F-M 0.0 TT-SB-40-6.0-8.0 SP Br. @ 11:53 Gravel, little Silt. 0.0 TT-SB-40 8.0-9.0' Brick Rd./Gr. 5-10 40" FILL 12/6/2021 0.0 11:39 8.0-10.0' F SAND, some F-M Run#1 Gravel, little Silt, Moist at 9.0'bgs. SP Bl. 0.0 10.0 End of Boring at 10'bgs. 15.0 20.0 25.0 30.0 35.0 40.0 Notes: Patched on 12/06/2021

APPENDIX B - Low Flow Data Sheets

TŁ	TETRA	TECH
----	-------	------

Project Name:

SBMY

Well I.D.: TT-SB-Q2

Well Depth (from T.I.C.) =

13,49 ft.

Static Water Level (from T.I.C) =

Pump Start Time: 1454

Sample I.D.: <u>TT-SB-02</u> Gw

Sample Time:

Project No.: 194-1247-0003

Date: |2|7|21

Well Diameter (in) = __________

Pump Depth (ft) = 1)

Pump Type: Peristaltic

TetraTech Sampler: C. hurs

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
1457	14.15	6.97	1.82	Overrange	1.02	52		8.81	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1530	15.21	6.98	1.90	81	0.41	-63	1		clear

Project Name:

SBMY

Project No.: 194-1247-0003

Date: 12/1/21

Well Diameter (in) = \(\frac{1}{3}\)

Pump Depth (ft) = ్స్ట్ కి

Well I.D.: TT-58-31

Well Depth (from T.I.C.) = ______1 0.68 ____ft.

Static Water Level (from T.I.C) = 5.79 ft.

Pump Start Time: 0825

Sample I.D.: TT-5B-31GW

Sample Time: 0845

Pump Type: Peristaltic

TetraTech Sampler: C.Beers

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)		Color
6827	12.67	7.10	0.871	987	3.29	69	150	5,79	Doudy

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
0845		7.31		46	4.54	-10	150	7.59	Clear

TE TETRA TECH	Low-Flow Data Sheet						
Project Name:	SBMY	Project No.: 194-1247-0003					
Well I.D.: TT-SB-	20	Date: 2 2 2					
Well Depth (from T.I.C.) =	13.95 ft.	Well Diameter (in) = 1					
Static Water Level (from T.I.0	c) = <u>6.57</u> ft.	Pump Depth (ft) = \1'					
Pump Start Time:	1240	Pump Type: Peristaltic					
Sample I.D.: TT-5/5-2	70(+M	TetraTech Sampler: C. Sucs					
Sample Time: 1326		PID:					

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
1245	18,40	7.05	0.819	Overrange	1,17	104	150	6.57	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1315	18.41	6.99	C.182	97	5,67	-51	150		Clear

Total Volume Removed:	

T	TETRA	TECH

Project Name:

SBMY

Project No.: 194-1247-0003

Well I.D.: 77-58-36

Date: 12/6/21

Well Depth (from T.I.C.) =

14.04 ft.

Well Diameter (in) = 1"

Static Water Level (from T.I.C) = 7.65 ft.

Pump Depth (ft) = 12

Pump Start Time: 0 9 5 7

Pump Type: Peristaltic

TetraTech Sampler: (1.64)

Sample Time: 「03子

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)		Flow Rate (ml/min)		Color
1000	17.69	7,09	1.90	2,5614V	0.52	21	125	7.65	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NŢUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1036	17.14	(7)	0.002		3,7			7.81	Clear
CB	17.17	6.76	0.002	46	9.38	-66	150	1.0	Cloudy
	ŀ	!							

Total Volume Removed: 1.59.

TŁ	TETRA	TECH
----	-------	------

Project Name:

Project No.: 194-1247-0003

Well I.D.:

TT-5B-12

12/7/21 Well Diameter (in) = _____ ' "_____

Well Depth (from T.I.C.) =

14,27 ft. Static Water Level (from T.I.C) = 5.93 ft.

Pump Depth (ft) = 12'

Pump Start Time: 1047

Pump Type: Peristaltic

Sample I.D.: <u>TT-56-126</u>w

Sample Time: 1105

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
1050	13.80	7.52	19.1	1,522	0.77	-297		5,43	Cloudy

Final WO Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1103	12.51	7.31	5,51	23.2	1.31	-214		5,97	Clear
								į	Vi.,

* Sheen observed in Purge water bucket From TT-SB-12 GW

TŁ.	TETRA	TECH
-----	-------	------

Project Name:

SBMY

Well I.D.: 77-5B-23

Well Depth (from T.I.C.) =

13.24 ft.

Static Water Level (from T.I.C) = 7.16 ft.

Pump Start Time:

6738

Sample I.D.: <u>TT-58-236W</u>

Sample Time: 0832

Project No.: 194-1247-0003

Date:

12/7/21

Well Diameter (in) =) "

Pump Depth (ft) = 11

Pump Type: Peristaltic

TetraTech Sampler: C. Run

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
०७४।	11.21	6.83	1,79	Overrange	2.14	- 50	ĺ	7.16	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
0830	10,20	6.64	3.61	3,518	7.35	-95	-	•	bron

Total Volume Removed: _ ৩. ১ ৭০

T	TETRA	TECH

Project Name:

SBMY

Project No.: 194-1247-0003

Well I.D.: TT-SB-22

Date: 12/6/21

Well Depth (from T.1.C.) =

10.83 ft.

Well Diameter (in) = 1 ''

Static Water Level (from T.I.C) = 5.% ft.

Pump Depth (ft) = 8

Pump Start Time: 1403

Pump Type: Peristaltic

Sample I.D. : <u>TT-513-22 GW</u>

TetraTech Sampler: C.Bus

Sample Time: 1520

PID:

Reginning WO Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
1405	15.43	9.96	6.204	overinge	10.36	21	150	5.81	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1457	15.45	9.61	0.198	278	10.74	-2	IDOML	6.6z	Lt. Tan

TE	TETRA	TECH

Project Name:

SBMY

Well I.D.:

TT-5B-27

Well Depth (from T.I.C.) =

12.97 ft.

Static Water Level (from T.I.C) =

6.89 ft.

Pump Start Time: 1137

Sample I.D.: TT-58-276W

Sample Time: 1201

Project No.: 194-1247-0003

Date: 12/6/21

Well Diameter (in) = V^{in}

Pump Depth (ft) = 10°

Pump Type: Peristaltic

TetraTech Sampler: (.her)

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Static Water Level	Color
1139	17.92	8,45	1.95	0,56 0,20 0,200 0,75 1,145	0.36	67	150	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Drown

Final WO Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1159	18,64	7.59	2.50	41	6.94	-86	150	Checks	Clear

* Sheen observed in lorge water bocket ~ 5 minutes after lump start time.

TE TETRA	TECH		Low-F	low Dat	a Sheet				
Project Name:			SBMY	_	Project No.:		194-1247-0	003	_
Well I.D.:	TT-8	0-15		_	Date:	13	7 21		_
Well Depth (fr	om T.I.C.) =		14.17	_ft.	Well Diamet	er (in) =	_1"		_
Static Water Level (from T.I.C) = 3.3)			_ft.	Pump Depth	(ft) =	121		_	
Pump Start Tin	ne:	1258	5	-	Pump Type:		Peristaltic	:	_
Sample I.D. :	TT-S	136h	J_	-	TetraTech Sampler: (. Gur				
Sample Time:	1320	u		-	PID:				_
Beginning WQ I	Readings								
plus man			Spec.	- 1.1.11h	India:	0.00		Static	
Time:	Temp. (°F)	pH (SU)	Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)	Water Level	Color
1302	16.61	7.09	1.42	overrage	0.58	-35		8,31	DIOCK

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1318	15.21	7.19	1.21	41	1.23	- 11		8,42	Clear

TETRA TECH

Project Name:

SBMY

Well I.D.:

TT-5B-18

Well Depth (from T.I.C.) =

14.57 ft.

Static Water Level (from T.I.C) = 8.06 ft.

Pump Start Time:

1150

Sample I.D.: TT-SB-186W

Sample Time: \ \ ついっち

Project No.: 194-1247-0003

Date: 12 |7|21

Well Diameter (in) = \int_{0}^{h}

Pump Depth (ft) = 12'

Pump Type: Peristaltic

TetraTech Sampler: C. Buri

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)	ORP (mV)	Flow Rate (ml/min)		Color
10 61	15.73	7.05	2.02	3011	1.38	-114		8.06	Brown

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(mi/min)	Water	Color
1213	16.30	6,93	1.92	6	0.00	-133	<u>-</u>	8.16	C\467

Project Name:

SBMY

Well I.D.: 71-56-06

Well Depth (from T.I.C.) =

12.03 ft.

Static Water Level (from T.I.C) = 5.60 ft.

Pump Start Time: 1354

Sample Time: 1430

Project No.: 194-1247-0003

Date: __/2|7|21

Well Diameter (in) = 111

Pump Depth (ft) = 10¹

Pump Type: Peristaltic

TetraTech Sampler: (Bug

PID:

Beginning WQ Readings

Time:	Temp. (°F)	pH (SU)	Spec. Conduct (mS/cm)	Turbidity (NTUs)	D.O. (mg/L)		Flow Rate (ml/min)	Static Water Level	Color
1358	13.42	7.14	1,76	Overrage	3,27	-44		5.60	Brown Silty

Final WQ Readings

Time:	Temp. (°F)	pH (SU)	Conduct	(NTUs)	D.O. (mg/L)	(mV)	(ml/min)	Water	Color
1418	14.31	7,15	3.46	۲7.٦	600	-171			Cher

APPENDIX C - Laboratory Analytical Data Packages

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD35644

Sampling Dates: 11/18/21 - 11/19/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 57

TNI TABORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	9
Section 4: Sample Results	12
4.1: JD35644-1: TT-SB-01-5.5-6.0	13
4.2: JD35644-1A: TT-SB-01-5.5-6.0	24
4.3: JD35644-2: TT-SB-02-7.0-9.0	26
4.4: JD35644-2A: TT-SB-02-7.0-9.0	37
4.5: JD35644-3: TT-SB-03-7.0-9.0	39
4.6: JD35644-3A: TT-SB-03-7.0-9.0	50
Section 5: Misc. Forms	52
5.1: Chain of Custody	53
5.2: Chain of Custody (SGS Orlando, FL)	56

Sample Summary

Tetra Tech

Job No: JD35644

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		lts reported as = Not detecte			cted. The following app L	olies:
JD35644-1	11/18/21	12:21 AV	11/19/21	so	Soil	TT-SB-01-5.5-6.0
JD35644-1A	11/18/21	12:21 AV	11/19/21	so	Soil	TT-SB-01-5.5-6.0
JD35644-2	11/18/21	13:40 AV	11/19/21	so	Soil	TT-SB-02-7.0-9.0
JD35644-2A	11/18/21	13:40 AV	11/19/21	so	Soil	TT-SB-02-7.0-9.0
JD35644-3	11/19/21	09:26 AV	11/19/21	so	Soil	TT-SB-03-7.0-9.0
JD35644-3A	11/19/21	09:26 AV	11/19/21	so	Soil	TT-SB-03-7.0-9.0

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD35644

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/20/2021 10:47:23 A

On 11/19/2021, 6 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35644 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9765

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35673-5DUP, JD35673-6MS, JD35673-5DUP were used as the QC samples indicated.
- RPD(s) for Duplicate for Acetone, Xylene (total) are outside control limits for sample JD35673-5DUP. RPD acceptable due to low DUP and sample concentrations.
- JD35644-3 for Bromoform: Associated CCV outside of control limits high, sample was ND.
- JD35644-1 for Bromoform: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for Bromoform: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88699

- The data for EPA 537M BY ID meets quality control requirements.
- JD35644-3A: Analysis performed at SGS Orlando, FL.
- JD35644-1A: Analysis performed at SGS Orlando, FL.
- JD35644-2A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36783

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35604-1MS, JD35604-1MSD were used as the QC samples indicated.
- JD35644-2 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high,sample was ND.
- JD35644-2 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high,sample was ND.
- JD35644-2 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35644-3 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for 2,4-Dinitrophenol: Associated CCV outside of control limits high,sample was ND.
- JD35644-2 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high,sample was ND.
- JD35644-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for Atrazine: Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.
- JD35644-3 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35644-3 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35644-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35644-1 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35644-3 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36783A

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35644-1MS, JD35644-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36786

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35604-1MS, JD35604-1MSD, OP36786-MSMSD were used as the QC samples indicated.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36787

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35604-2MS, JD35604-2MSD, OP36787-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD35644-2 for Aroclor 1016: Associated CCV outside of control limits high, sample was ND.
- OP36787-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD35644-3 for Aroclor 1260: Associated CCV outside of control limits high, sample was ND.
- JD35644-2 for Aroclor 1260: Associated CCV outside of control limits high, sample was ND.
- JD35644-3 for Aroclor 1016: Associated CCV outside of control limits high, sample was ND.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36792

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35645-1MS, JD35645-1MSD were used as the QC samples indicated.
- JD35644-1 for 2,4-DCAA: Outside control limits due to matrix interference.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30071

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD34540-2RMSD, JD34540-2RPS, JD34540-2RSDL, JD34540-2RMS, JD34540-2RMSD were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony, Iron, Magnesium, Potassium, Sodium are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Iron, Magnesium are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Calcium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for Serial Dilution for Antimony, Arsenic, Beryllium, Lead, Selenium are outside control limits for sample MP30071-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30023

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35650-1MS, JD35650-1MSD were used as the QC samples for metals.

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24183

■ Sample(s) JD35645-1DUP were used as the QC samples for Solids, Percent.

Monday, December 20, 2021

Page 3 of 4

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37244

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35531-11DUP, JD35531-11MS were used as the QC samples for Cyanide.
- The following samples were run outside of holding time for method SW846 9012B/LACHAT: JD35644-1, JD35644-2, JD35644-3 Sample prepped within holding time, but run out of holding time.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD35644

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/17/2021 6:32:40

On 11/19/2021, 3 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 4.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35644 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88699

Sample(s) JD35626-1MS, JD35626-1MSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney, Client Services (signature on file)	

Summary of Hits Job Number: JD35644 Page 1 of 3

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/18/21 thru 11/19/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Analyte	Quai	KL	MIDL	Ullits	Method
JD35644-1 TT-SB-01-5.5-6.0					
Acenaphthene	14.8 J	36	13	ug/kg	SW846 8270E
Acenaphthylene	28.5 J	36	18	ug/kg	SW846 8270E
Anthracene	45.4	36	22	ug/kg	SW846 8270E
Benzo(a)anthracene	127	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	121	36	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	172	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	88.9	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	59.0	36	17	ug/kg	SW846 8270E
1,1'-Biphenyl	69.4 J	73	5.0	ug/kg	SW846 8270E
Carbazole	20.4 J	73	5.3	ug/kg	SW846 8270E
Chrysene	157	36	11	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	24.3 J	36	16	ug/kg	SW846 8270E
Dibenzofuran	25.0 J	73	15	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	139	73	8.5	ug/kg	SW846 8270E
Fluoranthene	216	36	16	ug/kg	SW846 8270E
Fluorene	21.3 J	36	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	119	36	17	ug/kg	SW846 8270E
2-Methylnaphthalene	298	36	8.2	ug/kg	SW846 8270E
Naphthalene	160	36	10	ug/kg	SW846 8270E
Phenanthrene	181	36	12	ug/kg	SW846 8270E
Pyrene	224	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	3620 J			ug/kg	
4,4'-DDE	1.5	0.67	0.59	ug/kg	SW846 8081B
2,4,5-T	3.6	3.5	1.8	ug/kg	SW846 8151A
Aluminum	6820	58		mg/kg	SW846 6010D
Arsenic	10.3	2.3		mg/kg	SW846 6010D
Barium	114	23		mg/kg	SW846 6010D
Beryllium	0.62	0.23		mg/kg	SW846 6010D
Calcium	4240	580		mg/kg	SW846 6010D
Chromium	16.9	1.2		mg/kg	SW846 6010D
Cobalt	7.7	5.8		mg/kg	SW846 6010D
Copper	69.3	2.9		mg/kg	SW846 6010D
Iron	21900	58		mg/kg	SW846 6010D
Lead	342	2.3		mg/kg	SW846 6010D
Magnesium	2270	580		mg/kg	SW846 6010D
Manganese	284	1.7		mg/kg	SW846 6010D
Mercury	0.082	0.037		mg/kg	SW846 7471B
Nickel	27.3	4.6		mg/kg	SW846 6010D
Silver	0.95	0.58		mg/kg	SW846 6010D
Vanadium	22.8	5.8		mg/kg	SW846 6010D
Zinc	178	5.8		mg/kg	SW846 6010D

Summary of Hits Job Number: JD35644 Page 2 of 3

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 11/18/21 thru 11/19/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD35644-1A TT-SB-01-5.5-6.0					
No hits reported in this sample.					
JD35644-2 TT-SB-02-7.0-9.0					
Acenaphthene	31.0 J	37	13	ug/kg	SW846 8270E
Anthracene	88.1	37	22	ug/kg	SW846 8270E
Benzo(a)anthracene	230	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	192	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	250	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	106	37	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	98.3	37	17	ug/kg	SW846 8270E
Carbazole	28.5 J	73	5.3	ug/kg	SW846 8270E
Chrysene	230	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	35.4 J	37	16	ug/kg	SW846 8270E
Dibenzofuran	16.2 J	73	15	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	99.5	73	8.5	ug/kg	SW846 8270E
Fluoranthene	463	37	16	ug/kg	SW846 8270E
Fluorene	39.4	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	127	37	17	ug/kg	SW846 8270E
2-Methylnaphthalene	13.4 J	37	8.3	ug/kg	SW846 8270E
Naphthalene	10.6 J	37	10	ug/kg	SW846 8270E
Phenanthrene	356	37	12	ug/kg	SW846 8270E
Pyrene	446	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	610 J	37	12	ug/kg	5W010 0270L
Aluminum	7900	56		mg/kg	SW846 6010D
Arsenic	6.2	2.3		mg/kg	SW846 6010D
Barium	90.8	2.3		mg/kg	SW846 6010D
Beryllium	0.45	0.23		mg/kg	SW846 6010D
Calcium	13900	560		mg/kg	SW846 6010D
Chromium	12.2	1.1		mg/kg	SW846 6010D
Cobalt	5.6	5.6			SW846 6010D
	31.0	2.8		mg/kg	SW846 6010D
Copper Iron	14800	2. 6 56		mg/kg	SW846 6010D
		2.3		mg/kg	
Lead	270			mg/kg	SW846 6010D
Magnesium	3150	560		mg/kg	SW846 6010D
Manganese	270	1.7		mg/kg	SW846 6010D
Mercury	0.18	0.030		mg/kg	SW846 7471B
Nickel	14.1	4.5		mg/kg	SW846 6010D
Silver	0.82	0.56		mg/kg	SW846 6010D
Vanadium	20.5	5.6		mg/kg	SW846 6010D
Zinc	95.2	5.6		mg/kg	SW846 6010D

Summary of Hits
Job Number: JD35644

Page 3 of 3

Job Number: JD35644 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 11/18/21 thru 11/19/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD35644-2A TT-SB-02-7.0-9.0					
No hits reported in this sample.					
JD35644-3 TT-SB-03-7.0-9.0					
Benzo(a)anthracene	14.8 J	34	9.7	ug/kg	SW846 8270E
Benzo(b)fluoranthene	15.2 J	34	15	ug/kg	SW846 8270E
Chrysene	12.3 J	34	11	ug/kg	SW846 8270E
Fluoranthene	19.6 J	34	15	ug/kg	SW846 8270E
Phenanthrene	15.2 J	34	12	ug/kg	SW846 8270E
Pyrene	22.6 J	34	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	1460 J			ug/kg	
Aluminum	3240	50		mg/kg	SW846 6010D
Arsenic	2.6	2.0		mg/kg	SW846 6010D
Beryllium	0.24	0.20		mg/kg	SW846 6010D
Calcium	2260	500		mg/kg	SW846 6010D
Chromium	12.6	1.0		mg/kg	SW846 6010D
Copper	9.4	2.5		mg/kg	SW846 6010D
Iron	8360	50		mg/kg	SW846 6010D
Lead	11.3	2.0		mg/kg	SW846 6010D
Magnesium	3570	500		mg/kg	SW846 6010D
Manganese	95.9	1.5		mg/kg	SW846 6010D
Mercury	0.067	0.030		mg/kg	SW846 7471B
Nickel	39.2	4.0		mg/kg	SW846 6010D

5.0

5.0

mg/kg

mg/kg

SW846 6010D

SW846 6010D

12.3

25.7

JD35644-3A TT-SB-03-7.0-9.0

No hits reported in this sample.

Vanadium

Zinc

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results		
Report of Analysis		
Report of Analysis		

Page 1 of 2

Client Sample ID: TT-SB-01-5.5-6.0

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 5.6 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	4.1	ug/kg	
71-43-2	Benzene	ND	0.50	0.46	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	0.56	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/kg	
75-25-2	Bromoform ^a	ND	5.0	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.76	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	2.0	0.54	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.0	0.62	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.46	ug/kg	
75-00-3	Chloroethane	ND	5.0	0.59	ug/kg	
67-66-3	Chloroform	ND	2.0	0.52	ug/kg	
74-87-3	Chloromethane	ND	5.0	2.0	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.66	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.56	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.0	0.42	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.55	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.49	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.73	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.0	0.47	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.0	0.66	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.61	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.47	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.48	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.46	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.45	ug/kg	
76-13-1	Freon 113	ND	5.0	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.0	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.88	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.47	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.0	2.6	ug/kg		
100-42-5	Styrene	ND	2.0	0.40	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.58	ug/kg		
108-88-3	Toluene	ND	1.0	0.53	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.48	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.55	ug/kg		
79-01-6	Trichloroethene	ND	1.0	0.76	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.68	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.48	ug/kg		
	m,p-Xylene	ND	1.0	0.90	ug/kg		
95-47-6	o-Xylene	ND	1.0	0.46	ug/kg		
1330-20-7	Xylene (total)	ND	1.0	0.46	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	103%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	101%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	99%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176696.D 1 11/30/21 03:49 KLS 11/23/21 10:30 OP36783 EM7595

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	14.8	36	13	ug/kg	J
208-96-8	Acenaphthylene	28.5	36	18	ug/kg	J
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	45.4	36	22	ug/kg	
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	127	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	121	36	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	172	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	88.9	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	59.0	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	69.4	73	5.0	ug/kg	J
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	20.4	73	5.3	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	157	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	24.3	36	16	ug/kg	J
132-64-9	Dibenzofuran	25.0	73	15	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	73	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	139	73	8.5	ug/kg	
206-44-0	Fluoranthene	216	36	16	ug/kg	
86-73-7	Fluorene	21.3	36	17	ug/kg	J
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	•
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	119	36	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	298	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	160	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	181	36	12	ug/kg	
129-00-0	Pyrene	224	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluoronhenol	44%		10-1	09%	

367-12-4 2-Fluorophenol 44% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	48%		10-105%		
118-79-6	2,4,6-Tribromophenol	60%		10-135%		
4165-60-0	Nitrobenzene-d5	57 %		10-119%		
321-60-8	2-Fluorobiphenyl	64%		18-112%		
1718-51-0	Terphenyl-d14	61%		18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact/aldol-condensa	tion	3.32	1800	ug/kg	J
124-18-5	Decane		4.44	400	ug/kg	JN
	C4 alkyl benzene		4.81	270	ug/kg	J
	System artifact		5.18	160	ug/kg	J
	Alkane		6.17	160	ug/kg	J
	System artifact		6.30	330	ug/kg	J
	Alkane		6.38	230	ug/kg	J
90-12-0	Naphthalene, 1-methyl-		6.63	180	ug/kg	
	Naphthalene dimethyl		7.39	220	ug/kg	
	Naphthalene dimethyl		7.49	190	ug/kg	J
	Naphthalene dimethyl		7.53	270	ug/kg	
	System artifact		7.64	300	ug/kg	
	Alkane		7.67	240	ug/kg	
	Alkane		8.57	160	ug/kg	
	System artifact		9.05	160	ug/kg	
	Alkane		9.30	170	ug/kg	
	Alkane		9.80	540	ug/kg	
	System artifact		10.38	150	ug/kg	
	System artifact		11.61	170	ug/kg	
	System artifact		15.64	180	ug/kg	
	System artifact		16.49	160	ug/kg	
	Unknown alcohol		17.20	440	ug/kg	
	Unknown		17.45	150	ug/kg	
	Total TIC, Semi-Volatile			3620	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-01-5.5-6.0

Lab Sample ID: JD35644-1 **Date Sampled:** 11/18/21 Matrix: SO - Soil Date Received: 11/19/21 Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** E4M4881 Run #1 4M105021.D 1 12/10/21 22:25 KLS 11/23/21 10:30 OP36783A

Run #2

Final Volume Initial Weight Run #1 30.8 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ 123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **56**% 10-107% 321-60-8 2-Fluorobiphenyl **54%** 17-91% Terphenyl-d14 1718-51-0 61% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-01-5.5-6.0

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134215.D 1 11/25/21 07:16 RK 11/24/21 10:05 OP36792 G3G4896

Run #2

Initial Weight Final Volume Run #1 15.8 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND 3.6	18 3.5 3.5	7.9 2.0 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	659% ^a 79%		10-1 10-1		

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-01-5.5-6.0

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723088.D 1 11/24/21 21:00 TC 11/23/21 10:00 OP36786 G4G3662

Run #2

Initial Weight Final Volume Run #1 16.8 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.67	0.55	ug/kg	
319-84-6	alpha-BHC	ND	0.67	0.54	ug/kg	
319-85-7	beta-BHC	ND	0.67	0.60	ug/kg	
319-86-8	delta-BHC	ND	0.67	0.64	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.67	0.49	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.67	0.54	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.67	0.30	ug/kg	
60-57-1	Dieldrin	ND	0.67	0.46	ug/kg	
72-54-8	4,4'-DDD	ND	0.67	0.61	ug/kg	
72-55-9	4,4'-DDE	1.5	0.67	0.59	ug/kg	
50-29-3	4,4'-DDT	ND	0.67	0.59	ug/kg	
72-20-8	Endrin	ND	0.67	0.52	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.67	0.52	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.67	0.38	ug/kg	
959-98-8	Endosulfan-I	ND	0.67	0.38	ug/kg	
33213-65-9	Endosulfan-II	ND	0.67	0.42	ug/kg	
76-44-8	Heptachlor	ND	0.67	0.58	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.67	0.47	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.53	ug/kg	
53494-70-5	Endrin ketone	ND	0.67	0.48	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	116%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	119%		27-1	38 %	
2051-24-3	Decachlorobiphenyl	108%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	130%		10-1	79 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-01-5.5-6.0

 Lab Sample ID:
 JD35644-1
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK6903.D 1 12/06/21 05:49 TL 11/23/21 10:00 OP36787 GRK180

Run #2

Initial Weight Final Volume Run #1 16.8 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	33	16	ug/kg	
11104-28-2	Aroclor 1221	ND	33	21	ug/kg	
11141-16-5	Aroclor 1232	ND	33	21	ug/kg	
53469-21-9	Aroclor 1242	ND	33	14	ug/kg	
12672-29-6	Aroclor 1248	ND	33	30	ug/kg	
11097-69-1	Aroclor 1254	ND	33	18	ug/kg	
11096-82-5	Aroclor 1260	ND	33	14	ug/kg	
11100-14-4	Aroclor 1268	ND	33	14	ug/kg	
37324-23-5	Aroclor 1262	ND	33	22	ug/kg	
CACN	G 4 D :	D #1	D #2		•,	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	112%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	104%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	71%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	137%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-01-5.5-6.0

Lab Sample ID: JD35644-1 **Date Sampled:** 11/18/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6820	58	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	10.3	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	114	23	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.62	0.23	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	4240	580	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	16.9	1.2	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	7.7	5.8	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	69.3	2.9	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	21900	58	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	342	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2270	580	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	284	1.7	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.082	0.037	mg/kg	1	11/24/21	11/24/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	27.3	4.6	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.95	0.58	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	22.8	5.8	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	178	5.8	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51485 (2) Instrument QC Batch: MA51523 (3) Prep QC Batch: MP30023 (4) Prep QC Batch: MP30071

Page 1 of 1

Client Sample ID: TT-SB-01-5.5-6.0

Lab Sample ID: JD35644-1 Date Sampled: 11/18/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.23 89.2	0.23	mg/kg %	1 1	12/09/21 01:58 11/22/21 17:03		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.2

Report of Analysis

Client Sample ID: TT-SB-01-5.5-6.0

Lab Sample ID: JD35644-1A **Date Sampled:** 11/18/21 SO - Soil Matrix: Date Received: 11/19/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch Analyzed** By **Prep Date Prep Batch** F:S4Q325 Run #1 a 4Q23725.D 1 12/16/21 07:46 AFL 12/08/21 07:00 F:OP88699

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS							
375-22-4	Perfluorobutanoic acid	ND	1.1	0.43	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg				
PERFLUOROALKYLSULFONIC ACIDS									
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg				
PERFLUOI	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.56	0.28	ug/kg				
	ROOCTANESULFONAMIDO	ACETIC AC	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg				
FLUOROTI	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg				
55100 01 1	o 1 adiotolomoi bandiate			·.~·	6' 6				

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-01-5.5-6.0 Lab Sample ID: JD35644-1A

Lab Sample ID:JD35644-1ADate Sampled:11/18/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	95%		40-140%
	13C5-PFPeA	100%		50-150 %
	13C5-PFHxA	101%		50-150 %
	13C4-PFHpA	103%		50-150 %
	13C8-PFOA	105%		50-150 %
	13C9-PFNA	107%		50-150 %
	13C6-PFDA	110%		50-150 %
	13C7-PFUnDA	108%		40-140%
	13C2-PFDoDA	105%		40-140%
	13C2-PFTeDA	101%		30-130 %
	13C3-PFBS	101%		50-150 %
	13C3-PFHxS	98%		50-150 %
	13C8-PFOS	105%		50-150 %
	13C8-FOSA	104%		30-130 %
	d3-MeFOSAA	123%		40-140%
	d5-EtFOSAA	134%		40-140%
	13C2-6:2FTS	103%		50-150 %
	13C2-8:2FTS	106%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.2

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240168.D 1 11/24/21 16:11 TDN 11/20/21 13:00 n/a VI9765

Run #2

Initial Weight

Run #1 5.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	4.6	ug/kg	
71-43-2	Benzene	ND	0.56	0.51	ug/kg	
74-97-5	Bromochloromethane	ND	5.6	0.63	ug/kg	
75-27-4	Bromodichloromethane	ND	2.2	0.48	ug/kg	
75-25-2	Bromoform ^a	ND	5.6	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.6	0.85	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.7	ug/kg	
75-15-0	Carbon disulfide	ND	2.2	0.60	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.2	0.69	ug/kg	
108-90-7	Chlorobenzene	ND	2.2	0.51	ug/kg	
75-00-3	Chloroethane	ND	5.6	0.66	ug/kg	
67-66-3	Chloroform	ND	2.2	0.58	ug/kg	
74-87-3	Chloromethane	ND	5.6	2.2	ug/kg	
110-82-7	Cyclohexane	ND	2.2	0.73	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.2	0.78	ug/kg	
124-48-1	Dibromochloromethane	ND	2.2	0.63	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.47	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.61	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.55	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.55	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.6	0.81	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.55	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.53	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.73	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.94	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.68	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.2	0.53	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.2	0.53	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.2	0.51	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.51	ug/kg	
76-13-1	Freon 113	ND	5.6	3.0	ug/kg	
591-78-6	2-Hexanone	ND	5.6	2.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.2	1.6	ug/kg		
79-20-9	Methyl Acetate	ND	5.6	1.6	ug/kg		
108-87-2	Methylcyclohexane	ND	2.2	0.98	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.52	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.6	2.5	ug/kg		
75-09-2	Methylene chloride	ND	5.6	2.9	ug/kg		
100-42-5	Styrene	ND	2.2	0.45	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.2	0.67	ug/kg		
127-18-4	Tetrachloroethene	ND	2.2	0.65	ug/kg		
108-88-3	Toluene	ND	1.1	0.59	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.6	2.8	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	2.8	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.2	0.54	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.2	0.62	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.85	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.6	0.76	ug/kg		
75-01-4	Vinyl chloride	ND	2.2	0.54	ug/kg		
	m,p-Xylene	ND	1.1	1.0	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.51	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.51	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	102%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	100%		75-13	31%		
2037-26-5	Toluene-D8	90%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile		0		ug/kg		

⁽a) Associated CCV outside of control limits high, sample was ND.

 $ND = Not detected \qquad MDL =$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M176929.D 1 12/11/21 00:44 KLS 11/23/21 10:30 OP36783 EM7605

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	31.0	37	13	ug/kg	J
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone ^a	ND	180	7.9	ug/kg	
120-12-7	Anthracene	88.1	37	22	ug/kg	
1912-24-9	Atrazine ^b	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	230	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	192	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	250	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	106	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	98.3	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	ND	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	28.5	73	5.3	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Client Sample ID: TT-SB-02-7.0-9.0

Lab Sample ID: JD35644-2 **Date Sampled:** 11/18/21 Matrix: SO - Soil Date Received: 11/19/21 Method: SW846 8270E SW846 3546 Percent Solids: 89.5

2nd Avenue and 33-39th Street, Brooklyn, NY

Project:

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	230	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	35.4	37	16	ug/kg	J
132-64-9	Dibenzofuran	16.2	73	15	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	73	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	99.5	73	8.5	ug/kg	
206-44-0	Fluoranthene	463	37	16	ug/kg	
86-73-7	Fluorene	39.4	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	127	37	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	13.4	37	8.3	ug/kg	J
88-74-4	2-Nitroaniline ^a	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	10.6	37	10	ug/kg	J
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	356	37	12	ug/kg	
129-00-0	Pyrene	446	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

367-12-4 2-Fluorophenol **55**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	55%		10-105%		
118-79-6	2,4,6-Tribromophenol	88%		10-135%		
4165-60-0	Nitrobenzene-d5	70 %		10-119%		
321-60-8	2-Fluorobiphenyl	63%		18-112%		
1718-51-0	Terphenyl-d14	64%		18-125%		
CAS No.	AS No. Tentatively Identified Compou		R.T.	Est. Conc.	Units	Q
	System artifact/aldol-condensa	ıtion	3.26	230	ug/kg	J
	Internal standard added for SI	M test	4.63	160	ug/kg	J
	Internal standard added for SI	M test	6.51	180	ug/kg	
	Octadecenamide		14.90	610	ug/kg	
	Total TIC, Semi-Volatile			610	ug/kg	J

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105022.D 1 12/10/21 22:45 KLS 11/23/21 10:30 OP36783A E4M4881

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 58%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 59%
 17-91%

 1718-51-0
 Terphenyl-d14
 60%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134216.D 1 11/25/21 07:43 RK 11/24/21 10:05 OP36792 G3G4896

Run #2

Initial Weight Final Volume Run #1 15.1 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.7 3.7	8.3 2.1 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	80% 69%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723089.D 1 11/24/21 21:15 TC 11/23/21 10:00 OP36786 G4G3662

Run #2

Initial Weight Final Volume Run #1 15.0 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.74	0.61	ug/kg	
319-84-6	alpha-BHC	ND	0.74	0.61	ug/kg	
319-85-7	beta-BHC	ND	0.74	0.67	ug/kg	
319-86-8	delta-BHC	ND	0.74	0.72	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.74	0.55	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.74	0.60	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.74	0.34	ug/kg	
60-57-1	Dieldrin	ND	0.74	0.51	ug/kg	
72-54-8	4,4'-DDD	ND	0.74	0.68	ug/kg	
72-55-9	4,4'-DDE	ND	0.74	0.65	ug/kg	
50-29-3	4,4'-DDT	ND	0.74	0.66	ug/kg	
72-20-8	Endrin	ND	0.74	0.58	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.74	0.58	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.74	0.42	ug/kg	
959-98-8	Endosulfan-I	ND	0.74	0.43	ug/kg	
33213-65-9	Endosulfan-II	ND	0.74	0.46	ug/kg	
76-44-8	Heptachlor	ND	0.74	0.64	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.74	0.52	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.59	ug/kg	
53494-70-5	Endrin ketone	ND	0.74	0.54	ug/kg	
8001-35-2	Toxaphene	ND	19	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	88%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	117%		27-138%		
2051-24-3	Decachlorobiphenyl	76 %	10-179%			
2051-24-3	Decachlorobiphenyl	102%	10-179%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02-7.0-9.0

 Lab Sample ID:
 JD35644-2
 Date Sampled:
 11/18/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK6645.D 1 11/25/21 17:40 CP 11/23/21 10:00 OP36787 GRK173

Run #2

Initial Weight Final Volume
Run #1 15.0 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016 ^a	ND	37	17	ug/kg	
11104-28-2	Aroclor 1221	ND	37	23	ug/kg	
11141-16-5	Aroclor 1232	ND	37	24	ug/kg	
53469-21-9	Aroclor 1242	ND	37	15	ug/kg	
12672-29-6	Aroclor 1248	ND	37	33	ug/kg	
11097-69-1	Aroclor 1254	ND	37	20	ug/kg	
11096-82-5	Aroclor 1260 a	ND	37	16	ug/kg	
11100-14-4	Aroclor 1268	ND	37	16	ug/kg	
37324-23-5	Aroclor 1262	ND	37	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Liı	mits	
877-09-8	Tetrachloro-m-xylene	131%		24	-152%	
877-09-8	Tetrachloro-m-xylene	118%		-152%		
2051-24-3	Decachlorobiphenyl	93%		10	-172%	
2051-24-3	Decachlorobiphenyl	119%	10-172%			

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02-7.0-9.0

Lab Sample ID: JD35644-2 Date Sampled: 11/18/21
Matrix: SO - Soil Date Received: 11/19/21
Percent Solids: 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	7900	56	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	6.2	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	90.8	23	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.45	0.23	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	13900	560	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	12.2	1.1	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	5.6	5.6	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	31.0	2.8	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	14800	56	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	270	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	3150	560	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	270	1.7	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.18	0.030	mg/kg	1	11/24/21	11/24/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	14.1	4.5	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.82	0.56	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	20.5	5.6	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	95.2	5.6	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51485(2) Instrument QC Batch: MA51523(3) Prep QC Batch: MP30023(4) Prep QC Batch: MP30071

JD35644

Page 1 of 1

Client Sample ID: TT-SB-02-7.0-9.0

Lab Sample ID: JD35644-2 Date Sampled: 11/18/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

RL = Reporting Limit

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.32 89.5	0.32	mg/kg %	1 1	12/09/21 02:02 11/22/21 17:03		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.3

Lab Sample ID:JD35644-2ADate Sampled:11/18/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 4Q23726.D 1 12/16/21 08:03 AFL 12/08/21 07:00 F:OP88699 F:S4Q325

Run #2

Initial Weight Final Volume
Run #1 2.06 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.54	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.54	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.54	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.54	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.54	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.54	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.54	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.54	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.54	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.54	0.27	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	8				
375-73-5	Perfluorobutanesulfonic acid	ND	0.54	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.54	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.54	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.54	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.54	0.27	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.54	0.27	ug/kg	
DEDEI IIOI	ROOCTANESULFONAMIDO	ACETIC A	TIDE			
2355-31-9	MeFOSAA	ND	1.1	0.54	na/ka	
2991-50-6	EtFOSAA	ND	1.1	0.54	ug/kg	
7991-90-0	EIFUSAA	ND	1.1	0.34	ug/kg	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

4.4

Client Sample ID: TT-SB-02-7.0-9.0 Lab Sample ID: JD35644-2A

Lab Sample ID:JD35644-2ADate Sampled:11/18/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	88%		40-140%
	13C5-PFPeA	93%		50-150 %
	13C5-PFHxA	93%		50-150 %
	13C4-PFHpA	95 %		50-150 %
	13C8-PFOA	97%		50-150 %
	13C9-PFNA	97%		50-150 %
	13C6-PFDA	100%		50-150 %
	13C7-PFUnDA	98%		40-140%
	13C2-PFDoDA	98%		40-140%
	13C2-PFTeDA	98%		30-130%
	13C3-PFBS	93%		50-150 %
	13C3-PFHxS	94%		50-150 %
	13C8-PFOS	99%		50-150 %
	13C8-FOSA	94%		30-130%
	d3-MeFOSAA	115%		40-140%
	d5-EtFOSAA	125%		40-140%
	13C2-6:2FTS	93%		50-150 %
	13C2-8:2FTS	96%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.5

Report of Analysis

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240169.D 1 11/24/21 16:31 TDN 11/20/21 13:00 n/a VI9765

Run #2

Initial Weight

Run #1 5.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.6	4.0	ug/kg	
71-43-2	Benzene	ND	0.48	0.44	ug/kg	
74-97-5	Bromochloromethane	ND	4.8	0.54	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.41	ug/kg	
75-25-2	Bromoform a	ND	4.8	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.8	0.73	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.6	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.51	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.59	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.44	ug/kg	
75-00-3	Chloroethane	ND	4.8	0.57	ug/kg	
67-66-3	Chloroform	ND	1.9	0.50	ug/kg	
74-87-3	Chloromethane	ND	4.8	1.9	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.63	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.66	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.54	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.96	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.96	0.52	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.96	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.96	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.8	0.70	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.96	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.96	0.45	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.96	0.63	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.96	0.80	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.96	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
100-41-4	Ethylbenzene	ND	0.96	0.43	ug/kg	
76-13-1	Freon 113	ND	4.8	2.6	ug/kg	
591-78-6	2-Hexanone	ND	4.8	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	4.8	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.84	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.96	0.45	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.8	2.2	ug/kg		
75-09-2	Methylene chloride	ND	4.8	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.57	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.56	ug/kg		
108-88-3	Toluene	ND	0.96	0.50	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.8	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.8	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.53	ug/kg		
79-01-6	Trichloroethene	ND	0.96	0.73	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.8	0.65	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.46	ug/kg		
	m,p-Xylene	ND	0.96	0.86	ug/kg		
95-47-6	o-Xylene	ND	0.96	0.44	ug/kg		
1330-20-7	Xylene (total)	ND	0.96	0.44	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	102%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	100%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-12	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

4.5

Report of Analysis

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176655.D 1 11/25/21 01:07 CS 11/23/21 10:30 OP36783 EM7594

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	69	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	21	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	29	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	61	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	170	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	170	37	ug/kg	
95-48-7	2-Methylphenol	ND	69	22	ug/kg	
	3&4-Methylphenol	ND	69	28	ug/kg	
88-75-5	2-Nitrophenol	ND	170	23	ug/kg	
100-02-7	4-Nitrophenol	ND	340	92	ug/kg	
87-86-5	Pentachlorophenol	ND	140	32	ug/kg	
108-95-2	Phenol	ND	69	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	170	23	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	26	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	21	ug/kg	
83-32-9	Acenaphthene	ND	34	12	ug/kg	
208-96-8	Acenaphthylene	ND	34	17	ug/kg	
98-86-2	Acetophenone	ND	170	7.4	ug/kg	
120-12-7	Anthracene	ND	34	21	ug/kg	
1912-24-9	Atrazine ^a	ND	69	15	ug/kg	
56-55-3	Benzo(a)anthracene	14.8	34	9.7	ug/kg	J
50-32-8	Benzo(a)pyrene	ND	34	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	15.2	34	15	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	ND	34	17	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	34	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	69	13	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	69	8.4	ug/kg	
92-52-4	1,1'-Biphenyl	ND	69	4.7	ug/kg	
100-52-7	Benzaldehyde	ND	170	8.5	ug/kg	
91-58-7	2-Chloronaphthalene	ND	69	8.2	ug/kg	
106-47-8	4-Chloroaniline	ND	170	12	ug/kg	
86-74-8	Carbazole	ND	69	5.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No. Compound		Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	69	14	ug/kg	
218-01-9	Chrysene	12.3	34	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	69	7.4	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	69	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	69	12	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	69	11	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	34	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	34	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	69	29	ug/kg	
123-91-1	1,4-Dioxane	ND	34	23	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	34	15	ug/kg	
132-64-9	Dibenzofuran	ND	69	14	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	69	5.6	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	69	8.6	ug/kg	
84-66-2	Diethyl phthalate	ND	69	7.3	ug/kg	
131-11-3	Dimethyl phthalate	ND	69	6.1	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	69	8.0	ug/kg	
206-44-0	Fluoranthene	19.6	34	15	ug/kg	J
86-73-7	Fluorene	ND	34	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	69	8.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	34	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	340	14	ug/kg	
67-72-1	Hexachloroethane	ND	170	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	34	16	ug/kg	
78-59-1	Isophorone	ND	69	7.4	ug/kg	
91-57-6	2-Methylnaphthalene	ND	34	7.8	ug/kg	
88-74-4	2-Nitroaniline	ND	170	8.1	ug/kg	
99-09-2	3-Nitroaniline	ND	170	8.6	ug/kg	
100-01-6	4-Nitroaniline	ND	170	8.9	ug/kg	
91-20-3	Naphthalene	ND	34	9.7	ug/kg	
98-95-3	Nitrobenzene	ND	69	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	69	9.9	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	170	13	ug/kg	
85-01-8	Phenanthrene	15.2	34	12	ug/kg	J
129-00-0	Pyrene	22.6	34	11	ug/kg	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	170	8.7	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

367-12-4 2-Fluorophenol 54% **7-101**%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	54% 96% 67% 71%		12-101% 10-127% 15-114% 22-104%		
1718-51-0	Terphenyl-d14 74%			23-121%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	System artifact System artifact/aldol-condensa Unknown Alkane Alkane Alkane Alkane Total TIC, Semi-Volatile	tion	3.26 3.32 15.00 15.26 15.93 16.58 17.20	140 380 290 220 270 360 320 1460	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J J J J J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105023.D 1 12/10/21 23:06 KLS 11/23/21 10:30 OP36783A E4M4881

Run #2

Initial Weight Final Volume
Run #1 30.6 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.4 1.7 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 64%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 63%
 17-91%

 1718-51-0
 Terphenyl-d14
 65%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

4.5

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134217.D 1 11/25/21 08:10 RK 11/24/21 10:05 OP36792 G3G4896

Report of Analysis

Run #2

Run #1 15.0 g 5.0 ml
Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	64% 43%			25% 25%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723090.D 1 11/24/21 21:30 TC 11/23/21 10:00 OP36786 G4G3662

Run #2

Run #1 Initial Weight Final Volume 15.6 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL MDL Ur			Q
309-00-2	Aldrin	ND	0.67	0.56	ug/kg	
319-84-6	alpha-BHC	ND	0.67	0.55	ug/kg	
319-85-7	beta-BHC	ND	0.67	0.61	ug/kg	
319-86-8	delta-BHC	ND	0.67	0.65	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.67	0.50	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.67	0.54	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.67	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.67	0.46	ug/kg	
72-54-8	4,4'-DDD	ND	0.67	0.62	ug/kg	
72-55-9	4,4'-DDE	ND	0.67	0.59	ug/kg	
50-29-3	4,4'-DDT	ND	0.67	0.60	ug/kg	
72-20-8	Endrin	ND	0.67	0.52	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.67	0.53	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.67	0.38	ug/kg	
959-98-8	Endosulfan-I	ND	0.67	0.39	ug/kg	
33213-65-9	Endosulfan-II	ND	0.67	0.42	ug/kg	
76-44-8	Heptachlor	ND	0.67	0.58	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.67	0.47	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.54	ug/kg	
53494-70-5	Endrin ketone	ND	0.67	0.49	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	88%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	96%		27-1	38 %	
2051-24-3	Decachlorobiphenyl	80%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	85 %	10-179%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-03-7.0-9.0

 Lab Sample ID:
 JD35644-3
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK6650.D 1 11/25/21 19:02 CP 11/23/21 10:00 OP36787 GRK173

Run #2

Initial Weight Final Volume
Run #1 15.6 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016 a	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	30	ug/kg	
11097-69-1	Aroclor 1254	ND	34	18	ug/kg	
11096-82-5	Aroclor 1260 a	ND	34	14	ug/kg	
11100-14-4	Aroclor 1268	ND	34	14	ug/kg	
37324-23-5	Aroclor 1262	ND	34	22	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	131%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	119%		24-1	.52%	
2051-24-3	Decachlorobiphenyl	118%		10-1	72%	
2051-24-3	Decachlorobiphenyl	107%		10-1	72%	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD35644-3 Date Sampled: 11/19/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3240	50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.0	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.6	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	< 20	20	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.24	0.20	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.50	0.50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	2260	500	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	12.6	1.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.0	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	9.4	2.5	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	8360	50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	11.3	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	3570	500	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	95.9	1.5	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.067	0.030	mg/kg	1	11/24/21	11/24/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	39.2	4.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1000	1000	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.0	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.50	0.50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1000	1000	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.0	1.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	12.3	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	25.7	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51485(2) Instrument QC Batch: MA51523(3) Prep QC Batch: MP30023(4) Prep QC Batch: MP30071

Page 1 of 1

Client Sample ID: TT-SB-03-7.0-9.0

Lab Sample ID: JD35644-3 Date Sampled: 11/19/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

RL = Reporting Limit

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.23 95	0.23	mg/kg %	1 1	12/09/21 02:04 11/22/21 17:03		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

Client Sample ID: TT-SB-03-7.0-9.0

Lab Sample ID: JD35644-3A **Date Sampled:** 11/19/21 **Matrix:** SO - Soil Date Received: 11/19/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 95.0

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch Analyzed** By **Prep Date Prep Batch** F:S4Q325 Run #1 a 4Q23727.D 1 12/16/21 08:20 AFL 12/08/21 07:00 F:OP88699

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.40	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.26	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.53	0.26	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.26	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.53	0.26	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.53	0.26	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.53	0.26	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.26	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.53	0.26	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.26	ug/kg	
		~				
	ROALKYLSULFONIC ACIDS				_	
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.26	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.26	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.26	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.26	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.26	ug/kg	
PERFI IIOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.53	0.26	ug/kg	
734-31-0	Trosa	ND	0.00	0.20	ug/ ng	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg	
FLUODOM						
	ELOMER SULFONATES	NID		0.00	а	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg	

ND = Not detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

4.6

Client Sample ID: TT-SB-03-7.0-9.0

Lab Sample ID:JD35644-3ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:95.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	96%		40-140%
	13C5-PFPeA	98%		50-150 %
	13C5-PFHxA	100%		50-150 %
	13C4-PFHpA	99%		50-150 %
	13C8-PFOA	103%		50-150 %
	13C9-PFNA	105%		50-150 %
	13C6-PFDA	106%		50-150 %
	13C7-PFUnDA	105%		40-140%
	13C2-PFDoDA	103%		40-140%
	13C2-PFTeDA	103%		30-130%
	13C3-PFBS	98%		50-150 %
	13C3-PFHxS	100%		50-150 %
	13C8-PFOS	102%		50-150 %
	13C8-FOSA	100%		30-130%
	d3-MeFOSAA	117%		40-140%
	d5-EtFOSAA	120%		40-140%
	13C2-6:2FTS	98%		50-150 %
	13C2-8:2FTS	100%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

M	lisc. Forms
Cu	stody Documents and Other Forms
Inc	Judge the following where applicables
	cludes the following where applicable:
	Chain of Custody Chain of Custody (SGS Orlando, FL)

	000	S	D _	CHA	ΔIN	OF	CU	STO	יםכ	1	_											Pa	ge 🏻	_ of		
	565		CU	:		orth Am								F	ED-EX T	racking #					Bottle Or	der Contr	ol#	1, 1,		
			<i>J</i> •	TEI	732-32	Route 130 29-0200	FAX:	732-32	29-349		0			1	SGS Quot	e#					SGS Job	<u>Em</u>	20	171	5644	_
EHS	SA-QAC-0023-04-FORM-Standard CQC Client / Reporting Information	+ +				www.sg	s.com/e	hsus	а					\rightarrow					D	-44 6			<u> </u>	در_		trix Codes
Сыпраг		Ploject Name	-		t Informa						_	-		\rightarrow					Reque	Sted Ar	lalysis	-	- 1	- 1		
Te Street A	ETRA TEULT	Street 2	nd Ave	a 3	3205	t											×		}				2	:	GW - 0	Orinking Water Ground Water W - Water
	sensury Dr.				Billing In	formation	if differe	nt from	Report	to)			_			a	0,0	J					1 1	- 1		Surface Water SO - Soil
City	State Zip	City Be	ookwin	State	Company	Name									201	Š	14 DIOX	5	=				Ž		SEC	L- Sludge D-Sediment
	SIPPANY, N) Contact E-mail	Project #	ooney is		Street Ad	dress						-				Ü		3	RB11	3.70	3		7		LIQ -	Ot - Oil Other Liquid
R C	antagallo										State				Ž	à	ivis	i			2		5		SOL	AIR - Air - Other Solid
Phone #	73 570 4045	Client Purcha			City						State		Zip		V82601	BZPOTELTZO	82.73	PBOBIPEST. TCL	P8082	H8121	XMTAL	MTA	0171		FB - EB-Eq	P - Wipe - Field Blank uipment Blank
Sample	r(s) Name(s) Phone I	Project Mana	ger		Attention:							_			> >	BB	80					1	3			Rinse Blank - Trip Blank
	,			Colle	ction	1 .	zurce :			Н	Numbe	ТΤ	ved Bottles		-		Τ	Γ	H Check	(Lab U	se Only	'			-	
SGS Sample #	Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Good (G) Ch	forinat	alrix #	of bottles	호	HOOH HNO,	H ₂ SO ₄	DI Wat	ENCORE											LAB	USE ONLY
1	97-58-01-5.5-6.0	4	11/18/21	1221	AN	G	- (်ပ	6		1	3		3		_	-	-		~	~		~			34
2	TI-58-02-7.0-9.0		11/18/21	1340	AJ	G	5	0	6	П		3		3		し	1	-	1	-	<u>ب</u>	-	1			015
3	T1-58-03-7.0-9.0	•	11/19/21	1		G		50	Ğ			3		3	1	V	<u>ا</u>	i	√	-	ب	ł	4	1	11	4F6
														77											U	978
														П												
												П	Ш	П							Ĭ					
	·						T					П		T											IL.	
				1								П		П												
													Ш	П											\top	
													Ш	\Box												
													Ш													
								7					Ш	\Box												
	Turn Around Time (Bu			<u> </u>						_	Deliv	erable										Com	ments /	Specia	instructio	ns
1 .	□ 40 B	Approved By (9	GS PM): / Date:			Comme					두	-	SP Categ SP Categ				DOD-	QSM5	'		159	en	(012		-20	
	10 Business Days 5 Business Days				=	NJ Redu			2)		F	_	ACP Crite	-							loitia	l Ass	eeem	ent_ <u>&</u>	23B	
	3 Business Days*					-	i (Level				⊏	СТЯ	CP Crite	erla							() II Saco		-i-float	ion		
	2 Business Days*	-				Comme					⊑	-	Forms						1		Lab	el Ve	Human			
	1 Business Day* Other					NJ DKQ				n#		-	Format_ al "B" = f													
'		proval needed	for 1-3 Business					Comme	rcial "C	" = Res	sults + Q	C Summ	ary + Par	tial Raw	data				<u> </u>		h	ttp://w	ww.sqs	.com/ <u>e</u> r	/terms-an	d conditions
Reline	quished by:	e: 1	Received By:	e Custody	must be	documen	ted belo	w eac	h time	sampi	ie s riba uished Br	nge po	session	n, inclu	_		lelivery. 1	Date 4	ighe: _a_a	12	Receive	d By		~,	-/	/
1	A.VAW " IIII	9/2021	1 (707	1_		<u> </u>			2 (10	\perp	<u> </u>		18	<u>၂</u>	1	11	[19	/ ሷ	2	H	MM.	11	1/0	All_
Reline 3	quished by: Date / Tim	10:	Received By:							Relinq 4	ulah d B							Date / 1	lme:		Receive 4	ndu⊠y:				
Reline 5	quished by: Date / Tim	ie:	Received By:	4						Custoo	dy Seal #				Irriact Not intact		Absent		-	Therm	ID:	int Sum	On Ice	-	Cooler Temp	. •c
12			19							L					NOT INTACT	,	Absent			598 Sar	inio Kace	ipi auinit	"	P	<u> </u>	<u> </u>
													_									•		•	, , . –	1

JD35644: Chain of Custody Page 1 of 3

SGS Sample Receipt Summary

Job Number: JD35644 Client:	TETRA TECH	Project: 2ND AVENUE AND	33-39TH S	TREET, BRO	OOKL
Date / Time Received: 11/19/2021 6:07:00 PM	Delivery Method:	Airbill #'s:			
Cooler Temps (Raw Measured) °C: Cooler 1: (2.4));				
Cooler Temps (Corrected) °C: Cooler 1: (1.0));				
Cooler Security Y or N	Y or N	Sample Integrity - Documentation	Y or	<u>N</u>	
1. Custody Seals Present: ☐ 3. COC F 2. Custody Seals Intact: ☐ 4. Smpl Dat		1. Sample labels present on bottles:	✓		
2. Custody Seals Intact: ✓ 4. Smpl Dat	es/Time OK 🔽 🗌	Container labeling complete:	\checkmark		
Cooler Temperature Y or N		3. Sample container label / COC agree:	✓		
1. Temp criteria achieved:		Sample Integrity - Condition	Y or	N_	
Cooler temp verification: IR Gun	_	1. Sample recvd within HT:	✓		
3. Cooler media: Ice (Bag)	-	2. All containers accounted for:	✓		
4. No. Coolers: 1	-	3. Condition of sample:	Intac	ot	
Quality Control Preservation Y or N N/A	<u>7</u>	Sample Integrity - Instructions	Y or	N N/A	Δ.
1. Trip Blank present / cooler: □ ✓		Analysis requested is clear:	✓		_
2. Trip Blank listed on COC:		Bottles received for unspecified tests		✓	
3. Samples preserved properly: ✓		Sufficient volume recvd for analysis:	✓		
4. VOCs headspace free: ☐ ☑ ☑		4. Compositing instructions clear:			•
		5. Filtering instructions clear:			•
Test Strip Lot #s: pH 1-12:231619	pH 12+:	203117A Other: (Specify)			
Comments					

SM089-03 Rev. Date 12/7/17

JD35644: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Above Changes Per: Jadon Schiller

Date/Time: 12/13/2021

Requested Date:		12/13/2021		Received Date:	11/19/2021
Account Name:	Tetra	a Tech		Due Date:	12/13/2021
Project Description:		Avenue and 33-39t	2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	By: JAD		PM: JBS	TAT (Days):	7
Sample #: JD35644-ALL	35644-ALL		Change:		
Dent:			Please move project to TTNJP90692 and re-sub to ALSE.	TNJP90692 and re-sub to	ALSE.

TAT

Dept:

JD35644: Chain of Custody

Page 3 of 3

	CCC			CHAIN			94									16	13, 1		Page	1 of	1	
	OUO			SGS Nor	ite 130	Dayto	n. NJ 0	8810					FED-E	C Tracking #			- le	Bottle Orde	Control #			
				TEL. 732-329-	0200	FAX: 7	32-329-	3499/	3480				BGS Q	uole #	_	-	-	SGS Job #	-	JD35644		-
	Client / Reporting Information	_		Project		.com/e		-		_	_	_	-		_		300	0		203364		_
ompa	ny Name:	Project Name:		Project	intorm	ation	- Al	-	_		-	-	1	1		Reque	sted A	nalysis		1 1	Matrix	Codes
		2nd Avenue	and 33-39th Str	reet, Brooklyn,	NY									1 1		THY.	5				DW - Drink	
reet A	diress	Street		1976	1								1		- 1	71 0	100		-		GW - Grou	Water
_					Billing	Informati	on (if diffe	rent to	om Re	port to				1 1		- 11 (3			1.7	SW - Surfa	ce Water
rty	State Z	Up City		State	Compar	y Name	-			- 1			7	1 1							SL-SI	udge
piect	Contact E-mail	Project#		-	Street A	ddiner					_		-	1 1				1 1		.1	SED-Se OI -	Oi
	on Schiller@sgs.com	1 Toject W		3.7	STEEL	ouress							1	1 1			0			1 1	LIQ - Othi	
ione i		Client Purchase	Order#	- 5	Спу		-	-	State	_	Zi	P	-	1 1						1 1	SOL - Oth	ner Solid
														1 1						1 1	FB - Field	d Blank
	(s) Name(s)	Prione Project Manage	ır		Attendor	TC .							100	1 1	- 1			0		1 1	EB-Equipm RB - Rins	ent Blani se Blank
AV		_	-			-							Y21	1 1						1 1	TB - Trip	Blank
				Collection				H	Number	of prose	rved th	iu I	- K	1 1						1 1		
GS tple 8	Field ID / Point of Collection	MECH/DI Visi #	Date	Time	Sampled	Matrix	8 of bottes	豆	HNO,	H-SO.	DI Wale	8	LC/D537NY21			1						
1A	TT-SB-01-5.5-6.0		-	-	by	-	Domes	ĮŽ.	ŽΞ	¥ 2	0 3	20	-	-	-				-	1	LAB USE	ONLY
_		-	11/18/21	12:21:00 PM	AV	so		Н	\perp	\perp		\perp	Х		-							
2A	TT-SB-02-7.0-9.0		11/18/21	1:40:00 PM	AV	so		П					X									
ЗА	TT-SB-03-7.0-9.0		11/19/21	9:26:00 AM	AV	so		П				П	X	2.1								
								П	77			\top										
								Ħ	11	11	+	++							+	++	_	
		_	-				-	Н	+	+	+	++	-	-	-	-	-	-	-	+	_	
								Н	44	+	+	\perp					1					
		_				1		Ц	\perp								1					
			0				-															
								П	П													11
								Ħ	\top	\top		Ħ										
								H	+	+	+	+	-		+	_		-	-	+ +	_	_
			-			-		H	+	+	+	+		-	-	-		-	+	++		
-	Turnaround Time (Business days)							Ш	11	Informa												
	Torridon's Time (Desiress days)	Approved By (SG	S PMI: / Date:			Commerc	lal "A" (L					SP Cate		- 1	-		Cami	ments / Sp	ecial instr	uctions	_	
- 1	Standard 10 Business Days						lal "B" (L					SP Cate										
	5 Business Days RUSH	4			\equiv	FULLT1	Level 3+4	١)			State	Forms		- 4								
	3 Business Days RUSH	_				NJ Reduc					EDD	Forma	<u></u>	_								
	2 Business Days RUSH	_				Commerc					Othe	NYA	SPB									
	1 Business Day EMERGENCY X Other 1/14/1900	-					Commerc															
Eme	gency & Rush T/A data available via Lablink Ap	proval needed for RUS	H/Emergency TAT				Commerc						Dartiol Do	w data				hlin	hanna we	s comiani	terms-and-con	ditions
		165	Sample Custo	dy must be do	umonte	d below	each tim	o san	ples	hango	poss	ession	, includi	ng courie	delivery.			THEP.		2	(CIDEPAINCTCO)	ruicium>
Relia	and of	1/22/20	Received By:	Ted	7			Relini	quished	Ву:	0	1			Diago	172/	7.1	Received B	P	PHALI		
o la	ulahed by: Da	It / Time:	Received By:	-00	_	_		Relic	gulshed	By:	1/				Date	Town C	/E-	Received B	11	my 1		_
mille:		2.42	3					4							100	101	7	4				
LIMBERGO.	ulahed by: Da	de / Time:	Received By:					Custo	dy Seal			U	Intact Not intec	Pr	unerved wh	ere applicab	le .		On	loe C	Will Temp	1 1

NITIAL ASSESSMENT

LABEL VERIFICATION_

jd35644 xls Rev Date: 4/10/18

> JD35644: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD35644	Client:	SGS NJ	Project: 2ND AVENU	JE	
Date / Time Received: 11/23/2021 10:15:0	00 AM	Delivery Method: FX	Airbill #'s: 5272 0636	5 5812	
Therm ID: IR 1;		Therm CF: 0.2;	# of Coole	rs: 1	
Cooler Temps (Raw Measured) °C: Co	oler 1: (4.2	2);			
Cooler Temps (Corrected) °C: Co	oler 1: (4.4	1);			
Cooler Information Y o	· N	Sample Informati	<u>on</u>	Y or N	_N/A_
1. Custody Seals Present		1. Sample labels pro	esent on bottles	v	
2. Custody Seals Intact ✓		2. Samples preserve	ed properly	\checkmark	
3. Temp criteria achieved ✓		3. Sufficient volume	/containers recvd for analysis:	v	
4. Cooler temp verification IR Gun		4. Condition of sam	ple	Intact	
5. Cooler media <u>Ice (Bac</u>	ı)	5. Sample recvd wit	hin HT	v	
		6. Dates/Times/IDs	on COC match Sample Label		
Trip Blank Information Y or	<u>N</u> _	N/A 7. VOCs have head	space		V
Trip Blank present / cooler		✓ 8. Bottles received to the second to	or unspecified tests		
2. Trip Blank listed on COC		9. Compositing instr	ructions clear		✓
W	r e	N/A 10. Voa Soil Kits/Ja	rs received past 48hrs?		\checkmark
		11. % Solids Jar red	eived?		\checkmark
3. Type Of TB Received		✓ 12. Residual Chlorir	ne Present?		\checkmark
Misc. Information					
Number of Encores: 25-Gram	5-Gram	Number of 5035 Field Kits:	Number of La	ab Filtered Metals:	
Test Strip Lot #s: pH 0-3	23031	5 pH 10-12 219813		-	
Residual Chlorine Test Strip Lot #:					
Comments					
SM001 Rev. Date 05/24/17 Technician: PETER	-1	Date: 11/23/2021 10:15:00	Reviewer:	Date:	

JD35644: Chain of Custody Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

12/21/21

The result $\pmb{Technical}^e \pmb{Report for}^l$ by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD35645

Sampling Date: 11/19/21

Report to:

Tetra Tech

Robert. Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report:

28

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	8
Section 4: Sample Results	9
4.1: JD35645-1: TT-SB-04-7.5-9.5	10
4.2: JD35645-1A: TT-SB-04-7.5-9.5	21
Section 5: Misc. Forms	23
5.1: Chain of Custody	24
5.2: Chain of Custody (SGS Orlando, FL)	27

Sample Summary

Tetra Tech

Job No: JD35645

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample	Collected			Matrix	Client
Number	Date	Time By	Received	Code Type	Sample ID

This report contains results reported as ND = Not detected. The following applies:

Organics ND = Not detected above the MDL

JD35645-1 11/19/21 10:41 AV 11/19/21 SO Soil TT-SB-04-7.5-9.5

JD35645-1A 11/19/21 10:41 AV 11/19/21 SO Soil TT-SB-04-7.5-9.5

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD35645

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/20/2021 11:10:56 A

On 11/19/2021, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35645 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: V3C7565

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35602-1MS, JD35602-2DUP were used as the QC samples indicated.
- JD35645-1 for Bromomethane: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88699

- The data for EPA 537M BY ID meets quality control requirements.
- JD35645-1A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36783

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35604-1MS, JD35604-1MSD were used as the QC samples indicated.
- JD35645-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35645-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35645-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35645-1 for Atrazine: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36783A

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35644-1MS, JD35644-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Monday, December 20, 2021

Page 1 of 3

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36786

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35604-1MS, JD35604-1MSD, OP36786-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36787

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35604-2MS, JD35604-2MSD, OP36787-MSMSD were used as the QC samples indicated.
- OP36787-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD35645-1 for Aroclor 1260: Associated CCV outside of control limits high, sample was ND.
- JD35645-1 for Aroclor 1016: Associated CCV outside of control limits high, sample was ND.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36792

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35645-1MS, JD35645-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30071

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD34540-2RMSD, JD34540-2RPS, JD34540-2RSDL, JD34540-2RMS, JD34540-2RMSD were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony, Iron, Magnesium, Potassium, Sodium are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) for Aluninum, Antimony, Iron, Magnesium are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Calcium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for Serial Dilution for Antimony, Arsenic, Beryllium, Lead, Selenium are outside control limits for sample MP30071-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30023

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35650-1MS, JD35650-1MSD were used as the QC samples for metals.

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24183

■ Sample(s) JD35645-1DUP were used as the QC samples for Solids, Percent.

Monday, December 20, 2021

Page 2 of 3

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37244

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35531-11DUP, JD35531-11MS were used as the QC samples for Cyanide.
- The following samples were run outside of holding time for method SW846 9012B/LACHAT: JD35645-1 Sample prepped within holding time, but run out of holding time.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD35645

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/17/2021 6:40:52

On 11/19/2021, 1 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 3.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35645 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88699

Sample(s) JD35626-1MS, JD35626-1MSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives exceptas noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney, Client Services (signature on file)	

Summary of Hits
Job Number: JD35645

Page 1 of 1

Job Number: JD35645 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 11/19/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD35645-1 TT-SB-04-7.5-9.5					
Acetone	5.5 J	9.3	3.8	ug/kg	SW846 8260D
Benzo(a)anthracene	27.6 J	34	9.5	ug/kg	SW846 8270E
Benzo(a)pyrene	25.0 J	34	15	ug/kg	SW846 8270E
Benzo(b)fluoranthene	36.7	34	15	ug/kg	SW846 8270E
Chrysene	27.7 J	34	11	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	34.5 J	67	7.9	ug/kg	SW846 8270E
Fluoranthene	47.2	34	15	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	19.0 J	34	16	ug/kg	SW846 8270E
Phenanthrene	26.1 J	34	11	ug/kg	SW846 8270E
Pyrene	51.9	34	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	590 J			ug/kg	
4,4'-DDD	1.4	0.70	0.64	ug/kg	SW846 8081B
4,4'-DDE	0.90	0.70	0.61	ug/kg	SW846 8081B
4,4'-DDT	7.3	0.70	0.62	ug/kg	SW846 8081B
Aluminum	4340	50		mg/kg	SW846 6010D
Arsenic	2.9	2.0		mg/kg	SW846 6010D
Barium	39.0	20		mg/kg	SW846 6010D
Beryllium	0.31	0.20		mg/kg	SW846 6010D
Calcium	2150	500		mg/kg	SW846 6010D
Chromium	15.2	1.0		mg/kg	SW846 6010D
Cobalt	5.3	5.0		mg/kg	SW846 6010D
Copper	16.8	2.5		mg/kg	SW846 6010D
Iron	16100	50		mg/kg	SW846 6010D
Lead	20.3	2.0		mg/kg	SW846 6010D
Magnesium	3940	500		mg/kg	SW846 6010D
Manganese	193	1.5		mg/kg	SW846 6010D
Mercury	0.037	0.031		mg/kg	SW846 7471B
Nickel	35.4	4.0		mg/kg	SW846 6010D
Silver	0.60	0.50		mg/kg	SW846 6010D
Vanadium	14.8	5.0		mg/kg	SW846 6010D
Zinc	37.4	5.0		mg/kg	SW846 6010D

JD35645-1A TT-SB-04-7.5-9.5

No hits reported in this sample.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C171619.D 1 11/24/21 16:32 TDN 11/20/21 13:00 n/a V3C7565

Run #2

Initial Weight

Run #1 5.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.5	9.3	3.8	ug/kg	J
71-43-2	Benzene	ND	0.46	0.42	ug/kg	
74-97-5	Bromochloromethane	ND	4.6	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.6	1.3	ug/kg	
74-83-9	Bromomethane ^a	ND	4.6	0.71	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.3	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.57	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.6	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	4.6	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.61	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.64	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.93	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.93	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.93	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.93	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.6	0.67	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.93	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.93	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.93	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.93	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.93	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.42	ug/kg	
100-41-4	Ethylbenzene	ND	0.93	0.42	ug/kg	
76-13-1	Freon 113	ND	4.6	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.6	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.6	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.81	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.93	0.43	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.6	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.6	2.4	ug/kg		
100-42-5	Styrene	ND	1.9	0.37	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.54	ug/kg		
108-88-3	Toluene	ND	0.93	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.6	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.6	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.45	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.51	ug/kg		
79-01-6	Trichloroethene	ND	0.93	0.71	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.6	0.63	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.93	0.83	ug/kg		
95-47-6	o-Xylene	ND	0.93	0.42	ug/kg		
1330-20-7	Xylene (total)	ND	0.93	0.42	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits				
1868-53-7	Dibromofluoromethane	110%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	112%	75-131%				
2037-26-5	Toluene-D8	97%	81-121%				
460-00-4	4-Bromofluorobenzene	107%	60-141%				
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176656.D 1 11/25/21 01:35 CS 11/23/21 10:30 OP36783 EM7594

Run #2

Initial Weight Final Volume Run #1 31.4 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	67	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	21	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	29	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	60	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	170	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	170	36	ug/kg	
95-48-7	2-Methylphenol	ND	67	22	ug/kg	
	3&4-Methylphenol	ND	67	28	ug/kg	
88-75-5	2-Nitrophenol	ND	170	22	ug/kg	
100-02-7	4-Nitrophenol	ND	340	90	ug/kg	
87-86-5	Pentachlorophenol	ND	130	32	ug/kg	
108-95-2	Phenol	ND	67	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	170	22	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	25	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	20	ug/kg	
83-32-9	Acenaphthene	ND	34	12	ug/kg	
208-96-8	Acenaphthylene	ND	34	17	ug/kg	
98-86-2	Acetophenone	ND	170	7.2	ug/kg	
120-12-7	Anthracene	ND	34	21	ug/kg	
1912-24-9	Atrazine ^a	ND	67	14	ug/kg	
56-55-3	Benzo(a)anthracene	27.6	34	9.5	ug/kg	J
50-32-8	Benzo(a)pyrene	25.0	34	15	ug/kg	J
205-99-2	Benzo(b)fluoranthene	36.7	34	15	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	34	17	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	34	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	67	13	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	67	8.2	ug/kg	
92-52-4	1,1'-Biphenyl	ND	67	4.6	ug/kg	
100-52-7	Benzaldehyde	ND	170	8.3	ug/kg	
91-58-7	2-Chloronaphthalene	ND	67	8.0	ug/kg	
106-47-8	4-Chloroaniline	ND	170	12	ug/kg	
86-74-8	Carbazole	ND	67	4.9	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 94.6

D 1 4 D 1 A D 1 O O O O C + D 11 NX

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	67	13	ug/kg	
218-01-9	Chrysene	27.7	34	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	67	7.2	ug/kg	_
111-44-4	bis(2-Chloroethyl)ether	ND	67	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	67	12	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	67	11	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	34	10	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	34	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	67	28	ug/kg	
123-91-1	1,4-Dioxane	ND	34	22	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	34	15	ug/kg	
132-64-9	Dibenzofuran	ND	67	14	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	67	5.5	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	67	8.4	ug/kg	
84-66-2	Diethyl phthalate	ND	67	7.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	67	6.0	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	34.5	67	7.9	ug/kg	J
206-44-0	Fluoranthene	47.2	34	15	ug/kg	
86-73-7	Fluorene	ND	34	15	ug/kg	
118-74-1	Hexachlorobenzene	ND	67	8.5	ug/kg	
87-68-3	Hexachlorobutadiene	ND	34	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	340	13	ug/kg	
67-72-1	Hexachloroethane	ND	170	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	19.0	34	16	ug/kg	J
78-59-1	Isophorone	ND	67	7.2	ug/kg	
91-57-6	2-Methylnaphthalene	ND	34	7.6	ug/kg	
88-74-4	2-Nitroaniline	ND	170	7.9	ug/kg	
99-09-2	3-Nitroaniline	ND	170	8.4	ug/kg	
100-01-6	4-Nitroaniline	ND	170	8.7	ug/kg	
91-20-3	Naphthalene	ND	34	9.5	ug/kg	
98-95-3	Nitrobenzene	ND	67	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	67	9.7	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	170	12	ug/kg	
85-01-8	Phenanthrene	26.1	34	11	ug/kg	J
129-00-0	Pyrene	51.9	34	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	170	8.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 55% 7-101%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-04-7.5-9.5

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	56% 98% 67% 71% 75%		12-101% 10-127% 15-114% 22-104% 23-121%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	System artifact System artifact/aldol-condensation Unknown Total TIC, Semi-Volatile		3.26 3.32 15.00	190 250 590 590	ug/kg ug/kg ug/kg ug/kg	J J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105024.D 1 12/10/21 23:27 KLS 11/23/21 10:30 OP36783A E4M4881

Run #2

Initial Weight Final Volume
Run #1 31.4 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.4 1.7 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 62%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 64%
 17-91%

 1718-51-0
 Terphenyl-d14
 67%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

Lab Sample ID: JD35645-1 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/19/21 Method: SW846 8151A SW846 3546 Percent Solids: 94.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By OP36792 G3G4896 Run #1 3G134221.D 1 11/25/21 09:57 RK 11/24/21 10:05 Run #2

Initial Weight Final Volume

Run #1 5.0 ml 15.1 g Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	115% 68%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723092.D 1 11/24/21 21:59 TC 11/23/21 10:00 OP36786 G4G3662

Run #2

Initial Weight Final Volume Run #1 15.1 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.70	0.58	ug/kg	
319-84-6	alpha-BHC	ND	0.70	0.57	ug/kg	
319-85-7	beta-BHC	ND	0.70	0.63	ug/kg	
319-86-8	delta-BHC	ND	0.70	0.67	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.70	0.52	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.70	0.56	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.70	0.32	ug/kg	
60-57-1	Dieldrin	ND	0.70	0.48	ug/kg	
72-54-8	4,4'-DDD	1.4	0.70	0.64	ug/kg	
72-55-9	4,4'-DDE	0.90	0.70	0.61	ug/kg	
50-29-3	4,4'-DDT	7.3	0.70	0.62	ug/kg	
72-20-8	Endrin	ND	0.70	0.54	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.70	0.55	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.70	0.40	ug/kg	
959-98-8	Endosulfan-I	ND	0.70	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.70	0.44	ug/kg	
76-44-8	Heptachlor	ND	0.70	0.60	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.70	0.49	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.56	ug/kg	
53494-70-5	Endrin ketone	ND	0.70	0.51	ug/kg	
8001-35-2	Toxaphene	ND	18	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	91%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	104%		27-13	38%	
2051-24-3	Decachlorobiphenyl	90%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	94%		10-1	79 %	

 $ND = Not detected \qquad MDL =$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

 Lab Sample ID:
 JD35645-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/19/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	RK6651.D	1	11/25/21 19:18	CP	11/23/21 10:00	OP36787	GRK173
Run #2							

Initial Weight Final Volume Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016 ^a	ND	35	16	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	22	ug/kg	
53469-21-9	Aroclor 1242	ND	35	14	ug/kg	
12672-29-6	Aroclor 1248	ND	35	31	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260 a	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	137%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	130%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	126%		10-1	72%	
2051-24-3	Decachlorobiphenyl	118%		10-1	72%	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

Lab Sample ID: JD35645-1 Date Sampled: 11/19/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4340	50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.0	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.9	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	39.0	20	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.31	0.20	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.50	0.50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	2150	500	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	15.2	1.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	5.3	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	16.8	2.5	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	16100	50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	20.3	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	3940	500	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	193	1.5	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.037	0.031	mg/kg	1	11/24/21	11/24/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	35.4	4.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1000	1000	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.0	2.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.60	0.50	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1000	1000	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.0	1.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	14.8	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	37.4	5.0	mg/kg	1	11/30/21	12/01/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51485(2) Instrument QC Batch: MA51523(3) Prep QC Batch: MP30023(4) Prep QC Batch: MP30071

Page 1 of 1

Client Sample ID: TT-SB-04-7.5-9.5

Lab Sample ID: JD35645-1 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/19/21 Percent Solids: 94.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.23 94.6	0.23	mg/kg %	1 1	12/09/21 02:05 11/22/21 17:03		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.2

Report of Analysis

Client Sample ID: TT-SB-04-7.5-9.5

Lab Sample ID:JD35645-1ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 4Q23728.D 1 12/16/21 08:36 AFL 12/08/21 07:00 F:OP88699 F:S4Q325

Run #2

Initial Weight Final Volume
Run #1 2.08 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.0	0.39	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.51	0.25	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.51	0.25	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.51	0.25	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.51	0.25	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.51	0.25	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.51	0.25	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.51	0.25	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.51	0.25	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.51	0.27	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.51	0.25	ug/kg	
DEDEL HOL		,				
	ROALKYLSULFONIC ACIDS		0.54	0.05	а	
375-73-5	Perfluorobutanesulfonic acid	ND	0.51	0.25	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.51	0.25	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.51	0.25	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.51	0.25	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.51	0.25	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.51	0.25	ug/kg	
.01010	11 05.1	112	0.01	0.20	"B' "B	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	1.0	0.51	ug/kg	
2991-50-6	EtFOSAA	ND	1.0	0.51	ug/kg	
ELHODOW	ELOMED CHI EONATES					
	ELOMER SULFONATES	NID	1.0	0.05	. 1	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.0	0.25	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.0	0.25	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-04-7.5-9.5 Lab Sample ID: JD35645-1A

Lab Sample ID:JD35645-1ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/19/21Method:EPA 537M BY ID IN HOUSEPercent Solids:94.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	96%		40-140%
	13C5-PFPeA	98%		50-150 %
	13C5-PFHxA	99%		50-150 %
	13C4-PFHpA	100%		50-150 %
	13C8-PFOA	102%		50-150 %
	13C9-PFNA	104%		50-150 %
	13C6-PFDA	107%		50-150 %
	13C7-PFUnDA	105%		40-140%
	13C2-PFDoDA	103%		40-140%
	13C2-PFTeDA	101%		30-130%
	13C3-PFBS	97%		50-150 %
	13C3-PFHxS	96%		50-150 %
	13C8-PFOS	100%		50-150 %
	13C8-FOSA	107%		30-130%
	d3-MeFOSAA	107%		40-140%
	d5-EtFOSAA	112%		40-140%
	13C2-6:2FTS	96%		50-150 %
	13C2-8:2FTS	99%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

SGS	9	0 5U		SGS No 2235 F	orth A Route 1	merio 30, Da	ca Inc. ayton, N	- Dayt	on 0	-	-	_				Tracking #					Bottle Ord		ge]	_ of	<u>)</u>	_
EHSA-QAC-0023-04-FORM-Standard COC			TEI	732-32			X: 732∹ m/ehsu		9/348	0				s	GS Que	te#					SGS Job	Jr.		564	5	
Client / Reporting information			Projec	t Inform		2							-					_	Reque	ted A	nalysis		\equiv		Matrix Co	des
TETRA TECHT	Project Name		4	35	20	54.										3	1,4 Drox	75/	=				77	. -	DW - Drinking GW - Ground WW - Wat	Water
6 CENTURY DR.	City		State	Billing In	formatic Name	on (if diff	ferent fro	m Report	to)	_				4.	*	TCL +		PEST. 1	Pc8 1		2		3124		SW - Surface SO - Soi SL- Studg SED-Sedim	dl ge
PARSIPPANY NJ 07954	Project#			Street Ad	dress										720	Œ	SIA	تلج	(72-	215	0		1		OI - Oil LIQ - Other L	Liquid
	CA -TAGA	co Q TE	rrateu							State		_	Zip) TCL	0	5		2-		MITA	لع	٥	_	AIR - Air SOL - Other WP - Wip FB - Field B	Salid pe
973 630 4045 Sample(s) Name(s) Phone A	Project Mana	ger		Attention							-	_		_	V8260	AB 8270	8 827 ³	P808	P8082	15184	×	MTAL	707		EB-Equipment RB - Rinse E TB - Trip Bl	it Blank Blank
A-VAIG			Colle	ction	_				Е,	Num	ber of pr	eserved	Bottles	\rightarrow	_		_		H Check	(Lab U	se Only)	_				
Sumple # Field ID / Point of Collection	MECH/DI Vist #	Dale	Time	Sampled by	Grab (G) Comp (C)	Source Citioninat ed (Y/N)	Matnx	# of boilies	호	NaOH	HNO,	NONE DI Water	MEOH	a a con											LAB USE C	YINC
1 TT-58-04-7.5-9.5	•	11/9/21	1041	AV	G		50	6		_		3	1 3	3	~	~	1	~	1	V	~		<u> </u>	\dashv	034	\rightarrow
									\vdash	4	+	\vdash	\vdash	+		-		+		<u> </u>		-	\vdash	-	1476	,
				<u> </u>	_	-		_	\vdash	_	+	H	₩	+		-		1-	+	-	┼	\vdash	\vdash	$\overline{}$	4926	\dashv
	1								\vdash	+	+	H	H	+				\vdash	+			-	+	\perp	1120	
	 	_							H	\dashv	+	H	+	+			-				 					
						П				1	\top	Н	$\dagger \dagger$	T												
													П	\Box												
													П										\perp	\sqcup		
													Ш	Ш					ļ.,	<u> </u>		ļ	$oxed{oxed}$	\vdash		
									\sqcup		_	Ш	\perp	44		-	_	<u> </u>	ļ	<u> </u>	<u> </u>	-	 	\vdash		
Turn Around Time (Bu	einees Down	Ļ	<u></u>					<u> </u>		Do	livera	ble	Ш	Ш				l	_	<u></u>		Comi	ments /	Special	Instructions	
ad) anni proporti inte	Approved By (S			$\vdash \equiv$	Соли	mercial '	"A" (Leve	e! 1)	-				Catego	ry A			DOD	-QSM5	•	37	59 6	ma	180		-	
10 Business Days				=			"B" (Leve	1 2)		[_		Catego Criter						İ		mit	ar A⊈s	Secret	12sner	<u> 1315</u>	
5 Business Days 3 Business Days*				=	-	ier I (Le	(Level 3) evel 4)			ľ	_		Criter						1		1 11	ملا ادد	orifica	tion		
2 Business Days*					-	mercial '	"C"			į	_	tate Fo							İ		Ca.	, G , 41				
1 Business Day*					NJDI		Co	cial "A" =	Paculta]		DD Fo		oculte +		mmarv										
	proval needed	for 1-3 Busines	Day TAT	_برا			Comr	nercial "C	" = Re:	sults +	QC St	ımmary	+ Parti	al Raw	data		dallas		1		<u>b</u>	ttp://w	ww.sgs	.com/en/	/terms-and-cond	ditions
Representation by: Date / Time 1	9/21 13	Samp Received By:	le Culstody	must be	docum	nented	pelow ea	ach time	Reling 2		O		Sion,	includ	ling c	8 2	7	Date /	in	27	Rucelve 2	d By:	<u>cem</u>	it	tec	
Relinquished by: Date / fim		Received By:							4	uish		_		_		_		Date /	fime:	-	Receive 4	d By:			Cooler Temp. *C	
Ralinquished by: Date / Time	0;	Received By:	v						Custo	dy Sea	ıi #				Intaci Not inta	ct	Absent			Them See Sa	n ID: mpte Rece	iot Summ	On los mary []	·	Judier Jemp. C	
																						C	<u>'</u> -Z	P:	B4 1	/ み

JD35645: Chain of Custody Page 1 of 3

SGS Sample Receipt Summary

Job Number: JD3564	5 Client:	TETRA TECH	Project: 2ND AVENUE AND	33-39TH STREET, BROOKL
Date / Time Received: 11/19/20	021 6:07:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured) ^c Cooler Temps (Corrected) ^c	, , ,			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved:	3. COC Pro 4. Smpl Dates Y or N		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y or N ✓ □ ✓ □ ✓ □
2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	IR Gun Ice (Bag) 1 Y or N N/A		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y or N Intact
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N N/A ✓ □ □ ✓ ✓ □ ✓ □ ✓ □ ✓ □ ✓ □ ✓
Test Strip Lot #s: pH 1-	12: 231619	pH 12+:	203117A Other: (Specify)	
Comments				

SM089-03 Rev. Date 12/7/17

JD35645: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

Requested Date:	12/13/2021	Received Date:	11/19/2021
Account Name:	Tetra Tech	Due Date:	12/13/2021
Project Description:	Project Description: 2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	JADONS PM: JBS	TAT (Days):	7

Sample #: JD35645-ALL

Change: Please move project to TTNJP90692 and re-sub to ALSE.

TAT: 7

Dept:

Above Changes Per: Jadon Schiller Date/Time: 12/13/2021

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

JD35645: Chain of Custody

Page 3 of 3

				SGS Not 2235 Ro	ute 130	Dayto	n, NJ*0	8810					FED-E	X Tracking	ji .		X.		Borne O	rder Con	firol #		
	1			TEL. 732-329		FAX: 7		3499/	3480				SGS G	uote #		~			SGS Jo	b #	J	035645	
	Client / Reporting Information						a one	ra to	e To	100		-	1				Danie		nalysis		_		Matrix Codes
mpan	Name:	Project Name:		1.0		250			-		_		100				Teque	T Stea A	Halysis				Mainx Codes
		2nd Avenue a	ind 33-39th Sti	eet, Brooklyn	NY								Sur	3	1	- 1	- 11	38					DW - Drinking Wate
set Ad	dress	Street		5-	4 4000	0		_				Title	100	e las	110	-	-30	1.5			100		GW - Ground Water WW - Water
				1	88ling	Informatio	on (it diffe	rent fe	am R	eport to)									100	100	10.00		SW - Surface Water SO - Soil
ry	State Zip	City		State	Compa	y Name :	2.0				-	-				dist.	1 -	2			1		SL- Sludge
oject C	intact E-mail												Gal		5111	0.5							SED-Sediment OI - Oil
	n.Schiller@sgs.com	Project#		17	Street			3											1				LIQ - Other Liquid AIR - Air
one #		Client Purchase	Order #	-	City	11000	, P	-	tate	_	Ze		-			-	1 3						SOL - Other Solid
					-17			,				-											WP - Wipe F8 - Field Blank
	Name(s) Pr	ione Project Manager			Attention	11							1										EB-Equipment Blan RB - Rinse Blank
ΑV													12										TB - Trip Blank
				Collection	-			-	Numbe	er of prese	wed Bo	offes	1 1										
GS		The second second			Sampled		# of		5 6	0 4	A HO	l k	LCID537NY2					4					
ngie ii	Field ID / Point of Collection	MECHIDI VIII P	Dale	Time	by	Matrix	bottles	포	HNO	NONE	DIWA	N N	9										LAB USE ONLY
IA	TT-SB-04-7.5-9.5		11/19/21	10:41:00 AM	AV	so	-	П		Ш		П	X										
									T		\top	T					1						-1
7					-			H	+	H	+	+			-	-	-	-	-			_	_
-		-						H	-	111	+	11							_	_			
						v=1									- 1								
							0	П	Т	Ш		П							1				
											†	11											
1					-			H	+	H	+	+	-	-	_		-	-	-		-		
-								1	\perp	\square	+	Н											
					V 1						d 5		. 11										
											Т	П											
								†			+	†											1
\dashv						-		Н	+	H	+	++	-		-		-		-	-		-	
-							_	Н			+	\perp	_										
				1.7																			
	Turniround Time (Business days)									informa								Corr	ments/	Specia	al Instruct	ions	
_		Approved By (SGS	PM); / Date;				lal "A" (L						gory A										
	Standard 10 Business Days 5 Business Days RUSH	-					fal "B" (L Level 3+4					SP Cate											
	3 Business Days RUSH					NJ Reduc		.,				Forms											
	2 Business Days RUSH	7				Commerc						NYA		- 1									
	1 Business Day EMERGENCY						Commerc	ial "A"	= Res		OUICI		01.0	_									
D	Other 1/14/1900						Commerc	ia! "B"	= Res	uts + QC	Sumr	mary											
Emerg	ency & Rush T/A data available via Lablink App			du mund by 1	-6	d bala	Commerc	ial "C"	= Res	ults + QC	Sumr	mary +	Partial Ra	w data					bit	p://ww	W.399.	om/en/te	rms-and-conditions
Relino	abed by:	The 19:00	Received By:	dy must be do) .	Moled D	each tim	Reting			possi	ession	, includi	ing cour	ier deli	Pate / T	lan.	1	Receive	d Our	n.	L	
1	- R 1	122/21	1	rea	20		-1	2			F	X			-1	7/1	23	121	2	oy.	MANT.	1+	
lings	shed by: Dafe	/ Time:	Received By:					Reling	ulahe	d By:	11					Date AT	ing L	1-	Receive	d By:	00-0	-	
5			3					4									100	4		-,-			

INITIAL ASSESSMENT_

LAREL VERIFICATION_

jd35645 x/s Rev Date: 4/10/18

> JD35645: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Therm ID: IR 1; Therm CF: 0.2; # of Coolers: 1 Cooler Temps (Raw Measured) °C: Cooler 1: (3.6); Cooler Temps (Corrected) °C: Cooler 1: (3.8); Cooler Information Y or N Sample Information Y or N N/A 1. Custody Seals Present I Sample Information Y or N N/A 2. Custody Seals Intact I Sample Information IR Gun Sufficient volume/containers recvd for analysis: I Sample Infact 4. Cooler temp verification IR Gun Sample Infact 5. Cooler media Ice (Bag) Sample recvd within HT I Sample Infact 6. Dates/Times/IDs on COC match Sample Label I Sampl	Job Number: JD35645	5	Client:	SGS NJ	Project: 2ND AVEN	NUE						
Cooler Temps (Raw Measured) °C: Cooler 1: (3.6); Cooler Temps (Corrected) °C: Cooler 1: (3.8); Cooler Information	Date / Time Received: 11/23/20	Date / Time Received: 11/23/2021 10:15:00 AM			FX Airbill #'s : 5272 06	Airbill #'s: 5272 0636 5606						
Cooler Temps (Corrected) °C: Cooler 1: (3.8); Cooler Information	Therm ID: IR 1;			Therm CF: 0.2;	# of Cool	ers: 1						
Sample Information	Cooler Temps (Raw Measure	d) °C: Coo	ler 1: (3.6	3);								
1. Custody Seals Present	Cooler Temps (Correcte	d) °C: Coo	ler 1: (3.8	3);								
2. Custody Seals Intact 2. Samples preserved properly 3. Sufficient volume/containers recvd for analysis: 4. Cooler temp verification IR Gun 5. Cooler media Ice (Bag) 4. Condition of sample Intact 5. Sample recvd within HT 6. Dates/Times/IDs on COC match Sample Label 7. VOCs have headspace 9. Compositing instructions clear 1. Trip Blank present / cooler 2. Trip Blank listed on COC 9. Compositing instructions clear 10. Voa Soil Kits/Jars received past 48hrs? 11. % Solids Jar received? 12. Residual Chlorine Present? Misc. Information Number of Encores: 25-Gram Number of Encores: 25-Gram PH 0-3 230315 PH 10-12 219813A Other: (Specify) Output 1. Condition of sample 1. Condition of sample 1. Intact 4. Condition of sample Intact	Cooler Information	Y or	N_		Sample Information	Y or	N	N/A				
3. Temp criteria achieved	1. Custody Seals Present	✓			1. Sample labels present on bottles	✓						
4. Cooler temp verification IR Gun 4. Condition of sample Intact 5. Cooler media Ice (Bag) 5. Sample recvd within HT 6. Dates/Times/IDs on COC match Sample Label 7. VOCs have headspace 7. VOCs have heads	2. Custody Seals Intact	✓			2. Samples preserved properly	✓						
5. Cooler media	3. Temp criteria achieved	✓			3. Sufficient volume/containers recvd for analysis:	✓						
Composition Composition	4. Cooler temp verification	IR Gun			4. Condition of sample	<u>Intact</u>						
Trip Blank Information	5. Cooler media	Ice (Bag)			5. Sample recvd within HT	✓						
1. Trip Blank present / cooler					6. Dates/Times/IDs on COC match Sample Label	✓						
2. Trip Blank listed on COC	Trip Blank Information	Y or	<u>N</u> _	N/A_	7. VOCs have headspace			✓				
W or S N/A 10. Voa Soil Kits/Jars received past 48hrs?	1. Trip Blank present / cooler			✓	8. Bottles received for unspecified tests		✓					
Mor S N/A 11. % Solids Jar received? 12. Residual Chlorine Present? Misc. Information Number of Encores: 25-Gram 5-Gram Number of 5035 Field Kits: Number of Lab Filtered Metals: Test Strip Lot #s: pH 0-3 230315 pH 10-12 219813A Other: (Specify) Residual Chlorine Test Strip Lot #:	2. Trip Blank listed on COC			✓	9. Compositing instructions clear			\checkmark				
3. Type Of TB Received		W or	9	N/A	10. Voa Soil Kits/Jars received past 48hrs?			\checkmark				
Misc. Information Number of Encores: 25-Gram	0.7.0(70.0)			·	11. % Solids Jar received?			\checkmark				
Number of Encores: 25-Gram 5-Gram Number of 5035 Field Kits: Number of Lab Filtered Metals: Test Strip Lot #s: pH 0-3 230315 pH 10-12 219813A Other: (Specify) Other: (Specify)	3. Type Of 1B Received			lacksquare	12. Residual Chlorine Present?			\checkmark				
Test Strip Lot #s: pH 0-3 230315 pH 10-12 219813A Other: (Specify) Residual Chlorine Test Strip Lot #:	Misc. Information											
Residual Chlorine Test Strip Lot #:	Number of Encores: 25-Gram	ı	5-Gram	Num	nber of 5035 Field Kits: Number of	Lab Filtered M	letals:					
Residual Chlorine Test Strip Lot #:	Test Strip Lot #s:	pH 0-3	23031	 5 pH								
Comments	Residual Chlorine Test Strip Lot	#:										
	Comments											
SM001 Rev. Date 05/24/17 Technician: PETERH Date: 11/23/2021 10:15:00 Reviewer: Date: Date:		n: PETERH		Date: 11/23/202	11 10:15:00 Reviewer:		Date:					

JD35645: Chain of Custody Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD35782

Sampling Dates: 11/19/21 - 11/23/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 122

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

how we can serve you better at:

EHS.US.CustomerCare@sgs.com

1 of 122

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	14
Section 4: Sample Results	23
4.1: JD35782-1: TT-SB-05-6.5-8.5	24
4.2: JD35782-1A: TT-SB-05-6.5-8.5	35
4.3: JD35782-2: S DUP-01	37
4.4: JD35782-2A: S DUP-01	
4.5: JD35782-3: TT-SB-06-5.0-7.0	50
4.6: JD35782-3A: TT-SB-06-5.0-7.0	61
4.7: JD35782-4: TT-SB-07-6.0-8.0	63
4.8: JD35782-4A: TT-SB-07-6.0-8.0	74
4.9: JD35782-5: TT-SB-08-7.0-9.0	76
4.10: JD35782-5A: TT-SB-08-7.0-9.0	88
4.11: JD35782-6: TT-SB-09-5.0-7.0	90
4.12: JD35782-6A: TT-SB-09-5.0-7.0	102
4.13: JD35782-7: TT-SB-10-7.0-9.0	104
4.14: JD35782-7A: TT-SB-10-7.0-9.0	
Section 5: Misc. Forms	117
5.1: Chain of Custody	118
5.2: Chain of Custody (SGS Orlando, FL)	121

Sample Summary

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co		lts reported as = Not detecte			cted. The following app L	plies:
JD35782-1	11/19/21	13:50 AV	11/23/21	so	Soil	TT-SB-05-6.5-8.5
JD35782-1A	11/19/21	13:50 AV	11/23/21	so	Soil	TT-SB-05-6.5-8.5
JD35782-2	11/19/21	16:00 AV	11/23/21	so	Soil	S DUP-01
JD35782-2A	11/19/21	16:00 AV	11/23/21	so	Soil	S DUP-01
JD35782-3	11/22/21	09:35 AV	11/23/21	so	Soil	TT-SB-06-5.0-7.0
JD35782-3A	11/22/21	09:35 AV	11/23/21	so	Soil	TT-SB-06-5.0-7.0
JD35782-4	11/22/21	12:23 AV	11/23/21	so	Soil	TT-SB-07-6.0-8.0
JD35782-4A	11/22/21	12:23 AV	11/23/21	so	Soil	TT-SB-07-6.0-8.0
JD35782-5	11/22/21	14:04 AV	11/23/21	so	Soil	TT-SB-08-7.0-9.0
JD35782-5A	11/22/21	14:04 AV	11/23/21	so	Soil	TT-SB-08-7.0-9.0
JD35782-6	11/23/21	09:15 AV	11/23/21	so	Soil	TT-SB-09-5.0-7.0
JD35782-6A	11/23/21	09:15 AV	11/23/21	so	Soil	TT-SB-09-5.0-7.0

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

JD35782

Job No:

Sample Summary (continued)

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

JD35782 Job No:

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JD35782-6AD	11/23/21	09:15 AV	11/23/21	so	Soil Dup/MSD	TT-SB-09-5.0-7.0
JD35782-6AS	11/23/21	09:15 AV	11/23/21	so	Soil Matrix Spike	TT-SB-09-5.0-7.0
JD35782-6D	11/23/21	09:15 AV	11/23/21	so	Soil Dup/MSD	TT-SB-09-5.0-7.0
JD35782-6S	11/23/21	09:15 AV	11/23/21	so	Soil Matrix Spike	TT-SB-09-5.0-7.0
JD35782-7	11/23/21	11:06 AV	11/23/21	so	Soil	TT-SB-10-7.0-9.0
JD35782-7A	11/23/21	11:06 AV	11/23/21	so	Soil	TT-SB-10-7.0-9.0

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No: JD35782

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/23/2021 1:27:54 P

On 11/23/2021, 7 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.7 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35782 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9766

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.
- JD35782-5 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-2 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-1 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD35782-4 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- VI9766-BS for 1,2-Dichlorobenzene: High percent recovery and no associated positive reported in the QC batch.
- JD35782-3 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-3 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-3 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD35782-3 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- VI9766-BS for Trichlorofluoromethane: High percent recovery and no associated positive reported in the QC batch.
- JD35782-6 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-6 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD35782-1 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- VI9766-BS for 1,3-Dichlorobenzene: High percent recovery and no associated positive reported in the QC batch.
- JD35782-6 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-4 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-5 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-2 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD35782-2 for 1,2-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.

Thursday, December 23, 2021

Page 1 of 8

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9766

- JD35782-2 for 1,3-Dichlorobenzene: This compound in blank spike is outside in house QC limits bias high.
- JD35782-5 for Chloroethane: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for Trichlorofluoromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Matrix: SO Batch ID: VI9767

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD35839-2MS, JD35839-4DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88771

- The data for EPA 537M BY ID meets quality control requirements.
- JD35782-4A: Analysis performed at SGS Orlando, FL.
- JD35782-7A: Analysis performed at SGS Orlando, FL.
- JD35782-1A: Analysis performed at SGS Orlando, FL.
- JD35782-3A: Analysis performed at SGS Orlando, FL.
- JD35782-6A: Analysis performed at SGS Orlando, FL.
- JD35782-2A: Analysis performed at SGS Orlando, FL.
- JD35782-5A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36836

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for Hexachlorocyclopentadiene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Hexachlorocyclopentadiene are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MS/MSD for Hexachlorocyclopentadiene are outside of in house control limits.
- JD35782-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for Hexachlorocyclopentadiene: Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.
- JD35782-6 for Pentachlorophenol: Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.
- OP36836-MSD for Hexachlorocyclopentadiene: Outside of in house control limits.
- JD35782-3 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.

Thursday, December 23, 2021

Page 3 of 8

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36836

- JD35782-2 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for Acetophenone: Associated CCV outside of control limits high. Estimated value, due to corresponding failure in the batch associated CCV.
- JD35782-7 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD35782-3 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-6 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-7 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD35782-4 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD35782-2 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD35782-5 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36836A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.

Thursday, December 23, 2021

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36830

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for MS/MSD for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, Aldrin, alpha-BHC, alpha-Chlordane, beta-BHC, delta-BHC, Dieldrin, Endosulfan sulfate, Endosulfan-I, Endosulfan-II, Endrin, Endrin aldehyde, Endrin ketone, gamma-BHC (Lindane), gamma-Chlordane, Heptachlor, Heptachlor epoxide, Methoxychlor are outside control limits. Analytical precision exceeds inhouse control limits.
- Matrix Spike Duplicate Recovery(s) for alpha-Chlordane, gamma-Chlordane, 4,4'-DDD, 4,4'-DDE are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- JD35782-2: Confirmation run.
- JD35782-6: Confirmation run.
- JD35782-4: Confirmation run.
- OP36830-BS1: Had TBA cleanup.
- OP36830-MB1: Had TBA cleanup.
- JD35782-1: Confirmation run.
- JD35782-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35782-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35782-4 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35782-4 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for alpha-BHC: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35782-4 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35782-6 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for 4,4'-DDD: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-2 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-1 for gamma-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-1 for gamma-BHC (Lindane): More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-2 for gamma-BHC (Lindane): More than 40 % RPD for detected concentrations between the two GC columns.
- OP36830-BS1 for Heptachlor epoxide: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD35782-2 for gamma-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for gamma-BHC (Lindane): More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-2 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-2 for Endrin: More than 40 % RPD for detected concentrations between the two GC columns.
- $\,\blacksquare\,$ JD35782-2 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-1 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-4 for Endrin ketone: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-7 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-7 for 4,4'-DDD: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35782-6 for Heptachlor epoxide: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

Thursday, December 23, 2021

Page 5 of 8

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36830

JD35782-6 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36831

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36859

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Duplicate Recovery(s) for 2,4,5-T, 2,4,5-TP (Silvex) are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MS/MSD for 2,4,5-T, 2,4,5-TP (Silvex) are outside control limits. Analytical precision exceeds in-house control limits.
- JD35782-2: Had TBA cleanup. Dilution required due to matrix interference.
- JD35782-6: Had TBA cleanup. Dilution required due to matrix interference.
- JD35782-5: Had TBA cleanup. Dilution required due to matrix interference.
- JD35782-4: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-MB1: Had TBA cleanup.
- JD35782-1: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-MS: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-BS1: Had TBA cleanup.
- JD35782-7: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-MSD: Had TBA cleanup. Dilution required due to matrix interference.
- JD35782-7 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-4 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-5 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-2 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-1 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-6 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.
- JD35782-3 for 2,4,5-T: Associated CCV outside of control limits high, sample was ND.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30089

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD, JD35782-6PS, JD35782-6SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony, Iron, Magnesium, Potassium are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Iron are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Calcium, Iron are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MS/MSD for Magnesium are outside control limits. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Arsenic, Beryllium, Potassium, Silver, Sodium, Thallium are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- JD35782-7 for Silver: Elevated detection limit due to dilution required for high interfering element.
- MP30089-SD1 for Iron: Serial dilution indicates possible matrix interference.
- MP30089-MB1 for Iron: All reported results <RL or >10x MB value.
- MP30089-SD1 for Aluminum, Barium : Serial dilution indicates possible matrix interference.
- MP30089-SD1 for Copper: Serial dilution indicates possible matrix interference.
- JD35782-5 for Silver: Elevated detection limit due to dilution required for high interfering element.
- MP30089-SD1 for Magnesium: Serial dilution indicates possible matrix interference.
- MP30089-SD1 for Manganese: Serial dilution indicates possible matrix interference.
- MP30089-SD1 for Vanadium: Serial dilution indicates possible matrix interference.
- JD35782-2 for Silver: Elevated detection limit due to dilution required for high interfering element.
- JD35782-4 for Silver: Elevated detection limit due to dilution required for high interfering element.
- MP30089-SD1 for Calcium: Serial dilution indicates possible matrix interference.
- MP30089-MB1 for Aluminum: All reported results <RL or >10x MB value.
- MP30089-MB1 for Manganese: All reported results <RL or >10x MB value.

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30055

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples for metals.

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24290

■ Sample(s) JD35782-6DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37293

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6DUP, JD35782-6MS, JD35782-7MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- JD35782-1 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-6 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-4 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-2 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-3 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-5 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35782-7 for Cyanide: Sample prepped within holding time, but run out of holding time.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD35782

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/22/2021 6:56:37

On 11/23/2021, 7 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 4.2 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35782 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88771

Sample(s) JD35782-6AMS, JD35782-6AMSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:
Ariel Hartney, Client Services (signature on file)

Summary of Hits Job Number: JD35782 Page 1 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Analyte	Quai	KL	MIDL	Umis	Menioa
JD35782-1 TT-SB-05-6.5-8.5					
Acetone	18.8	11	4.4	ug/kg	SW846 8260D
Carbon disulfide	0.76 J	2.1	0.57	ug/kg	SW846 8260D
Acenaphthene	237	42	15	ug/kg	SW846 8270E
Acenaphthylene	178	42	21	ug/kg	SW846 8270E
Anthracene	528	42	26	ug/kg	SW846 8270E
Benzo(a)anthracene	1270	42	12	ug/kg	SW846 8270E
Benzo(a)pyrene	1160	42	19	ug/kg	SW846 8270E
Benzo(b)fluoranthene	1370	42	19	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	690	42	21	ug/kg	SW846 8270E
Benzo(k)fluoranthene	571	42	20	ug/kg	SW846 8270E
1,1'-Biphenyl	28.8 J	84	5.8	ug/kg	SW846 8270E
Carbazole	158	84	6.1	ug/kg	SW846 8270E
Chrysene	1430	42	13	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	204	42	19	ug/kg	SW846 8270E
Dibenzofuran	169	84	17	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	173	84	9.9	ug/kg	SW846 8270E
Fluoranthene	2600	42	19	ug/kg	SW846 8270E
Fluorene	269	42	19	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	881	42	20	ug/kg	SW846 8270E
2-Methylnaphthalene	76.1	42	9.5	ug/kg	SW846 8270E
Naphthalene	201	42	12	ug/kg	SW846 8270E
Phenanthrene	1720	42	14	ug/kg	SW846 8270E
Pyrene	2790	42	14	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	8870 J			ug/kg	
gamma-BHC (Lindane) ^a	2.8	0.84	0.62	ug/kg	SW846 8081B
gamma-Chlordane ^a	2.5	0.84	0.38	ug/kg	SW846 8081B
4,4'-DDD	20.2	0.84	0.78	ug/kg	SW846 8081B
4,4'-DDE	5.8	0.84	0.74	ug/kg	SW846 8081B
4,4'-DDT a	2.2	0.84	0.75	ug/kg	SW846 8081B
Aluminum	5910	44		mg/kg	SW846 6010D
Arsenic	4.7	1.7		mg/kg	SW846 6010D
Barium	658	17		mg/kg	SW846 6010D
Beryllium	0.44	0.17		mg/kg	SW846 6010D
Cadmium	0.54	0.44		mg/kg	SW846 6010D
Calcium	24400	870		mg/kg	SW846 6010D
Chromium	13.6	0.87		mg/kg	SW846 6010D
Copper	39.2	2.2		mg/kg	SW846 6010D
Iron	11400	44		mg/kg	SW846 6010D
Lead	363	1.7		mg/kg	SW846 6010D
Magnesium	4160	440		mg/kg	SW846 6010D
Manganese	256	1.3		mg/kg	SW846 6010D
Mercury	0.33	0.017		mg/kg	SW846 7471B
ITACI CUL J	0.00	3.5		mg/kg	SW846 6010D

Summary of Hits Job Number: JD35782 Page 2 of 9

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample II Analyte	O Result/ Qual	RL	MDL	Units	Method
Potassium	1110	870		mg/kg	SW846 6010D
Silver	0.80	0.44		mg/kg	SW846 6010D
Vanadium	21.3	4.4		mg/kg	SW846 6010D
Zinc	370	4.4		mg/kg	SW846 6010D

JD35782-1A TT-SB-05-6.5-8.5

No hits reported in this sample.

JD35782-2 **S DUP-01**

Acetone	20.7	9.3	3.9	ug/kg	SW846 8260D
Carbon disulfide	1.2 J	1.9	0.50	ug/kg	SW846 8260D
o-Xylene	0.51 J	0.93	0.43	ug/kg	SW846 8260D
Xylene (total)	0.51 J	0.93	0.43	ug/kg	SW846 8260D
Total TIC, Volatile	33.9 J			ug/kg	
Acenaphthene	144	37	13	ug/kg	SW846 8270E
Acenaphthylene	157	37	19	ug/kg	SW846 8270E
Anthracene	360	37	23	ug/kg	SW846 8270E
Benzo(a)anthracene	861	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	746	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	942	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	432	37	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	387	37	17	ug/kg	SW846 8270E
1,1'-Biphenyl	16.1 J	73	5.0	ug/kg	SW846 8270E
Carbazole	108	73	5.3	ug/kg	SW846 8270E
Chrysene	926	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	139	37	16	ug/kg	SW846 8270E
Dibenzofuran	87.5	73	15	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	1170	73	8.6	ug/kg	SW846 8270E
Fluoranthene	1790	37	16	ug/kg	SW846 8270E
Fluorene	175	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	558	37	17	ug/kg	SW846 8270E
2-Methylnaphthalene	40.5	37	8.3	ug/kg	SW846 8270E
Naphthalene	93.3	37	10	ug/kg	SW846 8270E
Phenanthrene	1190	37	12	ug/kg	SW846 8270E
Pyrene	1850	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	4520 J			ug/kg	
Aldrin ^a	1.5	0.76	0.63	ug/kg	SW846 8081B
gamma-BHC (Lindane) ^a	7.9	0.76	0.56	ug/kg	SW846 8081B
alpha-Chlordane	6.9	0.76	0.61	ug/kg	SW846 8081B
gamma-Chlordane ^a	4.9	0.76	0.34	ug/kg	SW846 8081B
Dieldrin ^a	1.6	0.76	0.52	ug/kg	SW846 8081B
4,4'-DDD	29.5	0.76	0.70	ug/kg	SW846 8081B
4,4'-DDE	9.0	0.76	0.67	ug/kg	SW846 8081B
•				0 0	

Summary of Hits Job Number: JD35782 Page 3 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
4,4'-DDT a	4.5	0.76	0.67	ug/kg	SW846 8081B
Endrin ^a	0.92	0.76	0.59	ug/kg	SW846 8081B
Endosulfan-II	4.8	0.76	0.48	ug/kg	SW846 8081B
Aluminum	5420	56		mg/kg	SW846 6010D
Arsenic	4.3	2.2		mg/kg	SW846 6010D
Barium	812	22		mg/kg	SW846 6010D
Beryllium	0.43	0.22		mg/kg	SW846 6010D
Cadmium	0.65	0.56		mg/kg	SW846 6010D
Calcium	32000	1100		mg/kg	SW846 6010D
Chromium	12.4	1.1		mg/kg	SW846 6010D
Copper	29.2	2.8		mg/kg	SW846 6010D
lron .	11100	56		mg/kg	SW846 6010D
Lead	337	2.2		mg/kg	SW846 6010D
Magnesium	3740	560		mg/kg	SW846 6010D
Manganese	255	1.7		mg/kg	SW846 6010D
Mercury	0.34	0.030		mg/kg	SW846 7471B
Nickel	12.5	4.5		mg/kg	SW846 6010D
Vanadium	20.4	5.6		mg/kg	SW846 6010D
Zinc	422	5.6		mg/kg	SW846 6010D

JD35782-2A **S DUP-01**

No hits reported in this sample.

JD35782-3 TT-SB-06-5.0-7.0

Acetone	10.2	8.6	3.5	ug/kg	SW846 8260D
Benzo(a)anthracene	33.5 J	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	40.0	36	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	44.6	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	22.2 J	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	20.1 J	36	17	ug/kg	SW846 8270E
Chrysene	30.8 J	36	11	ug/kg	SW846 8270E
Fluoranthene	52.6	36	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	28.7 J	36	17	ug/kg	SW846 8270E
Phenanthrene	17.2 J	36	12	ug/kg	SW846 8270E
Pyrene	59.8	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	160 J			ug/kg	
Aluminum	4600	55		mg/kg	SW846 6010D
Arsenic	2.2	2.2		mg/kg	SW846 6010D
Barium	37.1	22		mg/kg	SW846 6010D
Beryllium	0.53	0.22		mg/kg	SW846 6010D
Calcium	2290	550		mg/kg	SW846 6010D
Chromium	11.7	1.1		mg/kg	SW846 6010D
Copper	10.5	2.7		mg/kg	SW846 6010D
				3 0	

Summary of Hits Job Number: JD35782 Page 4 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Iron	8890	55		mg/kg	SW846 6010D
Lead	15.8	2.2		mg/kg	SW846 6010D
Magnesium	2240	550		mg/kg	SW846 6010D
Manganese	170	1.6		mg/kg	SW846 6010D
Mercury	0.070	0.031		mg/kg	SW846 7471B
Nickel	16.9	4.4		mg/kg	SW846 6010D
Vanadium	17.0	5.5		mg/kg	SW846 6010D
Zinc	32.4	5.5		mg/kg	SW846 6010D

JD35782-3A TT-SB-06-5.0-7.0

No hits reported in this sample.

JD35782-4 TT-SB-07-6.0-8.0

1 4.4 ug/kg SW846 8260D .53 0.48 ug/kg SW846 8260D .1 0.57 ug/kg SW846 8260D .1 0.56 ug/kg SW846 8260D .7 13 ug/kg SW846 8270E .7 19 ug/kg SW846 8270E .90 8.1 ug/kg SW846 8270E .7 23 ug/kg SW846 8270E .7 11 ug/kg SW846 8270E
11 0.57 ug/kg SW846 8260D 11 0.56 ug/kg SW846 8260D 13 ug/kg SW846 8270E 19 ug/kg SW846 8270E 90 8.1 ug/kg SW846 8270E 17 23 ug/kg SW846 8270E 18 27 28 Ug/kg SW846 8270E 19 28 29 29 29 29 29 29 29 29 29 29 29 29 29
.1 0.56 ug/kg SW846 8260D 7 13 ug/kg SW846 8270E 7 19 ug/kg SW846 8270E 90 8.1 ug/kg SW846 8270E 7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
.1 0.56 ug/kg SW846 8260D 7 13 ug/kg SW846 8270E 7 19 ug/kg SW846 8270E 90 8.1 ug/kg SW846 8270E 7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
7 13 ug/kg SW846 8270E 7 19 ug/kg SW846 8270E 90 8.1 ug/kg SW846 8270E 7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
7 19 ug/kg SW846 8270E 90 8.1 ug/kg SW846 8270E 7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
90 8.1 ug/kg SW846 8270E 7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
7 23 ug/kg SW846 8270E 7 11 ug/kg SW846 8270E
7 11 ug/kg SW846 8270E
7 17 ug/kg SW846 8270E
7 17 ug/kg SW846 8270E
7 19 ug/kg SW846 8270E
7 18 ug/kg SW846 8270E
5 5.1 ug/kg SW846 8270E
5 5.4 ug/kg SW846 8270E
7 12 ug/kg SW846 8270E
7 17 ug/kg SW846 8270E
5 15 ug/kg SW846 8270E
5 8.8 ug/kg SW846 8270E
5 33 ug/kg SW846 8270E
7 17 ug/kg SW846 8270E
7 18 ug/kg SW846 8270E
7 8.5 ug/kg SW846 8270E
7 11 ug/kg SW846 8270E
7 13 ug/kg SW846 8270E
5 24 ug/kg SW846 8270E
ug/kg
.70 0.57 ug/kg SW846 8081B
.70 0.57 ug/kg SW846 8081B
5 5 7 7 7 7 7 5

Summary of Hits Job Number: JD35782 Page 5 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
alpha-Chlordane	21.3	0.70	0.56	ug/kg	SW846 8081B
gamma-Chlordane	23.5	0.70	0.32	ug/kg	SW846 8081B
Dieldrin ^a	1.0	0.70	0.48	ug/kg	SW846 8081B
4,4'-DDD a	5.7	0.70	0.64	ug/kg	SW846 8081B
4,4'-DDE	4.1	0.70	0.61	ug/kg	SW846 8081B
4,4'-DDT a	4.2	0.70	0.62	ug/kg	SW846 8081B
Heptachlor epoxide	1.5	0.70	0.49	ug/kg	SW846 8081B
Endrin ketone a	3.3	0.70	0.50	ug/kg	SW846 8081B
Aluminum	4920	55		mg/kg	SW846 6010D
Arsenic	5.7	2.2		mg/kg	SW846 6010D
Barium	92.5	22		mg/kg	SW846 6010D
Beryllium	0.44	0.22		mg/kg	SW846 6010D
Calcium	65100	2700		mg/kg	SW846 6010D
Chromium	10.5	1.1		mg/kg	SW846 6010D
Copper	32.7	2.7		mg/kg	SW846 6010D
Iron	17000	55		mg/kg	SW846 6010D
Lead	169	2.2		mg/kg	SW846 6010D
Magnesium	3430	550		mg/kg	SW846 6010D
Manganese	248	1.6		mg/kg	SW846 6010D
Mercury	0.16	0.031		mg/kg	SW846 7471B
Nickel	17.7	4.4		mg/kg	SW846 6010D
Vanadium	17.4	5.5		mg/kg	SW846 6010D
Zinc	115	5.5		mg/kg	SW846 6010D

JD35782-4A TT-SB-07-6.0-8.0

No hits reported in this sample.

JD35782-5 TT-SB-08-7.0-9.0

Acetone	23.2	20	8.2	ug/kg	SW846 8260D
Carbon disulfide	1.9 J	4.0	1.1	ug/kg	SW846 8260D
Total TIC, Volatile	3960 J	2.0		ug/kg	51,010 02002
Acenaphthene	179	35	12	ug/kg	SW846 8270E
Anthracene	169	35	22	ug/kg	SW846 8270E
Benzo(a)anthracene	106	35	10	ug/kg	SW846 8270E
Benzo(a)pyrene	107	35	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	121	35	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	63.1	35	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	46.1	35	17	ug/kg	SW846 8270E
1,1'-Biphenyl	26.8 J	71	4.8	ug/kg	SW846 8270E
Chrysene	124	35	11	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	19.2 J	35	16	ug/kg	SW846 8270E
Dibenzofuran	173	71	14	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	111	71	8.3	ug/kg	SW846 8270E

Summary of Hits Job Number: JD35782 Page 6 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Fluoranthene	262	35	16	ug/kg	SW846 8270E
Fluorene	339	35	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	77.7	35	17	ug/kg	SW846 8270E
2-Methylnaphthalene	1050	35	8.0	ug/kg	SW846 8270E
Naphthalene	70.0	35	10	ug/kg	SW846 8270E
Phenanthrene	943	35	12	ug/kg	SW846 8270E
Pyrene	267	35	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	53900 J			ug/kg	
4,4'-DDE	0.82	0.66	0.58	ug/kg	SW846 8081B
Aluminum	8770	55		mg/kg	SW846 6010D
Barium	85.1	22		mg/kg	SW846 6010D
Beryllium	0.81	0.22		mg/kg	SW846 6010D
Calcium	30700	1100		mg/kg	SW846 6010D
Chromium	17.6	1.1		mg/kg	SW846 6010D
Cobalt	12.8	5.5		mg/kg	SW846 6010D
Copper	44.4	2.8		mg/kg	SW846 6010D
Iron	16800	55		mg/kg	SW846 6010D
Lead	31.8	2.2		mg/kg	SW846 6010D
Magnesium	17900	550		mg/kg	SW846 6010D
Manganese	313	1.7		mg/kg	SW846 6010D
Mercury	0.28	0.035		mg/kg	SW846 7471B
Nickel	23.6	4.4		mg/kg	SW846 6010D
Potassium	3080	1100		mg/kg	SW846 6010D
Vanadium	30.3	5.5		mg/kg	SW846 6010D
Zinc	230	5.5		mg/kg	SW846 6010D

JD35782-5A TT-SB-08-7.0-9.0

No hits reported in this sample.

JD35782-6 TT-SB-09-5.0-7.0

Acetone	22.6	9.1	3.8	ug/kg	SW846 8260D
Acenaphthene	39.8	37	13	ug/kg	SW846 8270E
Acenaphthylene	62.9	37	19	ug/kg	SW846 8270E
Anthracene	92.6	37	23	ug/kg	SW846 8270E
Benzo(a)anthracene	156	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	190	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	236	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	143	37	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	82.5	37	17	ug/kg	SW846 8270E
1,1'-Biphenyl	11.5 J	74	5.0	ug/kg	SW846 8270E
Carbazole	16.1 J	74	5.3	ug/kg	SW846 8270E
Chrysene	208	37	12	ug/kg	SW846 8270E
Dibenzo(a, h)anthracene	35.9 J	37	16	ug/kg	SW846 8270E

Summary of Hits Job Number: JD35782 Page 7 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Dibenzofuran	20.0 J	74	15	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	326	74	8.6	ug/kg ug/kg	SW846 8270E
Fluoranthene	302	37	6.0 16	ug/kg ug/kg	SW846 8270E
Fluorene	22.7 J	37	17		
	160	37	17 17	ug/kg	SW846 8270E SW846 8270E
Indeno(1,2,3-cd)pyrene		37		ug/kg	
2-Methylnaphthalene	16.6 J 24.8 J		8.3	ug/kg	SW846 8270E
Naphthalene		37	10	ug/kg	SW846 8270E
Phenanthrene	141	37	12	ug/kg	SW846 8270E
Pyrene	408	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	13700 J			ug/kg	
Aldrin a	0.96	0.72	0.59	ug/kg	SW846 8081B
alpha-Chlordane	6.8	0.72	0.58	ug/kg	SW846 8081B
gamma-Chlordane	6.8	0.72	0.33	ug/kg	SW846 8081B
Dieldrin ^a	0.90	0.72	0.49	ug/kg	SW846 8081B
4,4'-DDD	8.7	0.72	0.66	ug/kg	SW846 8081B
4,4'-DDE	3.7	0.72	0.63	ug/kg	SW846 8081B
4,4'-DDT	2.0	0.72	0.64	ug/kg	SW846 8081B
Heptachlor	0.94	0.72	0.62	ug/kg	SW846 8081B
Heptachlor epoxide ^c	1.8	0.72	0.50	ug/kg	SW846 8081B
Aluminum	7740	55		mg/kg	SW846 6010D
Arsenic	6.4	2.2		mg/kg	SW846 6010D
Barium	69.5	22		mg/kg	SW846 6010D
Beryllium	0.56	0.22		mg/kg	SW846 6010D
Calcium	21800	550		mg/kg	SW846 6010D
Chromium	15.5	1.1		mg/kg	SW846 6010D
Cobalt	6.0	5.5		mg/kg	SW846 6010D
Copper	36.2	2.8		mg/kg	SW846 6010D
Iron	13800	55		mg/kg	SW846 6010D
Lead	71.4	2.2		mg/kg	SW846 6010D
Magnesium	3030	550		mg/kg	SW846 6010D
Manganese	253	1.7		mg/kg	SW846 6010D
Mercury	0.15	0.037		mg/kg mg/kg	SW846 7471B
Nickel	19.6	4.4		mg/kg	SW846 6010D
Potassium	1170	1100		mg/kg	SW846 6010D
Silver	0.87	0.55		mg/kg	SW846 6010D
Vanadium	24.2	5.5			SW846 6010D SW846 6010D
	63.7			mg/kg	
Zinc	03.7	5.5		mg/kg	SW846 6010D

JD35782-6A TT-SB-09-5.0-7.0

No hits reported in this sample.

JD35782-7 TT-SB-10-7.0-9.0

Acetone 22.6 6.0 SW846 8260D 15 ug/kg

Summary of Hits Job Number: JD35782 Page 8 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/19/21 thru 11/23/21**Project:**

Collected:

Lab Sample ID Client Sample ID	Docult/				
Analyte	Qual	RL	MDL	Units	Method
	Λ mm		.,,,,,,,,		
Benzene	2.5	0.73	0.66	ug/kg	SW846 8260D
Carbon disulfide	2.1 J	2.9	0.78	ug/kg	SW846 8260D
Toluene	1.5	1.5	0.76	ug/kg	SW846 8260D
Acenaphthene	107	38	13	ug/kg	SW846 8270E
Acenaphthylene	121	38	19	ug/kg	SW846 8270E
Anthracene	244	38	23	ug/kg	SW846 8270E
Benzo(a)anthracene	634	38	11	ug/kg	SW846 8270E
Benzo(a)pyrene	574	38	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	698	38	17	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	316	38	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	281	38	18	ug/kg	SW846 8270E
1,1'-Biphenyl	11.7 J	75	5.2	ug/kg	SW846 8270E
Carbazole	40.5 J	75	5.5	ug/kg	SW846 8270E
Chrysene	686	38	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	95.3	38	17	ug/kg	SW846 8270E
Dibenzofuran	85.5	75	15	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	160	75	8.8	ug/kg	SW846 8270E
Fluoranthene	1140	38	17	ug/kg	SW846 8270E
Fluorene	83.7	38	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	400	38	18	ug/kg	SW846 8270E
2-Methylnaphthalene	37.7 J	38	8.5	ug/kg	SW846 8270E
Naphthalene	106	38	11	ug/kg	SW846 8270E
Phenanthrene	539	38	13	ug/kg	SW846 8270E
Pyrene	1260	38	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	3920 J			ug/kg	
4,4'-DDD a	1.1	0.76	0.69	ug/kg	SW846 8081B
4,4'-DDE	2.2	0.76	0.66	ug/kg	SW846 8081B
4,4'-DDT a	0.86	0.76	0.67	ug/kg	SW846 8081B
Methoxychlor	4.1	1.5	0.60	ug/kg	SW846 8081B
Aluminum	9560	57		mg/kg	SW846 6010D
Arsenic	4.5	2.3		mg/kg	SW846 6010D
Barium	78.5	23		mg/kg	SW846 6010D
Beryllium	0.62	0.23		mg/kg	SW846 6010D
Cadmium	3.0	0.57		mg/kg	SW846 6010D
Calcium	30100	1100		mg/kg	SW846 6010D
Chromium	17.1	1.1		mg/kg	SW846 6010D
Cobalt	5.7	5.7		mg/kg	SW846 6010D
Copper	15.5	2.8		mg/kg	SW846 6010D
Iron	14700	57		mg/kg	SW846 6010D
Lead	73.3	2.3		mg/kg	SW846 6010D
Magnesium	8400	570		mg/kg	SW846 6010D
Manganese	390	1.7		mg/kg	SW846 6010D
Mercury	0.11	0.037		mg/kg	SW846 7471B
Nickel	21.7	4.5		mg/kg	SW846 6010D
Potassium	2370	1100		mg/kg	SW846 6010D
				<i>o</i> o	-

Summary of Hits Page 9 of 9

Job Number: JD35782 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 11/19/21 thru 11/23/21

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Vanadium Zinc		22.7 569	5.7 5.7		mg/kg mg/kg	SW846 6010D SW846 6010D
JD35782-7A	TT-SB-10-7.0-9.0					
Perfluorooctanes	ulfonic acid ^d	0.36 J	0.58	0.29	ug/kg	EPA 537M BY ID

(a) More than 40 % RPD for detected concentrations between the two GC columns.

⁽b) Associated CCV outside of control limits high. Estimated value, due to corresponding failure in the batch associated CCV.

⁽c) Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

⁽d) Analysis performed at SGS Orlando, FL.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results	
Report of Analysis	

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240192.D 1 11/29/21 16:26 PS 11/24/21 08:00 n/a VI9766

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	18.8	11	4.4	ug/kg	
71-43-2	Benzene	ND	0.54	0.49	ug/kg	
74-97-5	Bromochloromethane	ND	5.4	0.60	ug/kg	
75-27-4	Bromodichloromethane	ND	2.1	0.46	ug/kg	
75-25-2	Bromoform	ND	5.4	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.4	0.82	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	0.76	2.1	0.57	ug/kg	J
56-23-5	Carbon tetrachloride	ND	2.1	0.66	ug/kg	
108-90-7	Chlorobenzene	ND	2.1	0.49	ug/kg	
75-00-3	Chloroethane ^a	ND	5.4	0.63	ug/kg	
67-66-3	Chloroform	ND	2.1	0.56	ug/kg	
74-87-3	Chloromethane	ND	5.4	2.1	ug/kg	
110-82-7	Cyclohexane	ND	2.1	0.70	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.1	0.74	ug/kg	
124-48-1	Dibromochloromethane	ND	2.1	0.60	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.45	ug/kg	
95-50-1	1,2-Dichlorobenzene ^b	ND	1.1	0.59	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	1.1	0.53	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.53	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.4	0.78	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.53	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.50	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.70	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.90	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.66	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.1	0.51	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.1	0.51	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.1	0.49	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.49	ug/kg	
76-13-1	Freon 113	ND	5.4	2.9	ug/kg	
591-78-6	2-Hexanone	ND	5.4	2.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD35782-1 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/23/21 Method: SW846 8260D SW846 5035 Percent Solids: 76.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.1	1.5	ug/kg		
79-20-9	Methyl Acetate	ND	5.4	1.5	ug/kg		
108-87-2	Methylcyclohexane	ND	2.1	0.94	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.50	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	2.4	ug/kg		
75-09-2	Methylene chloride	ND	5.4	2.8	ug/kg		
100-42-5	Styrene	ND	2.1	0.43	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.1	0.64	ug/kg		
127-18-4	Tetrachloroethene	ND	2.1	0.62	ug/kg		
108-88-3	Toluene	ND	1.1	0.56	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.4	2.7	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	2.7	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.1	0.52	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.1	0.59	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.82	ug/kg	:	
75-69-4	Trichlorofluoromethane ^c	ND	5.4	0.73	ug/kg		
75-01-4	Vinyl chloride	ND	2.1	0.52	ug/kg		
	m,p-Xylene	ND	1.1	0.96	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.49	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.49	ug/kg	•	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	100%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	99%		75-1	31%		
2037-26-5	Toluene-D8	87 %		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) This compound in blank spike is outside in house QC limits bias high.

⁽c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176763.D 1 12/03/21 06:37 CS 11/29/21 09:30 OP36836 EM7598

Run #2

Initial Weight Final Volume Run #1 31.0 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	84	21	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	210	26	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	210	36	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	210	75	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	210	160	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	210	45	ug/kg	
95-48-7	2-Methylphenol	ND	84	27	ug/kg	
	3&4-Methylphenol	ND	84	35	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	210	28	ug/kg	
100-02-7	4-Nitrophenol	ND	420	110	ug/kg	
87-86-5	Pentachlorophenol	ND	170	40	ug/kg	
108-95-2	Phenol	ND	84	22	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	210	28	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	210	32	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	210	25	ug/kg	
83-32-9	Acenaphthene	237	42	15	ug/kg	
208-96-8	Acenaphthylene	178	42	21	ug/kg	
98-86-2	Acetophenone ^a	ND	210	9.1	ug/kg	
120-12-7	Anthracene	528	42	26	ug/kg	
1912-24-9	Atrazine ^a	ND	84	18	ug/kg	
56-55-3	Benzo(a)anthracene	1270	42	12	ug/kg	
50-32-8	Benzo(a)pyrene	1160	42	19	ug/kg	
205-99-2	Benzo(b)fluoranthene	1370	42	19	ug/kg	
191-24-2	Benzo(g,h,i)perylene	690	42	21	ug/kg	
207-08-9	Benzo(k)fluoranthene	571	42	20	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	84	16	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	84	10	ug/kg	
92-52-4	1,1'-Biphenyl	28.8	84	5.8	ug/kg	J
100-52-7	Benzaldehyde	ND	210	10	ug/kg	
91-58-7	2-Chloronaphthalene	ND	84	10	ug/kg	
106-47-8	4-Chloroaniline	ND	210	15	ug/kg	
86-74-8	Carbazole	158	84	6.1	ug/kg	

ND = Not detected MI

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD35782-1 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/23/21 SW846 8270E SW846 3546 Percent Solids: 76.4

Method:

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result RL MDL Un			Units	Q
105-60-2	Caprolactam	ND	84	17	ug/kg	
218-01-9	Chrysene	1430	42	13	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	84	9.0	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	84	18	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	84	15	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	84	14	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	42	13	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	42	21	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	84	35	ug/kg	
123-91-1	1,4-Dioxane	ND	42	28	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	204	42	19	ug/kg	
132-64-9	Dibenzofuran	169	84	17	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	84	6.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	84	11	ug/kg	
84-66-2	Diethyl phthalate	ND	84	9.0	ug/kg	
131-11-3	Dimethyl phthalate	ND	84	7.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	173	84	9.9	ug/kg	
206-44-0	Fluoranthene	2600	42	19	ug/kg	
86-73-7	Fluorene	269	42	19	ug/kg	
118-74-1	Hexachlorobenzene	ND	84	11	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	42	17	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	420	17	ug/kg	
67-72-1	Hexachloroethane	ND	210	21	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	881	42	20	ug/kg	
78-59-1	Isophorone	ND	84	9.0	ug/kg	
91-57-6	2-Methylnaphthalene	76.1	42	9.5	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	210	10	ug/kg	
99-09-2	3-Nitroaniline	ND	210	11	ug/kg	
100-01-6	4-Nitroaniline	ND	210	11	ug/kg	
91-20-3	Naphthalene	201	42	12	ug/kg	
98-95-3	Nitrobenzene	ND	84	16	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	84	12	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	210	15	ug/kg	
85-01-8	Phenanthrene	1720	42	14	ug/kg	
129-00-0	Pyrene	2790	42	14	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	210	11	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	55%		10-1	09%	

367-12-4 2-Fluorophenol 10-109% **55**%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
4165-62-2	Phenol-d5	61%		10-105%			
118-79-6	2,4,6-Tribromophenol	96%	10-135%				
4165-60-0	Nitrobenzene-d5	75 %		10-119%			
321-60-8	2-Fluorobiphenyl	72 %		18-112%			
1718-51-0	Terphenyl-d14	79 %		18-125%			
CAS No.	Tentatively Identified Compo	Tentatively Identified Compounds				Q	
	system artifact/aldol-condensat	ion	3.30	1100	ug/kg	J	
13798-23-7	Sulfur		8.42	230	ug/kg	JN	
	unknown		10.27	310	ug/kg	J	
	Phenanthrene methyl		11.60	310	ug/kg	J	
	Phenanthrene methyl		11.65	350	ug/kg	J	
	unknown		11.79	580	ug/kg	J	
	Phenanthrene methyl		11.84	220	ug/kg	J	
57-10-3	n-Hexadecanoic acid		11.96	610	ug/kg	JN	
	unknown		12.21	380	ug/kg		
	unknown		12.70	230	ug/kg		
	unknown		13.15	430	ug/kg		
	unknown		13.53	250	ug/kg		
	Pyrene methyl		14.08	280	ug/kg		
	Pyrene methyl		14.22	260	ug/kg		
	unknown		14.92	260	ug/kg		
	unknown		14.97	760	ug/kg		
	unknown		15.09	210	ug/kg		
	unknown		15.36	250	ug/kg		
	alkane		17.17	340	ug/kg		
	unknown PAH substance		17.96	410	ug/kg		
	unknown PAH substance		18.24	940	ug/kg		
	unknown		19.36	200	ug/kg		
	alkane		19.46	230	ug/kg		
	unknown		19.83	370	ug/kg		
	unknown		19.96	210	ug/kg		
	unknown PAH substance		20.81	250	ug/kg		
	Total TIC, Semi-Volatile			8870	ug/kg	J	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-05-6.5-8.5

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105030.D 1 12/11/21 01:30 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Initial Weight Final Volume Run #1 31.0 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 4.2 2.1 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 70%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 74%
 17-91%

 1718-51-0
 Terphenyl-d14
 66%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-05-6.5-8.5

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a 3G134389.D 4 12/04/21 02:11 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	81 16 16	36 9.2 8.1	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	9% b 5% b		10-12 10-12		

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G171586.D	1	11/30/21 09:40	CP	11/27/21 10:05	OP36830	G1G5918
Run #2 a	1G171668.D	5	12/01/21 23:35	CP	11/27/21 10:05	OP36830	G1G5922

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.84	0.70	ug/kg	
319-84-6	alpha-BHC	ND	0.84	0.69	ug/kg	
319-85-7	beta-BHC	ND	0.84	0.76	ug/kg	
319-86-8	delta-BHC	ND	0.84	0.81	ug/kg	
58-89-9	gamma-BHC (Lindane) b	2.8	0.84	0.62	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.84	0.68	ug/kg	
5103-74-2	gamma-Chlordane b	2.5	0.84	0.38	ug/kg	
60-57-1	Dieldrin	ND	0.84	0.58	ug/kg	
72-54-8	4,4'-DDD	20.2	0.84	0.78	ug/kg	
72-55-9	4,4'-DDE	5.8	0.84	0.74	ug/kg	
50-29-3	4,4'-DDT b	2.2	0.84	0.75	ug/kg	
72-20-8	Endrin	ND	0.84	0.66	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.84	0.66	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.84	0.48	ug/kg	
959-98-8	Endosulfan-I	ND	0.84	0.49	ug/kg	
33213-65-9	Endosulfan-II	ND	0.84	0.53	ug/kg	
76-44-8	Heptachlor	ND	0.84	0.73	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.84	0.59	ug/kg	
72-43-5	Methoxychlor	ND	1.7	0.67	ug/kg	
53494-70-5	Endrin ketone	ND	0.84	0.61	ug/kg	
8001-35-2	Toxaphene	ND	21	20	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	67%	71%	27-1	38%	
877-09-8	Tetrachloro-m-xylene	65 %	71%	27-1	38 %	
2051-24-3	Decachlorobiphenyl	82%	159%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	133%	189% ^c	10-1	79 %	

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Outside control limits due to matrix interference.

Page 1 of 1

Client Sample ID: TT-SB-05-6.5-8.5

 Lab Sample ID:
 JD35782-1
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 XX2475128.D
 1
 12/02/21 04:11 TL
 11/27/21 10:05 OP36831 GXX7671

Run #2

Initial Weight Final Volume Run #1 15.5 g 10.0 ml Run #2

ruii ""

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	42	20	ug/kg	
11104-28-2	Aroclor 1221	ND	42	26	ug/kg	
11141-16-5	Aroclor 1232	ND	42	27	ug/kg	
53469-21-9	Aroclor 1242	ND	42	17	ug/kg	
12672-29-6	Aroclor 1248	ND	42	38	ug/kg	
11097-69-1	Aroclor 1254	ND	42	23	ug/kg	
11096-82-5	Aroclor 1260	ND	42	18	ug/kg	
11100-14-4	Aroclor 1268	ND	42	18	ug/kg	
37324-23-5	Aroclor 1262	ND	42	28	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	70 %		24-1	52%	
877-09-8	Tetrachloro-m-xylene	83%		24-1	.52%	
2051-24-3	Decachlorobiphenyl	92%		10-1	72%	
2051-24-3	Decachlorobiphenyl	85%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-05-6.5-8.5

Lab Sample ID: JD35782-1 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5910	44	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 1.7	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	4.7	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	658	17	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.44	0.17	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	0.54	0.44	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	24400	870	mg/kg	2	12/01/21	12/09/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	13.6	0.87	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	< 4.4	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	39.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	11400	44	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	363	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	4160	440	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	256	1.3	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.33	0.017	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	13.3	3.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	1110	870	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 1.7	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver	0.80	0.44	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Sodium	< 870	870	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 0.87	0.87	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	21.3	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	370	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51494 (2) Instrument QC Batch: MA51527 (3) Instrument QC Batch: MA51569 (4) Prep QC Batch: MP30055 (5) Prep QC Batch: MP30089

Page 1 of 1

Client Sample ID: TT-SB-05-6.5-8.5

Lab Sample ID: JD35782-1 Date Sampled: 11/19/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.30	0.30	mg/kg	1	12/08/21 21:35	EB	SW846 9012B/LACHAT
Solids, Percent	76.4		%	1	11/29/21 16:30	BG	SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.

Report of Analysis

Client Sample ID: TT-SB-05-6.5-8.5

Lab Sample ID:JD35782-1ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50964.D 1 12/21/21 12:14 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.03 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.3	0.49	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.64	0.32	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.64	0.32	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.64	0.32	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.64	0.32	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.64	0.32	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.64	0.32	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.64	0.32	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.64	0.32	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.64	0.34	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.64	0.32	ug/kg	
PERFLUOF	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.64	0.32	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.64	0.32	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.64	0.32	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.64	0.32	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.64	0.32	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.64	0.32	ug/kg	
	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.3	0.64	ug/kg	
2991-50-6	EtFOSAA	ND	1.3	0.64	ug/kg	
	ELOMER SULFONATES				_	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.3	0.32	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.3	0.32	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-05-6.5-8.5

Lab Sample ID:JD35782-1ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:76.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	95%		40-140%
	13C5-PFPeA	97%		50-150 %
	13C5-PFHxA	98%		50-150 %
	13C4-PFHpA	98%		50-150 %
	13C8-PFOA	98%		50-150 %
	13C9-PFNA	99%		50-150 %
	13C6-PFDA	100%		50-150 %
	13C7-PFUnDA	91%		40-140%
	13C2-PFDoDA	81%		40-140%
	13C2-PFTeDA	94%		30-130%
	13C3-PFBS	97%		50-150 %
	13C3-PFHxS	99%		50-150 %
	13C8-PFOS	91%		50-150 %
	13C8-FOSA	88%		30-130%
	d3-MeFOSAA	122%		40-140%
	d5-EtFOSAA	133%		40-140%
	13C2-6:2FTS	93%		50-150 %
	13C2-8:2FTS	102%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01

 Lab Sample ID:
 JD35782-2
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240195.D 1 11/29/21 17:27 PS 11/24/21 08:00 n/a VI9766

Run #2

Initial Weight

Run #1 6.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	20.7	9.3	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.42	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.71	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.3	2.3	ug/kg	
75-15-0	Carbon disulfide	1.2	1.9	0.50	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane ^a	ND	4.7	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.61	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.93	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene ^b	ND	0.93	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	0.93	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.93	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.93	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.93	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.93	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.93	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.93	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.93	0.42	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

Matrix: SO - Soil
Method: SW846 8260D SW846 5035

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Date Sampled: 11/19/21 Date Received: 11/23/21 Percent Solids: 86.4

VOA TCL List

CAS No.	Compound	Result	RL	M	DL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	3	ug/kg	{	
79-20-9	Methyl Acetate	ND	4.7	1.3	3	ug/kg		
108-87-2	Methylcyclohexane ND		1.9	0.8	32	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.93	0.4	14	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	l	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.4	1	ug/kg		
100-42-5	Styrene	ND	1.9	0.3	38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.5	56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.5	54	ug/kg		
108-88-3	Toluene	ND	0.93	0.4	1 9	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.3	3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.3	3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.4	1 5	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.5	52	ug/kg		
79-01-6	Trichloroethene	ND	0.93	0.7	71	ug/kg		
75-69-4	Trichlorofluoromethane ^c	ND	4.7	0.6	34	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.4	1 5	ug/kg		
	m,p-Xylene	ND	0.93	0.8	34	ug/kg		
95-47-6	o-Xylene	0.51	0.93	0.4	1 3	ug/kg		
1330-20-7	Xylene (total)	0.51	0.93	0.4	13	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2		Limit	ts		
1868-53-7	Dibromofluoromethane	99%			72-13	80%		
17060-07-0	1,2-Dichloroethane-D4	97%			75-13	31%		
2037-26-5	Toluene-D8	87%			81-12	21%		
460-00-4	4-Bromofluorobenzene	97%			60-14	1%		
CAS No.	Tentatively Identified Compo	ounds	R.T.		Est.	Conc.	Units	Q
91-20-3	Naphthalene		11.64		29		ug/kg	JN
91-57-6	Naphthalene, 2-methyl-		12.87		4.9		ug/kg	JN
	Total TIC, Volatile				33.9		ug/kg	

- (a) Associated CCV outside of control limits high, sample was ND.
- (b) This compound in blank spike is outside in house QC limits bias high.
- (c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01

 Lab Sample ID:
 JD35782-2
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176765.D 1 12/03/21 07:39 CS 11/29/21 09:30 OP36836 EM7598

Run #2

Initial Weight Final Volume Run #1 31.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	98	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	144	37	13	ug/kg	
208-96-8	Acenaphthylene	157	37	19	ug/kg	
98-86-2	Acetophenone ^a	ND	180	7.9	ug/kg	
120-12-7	Anthracene	360	37	23	ug/kg	
1912-24-9	Atrazine ^a	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	861	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	746	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	942	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	432	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	387	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	16.1	73	5.0	ug/kg	J
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	108	73	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01

Lab Sample ID: JD35782-2 **Date Sampled:** 11/19/21 Matrix: SO - Soil Date Received: 11/23/21

Method: SW846 8270E SW846 3546 Percent Solids: 86.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL MDL Units		Units	Q
105-60-2	Caprolactam	ND	73	15	ug/kg	
218-01-9	Chrysene	926	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	139	37	16	ug/kg	
132-64-9	Dibenzofuran	87.5	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	1170	73	8.6	ug/kg	
206-44-0	Fluoranthene	1790	37	16	ug/kg	
86-73-7	Fluorene	175	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.3	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	558	37	17	ug/kg	
78-59-1	Isophorone	ND	73	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	40.5	37	8.3	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	180	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.2	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	93.3	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	1190	37	12	ug/kg	
129-00-0	Pyrene	1850	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	46%	10-109%		09%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

 Lab Sample ID:
 JD35782-2
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
4165-62-2	Phenol-d5	47%		10-105%			
118-79-6	2,4,6-Tribromophenol	74%		10-135%			
4165-60-0	Nitrobenzene-d5	61%		10-119%			
321-60-8	2-Fluorobiphenyl	54 %		18-112%			
1718-51-0	Terphenyl-d14	58 %		18-125%			
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units Q			
	system artifact/aldol-condensat	ion	3.30	160	ug/kg J		
13798-23-7	Sulfur		8.42	190	ug/kg JN		
	Phenanthrene methyl		11.60	210	ug/kg J		
	Phenanthrene methyl		11.65	260	ug/kg J		
	unknown		11.79	400	ug/kg J		
638-53-9	Tridecanoic acid		11.95	230	ug/kg JN		
	Naphthalene -phenyl		12.21	270	ug/kg J		
781-43-1	9,10-Dimethylanthracene		12.70	180	ug/kg JN		
	unknown		12.87	210	ug/kg J		
	unknown		13.14	300	ug/kg J		
	Pyrene methyl		14.08	230	ug/kg J		
	Pyrene methyl		14.22	200	ug/kg J		
	Pyrene methyl		14.27	160	ug/kg J		
	unknown		15.36	190	ug/kg J		
	alkane		17.17	220	ug/kg J		
	unknown PAH substance		17.96	290	ug/kg J		
	unknown PAH substance		18.24	570	ug/kg J		
	unknown		18.92	240	ug/kg J		
	unknown		20.82	170	ug/kg J		
	Total TIC, Semi-Volatile			4520	ug/kg J		

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

 Lab Sample ID:
 JD35782-2
 Date Sampled:
 11/19/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM
 SW846 3546
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105031.D 1 12/11/21 01:51 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Initial Weight Final Volume Run #1 31.5 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 57%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 57%
 17-91%

 1718-51-0
 Terphenyl-d14
 49%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Date Sampled: 11/19/21

Report of Analysis

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 ^a 3G134390.D 4 12/04/21 02:38 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Initial Weight Final Volume Run #1 16.7 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	69 14 14	31 7.8 6.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	7% b 3% b			25% 25%	

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

Matrix: SO - Soil Method: SW846 8081B SW846 3546

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Date Sampled: 11/19/21 Date Received: 11/23/21 Percent Solids: 86.4

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G171588.D	1	11/30/21 10:16	CP	11/27/21 10:05	OP36830	G1G5918
Run #2 a	1G171669.D	5	12/01/21 23:53	CP	11/27/21 10:05	OP36830	G1G5922

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^b	1.5	0.76	0.63	ug/kg	
319-84-6	alpha-BHC	ND	0.76	0.62	ug/kg	
319-85-7	beta-BHC	ND	0.76	0.69	ug/kg	
319-86-8	delta-BHC	ND	0.76	0.73	ug/kg	
58-89-9	gamma-BHC (Lindane) b	7.9	0.76	0.56	ug/kg	
5103-71-9	alpha-Chlordane	6.9	0.76	0.61	ug/kg	
5103-74-2	gamma-Chlordane b	4.9	0.76	0.34	ug/kg	
60-57-1	Dieldrin ^b	1.6	0.76	0.52	ug/kg	
72-54-8	4,4'-DDD	29.5	0.76	0.70	ug/kg	
72-55-9	4,4'-DDE	9.0	0.76	0.67	ug/kg	
50-29-3	4,4'-DDT b	4.5	0.76	0.67	ug/kg	
72-20-8	Endrin b	0.92	0.76	0.59	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.76	0.59	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.76	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.76	0.44	ug/kg	
33213-65-9	Endosulfan-II	4.8	0.76	0.48	ug/kg	
76-44-8	Heptachlor	ND	0.76	0.66	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.76	0.53	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.61	ug/kg	
53494-70-5	Endrin ketone	ND	0.76	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
	-				0 0	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	77%	107%	27-1	38%	
877-09-8	Tetrachloro-m-xylene	80%	86%	27-13	38%	
2051-24-3	Decachlorobiphenyl	88%	173%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	278% ^c	275% c	10-1	79 %	
	1 /					

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Outside control limits due to matrix interference.

Date Sampled: 11/19/21

Report of Analysis

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475129.D 1 12/02/21 04:29 TL 11/27/21 10:05 OP36831 GXX7671

Run #2

Initial Weight Final Volume Run #1 15.2 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	24	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	16	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	20	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	84%		24-15	52 %	
877-09-8	Tetrachloro-m-xylene	91%		24-15	52 %	
2051-24-3	Decachlorobiphenyl	104%		10-17	72 %	
2051-24-3	Decachlorobiphenyl	106%		10-17	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2 SO - Soil Matrix:

Date Sampled: 11/19/21 Date Received: 11/23/21 Percent Solids: 86.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5420	56	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	4.3	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	812	22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.43	0.22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	0.65	0.56	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	32000	1100	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	12.4	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	< 5.6	5.6	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	29.2	2.8	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	11100	56	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	337	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	3740	560	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	255	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.34	0.030	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	12.5	4.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver ^a	< 1.1	1.1	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	20.4	5.6	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	422	5.6	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51494 (2) Instrument QC Batch: MA51527 (3) Instrument QC Batch: MA51586 (4) Prep QC Batch: MP30055 (5) Prep QC Batch: MP30089

(a) Elevated detection limit due to dilution required for high interfering element.

4.3

Page 1 of 1

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2 Matrix: SO - Soil

Date Sampled: 11/19/21 Date Received: 11/23/21 Percent Solids: 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

C --- --- 1 Cl- ---- ---

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.28 86.4	0.28	mg/kg %	1 1	12/08/21 21:37 11/29/21 16:30		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.3

JD35782

Client Sample ID: S DUP-01

Lab Sample ID:JD35782-2ADate Sampled:11/19/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50965.D 1 12/21/21 12:30 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg	
PERFI IIOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
					0 0	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg	
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
					o o	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Date Sampled: 11/19/21

Client Sample ID: S DUP-01 Lab Sample ID: JD35782-2A

Matrix: SO - Soil Date Received: 11/23/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 86.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	71%		40-140%
	13C5-PFPeA	73 %		50-150 %
	13C5-PFHxA	74%		50-150 %
	13C4-PFHpA	74 %		50-150 %
	13C8-PFOA	73 %		50-150 %
	13C9-PFNA	74%		50-150 %
	13C6-PFDA	76 %		50-150 %
	13C7-PFUnDA	74 %		40-140%
	13C2-PFDoDA	62 %		40-140%
	13C2-PFTeDA	71%		30-130%
	13C3-PFBS	73 %		50-150 %
	13C3-PFHxS	73 %		50-150 %
	13C8-PFOS	69 %		50-150 %
	13C8-FOSA	57 %		30-130%
	d3-MeFOSAA	90%		40-140%
	d5-EtFOSAA	98%		40-140%
	13C2-6:2FTS	71%		50-150 %
	13C2-8:2FTS	78 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240193.D 1 11/29/21 16:46 PS 11/24/21 08:00 n/a VI9766

Run #2

Initial Weight

Run #1 6.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	10.2	8.6	3.5	ug/kg	
71-43-2	Benzene	ND	0.43	0.39	ug/kg	
74-97-5	Bromochloromethane	ND	4.3	0.48	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.37	ug/kg	
75-25-2	Bromoform	ND	4.3	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.3	0.65	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.6	2.1	ug/kg	
75-15-0	Carbon disulfide	ND	1.7	0.46	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.7	0.53	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.39	ug/kg	
75-00-3	Chloroethane ^a	ND	4.3	0.51	ug/kg	
67-66-3	Chloroform	ND	1.7	0.44	ug/kg	
74-87-3	Chloromethane	ND	4.3	1.7	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.56	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.59	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.48	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.86	0.36	ug/kg	
95-50-1	1,2-Dichlorobenzene ^b	ND	0.86	0.47	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	0.86	0.42	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.86	0.42	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.3	0.62	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.86	0.42	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.86	0.40	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.86	0.56	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.86	0.72	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.86	0.52	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.41	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.39	ug/kg	
100-41-4	Ethylbenzene	ND	0.86	0.39	ug/kg	
76-13-1	Freon 113	ND	4.3	2.3	ug/kg	
591-78-6	2-Hexanone	ND	4.3	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg		
79-20-9	Methyl Acetate	ND	4.3	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.75	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.86	0.40	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.3	1.9	ug/kg		
75-09-2	Methylene chloride	ND	4.3	2.2	ug/kg		
100-42-5	Styrene	ND	1.7	0.34	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.51	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.50	ug/kg		
108-88-3	Toluene	ND	0.86	0.45	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.3	2.1	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.3	2.1	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.41	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.47	ug/kg		
79-01-6	Trichloroethene	ND	0.86	0.65	ug/kg		
75-69-4	Trichlorofluoromethane ^c	ND	4.3	0.59	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.41	ug/kg		
	m,p-Xylene	ND	0.86	0.77	ug/kg		
95-47-6	o-Xylene	ND	0.86	0.39	ug/kg		
1330-20-7	Xylene (total)	ND	0.86	0.39	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	99%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	97%		75-1	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) This compound in blank spike is outside in house QC limits bias high.

⁽c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Report of Analysis

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176757.D 1 12/03/21 03:40 CS 11/29/21 09:30 OP36836 EM7598

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	36	13	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone ^a	ND	180	7.8	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine ^a	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	33.5	36	10	ug/kg	J
50-32-8	Benzo(a)pyrene	40.0	36	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	44.6	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	22.2	36	18	ug/kg	J
207-08-9	Benzo(k)fluoranthene	20.1	36	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	ND	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	73	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-06-5.0-7.0

Lab Sample ID: JD35782-3 **Date Sampled:** 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 89.8

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	30.8	36	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene a	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	8.5	ug/kg	
206-44-0	Fluoranthene	52.6	36	16	ug/kg	
86-73-7	Fluorene	ND	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	28.7	36	17	ug/kg	J
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine a	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	17.2	36	12	ug/kg	J
129-00-0	Pyrene	59.8	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 47% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	49% 84% 61% 58%		10-105% 10-135% 10-119% 18-112%		
1718-51-0	Terphenyl-d14	65 %		18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Unknown		14.96	160	ug/kg	J
	Total TIC, Semi-Volatile			160	ug/kg	J

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-06-5.0-7.0

Initial Weight

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105029.D 1 12/11/21 01:10 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Run #1 30.6 g 1.0 ml Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 57%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 61%
 17-91%

 1718-51-0
 Terphenyl-d14
 68%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 3G134361.D
 1
 12/02/21 06:20 RK
 11/30/21 09:50 OP36859
 G3G4901

Report of Analysis

Run #2

Initial Weight Final Volume Run #1 15.3 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T ^a	ND ND ND	18 3.6 3.6	8.1 2.1 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	16% 18%			25% 25%	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

Report of Analysis

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171587.D 1 11/30/21 09:58 CP 11/27/21 10:05 OP36830 G1G5918

Run #2

Initial Weight Final Volume Run #1 16.0 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.70	0.57	ug/kg		
319-84-6	alpha-BHC	ND	0.70	0.57	ug/kg		
319-85-7	beta-BHC	ND	0.70	0.63	ug/kg		
319-86-8	delta-BHC	ND	0.70	0.67	ug/kg		
58-89-9	gamma-BHC (Lindane)	ND	0.70	0.51	ug/kg		
5103-71-9	alpha-Chlordane	ND	0.70	0.56	ug/kg		
5103-74-2	gamma-Chlordane	ND	0.70	0.32	ug/kg		
60-57-1	Dieldrin	ND	0.70	0.48	ug/kg		
72-54-8	4,4'-DDD	ND	0.70	0.64	ug/kg		
72-55-9	4,4'-DDE	ND	0.70	0.61	ug/kg		
50-29-3	4,4'-DDT	ND	0.70	0.62	ug/kg		
72-20-8	Endrin	ND	0.70	0.54	ug/kg		
1031-07-8	Endosulfan sulfate	ND	0.70	0.54	ug/kg		
7421-93-4	Endrin aldehyde	ND	0.70	0.39	ug/kg		
959-98-8	Endosulfan-I	ND	0.70	0.40	ug/kg		
33213-65-9	Endosulfan-II	ND	0.70	0.43	ug/kg		
76-44-8	Heptachlor	ND	0.70	0.60	ug/kg		
1024-57-3	Heptachlor epoxide	ND	0.70	0.49	ug/kg		
72-43-5	Methoxychlor	ND	1.4	0.55	ug/kg		
53494-70-5	Endrin ketone	ND	0.70	0.50	ug/kg		
8001-35-2	Toxaphene	ND	17	16	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
877-09-8	Tetrachloro-m-xylene	71%	27-138%				
877-09-8	Tetrachloro-m-xylene	66%		27-13	38 %		
2051-24-3	Decachlorobiphenyl	60%		10-1	79 %		
2051-24-3	Decachlorobiphenyl	77%	10-179%				

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-06-5.0-7.0

 Lab Sample ID:
 JD35782-3
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475134.D 1 12/02/21 05:56 TL 11/27/21 10:05 OP36831 GXX7671

Run #2

Run #1 16.0 g Final Volume

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q	
12674-11-2	Aroclor 1016	ND	35	16	ug/kg		
11104-28-2	Aroclor 1221	ND	35	22	ug/kg		
11141-16-5	Aroclor 1232	ND	35	22	ug/kg		
53469-21-9	Aroclor 1242	ND	35	14	ug/kg		
12672-29-6	Aroclor 1248	ND	35	31	ug/kg		
11097-69-1	Aroclor 1254	ND	35	19	ug/kg		
11096-82-5	Aroclor 1260	ND	35	15	ug/kg		
11100-14-4	Aroclor 1268	ND	35	15	ug/kg		
37324-23-5	Aroclor 1262	ND	35	23	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
877-09-8	Tetrachloro-m-xylene	77%		24-15	52 %		
877-09-8	Tetrachloro-m-xylene	77%		24-15	52 %		
2051-24-3	Decachlorobiphenyl	79 %		10-17	72 %		
2051-24-3	Decachlorobiphenyl	71%	10-172%				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-06-5.0-7.0

Lab Sample ID: JD35782-3 Date Sampled: 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4600	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	37.1	22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.53	0.22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	2290	550	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	11.7	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.5	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	10.5	2.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	8890	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	15.8	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2240	550	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	170	1.6	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.070	0.031	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	16.9	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.55	0.55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	17.0	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	32.4	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51494
(2) Instrument QC Batch: MA51527
(3) Prep QC Batch: MP30055
(4) Prep QC Batch: MP30089

Page 1 of 1

Client Sample ID: TT-SB-06-5.0-7.0

Lab Sample ID: JD35782-3 Date Sampled: 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte Result RL Units DF Analyzed By Method

(a) Sample prepped within holding time, but run out of holding time.

JD35782

Client Sample ID: TT-SB-06-5.0-7.0

Lab Sample ID:JD35782-3ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50786.D 1 12/18/21 13:56 AFL 12/10/21 15:00 F:OP88771 F:S3Q712

Run #2

Initial Weight Final Volume
Run #1 2.10 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q	
PERFLUOROALKYLCARBOXYLIC ACIDS							
375-22-4	Perfluorobutanoic acid	ND	1.1	0.40	ug/kg		
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.27	ug/kg		
307-24-4	Perfluorohexanoic acid	ND	0.53	0.27	ug/kg		
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.27	ug/kg		
335-67-1	Perfluorooctanoic acid	ND	0.53	0.27	ug/kg		
375-95-1	Perfluorononanoic acid	ND	0.53	0.27	ug/kg		
335-76-2	Perfluorodecanoic acid	ND	0.53	0.27	ug/kg		
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.27	ug/kg		
307-55-1	Perfluorododecanoic acid	ND	0.53	0.27	ug/kg		
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg		
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.27	ug/kg		
PERFLUOR	ROALKYLSULFONIC ACIDS	5					
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.27	ug/kg		
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.27	ug/kg		
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.27	ug/kg		
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.27	ug/kg		
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.27	ug/kg		
PERFLUOR	ROOCTANESULFONAMIDE	S					
754-91-6	PFOSA	ND	0.53	0.27	ug/kg		
DEDEI HOL	ROOCTANESULFONAMIDO	ACETIC AC	TDC				
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg		
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg ug/kg		
2001-00-0	Lu ODAA	ND	1.1	0.00	ug/ ng		
FLUOROTI	ELOMER SULFONATES						
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg		
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD35782-3ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	95%		40-140%
	13C5-PFPeA	98%		50-150 %
	13C5-PFHxA	101%		50-150 %
	13C4-PFHpA	103%		50-150 %
	13C8-PFOA	102%		50-150 %
	13C9-PFNA	103%		50-150 %
	13C6-PFDA	109%		50-150 %
	13C7-PFUnDA	107%		40-140%
	13C2-PFDoDA	112%		40-140%
	13C2-PFTeDA	117%		30-130%
	13C3-PFBS	99%		50-150 %
	13C3-PFHxS	100%		50-150 %
	13C8-PFOS	100%		50-150 %
	13C8-FOSA	68 %		30-130%
	d3-MeFOSAA	126%		40-140%
	d5-EtFOSAA	127%		40-140%
	13C2-6:2FTS	97%		50-150 %
	13C2-8:2FTS	100%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240194.D 1 11/29/21 17:07 PS 11/24/21 08:00 n/a VI9766

Run #2

Initial Weight

Run #1 5.3 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	8.9	11	4.4	ug/kg	J
71-43-2	Benzene	3.8	0.53	0.48	ug/kg	
74-97-5	Bromochloromethane	ND	5.3	0.60	ug/kg	
75-27-4	Bromodichloromethane	ND	2.1	0.46	ug/kg	
75-25-2	Bromoform	ND	5.3	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.3	0.81	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide	0.68	2.1	0.57	ug/kg	J
56-23-5	Carbon tetrachloride	ND	2.1	0.66	ug/kg	
108-90-7	Chlorobenzene	ND	2.1	0.49	ug/kg	
75-00-3	Chloroethane ^a	ND	5.3	0.63	ug/kg	
67-66-3	Chloroform	ND	2.1	0.55	ug/kg	
74-87-3	Chloromethane	ND	5.3	2.1	ug/kg	
110-82-7	Cyclohexane	ND	2.1	0.70	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.1	0.74	ug/kg	
124-48-1	Dibromochloromethane	ND	2.1	0.60	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.45	ug/kg	
95-50-1	1,2-Dichlorobenzene ^b	ND	1.1	0.58	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	1.1	0.53	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.53	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.3	0.77	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.53	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.50	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.70	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.89	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.65	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.1	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.1	0.51	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.1	0.49	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.48	ug/kg	
76-13-1	Freon 113	ND	5.3	2.8	ug/kg	
591-78-6	2-Hexanone	ND	5.3	2.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.1	1.5	ug/kg		
79-20-9	Methyl Acetate	ND	5.3	1.5	ug/kg		
108-87-2	Methylcyclohexane	ND	2.1	0.93	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.50	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.3	2.4	ug/kg		
75-09-2	Methylene chloride	ND	5.3	2.8	ug/kg		
100-42-5	Styrene	ND	2.1	0.43	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.1	0.64	ug/kg		
127-18-4	Tetrachloroethene	ND	2.1	0.62	ug/kg		
108-88-3	Toluene	1.5	1.1	0.56	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.3	2.7	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.3	2.7	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.1	0.51	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.1	0.59	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.81	ug/kg		
75-69-4	Trichlorofluoromethane ^c	ND	5.3	0.73	ug/kg		
75-01-4	Vinyl chloride	ND	2.1	0.51	ug/kg		
	m,p-Xylene	ND	1.1	0.95	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.49	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.49	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	97%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	95%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

⁽b) This compound in blank spike is outside in house QC limits bias high.

⁽c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M176767.D	1	12/03/21 08:37	CS	11/29/21 09:30	OP36836	EM7598
Run #2	M176785.D	2	12/04/21 06:21	CS	11/29/21 09:30	OP36836	EM7599

	Initial Weight	Final Volume
Run #1	30.1 g	1.0 ml
Run #2	30.1 g	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	75	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	67	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	75	24	ug/kg	
	3&4-Methylphenol	ND	75	31	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol	ND	370	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	75	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	307	37	13	ug/kg	
208-96-8	Acenaphthylene	203	37	19	ug/kg	
98-86-2	Acetophenone ^b	23.5	190	8.1	ug/kg	J
120-12-7	Anthracene	790	37	23	ug/kg	
1912-24-9	Atrazine ^a	ND	75	16	ug/kg	
56-55-3	Benzo(a)anthracene	2120	37	11	ug/kg	
50-32-8	Benzo(a)pyrene	1850	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	2370	37	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	1050	37	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	902	37	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	75	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	9.1	ug/kg	
92-52-4	1,1'-Biphenyl	37.9	75	5.1	ug/kg	J
100-52-7	Benzaldehyde	ND	190	9.3	ug/kg	
91-58-7	2-Chloronaphthalene	ND	75	8.9	ug/kg	
106-47-8	4-Chloroaniline	ND	190	13	ug/kg	
86-74-8	Carbazole	273	75	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 3

Client Sample ID: TT-SB-07-6.0-8.0

Lab Sample ID: JD35782-4 **Date Sampled:** 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Method: SW846 8270E SW846 3546 Percent Solids: 88.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	75	15	ug/kg	
218-01-9	Chrysene	2330	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	8.0	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	75	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	12	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	37	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	75	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	338	37	17	ug/kg	
132-64-9	Dibenzofuran	223	75	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	6.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	9.3	ug/kg	
84-66-2	Diethyl phthalate	ND	75	8.0	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	6.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	173	75	8.8	ug/kg	
206-44-0	Fluoranthene	3770 ^c	75	33	ug/kg	
86-73-7	Fluorene	243	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	9.5	ug/kg	
87-68-3	Hexachlorobutadiene a	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1350	37	18	ug/kg	
78-59-1	Isophorone	ND	75	8.0	ug/kg	
91-57-6	2-Methylnaphthalene	139	37	8.5	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	190	8.8	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.4	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.7	ug/kg	
91-20-3	Naphthalene	245	37	11	ug/kg	
98-95-3	Nitrobenzene	ND	75	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	75	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	2680	37	13	ug/kg	
129-00-0	Pyrene	3930 ^c	75	24	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	54 %	51%	10-1	.09%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	56 %	56%	10-105%		
118-79-6	2,4,6-Tribromophenol	77%	77%	10-135%		
4165-60-0	Nitrobenzene-d5	74%	67%	10-119%		
321-60-8	2-Fluorobiphenyl	63%	64%	18-112 %		
1718-51-0	Terphenyl-d14	68%	63%	18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condensa	tion	3.30	1200	ug/kg	J
	C3 alkyl benzene		4.43	250	ug/kg	J
132-65-0	Dibenzothiophene		10.42	210	ug/kg	JN
	Phenanthrene methyl		11.61	490	ug/kg	
	Phenanthrene methyl		11.65	610	ug/kg	
	Anthracene methyl		11.74	240	ug/kg	
	unknown		11.79	810	ug/kg	
	Anthracene methyl		11.85	390	ug/kg	
	Naphthalene phenyl		12.22	660	ug/kg	
	Phenanthrene dimethyl		12.71	420	ug/kg	
	Phenanthrene dimethyl		12.76	420	ug/kg	J
	Phenanthrene dimethyl		12.82	420	ug/kg	
	Phenanthrene dimethyl		12.88	510	ug/kg	J
	unknown		13.07	260	ug/kg	J
	Pyrene methyl		14.09	280	ug/kg	
	Pyrene methyl		14.22	230	ug/kg	J
	unknown		15.10	210	ug/kg	J
	Benzo[b]naphtho[-d]thiophene		15.30	210	ug/kg	
	unknown		15.37	290	ug/kg	J
	alkane		17.18	450	ug/kg	J
	unknown PAH substance		17.97	620	ug/kg	J
	unknown PAH substance		18.26	1400	ug/kg	J
	unknown		19.37	300	ug/kg	J
	unknown		19.84	580	ug/kg	J
	unknown		19.98	270	ug/kg	J
	Total TIC, Semi-Volatile			10530	ug/kg	J

- (a) Associated CCV outside of control limits high, sample was ND.
- (b) Associated CCV outside of control limits high. Estimated value, due to corresponding failure in the batch associated CCV.
- (c) Result is from Run# 2

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-07-6.0-8.0

Initial Weight

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105032.D 1 12/11/21 02:11 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Run #1 30.1 g 1.0 ml Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 49%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 49%
 17-91%

 1718-51-0
 Terphenyl-d14
 39%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-07-6.0-8.0

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

					Prep Batch	Analytical Batch
Run #1 a 3G134391.D	4	12/04/21 03:06	RK	11/30/21 09:50	OP36859	G3G4902

Run #2

	Initial Weight		
Run #1 Run #2	15.2 g	5.0 ml	

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	74 15 15	33 8.4 7.4	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	10% 4% ^b		10-12 10-12		

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G171589.D	1	11/30/21 10:34	CP	11/27/21 10:05	OP36830	G1G5918
Run #2 a	1G171670.D	5	12/02/21 00:11	CP	11/27/21 10:05	OP36830	G1G5922

	Initial Weight	Final Volume
Run #1	16.2 g	10.0 ml
Run #2	16.2 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^b	2.1	0.70	0.57	ug/kg	
319-84-6	alpha-BHC ^b	1.1	0.70	0.57	ug/kg	
319-85-7	beta-BHC	ND	0.70	0.63	ug/kg	
319-86-8	delta-BHC	ND	0.70	0.67	ug/kg	
58-89-9	gamma-BHC (Lindane) ^b	9.5	0.70	0.51	ug/kg	
5103-71-9	alpha-Chlordane	21.3	0.70	0.56	ug/kg	
5103-74-2	gamma-Chlordane	23.5	0.70	0.32	ug/kg	
60-57-1	Dieldrin ^b	1.0	0.70	0.48	ug/kg	
72-54-8	4,4'-DDD ^b	5.7	0.70	0.64	ug/kg	
72-55-9	4,4'-DDE	4.1	0.70	0.61	ug/kg	
50-29-3	4,4'-DDT ^b	4.2	0.70	0.62	ug/kg	
72-20-8	Endrin	ND	0.70	0.54	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.70	0.54	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.70	0.40	ug/kg	
959-98-8	Endosulfan-I	ND	0.70	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.70	0.43	ug/kg	
76-44-8	Heptachlor	ND	0.70	0.60	ug/kg	
1024-57-3	Heptachlor epoxide	1.5	0.70	0.49	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.55	ug/kg	
53494-70-5	Endrin ketone ^b	3.3	0.70	0.50	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	76 %	79 %	27-1	38%	
877-09-8	Tetrachloro-m-xylene	72 %	76 %	27-1	38 %	
2051-24-3	Decachlorobiphenyl	104%	117%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	259 % ^c	303 % ^c	10-1	79 %	

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Outside control limits due to matrix interference.

Page 1 of 1

Client Sample ID: TT-SB-07-6.0-8.0

 Lab Sample ID:
 JD35782-4
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475135.D 1 12/02/21 06:13 TL 11/27/21 10:05 OP36831 GXX7671

Run #2

Initial Weight Final Volume Run #1 16.2 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	16	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	22	ug/kg	
53469-21-9	Aroclor 1242	ND	35	14	ug/kg	
12672-29-6	Aroclor 1248	ND	35	31	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	75 %		24-1	. 52 %	
877-09-8	Tetrachloro-m-xylene	82 %		24-1	52%	
2051-24-3	Decachlorobiphenyl	96%		10-1	72%	
2051-24-3	Decachlorobiphenyl	86%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-07-6.0-8.0

Lab Sample ID: JD35782-4 **Date Sampled:** 11/22/21 SO - Soil Matrix: Date Received: 11/23/21 Percent Solids: 88.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4920	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	5.7	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	92.5	22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.44	0.22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	< 0.55	0.55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	65100	2700	mg/kg	5	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	10.5	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	< 5.5	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	32.7	2.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	17000	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	169	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	3430	550	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	248	1.6	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.16	0.031	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	17.7	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver ^a	< 2.7	2.7	mg/kg	5	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	17.4	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	115	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51494 (2) Instrument QC Batch: MA51527 (3) Instrument QC Batch: MA51586 (4) Prep QC Batch: MP30055 (5) Prep QC Batch: MP30089

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: TT-SB-07-6.0-8.0

Lab Sample ID: JD35782-4 **Date Sampled:** 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 88.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.23 88.6	0.23	mg/kg %	1 1	12/08/21 21:42 11/29/21 16:30		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

Client Sample ID: TT-SB-07-6.0-8.0

Lab Sample ID:JD35782-4ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50937.D 1 12/21/21 04:44 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.04 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.28	ug/kg	
					0 0	
PERFLUOF	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg	
	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected MDL = Method D

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.8

Lab Sample ID:JD35782-4ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	81%		40-140%
	13C5-PFPeA	82 %		50-150 %
	13C5-PFHxA	82 %		50-150 %
	13C4-PFHpA	82 %		50-150 %
	13C8-PFOA	83 %		50-150 %
	13C9-PFNA	85 %		50-150 %
	13C6-PFDA	86%		50-150 %
	13C7-PFUnDA	79 %		40-140%
	13C2-PFDoDA	72 %		40-140%
	13C2-PFTeDA	79 %		30-130%
	13C3-PFBS	81%		50-150 %
	13C3-PFHxS	84%		50-150 %
	13C8-PFOS	80 %		50-150 %
	13C8-FOSA	64%		30-130%
	d3-MeFOSAA	92%		40-140%
	d5-EtFOSAA	104%		40-140%
	13C2-6:2FTS	79 %		50-150 %
	13C2-8:2FTS	86%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 2.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	23.2	20	8.2	ug/kg	
71-43-2	Benzene	ND	0.99	0.90	ug/kg	
74-97-5	Bromochloromethane	ND	9.9	1.1	ug/kg	
75-27-4	Bromodichloromethane	ND	4.0	0.85	ug/kg	
75-25-2	Bromoform	ND	9.9	2.7	ug/kg	
74-83-9	Bromomethane	ND	9.9	1.5	ug/kg	
78-93-3	2-Butanone (MEK)	ND	20	4.8	ug/kg	
75-15-0	Carbon disulfide	1.9	4.0	1.1	ug/kg	J
56-23-5	Carbon tetrachloride	ND	4.0	1.2	ug/kg	
108-90-7	Chlorobenzene	ND	4.0	0.91	ug/kg	
75-00-3	Chloroethane ^a	ND	9.9	1.2	ug/kg	
67-66-3	Chloroform	ND	4.0	1.0	ug/kg	
74-87-3	Chloromethane	ND	9.9	3.9	ug/kg	
110-82-7	Cyclohexane	ND	4.0	1.3	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	4.0	1.4	ug/kg	
124-48-1	Dibromochloromethane	ND	4.0	1.1	ug/kg	
106-93-4	1,2-Dibromoethane	ND	2.0	0.83	ug/kg	
95-50-1	1,2-Dichlorobenzene b	ND	2.0	1.1	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	2.0	0.98	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	2.0	0.98	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	9.9	1.4	ug/kg	
75-34-3	1,1-Dichloroethane	ND	2.0	0.98	ug/kg	
107-06-2	1,2-Dichloroethane	ND	2.0	0.93	ug/kg	
75-35-4	1,1-Dichloroethene	ND	2.0	1.3	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	2.0	1.7	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	2.0	1.2	ug/kg	
78-87-5	1,2-Dichloropropane	ND	4.0	0.93	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	4.0	0.94	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	4.0	0.90	ug/kg	
100-41-4	Ethylbenzene	ND	2.0	0.90	ug/kg	
76-13-1	Freon 113	ND	9.9	5.3	ug/kg	
591-78-6	2-Hexanone	ND	9.9	4.2	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	4.0	2.8	ug/kg	ſ	
79-20-9	Methyl Acetate	ND	9.9	2.7	ug/kg		
108-87-2	Methylcyclohexane	ND	4.0	1.7	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	2.0	0.93	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	9.9	4.5	ug/kg		
75-09-2	Methylene chloride	ND	9.9	5.2	ug/kg		
100-42-5	Styrene	ND	4.0	0.79	ug/kg	•	
79-34-5	1,1,2,2-Tetrachloroethane	ND	4.0	1.2	ug/kg		
127-18-4	Tetrachloroethene	ND	4.0	1.1	ug/kg		
108-88-3	Toluene	ND	2.0	1.0	ug/kg	•	
87-61-6	1,2,3-Trichlorobenzene	ND	9.9	4.9	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	9.9	4.9	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	4.0	0.95	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	4.0	1.1	ug/kg		
79-01-6	Trichloroethene	ND	2.0	1.5	ug/kg	{	
75-69-4	Trichlorofluoromethane ^c	ND	9.9	1.4	ug/kg		
75-01-4	Vinyl chloride	ND	4.0	0.95	ug/kg	{	
	m,p-Xylene	ND	2.0	1.8	ug/kg		
95-47-6	o-Xylene	ND	2.0	0.91	ug/kg	· {	
1330-20-7	Xylene (total)	ND	2.0	0.91	ug/kg	5	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	102%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	98%	75-131%				
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	C4 alkyl benzene		10.54	210		ug/kg	J
	Naphthalene, decahydro-methy	l- isomer	10.59	170		ug/kg	
	Naphthalene, decahydro-methy		10.76	210		ug/kg	
	C4 alkyl benzene		10.95	380		ug/kg	
	1H-Indene-dihydro-methyl- iso	mer	10.99	250		ug/kg	
	C5 alkyl benzene		11.22	350		ug/kg	
	unknown		11.31	250		ug/kg	
	alkane		11.46	450		ug/kg	
	C5 alkyl benzene		11.52	170		ug/kg	
	Naphthalene, tetrahydro-methy	l- isomer	11.69	300		ug/kg	
	_						

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.9

4.9

Report of Analysis

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	unknown	11.79	290	ug/kg	J
	1H-indene-dihydro-dimethyl- isomer	11.93	240	ug/kg	J
	cycloalkane	12.54	290	ug/kg	J
91-57-6	Naphthalene, 2-methyl-	12.87	190	ug/kg	JN
	Naphthalene, methyl- isomer	13.12	210	ug/kg	J
	Total TIC, Volatile		3960	ug/kg	J

- (a) Associated CCV outside of control limits high, sample was ND.
- (b) This compound in blank spike is outside in house QC limits bias high.
- (c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176760.D 1 12/03/21 05:08 CS 11/29/21 09:30 OP36836 EM7598

Run #2

Initial Weight Final Volume Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	71	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	30	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	63	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	180	38	ug/kg	
95-48-7	2-Methylphenol	ND	71	23	ug/kg	
	3&4-Methylphenol	ND	71	29	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	23	ug/kg	
100-02-7	4-Nitrophenol	ND	350	94	ug/kg	
87-86-5	Pentachlorophenol	ND	140	33	ug/kg	
108-95-2	Phenol	ND	71	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	23	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	26	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	179	35	12	ug/kg	
208-96-8	Acenaphthylene	ND	35	18	ug/kg	
98-86-2	Acetophenone ^a	ND	180	7.6	ug/kg	
120-12-7	Anthracene	169	35	22	ug/kg	
1912-24-9	Atrazine ^a	ND	71	15	ug/kg	
56-55-3	Benzo(a)anthracene	106	35	10	ug/kg	
50-32-8	Benzo(a)pyrene	107	35	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	121	35	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	63.1	35	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	46.1	35	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	71	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	71	8.6	ug/kg	
92-52-4	1,1'-Biphenyl	26.8	71	4.8	ug/kg	J
100-52-7	Benzaldehyde	ND	180	8.8	ug/kg	
91-58-7	2-Chloronaphthalene	ND	71	8.4	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	71	5.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: TT-SB-08-7.0-9.0

Lab Sample ID: JD35782-5 **Date Sampled:** 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Method: SW846 8270E SW846 3546 Percent Solids: 93.7

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	71	14	ug/kg	
218-01-9	Chrysene	124	35	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	71	7.6	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	71	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	71	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	71	11	ug/kg	
121-14-2	2,4-Dinitrotoluene a	ND	35	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	35	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	71	29	ug/kg	
123-91-1	1,4-Dioxane	ND	35	23	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	19.2	35	16	ug/kg	J
132-64-9	Dibenzofuran	173	71	14	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	71	5.8	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	71	8.8	ug/kg	
84-66-2	Diethyl phthalate	ND	71	7.5	ug/kg	
131-11-3	Dimethyl phthalate	ND	71	6.3	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	111	71	8.3	ug/kg	
206-44-0	Fluoranthene	262	35	16	ug/kg	
86-73-7	Fluorene	339	35	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	71	8.9	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	35	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	350	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	77.7	35	17	ug/kg	
78-59-1	Isophorone	ND	71	7.6	ug/kg	
91-57-6	2-Methylnaphthalene	1050	35	8.0	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	180	8.3	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.8	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.2	ug/kg	
91-20-3	Naphthalene	70.0	35	10	ug/kg	
98-95-3	Nitrobenzene	ND	71	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	71	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	943	35	12	ug/kg	
129-00-0	Pyrene	267	35	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.0	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	58%	10-109%			

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	59 %		10-105%		
118-79-6	2,4,6-Tribromophenol	73%		10-135%		
4165-60-0	Nitrobenzene-d5	84%		10-119%		
321-60-8	2-Fluorobiphenyl	59 %		18-112%		
1718-51-0	Terphenyl-d14	57%		18-125%		
	r					
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Naphthalene decahydro-methyl	[5.31	1100	ug/kg	J
	Cyclohexane alkyl		6.00	1100	ug/kg	J
	alkane		6.16	2800	ug/kg	
	alkane		6.38	1000	ug/kg	
90-12-0	Naphthalene, 1-methyl-		6.62	1100	ug/kg	
	unknown		7.08	1000	ug/kg	
	Naphthalene ethyl		7.26	1900	ug/kg	
	Naphthalene dimethyl		7.38	2100	ug/kg	
	Naphthalene dimethyl		7.48	3100	ug/kg	
	Naphthalene dimethyl		7.53	2000	ug/kg	
	unknown		7.55	1500	ug/kg	
	Cyclohexane alkyl		7.63	1300	ug/kg	
	alkane		7.67	5100	ug/kg	
	Naphthalene dimethyl		7.78	1500	ug/kg	
	unknown		7.86	2700	ug/kg	
	Naphthalene trimethyl		8.19	1500	ug/kg	
	Naphthalene trimethyl		8.27	1000	ug/kg	
	Naphthalene trimethyl		8.43	1500	ug/kg	
	Naphthalene trimethyl		8.56	3100	ug/kg	
	alkane		9.30	4300	ug/kg	
	Cyclohexane alkyl		9.45	2000	ug/kg	
	unknown		9.62	1400	ug/kg	
	alkane		9.81	7300	ug/kg	
	9H-Fluorene methyl		9.98	1200	ug/kg	
	alkane		10.20	1300		J
	Total TIC, Semi-Volatile			53900	ug/kg	J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

Lab Sample ID: JD35782-5 **Date Sampled:** 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 4M105033.D 1 12/11/21 02:32 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Initial Weight Run #1 30.2 g 1.0 ml

Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.5 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

Final Volume

4165-60-0 Nitrobenzene-d5 10-107% 81% 321-60-8 2-Fluorobiphenyl **65**% 17-91% 1718-51-0 Terphenyl-d14 63% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134392.D 4 12/04/21 03:33 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Initial Weight Final Volume Run #1 15.5 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	69 14	31 7.8	ug/kg ug/kg	
93-76-5	2,4,5-T	ND	14	6.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9	2,4-DCAA	7% b			25%	
19719-28-9	2,4-DCAA	7% b		10-1	25 %	

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171590.D 1 11/30/21 10:53 CP 11/27/21 10:05 OP36830 G1G5918

Run #2

Initial Weight Final Volume Run #1 16.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.66	0.54	ug/kg	
319-84-6	alpha-BHC	ND	0.66	0.54	ug/kg	
319-85-7	beta-BHC	ND	0.66	0.60	ug/kg	
319-86-8	delta-BHC	ND	0.66	0.63	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.66	0.49	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.66	0.53	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.66	0.30	ug/kg	
60-57-1	Dieldrin	ND	0.66	0.45	ug/kg	
72-54-8	4,4'-DDD	ND	0.66	0.60	ug/kg	
72-55-9	4,4'-DDE	0.82	0.66	0.58	ug/kg	
50-29-3	4,4'-DDT	ND	0.66	0.58	ug/kg	
72-20-8	Endrin	ND	0.66	0.51	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.66	0.51	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.66	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	0.66	0.38	ug/kg	
33213-65-9	Endosulfan-II	ND	0.66	0.41	ug/kg	
76-44-8	Heptachlor	ND	0.66	0.57	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.66	0.46	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.52	ug/kg	
53494-70-5	Endrin ketone	ND	0.66	0.48	ug/kg	
8001-35-2	Toxaphene	ND	16	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
877-09-8	Tetrachloro-m-xylene	69%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	68%		27-1	38%	
2051-24-3	Decachlorobiphenyl	81%		10-1	79%	
2051-24-3	Decachlorobiphenyl	98%				

ND = Not detected MDL = MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

 Lab Sample ID:
 JD35782-5
 Date Sampled:
 11/22/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475289.D 1 12/07/21 03:27 TL 11/27/21 10:05 OP36831 GXX7676

Run #2

Run #1 16.2 g Final Volume

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	33	15	ug/kg	
11104-28-2	Aroclor 1221	ND	33	20	ug/kg	
11141-16-5	Aroclor 1232	ND	33	21	ug/kg	
53469-21-9	Aroclor 1242	ND	33	14	ug/kg	
12672-29-6	Aroclor 1248	ND	33	29	ug/kg	
11097-69-1	Aroclor 1254	ND	33	18	ug/kg	
11096-82-5	Aroclor 1260	ND	33	14	ug/kg	
11100-14-4	Aroclor 1268	ND	33	14	ug/kg	
37324-23-5	Aroclor 1262	ND	33	22	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	64%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	78 %		24-1	52 %	
2051-24-3	Decachlorobiphenyl	76 %		10-1	72 %	
2051-24-3	Decachlorobiphenyl	85%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-08-7.0-9.0

Lab Sample ID: JD35782-5 Date Sampled: 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	8770	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	85.1	22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.81	0.22	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	< 0.55	0.55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	30700	1100	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	17.6	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	12.8	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	44.4	2.8	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	16800	55	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	31.8	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	17900	550	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	313	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.28	0.035	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	23.6	4.4	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	3080	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver ^a	< 1.1	1.1	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	30.3	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	230	5.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51494
(2) Instrument QC Batch: MA51527
(3) Instrument QC Batch: MA51586
(4) Prep QC Batch: MP30055
(5) Prep QC Batch: MP30089

(a) Elevated detection limit due to dilution required for high interfering element.

JD35782

Page 1 of 1

Client Sample ID: TT-SB-08-7.0-9.0

Lab Sample ID: JD35782-5 Date Sampled: 11/22/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.21	0.21	mg/kg	1	12/08/21 21:43	EB	SW846 9012B/LACHAT
Solids, Percent	93.7		%	1	11/29/21 16:30	BG	SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

9

Page 1 of 2

Client Sample ID: TT-SB-08-7.0-9.0

Lab Sample ID:JD35782-5ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50966.D 1 12/21/21 12:47 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS							
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.27	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.53	0.27	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.27	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.53	0.27	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.53	0.27	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.53	0.27	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.27	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.53	0.27	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.27	ug/kg				
PERFLUOROALKYLSULFONIC ACIDS									
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.27	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.27	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.27	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.27	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.27	ug/kg				
PERFLUOR	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.53	0.27	ug/kg				
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg				
FLUOROTI	FLUOROTELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg				

ND = Not detected MDL = Mo

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Lab Sample ID:JD35782-5ADate Sampled:11/22/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:93.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	92%		40-140%
	13C5-PFPeA	93%		50-150 %
	13C5-PFHxA	94%		50-150 %
	13C4-PFHpA	97%		50-150 %
	13C8-PFOA	96%		50-150 %
	13C9-PFNA	98%		50-150 %
	13C6-PFDA	100%		50-150 %
	13C7-PFUnDA	96%		40-140%
	13C2-PFDoDA	85 %		40-140%
	13C2-PFTeDA	91%		30-130%
	13C3-PFBS	94%		50-150 %
	13C3-PFHxS	95 %		50-150 %
	13C8-PFOS	92%		50-150 %
	13C8-FOSA	102%		30-130%
	d3-MeFOSAA	114%		40-140%
	d5-EtFOSAA	125%		40-140%
	13C2-6:2FTS	91%		50-150 %
	13C2-8:2FTS	99%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	22.6	9.1	3.8	ug/kg	
71-43-2	Benzene	ND	0.45	0.41	ug/kg	
74-97-5	Bromochloromethane	ND	4.5	0.51	ug/kg	
75-27-4	Bromodichloromethane	ND	1.8	0.39	ug/kg	
75-25-2	Bromoform	ND	4.5	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.5	0.69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.1	2.2	ug/kg	
75-15-0	Carbon disulfide	ND	1.8	0.49	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.8	0.56	ug/kg	
108-90-7	Chlorobenzene	ND	1.8	0.42	ug/kg	
75-00-3	Chloroethane ^a	ND	4.5	0.54	ug/kg	
67-66-3	Chloroform	ND	1.8	0.47	ug/kg	
74-87-3	Chloromethane	ND	4.5	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.8	0.60	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.8	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	1.8	0.51	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.91	0.38	ug/kg	
95-50-1	1,2-Dichlorobenzene ^b	ND	0.91	0.50	ug/kg	
541-73-1	1,3-Dichlorobenzene ^b	ND	0.91	0.45	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.91	0.45	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.5	0.66	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.91	0.45	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.91	0.43	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.91	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.91	0.76	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.91	0.55	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.8	0.43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.8	0.43	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.8	0.41	ug/kg	
100-41-4	Ethylbenzene	ND	0.91	0.41	ug/kg	
76-13-1	Freon 113	ND	4.5	2.4	ug/kg	
591-78-6	2-Hexanone	ND	4.5	1.9	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.8	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.5	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.8	0.79	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.91	0.43	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.5	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.5	2.4	ug/kg		
100-42-5	Styrene	ND	1.8	0.36	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.8	0.54	ug/kg		
127-18-4	Tetrachloroethene	ND	1.8	0.53	ug/kg		
108-88-3	Toluene	ND	0.91	0.48	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.8	0.44	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.8	0.50	ug/kg		
79-01-6	Trichloroethene	ND	0.91	0.69	ug/kg		
75-69-4	Trichlorofluoromethane c	ND	4.5	0.62	ug/kg		
75-01-4	Vinyl chloride	ND	1.8	0.44	ug/kg		
	m,p-Xylene	ND	0.91	0.81	ug/kg		
95-47-6	o-Xylene	ND	0.91	0.42	ug/kg		
1330-20-7	Xylene (total)	ND	0.91	0.42	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	102%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	98%		75-13	31%		
2037-26-5	Toluene-D8	87 %		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) This compound in blank spike is outside in house QC limits bias high.

⁽c) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

t of Analysis Page 1 of 3

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176723.D 1 12/02/21 00:38 KLS 11/29/21 09:30 OP36836 EM7596

Run #2

Initial Weight Final Volume Run #1 30.1 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	98	ug/kg	
87-86-5	Pentachlorophenol ^b	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	39.8	37	13	ug/kg	
208-96-8	Acenaphthylene	62.9	37	19	ug/kg	
98-86-2	Acetophenone	ND	180	7.9	ug/kg	
120-12-7	Anthracene	92.6	37	23	ug/kg	
1912-24-9	Atrazine ^a	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	156	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	190	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	236	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	143	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	82.5	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	11.5	74	5.0	ug/kg	J
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	16.1	74	5.3	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	74	15	ug/kg	
218-01-9	Chrysene	208	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene a	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	35.9	37	16	ug/kg	J
132-64-9	Dibenzofuran	20.0	74	15	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	74	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	326	74	8.6	ug/kg	
206-44-0	Fluoranthene	302	37	16	ug/kg	
86-73-7	Fluorene	22.7	37	17	ug/kg	J
118-74-1	Hexachlorobenzene	ND	74	9.3	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene b	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	160	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	16.6	37	8.3	ug/kg	J
88-74-4	2-Nitroaniline	ND	180	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.2	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	24.8	37	10	ug/kg	J
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	141	37	12	ug/kg	
129-00-0	Pyrene	408	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		

367-12-4 2-Fluorophenol 63% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Report of Analysis

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	63%		10-105%		
118-79-6	2,4,6-Tribromophenol	100%		10-135%		
4165-60-0	Nitrobenzene-d5	81%		10-119%		
321-60-8	2-Fluorobiphenyl	83%		18-112%		
1718-51-0	Terphenyl-d14	71%		18-125%		
	1 3					
CAS No.	Centatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	Unknown		6.17	410	ug/kg	J
	Unknown		7.55	670		J
	Cyclohexane alkyl		7.64	350		J
	Alkane Unknown		7.68	500	ug/kg	J
			7.87	1000	ug/kg	J
	Alkane		8.57	940	ug/kg	J
	Unknown		9.06	310	ug/kg	J
	Alkane		9.30	680	ug/kg	J
	Cyclohexane alkyl		9.46	390	ug/kg	J
	Naphthalene tetramethyl		9.64	440	ug/kg	J
	Alkane		9.80	1700	ug/kg	J
	Unknown		9.99	330	ug/kg	J
	Alkane		10.21	340	ug/kg	J
	Alkane		11.39	490	ug/kg	J
	Alkane		11.49	430	ug/kg	J
	Alkane		12.31	310	ug/kg	J
	Alkane		13.08	410	ug/kg	J
	Unknown		14.11	280	ug/kg	J
	Alkane		16.57	440	ug/kg	J
	Unknown		19.17	370	ug/kg	J
	Unknown		19.28	290	ug/kg	J
	Unknown		19.38	690	ug/kg	J
	Unknown		19.77	700	ug/kg	J
	Unknown		19.86	890	ug/kg	J
	Unknown		20.48	340	ug/kg	J
	Total TIC, Semi-Volatile			13700	ug/kg	J

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

⁽b) Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105034.D 1 12/11/21 02:52 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Initial Weight Final Volume
Run #1 30.1 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 74%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 68%
 17-91%

 1718-51-0
 Terphenyl-d14
 71%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134393.D 4 12/04/21 04:01 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Initial Weight Final Volume Run #1 15.3 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	72 14 14	32 8.2 7.2	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	10% 8% ^b		10-12 10-12		

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G171591.D	1	11/30/21 11:11	CP	11/27/21 10:05	OP36830	G1G5918
Run #2 a	1G171671.D	5	12/02/21 00:29	CP	11/27/21 10:05	OP36830	G1G5922

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^b	0.96	0.72	0.59	ug/kg	
319-84-6	alpha-BHC	ND	0.72	0.58	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	6.8	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane	6.8	0.72	0.33	ug/kg	
60-57-1	Dieldrin ^b	0.90	0.72	0.49	ug/kg	
72-54-8	4,4'-DDD	8.7	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	3.7	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	2.0	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	0.94	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide ^c	1.8	0.72	0.50	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.57	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	75 %	80%	27-1	38%	
877-09-8	Tetrachloro-m-xylene	82%	81%	27-1	38%	
2051-24-3	Decachlorobiphenyl	76 %	123%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	112%	111%	10-1	79 %	

⁽a) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it

Client Sample ID: TT-SB-09-5.0-7.0

 Lab Sample ID:
 JD35782-6
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-09-5.0-7.0

Lab Sample ID: JD35782-6

Date Sampled: 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475290.D 1 12/07/21 03:45 TL 11/27/21 10:05 OP36831 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	69 %		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	77%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	74%		10-1	72%	
2051-24-3	Decachlorobiphenyl	95%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-09-5.0-7.0

Lab Sample ID: JD35782-6 **Date Sampled:** 11/23/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed E	By Method	Prep Method
Aluminum	7740	55	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Arsenic	6.4	2.2	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Barium	69.5	22	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.56	0.22	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Calcium	21800	550	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Chromium	15.5	1.1	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.0	5.5	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Copper	36.2	2.8	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Iron	13800	55	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Lead	71.4	2.2	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Magnesium	3030	550	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Manganese	253	1.7	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Mercury	0.15	0.037	mg/kg	1	11/29/21	11/29/21 s	B SW846 7471B ¹	SW846 7471B ³
Nickel	19.6	4.4	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Potassium	1170	1100	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Silver	0.87	0.55	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Vanadium	24.2	5.5	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴
Zinc	63.7	5.5	mg/kg	1	12/01/21	12/02/21 N	ND SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51494 (2) Instrument QC Batch: MA51527 (3) Prep QC Batch: MP30055 (4) Prep QC Batch: MP30089

JD35782

Client Sample ID: TT-SB-09-5.0-7.0

Lab Sample ID: JD35782-6 **Date Sampled:** 11/23/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 90.3

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

RL = Reporting Limit

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.22 90.3	0.22	mg/kg %	1 1	12/08/21 21:16 11/29/21 16:30		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

Page 1 of 2

Client Sample ID: TT-SB-09-5.0-7.0

Lab Sample ID: JD35782-6A Date Sampled: 11/23/21

Matrix: SO - Soil Date Received: 11/23/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50967.D 1 12/21/21 13:03 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.10 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOROALKYLCARBOXYLIC ACIDS									
375-22-4	Perfluorobutanoic acid	ND	1.1	0.40	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.26	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.53	0.26	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.26	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.53	0.26	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.53	0.26	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.53	0.26	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.26	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.53	0.26	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.26	ug/kg				
PERFLUOF	ROALKYLSULFONIC ACIDS	5							
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.26	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.26	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.26	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.26	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.26	ug/kg				
PERFLUOR	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.53	0.26	ug/kg				
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg				
					0 0				
FLUOROTI	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg				

ND = Not detected MDL = Method

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-09-5.0-7.0

Lab Sample ID:JD35782-6ADate Sampled:11/23/21Matrix:SO - SoilDate Received:11/23/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	95%		40-140%
	13C5-PFPeA	97%		50-150 %
	13C5-PFHxA	97%		50-150 %
	13C4-PFHpA	99%		50-150 %
	13C8-PFOA	99%		50-150 %
	13C9-PFNA	100%		50-150 %
	13C6-PFDA	102%		50-150 %
	13C7-PFUnDA	99%		40-140%
	13C2-PFDoDA	83%		40-140%
	13C2-PFTeDA	85 %		30-130%
	13C3-PFBS	97%		50-150 %
	13C3-PFHxS	99%		50-150 %
	13C8-PFOS	97%		50-150 %
	13C8-FOSA	104%		30-130%
	d3-MeFOSAA	117%		40-140%
	d5-EtFOSAA	129%		40-140%
	13C2-6:2FTS	95 %		50-150 %
	13C2-8:2FTS	106%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240236.D 1 11/30/21 18:46 PS 11/24/21 08:00 n/a VI9767

Run #2

Initial Weight

Run #1 4.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	22.6	15	6.0	ug/kg	
71-43-2	Benzene	2.5	0.73	0.66	ug/kg	
74-97-5	Bromochloromethane	ND	7.3	0.81	ug/kg	
75-27-4	Bromodichloromethane	ND	2.9	0.62	ug/kg	
75-25-2	Bromoform	ND	7.3	2.0	ug/kg	
74-83-9	Bromomethane	ND	7.3	1.1	ug/kg	
78-93-3	2-Butanone (MEK)	ND	15	3.5	ug/kg	
75-15-0	Carbon disulfide	2.1	2.9	0.78	ug/kg	J
56-23-5	Carbon tetrachloride	ND	2.9	0.90	ug/kg	
108-90-7	Chlorobenzene	ND	2.9	0.67	ug/kg	
75-00-3	Chloroethane	ND	7.3	0.86	ug/kg	
67-66-3	Chloroform	ND	2.9	0.76	ug/kg	
74-87-3	Chloromethane	ND	7.3	2.9	ug/kg	
110-82-7	Cyclohexane	ND	2.9	0.96	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.9	1.0	ug/kg	
124-48-1	Dibromochloromethane	ND	2.9	0.81	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.5	0.61	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.5	0.79	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.5	0.72	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.5	0.72	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	7.3	1.1	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.5	0.72	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.5	0.68	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.5	0.95	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.5	1.2	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.5	0.89	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.9	0.69	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.9	0.69	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.9	0.67	ug/kg	
100-41-4	Ethylbenzene	ND	1.5	0.66	ug/kg	
76-13-1	Freon 113	ND	7.3	3.9	ug/kg	
591-78-6	2-Hexanone	ND	7.3	3.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.9	2.1	ug/kg	į	
79-20-9	Methyl Acetate	ND	7.3	2.0	ug/kg		
108-87-2	Methylcyclohexane	ND	2.9	1.3	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.5	0.68	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	7.3	3.3	ug/kg		
75-09-2	Methylene chloride	ND	7.3	3.8	ug/kg		
100-42-5	Styrene	ND	2.9	0.58	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.9	0.87	ug/kg		
127-18-4	Tetrachloroethene	ND	2.9	0.84	ug/kg		
108-88-3	Toluene	1.5	1.5	0.76	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	7.3	3.6	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	7.3	3.6	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.9	0.70	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.9	0.81	ug/kg		
79-01-6	Trichloroethene	ND	1.5	1.1	ug/kg		
75-69-4	Trichlorofluoromethane	ND	7.3	1.0	ug/kg		
75-01-4	Vinyl chloride	ND	2.9	0.70	ug/kg		
	m,p-Xylene	ND	1.5	1.3	ug/kg		
95-47-6	o-Xylene	ND	1.5	0.67	ug/kg		
1330-20-7	Xylene (total)	ND	1.5	0.67	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	102%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	106%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile	0 ug/kg					

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176766.D 1 12/03/21 08:08 CS 11/29/21 09:30 OP36836 EM7598

Run #2

Initial Weight Final Volume Run #1 30.9 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	75	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	67	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	75	24	ug/kg	
	3&4-Methylphenol	ND	75	31	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol	ND	380	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	75	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	107	38	13	ug/kg	
208-96-8	Acenaphthylene	121	38	19	ug/kg	
98-86-2	Acetophenone ^a	ND	190	8.1	ug/kg	
120-12-7	Anthracene	244	38	23	ug/kg	
1912-24-9	Atrazine ^a	ND	75	16	ug/kg	
56-55-3	Benzo(a)anthracene	634	38	11	ug/kg	
50-32-8	Benzo(a)pyrene	574	38	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	698	38	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	316	38	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	281	38	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	75	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	9.2	ug/kg	
92-52-4	1,1'-Biphenyl	11.7	75	5.2	ug/kg	J
100-52-7	Benzaldehyde	ND	190	9.3	ug/kg	
91-58-7	2-Chloronaphthalene	ND	75	9.0	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	40.5	75	5.5	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-10-7.0-9.0

Lab Sample ID: JD35782-7 **Date Sampled:** 11/23/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 85.9

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	75	15	ug/kg	
218-01-9	Chrysene	686	38	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	8.1	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	75	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	12	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	38	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	38	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	75	31	ug/kg	
123-91-1	1,4-Dioxane	ND	38	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	95.3	38	17	ug/kg	
132-64-9	Dibenzofuran	85.5	75	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	6.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	9.4	ug/kg	
84-66-2	Diethyl phthalate	ND	75	8.0	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	6.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	160	75	8.8	ug/kg	
206-44-0	Fluoranthene	1140	38	17	ug/kg	
86-73-7	Fluorene	83.7	38	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	9.5	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	38	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	380	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	400	38	18	ug/kg	
78-59-1	Isophorone	ND	75	8.1	ug/kg	
91-57-6	2-Methylnaphthalene	37.7	38	8.5	ug/kg	J
88-74-4	2-Nitroaniline ^a	ND	190	8.9	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.4	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.8	ug/kg	
91-20-3	Naphthalene	106	38	11	ug/kg	
98-95-3	Nitrobenzene	ND	75	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	75	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	539	38	13	ug/kg	
129-00-0	Pyrene	1260	38	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
267 19 4	9 Eluorophonol	400/		10.1	000/	

367-12-4 2-Fluorophenol **49**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	52% 59% 70% 60% 65%		10-105% 10-135% 10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact/aldol-condensat Naphthalene dimethyl Phenanthrene methyl unknown Phenanthrene methyl unknown unknown Pyrene methyl Pyrene methyl unknown unknown unknown unknown alkane unknown PAH substance unknown Total TIC, Semi-Volatile	tion	3.30 7.65 11.65 11.79 11.84 12.71 13.14 14.08 14.22 14.66 14.98 15.37 17.18 17.97 18.25 19.36 19.84	1500 170 180 240 150 210 270 170 180 240 370 170 190 240 480 250 410 3920	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	1 1 1 1 1 1 1 1 1

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105035.D 1 12/11/21 03:13 KLS 11/29/21 09:30 OP36836A E4M4881

Run #2

Initial Weight Final Volume

Run #1 30.9 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.8 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 64%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 63%
 17-91%

 1718-51-0
 Terphenyl-d14
 63%
 17-105%

ND = Not detected

ted MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134400.D 4 12/04/21 07:12 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Initial Weight Final Volume Run #1 15.7 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	74 15 15	33 8.4 7.4	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	8% b 5% b		10-12 10-12		

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171601.D 1 11/30/21 17:30 KS 11/27/21 10:05 OP36830 G1G5919

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.76	0.62	ug/kg	
319-84-6	alpha-BHC	ND	0.76	0.61	ug/kg	
319-85-7	beta-BHC	ND	0.76	0.68	ug/kg	
319-86-8	delta-BHC	ND	0.76	0.73	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.76	0.56	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.76	0.61	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.76	0.34	ug/kg	
60-57-1	Dieldrin	ND	0.76	0.52	ug/kg	
72-54-8	4,4'-DDD ^a	1.1	0.76	0.69	ug/kg	
72-55-9	4,4'-DDE	2.2	0.76	0.66	ug/kg	
50-29-3	4,4'-DDT ^a	0.86	0.76	0.67	ug/kg	
72-20-8	Endrin	ND	0.76	0.59	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.76	0.59	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.76	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.76	0.44	ug/kg	
33213-65-9	Endosulfan-II	ND	0.76	0.47	ug/kg	
76-44-8	Heptachlor	ND	0.76	0.65	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.76	0.53	ug/kg	
72-43-5	Methoxychlor	4.1	1.5	0.60	ug/kg	
53494-70-5	Endrin ketone	ND	0.76	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	76 %		27-13	38 %	
877-09-8	Tetrachloro-m-xylene	73%		27-13	38 %	
2051-24-3	Decachlorobiphenyl	70 %		10-17	79 %	
2051-24-3	Decachlorobiphenyl	135%		10-17	79 %	

(a) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-10-7.0-9.0

 Lab Sample ID:
 JD35782-7
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/23/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475140.D 1 12/02/21 07:40 TL 11/27/21 10:05 OP36831 GXX7671

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND	38 38 38 38 38 38	18 23 24 15 34 20 16	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
11100-14-4 37324-23-5 CAS No.	Aroclor 1268 Aroclor 1262 Surrogate Recoveries	ND ND Run# 1	38 38 Run# 2	16 25 Limi	ug/kg ug/kg ts	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	69% 78% 70% 82%		24-15 24-15 10-17 10-17	52% 52% 72%	

ND = Not detected

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-10-7.0-9.0

Lab Sample ID: JD35782-7 Date Sampled: 11/23/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	9560	57	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.3	2.3	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	4.5	2.3	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	78.5	23	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.62	0.23	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	3.0	0.57	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	30100	1100	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	17.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	5.7	5.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	15.5	2.8	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	14700	57	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	73.3	2.3	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	8400	570	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	390	1.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.11	0.037	mg/kg	1	11/29/21	11/29/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	21.7	4.5	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	2370	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.3	2.3	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver ^a	< 1.1	1.1	mg/kg	2	12/01/21	12/10/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	22.7	5.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	569	5.7	mg/kg	1	12/01/21	12/02/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51494
(2) Instrument QC Batch: MA51527
(3) Instrument QC Batch: MA51586
(4) Prep QC Batch: MP30055
(5) Prep QC Batch: MP30089

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: TT-SB-10-7.0-9.0

Lab Sample ID: JD35782-7 Date Sampled: 11/23/21 Matrix: SO - Soil Date Received: 11/23/21 Percent Solids: 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.23	0.23	mg/kg	1	12/08/21 21:18	8 ЕВ	SW846 9012B/LACHAT
Solids, Percent	85.9		%	1	11/29/21 16:30) BG	SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

Page 1 of 2

Client Sample ID: TT-SB-10-7.0-9.0

Lab Sample ID: JD35782-7A Date Sampled: 11/23/21

Matrix: SO - Soil Date Received: 11/23/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50972.D 1 12/21/21 14:26 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOF	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	0.36	0.58	0.29	ug/kg	J
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	TIDS			
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg	
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg	
					5 5	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-10-7.0-9.0

Lab Sample ID: JD35782-7A Date Sampled: 11/23/21

Matrix: SO - Soil Date Received: 11/23/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 85.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	73%		40-140%
	13C5-PFPeA	74%		50-150 %
	13C5-PFHxA	74%		50-150 %
	13C4-PFHpA	76 %		50-150 %
	13C8-PFOA	75 %		50-150 %
	13C9-PFNA	75 %		50-150 %
	13C6-PFDA	76 %		50-150 %
	13C7-PFUnDA	70 %		40-140%
	13C2-PFDoDA	68 %		40-140%
	13C2-PFTeDA	71%		30-130%
	13C3-PFBS	73 %		50-150 %
	13C3-PFHxS	73 %		50-150 %
	13C8-PFOS	71%		50-150 %
	13C8-FOSA	72 %		30-130%
	d3-MeFOSAA	89 %		40-140%
	d5-EtFOSAA	94%		40-140%
	13C2-6:2FTS	71%		50-150 %
	13C2-8:2FTS	79 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

SGS	Su			2235 F	OF orth Am	erica I	nc D	ayton 8810					FED-EX								je o	
EHSA-QAC-0023-04-FORM-Standard COC			TEL		9-0200 www.sgs			3499/34	180				SGS Quo	te#					SGS Job #	T	D35	782
Client / Reporting Information			Project		_										×	F	Reques	ted An	alysis	~		Matrix Code
Company Name:	Project Name			1			6.								4 Die)					-	
TETRA TECH		2 NO A	VE	4 5	321	, ,	6.						1	20	2	FZ			2		3	DW - Drinking W GW - Ground W
treet Address	Street						_			_		_	20t	47			=	0	Ü		2	WW - Water SW - Surface W
6 CENTURY DR.	City		State	Billing In Company	formation (Name	if differen	t from Rep	port to)						7		7	P. B	STE			E	SO - Soil SL- Sludge
PARSIPPANY N) 07954	BROOM	KWW	NV										12		Ī	SS	0	S			V	SED-Sedimer
Project Contact E-mail	Project #	_		Street Ad	dress									0	5				7	ال		LIQ - Other Liq
BOB CANTHGIAMO ROBERT, CAN	Client Purcha	O TETRI	TECH	City City					State		7	ip	-	27	2		2	1818	MTA	7	0	SOL - Other So
973 630 4045	Cilent Fulcila	ae Older w		O.I.									29	20	728	90	90	00	Z	5	5	WP - Wipe FB - Field Blan
ampler(s) Name(s) Phone #	Project Manag	ger		Attention:									18260	90	80	80	8	士	X	2	7	EB-Equipment B RB - Rinse Bla
A- VAWI							-				100		>	A		n l	-	(Lab Use	n Omba)			TB - Trip Blan
			Collec	uori		urca			Numbe	er of prese	Hos pers	E E				PH	Crieck	(Lab US	e Only)			
sgs empte# Field ID / Point of Collection	MEOH/DI Viai #	Date	Time	Sampled by	Grab (G) Chi	orinst (Y/N) Mat	trix # of bo	ottles 📮	NaOH HNO.	H ₂ SO ₄	DI Wat	INCO NEC										LAB USE ON
1 TT-SB-05-6.5-8.5	8	11/19/2021		kv	G	50	-	1	+-+	3		3			-	-				_		D44
	0	111111111111111111111111111111111111111					-	+	++	-	3	-	/	-			-	-	-	-		
0 1	-	11/19/2021		AV	6	5	-		+			3	1	,	-	-			-	-		P13
3 TT-58-06-5.0-7.0	0	11/22/2021		AV	6	150	-	,	++	13		3	~	-		7	-	~	~	-	~	SUB
4 TT-58-07-60-80	0	11/22/2011	1007	AV	6	5	-	_	\vdash	3	4	3	~	/	_					-	1	Encore
5 TT-58-08-7.0-9.0		11/21/202	1404	AV	9	5	- 4	0				3	V		-	-	-	V	~		~	1461
6 TT 58-09-5.0-7.0	*	11/23/20	21 0915	AV	9	30	0 18	3		9		9	V	~	-	-	-	-	-		-	4981
7 11-5-10-7.0-9.0	•	11/23/201	1106	AV	G	S	0 6			3	3	3	V	~	1	1	/	-	-		1	P
	-																					
										11	11	11										
						-			1	+	11	++							-	-	-	
		-		-	-	+	-	+	++	++	++	++		-			-	-	-	-	-	
Turn Around Time (Bu	inese Dave	1							Deli	verable						-				Comme	nte / Specie	al Instructions
Tulli Alouid Tille (24	Approved By (\$				Commer	cial "A" (I	Level 1)		Г			egory A			000-0	SM5						
10 Business Days						ial "B" (L			Ē	_		egory B					TT-	58.	09-	5.0	- 7.0 -	Ms M. initial Assessment 2bel Verification
5 Business Days					NJ Redu	ced (Leve	13)			MAI	MCP C	ritoria	_				An	OXIC	000	w a	more	mitial Asso
3 Business Days*					Full Tier		1)			_	RCP C						D	9000	gia	in e	, iço	shot
2 Business Days*					Commer						e Forms							2.0	_		encor	-Del Verification
1 Business Day*		-			NJ DKQI		mercial "A	= Peru	Ite only: C	_	Forma	-	+ 00 9	nman/			9	5X E	gro	m	encor	
	proval needed	for 1-3 Business		11		C	ommercia	"C" = R	esults + (C Sumn	mary + P	aglied Rav	v data						http	://www	.sgs.com/er	n/terms-and-condition
Relinguished &: Date/Tim		Sampl	e Custody/	must be	documen	ed belov	w each ti		ples cha		SSESSI	p, inch	uding co	urier de		Date / Tim	10:	1571	Received F	lv:		
ALVA III2	202 13	59	VV	2	/			2	L	1	Va	1				11/23	3/21	1526	2	,		
Relinquished by: Date / Time	P:	Received By:						Relin	nquished B	y:						Date / Tim	0:	F	Received B	By:		
Relinquished by: Date / Tim):	Received By:						Cust	ody Seal if		-		Intact			-		Therm ID):	-	On Ice	Cooler Temp. °C
5		5											Not intact	1	Absent			See Sample		Summary	On Ice 3.1	25 CIP

JD35782: Chain of Custody

Page 1 of 3

SGS Sample Receipt Summary

Job Number: JD357	782 Client: TE	ETRA TECH	Project: 2ND AVENUE AND	33-39TH STREET, BROOKL											
Date / Time Received: 11/23/	2021 3:26:00 PM D	elivery Method:	Airbill #'s:												
• •	Cooler Temps (Raw Measured) °C: Cooler 1: (3.1); Cooler 2: (2.5); Cooler Temps (Corrected) °C: Cooler 1: (1.7); Cooler 2: (1.1);														
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact:	or N 3. COC Pres 4. Smpl Dates/T	• -	1. Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	<u>Y or N</u> ☑ □ ☑ □ ☑ □											
1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	IR Gun Ice (Bag)		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N Intact Y or N N/A Y or N N/A Y O N N/A											
Test Strip Lot #s: pH 1	I-12: <u>231619</u>	pH 12+:													
Comments															

SM089-03 Rev. Date 12/7/17

JD35782: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

Date/Time: 12/13/2021

Requested Date:	12/13/2021		Received Date:	11/23/2021
Account Name:	Tetra Tech		Due Date:	12/13/2021
Project Description:	2nd Avenue and 33-3	2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS		PM: JBS	TAT (Days):	7
Sample #: JD35782-ALL	82-ALL	ple #: JD35782-ALL Change:		

Change: Please move project to TTNJP90692 and re-sub to ALSE.

Dept:

TAT

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative. Above Changes Per: Jadon Schiller

JD35782: Chain of Custody Page 3 of 3

	ccc		CHAIN OF CUSTODY SGS North America Inc Dayton										Page 1 of 1											
	000	2235 Route 130, Dayton, NJ 08810								FEO-EX Tracking #					Bottle (Bottle Order Commit #								
						-0200 FAX: 732-329-3499/3480						SGS Quote a				5GS Jon # JD35782								
Cilent 7 Reporting Information Project						Information							-									_		
Company Name: Project Name:												Requested A					Inalys	s	_	_	_	Matrix Codes		
		2nd Avenue	and 33-39th S	NY						1			1			14			1	DW - Drinking Weter				
Street A	Address	Street	Street								1			F 130				GW - Ground Water WW - Water						
City	State	Zip Crity	City State				Billing Information (if different from Report to)							1 1	T.								SW - Surface Water SO - Soil	
			State				Company Name								1	1 1 4 121					SL- Sludge SED-Sediment			
	Contact E-mail	Project #	Project #				Street Address												1,19	941	OI - OI			
Tad	on Schiller@sqs.com		Cient Purchase Order #			500 75														LIQ - Other Liquid AIR - Air SOL - Other Solid WP - Wipe				
		Client Purchase				City State Zip						1												
Sempler(s) Name(s) Phone AV		Phone Project Manage	Project Manager			Attention:						1		1						FB - Fleid Blank EB-Equipment Blank				
													7								RB - Rinse Blank TB - Trip Blank			
				Collection				F	Hant	bor of	reserve	d Bott	04	N.		1				1				. W. S. Harrison
SGS Mmole #	Field ID / Point of Collection	MEOH/OI Vial #			Sampled		# of		E 6	, g	Parter.	동	SORE	LCID537NY21			1							
1A	TT-SB-05-6,5-8,5	MECHICI VIAIR	Dute	Toms	by	Motrix	bottles	호	NaO.H	S.F.	ž 5	뷫	Ä							11.				LAB USE ONLY
2A	S DUP-01		11/19/21	1:50:00 PM	AV	so								Х										
			11/19/21	4:00:00 PM	AV	80								х										
3A	TT-SB-06-5.0-7.0		11/22/21	9:35:00 AM	AV	so		П		П		П		х				-						
4A	TT-SB-07-6.0-8.0		11/22/21	12:23:00 PM	AV	so		П	T	Ħ		H	1	х	V									
5A	TT-SB-08-7.0-9,0		11/22/21	2:04:00 PM	AV	so		†	1	H		H	+	X									-	
6A	TT-SB-09-5.0-7.0		11/23/21	9:15:00 AM	AV	so		H	+	Н	+	Н	+	X	-					-				
BAD	TT-SB-09-5.0-7.0		11/23/21	9:15:00 AM	AV	so		H	+	Н	+	Н	+	-							- 4			
SAS	TT-SB-09-5,0-7,0		11/23/21	9:15:00 AM	AV		_	Н	+	H	+	4	1	Х										
7A	TT-SB-10-7.0-9.0	-			_	so		Н	+	Н	1			Х										
	77 05 10 1.0 0.0	_	11/23/21	11:06:00 AM	AV	50		Ц	1	\sqcup				Х	0 1 0 1 0			12.3						
\rightarrow				V														010						7
-		11/31								I								111						
			1.0																					
_	Turnaround Time (Business days)								erable	lafor	mation		4_1					Com	ments/	Special	Instructi	ions	4	/
Г	Standard 10 Business Days	Approved By (SGS	PM); / Date:				lat "A" (L						Categ									0	111	
Ē	5 Business Days RUSH						Level 3+4	Level 2) NYASP Categor +41 State Forms				ory B	" INITIAL ASSES			MEN	MENY							
3 Business Days RUSH							State Forms EDD Format							AUDITIE! (1										
2 Business Days RUSH 1 Business Day EMERGENCY						Commercial "C" X Other NYASI					В	B						.						
- 0	Other 1/14/1900	-					Соттего									1 7900	NEI C					1	1	3
Emen	gency & Rush T/A data available via Lablink		H/Emergency TAT				Commerci Commerci	at "C"	= Res	+ 250.0	OC S	munik	v . 17.	rent Raw	LABEL		KIFIC.	AIIC	/N_	://www	v.sas n	om/en	Heren	s-and-conditions
Reting	Eghed by:	Date / Time: 16.10	Sample Custo Received By:	dy must be dos	umented	d below	each time	e sam	nples	chan	ge po	1501	ion, i	ncludin	g courler deliv	ery.	-	-			1	-	1	
1	1- Ph	1/242	24 1 Feedow Dy: Received Dy: 1997 Time: 500 Received Dy: 2997 Time: 500 Received Dy: 2							Received	ceived the factor with													
Mino	stated by:	Date / Time:						Relinquished By:							Date / Time: Receive						X	16	XC.	and a
Religionshiped by:		Date (There)	3					4											4		/		-	

JD35782: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD3578	32	Client	: SGS NJ		Project: 2ND AVENU	JE AND 33-	39TH	STREET, BROOLK			
Date / Time Received: 11/30/2021 3:00:00 PM			Delivery Method:	FX	Airbill #s: 5272 0636 6565						
Therm ID: IR 1;			Therm CF: 0.2;		# of Coolers: 1						
Cooler Temps (Raw Measur	ed) °C: Coo	oler 1: (4.	0);								
Cooler Temps (Correct	ed) °C: Cod	oler 1: (4.	2);								
Cooler Information	Y or	N	1	Sample Information		Y or	N	N/A			
1. Custody Seals Present	\checkmark			1. Sample labels present	on bottles	✓					
2. Custody Seals Intact	\checkmark			2. Samples preserved pre	operly	✓					
3. Temp criteria achieved	✓			3. Sufficient volume/cont	ainers recvd for analysis:	✓					
4. Cooler temp verification	IR Gun			4. Condition of sample		<u>Intact</u>					
5. Cooler media	Ice (Bag)			5. Sample recvd within H	IT	✓					
				6. Dates/Times/IDs on C	OC match Sample Label	✓					
Trip Blank Information	Y or	N	N/A	7. VOCs have headspace	е			✓			
1. Trip Blank present / cooler			\checkmark	8. Bottles received for un	specified tests		✓				
2. Trip Blank listed on COC			\checkmark	9. Compositing instructio	ns clear			\checkmark			
	W o		N/A	10. Voa Soil Kits/Jars red	ceived past 48hrs?			✓			
				11. % Solids Jar received	d?			✓			
3. Type Of TB Received			\checkmark	12. Residual Chlorine Pro	esent?			~			
Misc. Information											
Number of Encores: 25-Gra	m	5-Gram	Num	nber of 5035 Field Kits:	Number of La	ab Filtered M	etals:				
Test Strip Lot #s:	pH 0-3	2303	 15 pH	H 10-12 219813A							
Residual Chlorine Test Strip Lo	ot #:				_						
Comments											
L											
SM001 Tarketist											
Rev. Date 05/24/17 Technicia	an: STEPHE	NP	Date: 11/30/202	21 3:00:00 P	Reviewer:		Date:				

JD35782: Chain of Custody Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD35850

Sampling Dates: 11/23/21 - 11/24/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 46

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	10
Section 4: Sample Results	13
4.1: JD35850-1: TT-SB-11-6.5-8.5	14
4.2: JD35850-1A: TT-SB-11-6.5-8.5	26
4.3: JD35850-2: TT-SB-12-7.0-9.0	28
4.4: JD35850-2A: TT-SB-12-7.0-9.0	39
Section 5: Misc. Forms	41
5.1: Chain of Custody	42
5.2: Chain of Custody (SGS Orlando, FL)	45

Sample Summary

Tetra Tech

Job No: JD35850

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matr Code	· 	Client Sample ID
This report co Organics ND		llts reported a = Not detecte			cted. The following app L	olies:
JD35850-1	11/23/21	13:35 AV	11/24/21	so	Soil	TT-SB-11-6.5-8.5
JD35850-1A	11/23/21	13:35 AV	11/24/21	so	Soil	TT-SB-11-6.5-8.5
JD35850-2	11/24/21	09:08 AV	11/24/21	so	Soil	TT-SB-12-7.0-9.0
JD35850-2A	11/24/21	09:08 AV	11/24/21	so	Soil	TT-SB-12-7.0-9.0

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No: JD35850

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/23/2021 3:13:06 P

On 11/24/2021, 2 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.3 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35850 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: V1C7964

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35538-1AMS, JD35538-1AMSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 1,1,2-Trichloroethane, 1,1-Dichloroethane, 1,1-Dichloroethene, 1,2,4-Trichlorobenzene, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, 2-Butanone (MEK), 2-Hexanone, 4-Methyl-2-pentanone(MIBK), Benzene, Bromochloromethane, Bromodichloromethane, Bromoform, Carbon disulfide, Chlorobenzene, Chloroethane, Chloroform, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Dibromochloromethane, Ethylbenzene, Isopropylbenzene, m,p-Xylene, Methylene chloride, o-Xylene, Styrene, Tetrachloroethene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Trichloroethene, Xylene (total) are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for 1,1,2-Trichloroethane, 1,1-Dichloroethene, 1,2-Dichloroethane, 1,2-Dichloropropane, 2-Hexanone, Benzene, Bromodichloromethane, Bromoform, Chloroethane, Chloroform, Dibromochloromethane, Methylene chloride, o-Xylene, Tetrachloroethene, Trichloroethene, Vinyl chloride, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Bromochloromethane, Carbon disulfide, Chlorobenzene, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Ethylbenzene, m,p-Xylene, Styrene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Xylene (total) are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Vinyl chloride are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MS/MSD for 1,2,4-Trichlorobenzene, 1,2-Dibromoethane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Bromochloromethane, Carbon disulfide, Chlorobenzene, cis-1,2-Dichloroethene, cis-1,3-Dichloropropene, Ethylbenzene, m,p-Xylene, Styrene, Toluene, trans-1,2-Dichloroethene, trans-1,3-Dichloropropene, Xylene (total) are outside control limits. Outside control limits due to matrix interference.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88771

- The data for EPA 537M BY ID meets quality control requirements.
- JD35850-2A: Analysis performed at SGS Orlando, FL.
- JD35850-1A: Analysis performed at SGS Orlando, FL.

Thursday, December 23, 2021

Page 1 of 5

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36860

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35820-1MS, JD35820-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Caprolactam are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for 2-Methylnaphthalene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- JD35850-1 for 1,4-Dioxane: Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.
- JD35850-2 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35850-1 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35850-2 for 1,4-Dioxane: Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36860A

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35850-1MS, JD35850-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36857

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35838-1MS, JD35838-1MSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for delta-BHC, Dieldrin, Heptachlor are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Dieldrin are outside control limits. Outside control limits due to matrix interference.
- JD35850-2: Had TBA cleanup.
- JD35850-1: Had TBA cleanup.
- OP36857-MB1: Had TBA cleanup.
- JD35850-2 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35850-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP36857-BS1 for Dieldrin: Reported from 2nd signal. 1st signal used for confirmation.
- OP36857-BS1 for Aldrin: Reported from 1st signal, 1st signal used for confirmation.
- OP36857-BS1 for Dieldrin: Reported from 2nd signal. 1st signal used for confirmation.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36858

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35838-3MS, JD35838-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- OP36858-BSD for Aroclor 1260: Analytical precision exceeds in-house control limits. Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP36858-BS1 for Aroclor 1260: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP36858-BSD for Aroclor 1016: Analytical precision exceeds in-house control limits.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36859

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35782-6MS, JD35782-6MSD were used as the QC samples indicated.
- Matrix Spike Duplicate Recovery(s) for 2,4,5-T, 2,4,5-TP (Silvex) are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MS/MSD for 2,4,5-T, 2,4,5-TP (Silvex) are outside control limits. Analytical precision exceeds in-house control limits.
- JD35850-2: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-MB1: Had TBA cleanup.
- OP36859-BS1: Had TBA cleanup.
- OP36859-MSD: Had TBA cleanup. Dilution required due to matrix interference.
- OP36859-MS: Had TBA cleanup. Dilution required due to matrix interference.
- JD35850-1: Had TBA cleanup. Dilution required due to matrix interference.
- JD35850-2 for 2,4-DCAA: Outside control limits due to matrix interference and dilution.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30111

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD33564-1TMSD, JD33564-1TPS, JD33564-1TSDL, JD33564-1TMS were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Calcium, Magnesium, Zinc are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Calcium, Magnesium, Aluminum, Zinc are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for MS/MSD for Zinc are outside control limits. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Cadmium, Selenium, Silver are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- JD35850-2 for Copper: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Silver: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Thallium: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Manganese: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Cadmium: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Lead: Elevated detection limit due to dilution required for high interfering element.
- JD35850-2 for Selenium: Elevated detection limit due to dilution required for high interfering element.
- Matrix Spike Recovery(s) for Aluminum are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) for Calcium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30076

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35859-2MS, JD35859-2MSD were used as the QC samples for metals.

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24294

Sample(s) JD35846-1DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37313

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35838-1DUP, JD35838-1MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- RPD(s) for Duplicate for Cyanide are outside control limits. RPD acceptable due to low duplicate and sample concentrations.
- JD35850-2 for Cyanide: Sample prepped within holding time, but run out of holding time.
- JD35850-1 for Cyanide: Sample prepped within holding time, but run out of holding time.

Thursday, December 23, 2021

Page 4 of 5

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD35850

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/22/2021 9:08:45

On 11/24/2021, 2 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 4.2 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35850 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88771

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Sample(s) JD35782-6AMS, JD35782-6AMSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:
Ariel Hartney, Client Services (signature on file)

Summary of HitsJob Number: JD35850 Page 1 of 3

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/23/21 thru 11/24/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
·					
JD35850-1 TT-SB-11-6.5-8.5)				
Acetone	25.7	9.4	3.9	ug/kg	SW846 8260D
2-Butanone (MEK)	3.8 J	9.4	2.3	ug/kg	SW846 8260D
o-Xylene	0.61 J	0.94	0.43	ug/kg	SW846 8260D
Xylene (total)	0.61 J	0.94	0.43	ug/kg	SW846 8260D
Total TIC, Volatile	124.3 J			ug/kg	
Acenaphthene	212	37	13	ug/kg	SW846 8270E
Acenaphthylene	50.5	37	19	ug/kg	SW846 8270E
Anthracene	341	37	23	ug/kg	SW846 8270E
Benzo(a)anthracene	758	37	11	ug/kg	SW846 8270E
Benzo(a)pyrene	757	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	938	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	503	37	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	304	37	17	ug/kg	SW846 8270E
1,1'-Biphenyl	29.7 J	74	5.1	ug/kg	SW846 8270E
Carbazole	90.1	74	5.4	ug/kg	SW846 8270E
Chrysene	791	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	141	37	16	ug/kg	SW846 8270E
Dibenzofuran	123	74	15	ug/kg	SW846 8270E
Di-n-butyl phthalate	54.6 J	74	6.0	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	186	74	8.7	ug/kg	SW846 8270E
Fluoranthene	1880	37	17	ug/kg	SW846 8270E
Fluorene	223	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	594	37	17	ug/kg	SW846 8270E
2-Methylnaphthalene	99.4	37	8.4	ug/kg	SW846 8270E
Naphthalene	91.0	37	10	ug/kg	SW846 8270E
Phenanthrene	1400	37	12	ug/kg	SW846 8270E
Pyrene	1790	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	24470 J			ug/kg	
alpha-BHC ^a	1.3	0.76	0.62	ug/kg	SW846 8081B
gamma-BHC (Lindane) ^a	5.2	0.76	0.56	ug/kg	SW846 8081B
alpha-Chlordane ^a	2.2	0.76	0.61	ug/kg	SW846 8081B
gamma-Chlordane ^a	8.8	0.76	0.34	ug/kg	SW846 8081B
Dieldrin ^a	3.0	0.76	0.52	ug/kg	SW846 8081B
4,4'-DDD ^a	108	3.8	3.5	ug/kg	SW846 8081B
4,4'-DDE ^a	14.3	0.76	0.66	ug/kg	SW846 8081B
4,4'-DDT ^a	10.1	0.76	0.67	ug/kg	SW846 8081B
Endosulfan-II ^a	3.8	0.76	0.47	ug/kg	SW846 8081B
Heptachlor epoxide ^a	5.6	0.76	0.53	ug/kg	SW846 8081B
Aluminum	5050	57		mg/kg	SW846 6010D
Arsenic	4.7	2.3		mg/kg	SW846 6010D
Barium	95.3	23		mg/kg	SW846 6010D
Beryllium	0.48	0.23		mg/kg	SW846 6010D
Calcium	7380	570		mg/kg	SW846 6010D

Summary of HitsJob Number: JD35850 Page 2 of 3

Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY 11/23/21 thru 11/24/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Chromium	33.2	1.1		mg/kg	SW846 6010D
Cobalt	7.6	5.7		mg/kg	SW846 6010D
Copper	90.5	2.9		mg/kg	SW846 6010D
Iron	11900	57		mg/kg	SW846 6010D
Lead	526	2.3		mg/kg	SW846 6010D
Magnesium	3730	570		mg/kg	SW846 6010D
Manganese	180	1.7		mg/kg	SW846 6010D
Mercury	2.5	0.31		mg/kg	SW846 7471B
Nickel	29.6	4.6		mg/kg	SW846 6010D
Vanadium	17.9	5.7		mg/kg	SW846 6010D
Zinc	459	5.7		mg/kg	SW846 6010D

JD35850-1A TT-SB-11-6.5-8.5

No hits reported in this sample.

JD35850-2 TT-SB-12-7.0-9.0

Acetone	50.2	11	4.7	ug/kg	SW846 8260D
Total TIC, Volatile	58 J			ug/kg	
Acenaphthene	1120	38	13	ug/kg	SW846 8270E
Acenaphthylene	6290	770	390	ug/kg	SW846 8270E
Anthracene	7000	770	470	ug/kg	SW846 8270E
Benzo(a)anthracene	7870	770	220	ug/kg	SW846 8270E
Benzo(a)pyrene	9330	770	350	ug/kg	SW846 8270E
Benzo(b)fluoranthene	7170	770	340	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	1540	38	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	1540	38	18	ug/kg	SW846 8270E
1,1'-Biphenyl	1330	77	5.2	ug/kg	SW846 8270E
Carbazole	42.3 J	77	5.6	ug/kg	SW846 8270E
Chrysene	7730	770	240	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	343	38	17	ug/kg	SW846 8270E
Dibenzofuran	324	77	16	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	317	77	9.0	ug/kg	SW846 8270E
Fluoranthene	14400	770	340	ug/kg	SW846 8270E
Fluorene	7210	770	350	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	1730	38	18	ug/kg	SW846 8270E
2-Methylnaphthalene	3300	38	8.7	ug/kg	SW846 8270E
Naphthalene	1290	38	11	ug/kg	SW846 8270E
Phenanthrene	37400	770	260	ug/kg	SW846 8270E
Pyrene	29100	770	250	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	44140 J			ug/kg	
Aluminum	6280	58		mg/kg	SW846 6010D
Antimony	2.9	2.3		mg/kg	SW846 6010D
Arsenic	8.5	2.3		mg/kg	SW846 6010D

Summary of Hits Job Number: JD35850 Page 3 of 3

Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Collected: 11/23/21 thru 11/24/21

Lab Sample ID Client Sample ID	Result/	RL	MDL	Units	Method
Analyte	Qual	KL	MIDL	Units	Method
Barium	240	23		mg/kg	SW846 6010D
Beryllium	0.36	0.23		mg/kg	SW846 6010D
Cadmium ^b	5.1	2.9		mg/kg	SW846 6010D
Calcium	49000	2900		mg/kg	SW846 6010D
Chromium	23.8	1.2		mg/kg	SW846 6010D
Cobalt	7.1	5.8		mg/kg	SW846 6010D
Copper ^b	124	15		mg/kg	SW846 6010D
Iron	29300	290		mg/kg	SW846 6010D
Lead ^b	266	12		mg/kg	SW846 6010D
Magnesium	5970	580		mg/kg	SW846 6010D
Manganese ^b	323	8.7		mg/kg	SW846 6010D
Mercury	0.54	0.032		mg/kg	SW846 7471B
Nickel	26.2	4.6		mg/kg	SW846 6010D
Vanadium	25.5	5.8		mg/kg	SW846 6010D
Zinc	1220	29		mg/kg	SW846 6010D

JD35850-2A TT-SB-12-7.0-9.0

No hits reported in this sample.

- (a) Had TBA cleanup.
- (b) Elevated detection limit due to dilution required for high interfering element.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results	
Report of Analysis	

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1C182931.D 1 12/01/21 02:20 PS 11/24/21 19:46 n/a V1C7964

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	25.7	9.4	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.72	ug/kg	
78-93-3	2-Butanone (MEK)	3.8	9.4	2.3	ug/kg	J
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.94	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.94	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.94	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.94	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.94	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.94	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.94	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.94	0.79	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.94	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.94	0.42	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 87.5

Method: SW846 8260D SW846 5035
Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.82	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.4	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.54	ug/kg		
108-88-3	Toluene	ND	0.94	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.45	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.94	0.71	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.94	0.84	ug/kg		
95-47-6	o-Xylene	0.61	0.94	0.43	ug/kg		
1330-20-7	Xylene (total)	0.61	0.94	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	109%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	110%		75-13			
2037-26-5	Toluene-D8	95%		81-12	21%		
460-00-4	4-Bromofluorobenzene	108%		60-1 4	11%		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units	Q
	C4 alkyl benzene		16.48	8.1		ug/kg	J
	1H-indene-dihydro-dimethyl - i	somer	16.83	6.7		ug/kg	J
	C4 alkyl benzene		16.89	13		ug/kg	J
	unknown		17.07	6.3		ug/kg	
	C5 alkyl benzene		17.28	5.9		ug/kg	J
	C4 alkyl benzene		17.37	8.4			J
	1H-Indene-dihydro-methyl - iso	omer	17.42	8.4		ug/kg	J
	C5 alkyl benzene		17.66	7.5			J
	1H-indene-dihydro-dimethyl - i	somer	17.82	11		ug/kg	J
91-20-3	Naphthalene		18.05	9.9		ug/kg	JN

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-11-6.5-8.5

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	1H-indene-dihydro-dimethyl - isomer	18.30	7.9	ug/kg	J
91-57-6	Naphthalene, 2-methyl-	19.01	6.9	ug/kg	JN
	Naphthalene, methyl - isomer	19.18	8.9	ug/kg	J
	Naphthalene, dimethyl - isomer	19.86	8.4	ug/kg	J
	Naphthalene, dimethyl - isomer	20.01	7	ug/kg	J
	Total TIC, Volatile		124.3	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 Z153639.D 1 12/02/21 21:23 KLS 11/29/21 13:15 OP36860 EZ7633

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	31	ug/kg	
88-75-5	2-Nitrophenol	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	370	99	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	212	37	13	ug/kg	
208-96-8	Acenaphthylene	50.5	37	19	ug/kg	
98-86-2	Acetophenone	ND	190	8.0	ug/kg	
120-12-7	Anthracene	341	37	23	ug/kg	
1912-24-9	Atrazine	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	758	37	11	ug/kg	
50-32-8	Benzo(a)pyrene	757	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	938	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	503	37	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	304	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.1	ug/kg	
92-52-4	1,1'-Biphenyl	29.7	74	5.1	ug/kg	J
100-52-7	Benzaldehyde	ND	190	9.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	190	13	ug/kg	
86-74-8	Carbazole	90.1	74	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD35850-1 **Date Sampled:** 11/23/21 Matrix: SO - Soil Date Received: 11/24/21 Percent Solids: 87.5

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	74	15	ug/kg	
218-01-9	Chrysene	791	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane b	ND	37	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	141	37	16	ug/kg	
132-64-9	Dibenzofuran	123	74	15	ug/kg	
84-74-2	Di-n-butyl phthalate	54.6	74	6.0	ug/kg	J
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.9	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	186	74	8.7	ug/kg	
206-44-0	Fluoranthene	1880	37	17	ug/kg	
86-73-7	Fluorene	223	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	74	9.4	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	594	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	99.4	37	8.4	ug/kg	
88-74-4	2-Nitroaniline	ND	190	8.8	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.3	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.6	ug/kg	
91-20-3	Naphthalene	91.0	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	1400	37	12	ug/kg	
129-00-0	Pyrene	1790	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 63% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	65 %		10-105%		
118-79-6	2,4,6-Tribromophenol	84%		10-135%		
4165-60-0	Nitrobenzene-d5	69%		10-119%		
321-60-8	2-Fluorobiphenyl	80%		18-112%		
1718-51-0	Terphenyl-d14	73 %		18-125%		
CAS No.	Tentatively Identified Compo	uinde	R.T.	Est. Conc.	Unite	0
CHO IVO.	Tentatively Identified Compo	Julius	к. г.	Est. Conc.	Cints	V
	Alkane		4.87	450	ug/kg	J
	Alkane		5.89	410	ug/kg	
	Alkane		6.01	430	ug/kg	
	Naphthalene dimethyl		6.59	430	ug/kg	J
	Naphthalene dimethyl		6.65	760	ug/kg	J
	Alkane		6.71	920	ug/kg	J
	Alkane		6.90	770	ug/kg	J
	Naphthalene trimethyl		7.33	360	ug/kg	J
	Alkane		7.38	1100	ug/kg	J
	Alkane		7.61	860	ug/kg	J
	Alkane		7.90	2900	ug/kg	J
	Dimethylbiphenyl		8.11	630	ug/kg	
	Unknown		8.24	370	ug/kg	J
	Alkane		8.44	1100	ug/kg	J
	Alkane		8.48	770	ug/kg	J
	Unknown		8.70	400	ug/kg	
	Alkane		8.94	370	ug/kg	
	Alkane		9.01	1100	ug/kg	
	Phenanthrene methyl		9.23	560	ug/kg	
	Alkane		9.59	800	ug/kg	
	Phenanthrene dimethyl		9.82	480	ug/kg	
	Phenanthrene dimethyl		9.97	690	ug/kg	
10544-50-0	Cyclic octaatomic sulfur		10.29	6700	ug/kg	
	Unknown		13.37	410	ug/kg	
	Unknown PAH substance		14.28	700	ug/kg	
	Total TIC, Semi-Volatile			24470	ug/kg	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

Page 1 of 1

Client Sample ID: TT-SB-11-6.5-8.5

Initial Weight

Lab Sample ID: JD35850-1 **Date Sampled:** 11/23/21 SO - Soil Matrix: Date Received: 11/24/21 Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105036.D 1 12/11/21 03:34 KLS 11/29/21 13:15 OP36860A E4M4881

Run #2

Run #1 30.8 g 1.0 ml Run #2

Final Volume

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **78**% 10-107% 321-60-8 2-Fluorobiphenyl 73% 17-91% 1718-51-0 Terphenyl-d14 **75%** 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-11-6.5-8.5

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134401.D 4 12/04/21 07:40 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	74 15 15	33 8.3 7.3	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	24% 17%		10-12 10-12		

(a) Had TBA cleanup. Dilution required due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G171675.D	1	12/02/21 01:42	CP	11/29/21 09:00	OP36857	G1G5922
Run #2 a	1G171741.D	5	12/06/21 02:01	CP	11/29/21 09:00	OP36857	G1G5925

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.76	0.62	ug/kg	
319-84-6	alpha-BHC	1.3	0.76	0.62	ug/kg	
319-85-7	beta-BHC	ND	0.76	0.68	ug/kg	
319-86-8	delta-BHC	ND	0.76	0.73	ug/kg	
58-89-9	gamma-BHC (Lindane)	5.2	0.76	0.56	ug/kg	
5103-71-9	alpha-Chlordane	2.2	0.76	0.61	ug/kg	
5103-74-2	gamma-Chlordane	8.8	0.76	0.34	ug/kg	
60-57-1	Dieldrin	3.0	0.76	0.52	ug/kg	
72-54-8	4,4'-DDD	108 b	3.8	3.5	ug/kg	
72-55-9	4,4'-DDE	14.3	0.76	0.66	ug/kg	
50-29-3	4,4'-DDT	10.1	0.76	0.67	ug/kg	
72-20-8	Endrin	ND	0.76	0.59	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.76	0.59	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.76	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.76	0.44	ug/kg	
33213-65-9	Endosulfan-II	3.8	0.76	0.47	ug/kg	
76-44-8	Heptachlor	ND	0.76	0.65	ug/kg	
1024-57-3	Heptachlor epoxide	5.6	0.76	0.53	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.60	ug/kg	
53494-70-5	Endrin ketone	ND	0.76	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	83%	52 %	27-1	38%	
877-09-8	Tetrachloro-m-xylene	94%	40%	27-1	38 %	
2051-24-3	Decachlorobiphenyl	101%	73%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	205 % ^c	85 %	10-1	79 %	

- (a) Had TBA cleanup.
- (b) Result is from Run# 2
- (c) Outside control limits due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-11-6.5-8.5

 Lab Sample ID:
 JD35850-1
 Date Sampled:
 11/23/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475326.D 1 12/07/21 13:50 TL 11/29/21 09:00 OP36858 GXX7676

Run #2

Initial Weight Final Volume
Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	23	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	16	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	20	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	76 %		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	84%			52%	
2051-24-3	Decachlorobiphenyl	91%			72%	
2051-24-3	Decachlorobiphenyl	113%			72%	
&UJ1-&4-3	Decacinoroniphenyi	11370		10-1	16/0	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-11-6.5-8.5

Lab Sample ID: JD35850-1 **Date Sampled:** 11/23/21 Matrix: SO - Soil Date Received: 11/24/21 Percent Solids: 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Method	Prep Method
Aluminum	5050	57	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Arsenic	4.7	2.3	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Barium	95.3	23	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.48	0.23	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Calcium	7380	570	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Chromium	33.2	1.1	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Cobalt	7.6	5.7	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Copper	90.5	2.9	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Iron	11900	57	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Lead	526	2.3	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Magnesium	3730	570	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Manganese	180	1.7	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Mercury	2.5	0.31	mg/kg	10	11/30/21	11/30/21 S	B SW846 7471B ¹	SW846 7471B ³
Nickel	29.6	4.6	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.57	0.57	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Vanadium	17.9	5.7	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴
Zinc	459	5.7	mg/kg	1	12/03/21	12/03/21 N	D SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51507 (2) Instrument QC Batch: MA51539 (3) Prep QC Batch: MP30076 (4) Prep QC Batch: MP30111

Page 1 of 1

Client Sample ID: TT-SB-11-6.5-8.5

Lab Sample ID: JD35850-1 Date Sampled: 11/23/21 Matrix: SO - Soil Date Received: 11/24/21 Percent Solids: 87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a Solids, Percent	< 0.34 87.5	0.34	mg/kg %	1 1	12/08/21 20:27 11/29/21 16:30		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.

4.2

Report of Analysis

Client Sample ID: TT-SB-11-6.5-8.5

Lab Sample ID:JD35850-1ADate Sampled:11/23/21Matrix:SO - SoilDate Received:11/24/21Method:EPA 537M BY ID IN HOUSEPercent Solids:87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q50973.D 1 12/21/21 14:42 AFL 12/10/21 15:00 F:OP88771 F:S3Q713

Run #2

Initial Weight Final Volume

Run #1 2.05 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
					0 0	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
	ELOMER SULFONATES				_	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

MDE = Mediou D

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-11-6.5-8.5

Lab Sample ID:JD35850-1ADate Sampled:11/23/21Matrix:SO - SoilDate Received:11/24/21Method:EPA 537M BY ID IN HOUSEPercent Solids:87.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	69%		40-140%
	13C5-PFPeA	70 %		50-150 %
	13C5-PFHxA	71%		50-150 %
	13C4-PFHpA	73 %		50-150 %
	13C8-PFOA	72 %		50-150 %
	13C9-PFNA	73 %		50-150 %
	13C6-PFDA	75 %		50-150 %
	13C7-PFUnDA	69 %		40-140%
	13C2-PFDoDA	61%		40-140%
	13C2-PFTeDA	68 %		30-130%
	13C3-PFBS	71%		50-150 %
	13C3-PFHxS	72 %		50-150 %
	13C8-PFOS	67 %		50-150 %
	13C8-FOSA	55 %		30-130%
	d3-MeFOSAA	86%		40-140%
	d5-EtFOSAA	91%		40-140%
	13C2-6:2FTS	71%		50-150 %
	13C2-8:2FTS	76 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1C182930.D 1 12/01/21 01:54 PS 11/24/21 19:46 n/a V1C7964

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	50.2	11	4.7	ug/kg	
71-43-2	Benzene	ND	0.57	0.52	ug/kg	
74-97-5	Bromochloromethane	ND	5.7	0.64	ug/kg	
75-27-4	Bromodichloromethane	ND	2.3	0.49	ug/kg	
75-25-2	Bromoform	ND	5.7	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.7	0.87	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.8	ug/kg	
75-15-0	Carbon disulfide	ND	2.3	0.61	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.3	0.70	ug/kg	
108-90-7	Chlorobenzene	ND	2.3	0.52	ug/kg	
75-00-3	Chloroethane	ND	5.7	0.67	ug/kg	
67-66-3	Chloroform	ND	2.3	0.59	ug/kg	
74-87-3	Chloromethane	ND	5.7	2.2	ug/kg	
110-82-7	Cyclohexane	ND	2.3	0.75	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.3	0.79	ug/kg	
124-48-1	Dibromochloromethane	ND	2.3	0.64	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.48	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.62	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.56	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.56	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.7	0.83	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.56	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.53	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.74	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.96	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.69	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.3	0.54	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.3	0.54	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.3	0.52	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.52	ug/kg	
76-13-1	Freon 113	ND	5.7	3.0	ug/kg	
591-78-6	2-Hexanone	ND	5.7	2.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Report of Analysis

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MD	L	Units	Q	
98-82-8	Isopropylbenzene	ND	2.3	1.6		ug/kg	[
79-20-9	Methyl Acetate	ND	5.7	1.6		ug/kg		
108-87-2	Methylcyclohexane	ND	2.3	1.0		ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.53	3	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.7	2.6		ug/kg		
75-09-2	Methylene chloride	ND	5.7	3.0		ug/kg		
100-42-5	Styrene	ND	2.3	0.46	6	ug/kg	{	
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.3	0.68	8	ug/kg		
127-18-4	Tetrachloroethene	ND	2.3	0.66	6	ug/kg		
108-88-3	Toluene	ND	1.1	0.60	0	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.7	2.8		ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.7	2.8		ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.3	0.55	5	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.3	0.63	3	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.87	7	ug/kg	{	
75-69-4	Trichlorofluoromethane	ND	5.7	0.78	8	ug/kg		
75-01-4	Vinyl chloride	ND	2.3	0.55	5	ug/kg		
	m,p-Xylene	ND	1.1	1.0		ug/kg		
95-47-6	o-Xylene	ND	1.1	0.52	2	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.52	2	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	I	Limit	ts		
1868-53-7	Dibromofluoromethane	108%		7	72-13	0 %		
17060-07-0	1,2-Dichloroethane-D4	111%		7	75-13	1%		
2037-26-5	Toluene-D8	95%		8	81-12	1%		
460-00-4	4-Bromofluorobenzene	109%		(60-14	1%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	I	Est. (Conc.	Units	Q
	cycloalkane		14.95	1	18		ug/kg	J
91-20-3	Naphthalene		18.04		14		ug/kg	
91-57-6	Naphthalene, 2-methyl-		19.01	1	13		ug/kg	JN
	Naphthalene, methyl - isomer		19.18		13		ug/kg	J
	Total TIC, Volatile				58			J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	Z153640.D	1	12/02/21 21:50	KLS	11/29/21 13:15	OP36860	EZ7633
Run #2	Z153939.D	20	12/17/21 12:43	JY	11/29/21 13:15	OP36860	EZ7646

	Initial Weight	Final Volume
Run #1	30.3 g	1.0 ml
Run #2	30.3 g	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	77	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	33	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	68	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	41	ug/kg	
95-48-7	2-Methylphenol	ND	77	24	ug/kg	
	3&4-Methylphenol	ND	77	31	ug/kg	
88-75-5	2-Nitrophenol	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	380	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	36	ug/kg	
108-95-2	Phenol	ND	77	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	29	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	1120	38	13	ug/kg	
208-96-8	Acenaphthylene	6290 b	770	390	ug/kg	
98-86-2	Acetophenone	ND	190	8.2	ug/kg	
120-12-7	Anthracene	7000 b	770	470	ug/kg	
1912-24-9	Atrazine	ND	77	16	ug/kg	
56-55-3	Benzo(a)anthracene	7870 b	770	220	ug/kg	
50-32-8	Benzo(a)pyrene	9330 b	770	350	ug/kg	
205-99-2	Benzo(b)fluoranthene	7170 b	770	340	ug/kg	
191-24-2	Benzo(g,h,i)perylene	1540	38	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	1540	38	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	77	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	77	9.3	ug/kg	
92-52-4	1,1'-Biphenyl	1330	77	5.2	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.5	ug/kg	
91-58-7	2-Chloronaphthalene	ND	77	9.1	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	42.3	77	5.6	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Report of Analysis

Client Sample ID: TT-SB-12-7.0-9.0

Lab Sample ID: JD35850-2 **Date Sampled:** 11/24/21 Matrix: SO - Soil Date Received: 11/24/21 Method: SW846 8270E SW846 3546 Percent Solids: 86.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	77	15	ug/kg	
218-01-9	Chrysene	7730 b	770	240	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	77	8.2	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	77	17	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	77	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	77	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	38	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	38	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	77	32	ug/kg	
123-91-1	1,4-Dioxane ^c	ND	38	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	343	38	17	ug/kg	
132-64-9	Dibenzofuran	324	77	16	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	77	6.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	77	9.5	ug/kg	
84-66-2	Diethyl phthalate	ND	77	8.2	ug/kg	
131-11-3	Dimethyl phthalate	ND	77	6.8	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	317	77	9.0	ug/kg	
206-44-0	Fluoranthene	14400 b	770	340	ug/kg	
86-73-7	Fluorene	7210 b	770	350	ug/kg	
118-74-1	Hexachlorobenzene	ND	77	9.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	38	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	380	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1730	38	18	ug/kg	
78-59-1	Isophorone	ND	77	8.2	ug/kg	
91-57-6	2-Methylnaphthalene	3300	38	8.7	ug/kg	
88-74-4	2-Nitroaniline	ND	190	9.0	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.6	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.9	ug/kg	
91-20-3	Naphthalene	1290	38	11	ug/kg	
98-95-3	Nitrobenzene	ND	77	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	77	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	37400 b	770	260	ug/kg	
129-00-0	Pyrene	29100 b	770	250	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.7	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	62%	88%	10-1	.09%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	59% 71% 61% 70% 62%	89% 113% 92% 107% 96%	10-105% 10-135% 10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compo		R.T.	Est. Conc.	Units	0
90-12-0	Cyclohexane alkyl Naphthalene, 1-methyl- Naphthalene dimethyl Naphthalene dimethyl Naphthalene dimethyl Unknown Naphthalene dimethyl Naphthalene trimethyl Naphthalene trimethyl Isopropenylnaphthalene Alkane Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown PAH substance Unknown		4.45 6.17 6.59 6.66 6.68 6.71 6.75 7.25 7.34 7.55 7.62 9.90 10.31 10.98 11.26 12.03 12.28 14.10 14.33 14.82 15.05 15.21 15.60 15.70 16.36	1400 1900 1100 1500 650 1100 690 690 700 620 820 4900 490 690 4800 2200 4100 2100 5100 870 1500 2100 2000 920 1200 44140	ug/kg ug/kg]]]]]]]]]]]]

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

⁽b) Result is from Run# 2

⁽c) Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled: 11/24/21

 Matrix:
 SO - Soil
 Date Received: 11/24/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105037.D 1 12/11/21 03:54 KLS 11/29/21 13:15 OP36860A E4M4881

Run #2

Initial Weight Final Volume
Run #1 30.3 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.8 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 73%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 64%
 17-91%

 1718-51-0
 Terphenyl-d14
 65%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134402.D 4 12/04/21 08:07 RK 11/30/21 09:50 OP36859 G3G4902

Run #2

Initial Weight Final Volume Run #1 15.3 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	76 15	34 8.6	ug/kg ug/kg	
93-76-5	2,4,5-T (Shvex) 2,4,5-T	ND ND	15	7.6	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9	2,4-DCAA	8% b		10-1	25%	
19719-28-9	2,4-DCAA	11%		10-1	25%	

- (a) Had TBA cleanup. Dilution required due to matrix interference.
- (b) Outside control limits due to matrix interference and dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1G171870.D 1 12/08/21 19:25 TL 11/29/21 09:00 OP36857 G1G5929

Run #2

Initial Weight Final Volume Run #1 15.7 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q		
309-00-2	Aldrin	ND	0.74	0.61	ug/kg			
319-84-6	alpha-BHC	ND	0.74	0.60	ug/kg			
319-85-7	beta-BHC	ND	0.74	0.67	ug/kg			
319-86-8	delta-BHC	ND	0.74	0.71	ug/kg			
58-89-9	gamma-BHC (Lindane)	ND	0.74	0.54	ug/kg			
5103-71-9	alpha-Chlordane	ND	0.74	0.60	ug/kg			
5103-74-2	gamma-Chlordane	ND	0.74	0.33	ug/kg			
60-57-1	Dieldrin	ND	0.74	0.51	ug/kg			
72-54-8	4,4'-DDD	ND	0.74	0.68	ug/kg			
72-55-9	4,4'-DDE	ND	0.74	0.65	ug/kg			
50-29-3	4,4'-DDT	ND	0.74	0.65	ug/kg			
72-20-8	Endrin	ND	0.74	0.57	ug/kg			
1031-07-8	Endosulfan sulfate	ND	0.74	0.58	ug/kg			
7421-93-4	Endrin aldehyde	ND	0.74	0.42	ug/kg			
959-98-8	Endosulfan-I	ND	0.74	0.43	ug/kg			
33213-65-9	Endosulfan-II	ND	0.74	0.46	ug/kg			
76-44-8	Heptachlor	ND	0.74	0.64	ug/kg			
1024-57-3	Heptachlor epoxide	ND	0.74	0.52	ug/kg			
72-43-5	Methoxychlor	ND	1.5	0.59	ug/kg			
53494-70-5	Endrin ketone	ND	0.74	0.53	ug/kg			
8001-35-2	Toxaphene	ND	18	17	ug/kg			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its			
877-09-8	Tetrachloro-m-xylene	111%		27-1	38%			
877-09-8	Tetrachloro-m-xylene	89%		27-1	38 %			
2051-24-3	Decachlorobiphenyl	110%		10-1	10-179%			
2051-24-3	Decachlorobiphenyl	386% b		79 %				

⁽a) Had TBA cleanup.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Outside control limits due to matrix interference.

Client Sample ID: TT-SB-12-7.0-9.0

 Lab Sample ID:
 JD35850-2
 Date Sampled:
 11/24/21

 Matrix:
 SO - Soil
 Date Received:
 11/24/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475331.D 1 12/07/21 15:16 TL 11/29/21 09:00 OP36858 GXX7676

Run #2

Initial Weight Final Volume
Run #1 15.7 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND	37 37 37 37 37 37 37	17 23 24 15 33 20 16	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5	Aroclor 1262	ND	37	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	76 %		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	90%			52 %	
2051-24-3	Decachlorobiphenyl	81%			72%	
2051-24-3	Decachlorobiphenyl	99%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-12-7.0-9.0

Lab Sample ID: JD35850-2 **Date Sampled:** 11/24/21 SO - Soil Matrix: Date Received: 11/24/21 Percent Solids: 86.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6280	58	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	2.9	2.3	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	8.5	2.3	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	240	23	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.36	0.23	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium ^a	5.1	2.9	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Calcium	49000	2900	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	23.8	1.2	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	7.1	5.8	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper ^a	124	15	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Iron	29300	290	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Lead a	266	12	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Magnesium	5970	580	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese a	323	8.7	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Mercury	0.54	0.032	mg/kg	1	11/30/21	11/30/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	26.2	4.6	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	< 1200	1200	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium ^a	< 12	12	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Silver ^a	< 2.9	2.9	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1200	1200	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium ^a	< 5.8	5.8	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵
Vanadium	25.5	5.8	mg/kg	1	12/03/21	12/03/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	1220	29	mg/kg	5	12/03/21	12/06/21 ND	SW846 6010D ³	SW846 3050B ⁵

(1) Instrument QC Batch: MA51507 (2) Instrument QC Batch: MA51539 (3) Instrument QC Batch: MA51551 (4) Prep QC Batch: MP30076 (5) Prep QC Batch: MP30111

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: TT-SB-12-7.0-9.0

Lab Sample ID: JD35850-2 Date Sampled: 11/24/21 Matrix: SO - Soil Date Received: 11/24/21 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.30	0.30	mg/kg	1	12/08/21 20:29	EB	SW846 9012B/LACHAT
Solids, Percent	86.2		%	1	11/29/21 16:30	BG	SM2540 G 18TH ED MOD

(a) Sample prepped within holding time, but run out of holding time.

4.3

Client Sample ID: TT-SB-12-7.0-9.0

Lab Sample ID: JD35850-2A **Date Sampled:** 11/24/21 Matrix: SO - Soil Date Received: 11/24/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 86.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch Analyzed** By **Prep Batch** F:S3Q713 Run #1 a 3Q50944.D 1 12/21/21 06:40 AFL 12/10/21 15:00 F:OP88771

Run #2

Initial Weight Final Volume Run #1 2.04 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q					
PERFLUOROALKYLCARBOXYLIC ACIDS											
375-22-4	Perfluorobutanoic acid	ND	1.1	0.43	ug/kg						
2706-90-3	Perfluoropentanoic acid	ND	0.57	0.28	ug/kg						
307-24-4	Perfluorohexanoic acid	ND	0.57	0.28	ug/kg						
375-85-9	Perfluoroheptanoic acid	ND	0.57	0.28	ug/kg						
335-67-1	Perfluorooctanoic acid	ND	0.57	0.28	ug/kg						
375-95-1	Perfluorononanoic acid	ND	0.57	0.28	ug/kg						
335-76-2	Perfluorodecanoic acid	ND	0.57	0.28	ug/kg						
2058-94-8	Perfluoroundecanoic acid	ND	0.57	0.28	ug/kg						
307-55-1	Perfluorododecanoic acid	ND	0.57	0.28	ug/kg						
72629-94-8	Perfluorotridecanoic acid	ND	0.57	0.30	ug/kg						
376-06-7	Perfluorotetradecanoic acid	ND	0.57	0.28	ug/kg						
PERFLUOI	ROALKYLSULFONIC ACIDS	S									
375-73-5	Perfluorobutanesulfonic acid	ND	0.57	0.28	ug/kg						
355-46-4	Perfluorohexanesulfonic acid	ND	0.57	0.28	ug/kg						
375-92-8	Perfluoroheptanesulfonic acid	ND	0.57	0.28	ug/kg						
1763-23-1	Perfluorooctanesulfonic acid	ND	0.57	0.28	ug/kg						
335-77-3	Perfluorodecanesulfonic acid	ND	0.57	0.28	ug/kg						
DEDELIO	ROOCTANESULFONAMIDE	C									
754-91-6	ROOCTANESULFONAMIDE PFOSA	ND	0.57	0.28	ug/kg						
734-91-0	FFOSA	ND	0.37	0.20	ug/kg						
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS								
2355-31-9	MeFOSAA	ND	1.1	0.57	ug/kg						
2991-50-6	EtFOSAA	ND	1.1	0.57	ug/kg						
FLUOROT	ELOMER SULFONATES										
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg						
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg						
		_			- o o						

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-12-7.0-9.0 Lab Sample ID: JD35850-2A

Lab Sample ID:JD35850-2ADate Sampled:11/24/21Matrix:SO - SoilDate Received:11/24/21Method:EPA 537M BY ID IN HOUSEPercent Solids:86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	76 %		40-140%
	13C5-PFPeA	76 %		50-150 %
	13C5-PFHxA	76 %		50-150 %
	13C4-PFHpA	76 %		50-150 %
	13C8-PFOA	76 %		50-150 %
	13C9-PFNA	75 %		50-150 %
	13C6-PFDA	74 %		50-150 %
	13C7-PFUnDA	59 %		40-140%
	13C2-PFDoDA	50 %		40-140%
	13C2-PFTeDA	62 %		30-130%
	13C3-PFBS	76 %		50-150 %
	13C3-PFHxS	76 %		50-150 %
	13C8-PFOS	73 %		50-150 %
	13C8-FOSA	59 %		30-130%
	d3-MeFOSAA	85 %		40-140%
	d5-EtFOSAA	94%		40-140%
	13C2-6:2FTS	75 %		50-150 %
	13C2-8:2FTS	78 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

M	lisc. Forms
Cu	stody Documents and Other Forms
Inc	Judge the following where applicables
	cludes the following where applicable:
	Chain of Custody Chain of Custody (SGS Orlando, FL)

	SGS	St St) .L	CH	AIN SGS N	orth A	meri	ca Inc		ton						FED-EX1	racking#	-							of_	
				TE	L. 732-3	29-0200	FA	X: 732-	329-349		80					SGS Quo	te#		-			SGS Job#			18,	
	EHSA-QAC-0023-04-FORM-Standard COC Client / Reporting Information	1		Dunin	t Inform		sgs.co	m/ehsu	sa											Parities	ted An	alveis	<u> </u>		<u> </u>	Matrix Codes
	Company Name:	Project Name	D:	Projec	t inform	ation				_						-		र्द्रा	- î	eques	leu All	aiyaia	\neg	\neg		
	TETRA TECH Street Address	2	2 PP A	E .	<u> </u>	<u>33</u>	2D	5.	<u>د .</u>								a	610	Š			!		2		DW - Drinking Wate GW - Ground Water WW - Water
1	6 CENTURY Dr.	Street		State	Billing Ir	nformatio	on (if diff	ferent fro	m Report	to)						22	624 7	7.	7	5 11	9	2		2		SW - Surface Wate SO - Soil SL- Sludge
	PARSIPPARY N) 07954 Project Confact E-mail	Baoo Project #	KYN	NY	Company Street Ad						•					13	727		Pest	Pcs 11	STD	Ĭ		537		SED-Sediment OI - OII LIQ - Other Liquid
	BOS CANTAGAWO LOBERT. CA	NTA 6 4U	vo C Terr	LA TEC	A · Co	M					State			Zir			70	B170 SIM	- 1	٠,		ړ				AIR - Air SOL - Other Solid WP - Wipe
	913 · 630 · 4045 Sampler(s) Name(s) Phone #	Project Mana			Attention:						State					826	R 817	270	18081	98082	HBISI	M	MTA	0121		FB - Field Blank EB-Equipment Blan RB - Rinse Blank
1	A. VAUI	Project Mana	ger	Colle							Nom	har of s	reserve	d Dotte		>		8			(Lab Us	e Only)		ات		TB - Trip Blank
	SGS Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled	Grab (G) Comp (C)	Source Chlorinat ed (Y/N)	Matrix	# of bottles	F	_	HNO3	TT.	ě	ENCORE											LAB USE ONLY
'	\ TT-38-11-6.5-8.5	٥	11/23/21	1335	AV	6		So	6		Ħ	\top	3	1	3	$\overline{}$	V			~		/		7		DYY
		6	11/24/2	0908	AV	6	\vdash	So	6			+	3	+	3	<u> </u>								1		819
1	d TT-58-12-7.0-9.0		11/12/17	מטצט	AV	0)		20	Q	-	\vdash	+	H	+	۲۲	+ -	_		_		Ė		\vdash		\top	1462
										-	\vdash	+	++	+	╁┼	-							\vdash	$-\dagger$	+	4484
					ļ						Ш	4	11	_	₩	-		-					\vdash	\rightarrow	-	4411
													Ш	_	$\perp \perp$								\vdash	\vdash	_	
																							Ш			
١													П		П											
)						<u> </u>						+	\sqcap	1	TT											
-											+	+	Ħ	+	++	† 		. 1	-							
						-	-			-	+	+	++	+	+	-			_		 		\vdash	\vdash	+	
1			<u> </u>		ļ						1	-	+	+	₩.	-	-				ļ		\vdash	-+	-+	
1											Ш		$\perp \perp$	┸	Ш								\sqcup	\vdash	$-\vdash$	
,																										
1	Turn Around Time (Bus	iness Days)								De	livera											Comn	nents / S	Special In	nstructions
1	10 Business Days	Approved By (S	GS PM): / Date:			Comm	nercial "	'A" (Leve 'B" (Leve	,]	5	NYASP	Cate				DOD-0	SM5		٠,	، إطاعات	Angë	e arner	* AF	12A
:	5 Business Days				=	•		Level 3)			Ĺ	_	MA MC			_								•	_	
š.	3 Business Days*				l⊨	•	ier I (Le				Į.	_	CT RCI		teria	_							ACI	leatio	•	BARTON 1
	2 Business Days* 1 Business Day*]	•	nercial "	C.			Į.	_	State F								5					
i	Other				-	. NJ DI		Commore	ial "A" = 1	Dacut	te only:	_				+ 00 80	mmarv				· 37	53 6	en (o	·~	_	
1		roval needed	for 1-3 Business					Comn	nercial "C	" = Re	esults +	QC S	ummar	ry + Pa	ertial Ra	w data						ht	tp://wv	ww.sqs.	com/en/te	erms-and-condition
	Relinguished by: Date / Time			le Custody	must be	docum	ented b	oelow ea	ch time	sam	oles cl	nange	pose	essj	on, incl	uding c	ourier d		Date / Tir	na:		Receives	1		-	
)	1 AUCTUS 1124		Received By:	<i>b</i>	11 ch	Юa	w (Jun		-	quished		+	th	our	η)ι	my	utt	24/2	1 13	1:03		<u>/ce</u>	mif	16	ta
	Relinquished by Date / Time	:	Received By:	•			1	V	"	4	quishe	By:				1	U	'	Date / III			4				

Intact
Not inta

Date / Time:

JD35850: Chain of Custody

nary Op Ice

Page 1 of 3

SGS Sample Receipt Summary

Job Number: JD35	6850 Client:	TETRA TECH	Project: 2ND AVENUE AN	D 33-39TH STREET, BROOKL
Date / Time Received: 11/24	4/2021 5:03:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measure Cooler Temps (Correcte	,			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	☐ 4. Smpl Date Y or N IR Gun Ice (Bag)	s/Time OK 🔽 🗌	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N ✓
Test Strip Lot #s: pH	1-12: 231619	pH 12+:	203117A Other: (Specify)	
Comments SM089-03 Rev. Date 12/7/17				

JD35850: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Above Changes Per: Jadon Schiller

Date/Time: 12/13/2021

Requested Date:	12/13/2021		Received Date:	11/24/2021
Account Name:	Tetra Tech		Due Date:	12/13/2021
Project Descriptio	n: 2nd Avenue and	Project Description: 2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	3y: JADONS	PM: JBS	TAT (Days):	7
Sample #: JD35850-ALL	5850-ALL	Change:		

Change: Please move project to TTNJP90692 and re-sub to ALSE.

TAT

Dept:

JD35850: Chain of Custody

Page 3 of 3

	SGS			TEL 732-32	orth Ar oute 13 9-0200	nerica 0. Dayt FAX:	Inc E on/NJ C 732-329-	ayto	n				FED-E	K Trackin	9#	5	C. C	1 .10	Scis-J	Order Co	mul ø	11							
	Client / Reporting Information					s.com/		1	_	_			-					800	4 2.20	6A	10	JD358	350						
Compa	ny Name.	Project Name:			t Intorr		Section .	- 10	47 - 1	17.4	_			,		_	Requ	estéd.	Analysi	is.		10		Matrix Codes					
		2nd Avenue	and 33-39th S			1	L					7/		1				10						1	1				
Street	Address - L	Street			1 5	-	1								1 3	1	1	100	100		1 3			DW - Drinking Water GW - Ground Water	1				
		7		7						-	_	_			8			12	15.0		1:	1	1:	WW - Water	1				
City	State Zp	City		State	Cempi	Informat any Name	Son (it ditte	rent fro	om Reg	oort to)					-	-	-	я.	ei .		-	14	2.	SW - Surface Water SO - Soil SL- Sludge	VE			6	-
	Contact E-mail	Project#		1	Street	Artóress	_							1 5			1	30		1				SED-Sediment DI - Oil	10				
	on.schiller@sqs.com			1		tirus		*			-							1	0.64				1	LIQ - Other Liquid	12.		1		
Phone i		Client Purchase	Order #	10	City	-1 · At.	-26.	51	tate		Zo	-					1					X.		AIR - Air SOL - Other Solid WP - Wipe		-			
Sample	ris) Nameris) Ph	Project Manager			Attentio	ec					-		1,											FB - Fleld Blank EB-Equipment Blank RB - Rinse Blank					
SGS Sample #	Field ID / Point of Collection	MECHIDI VINI N		Collection	Samples		# of	X	20	.[]	weed Domber	-	LCID537NY21											TB - Trip Blank					
1A	TT-SB-11-6.5-8.5	MECHOL VIST #	11/23/21	1:35:00 PM	AV	Mudata	bottles	를 를	HORC	NOM	MEG N	5	-					1						LAB USE ONLY					
2A	TT-SB-12-7.0-9.0		11/24/21		-	-		H	Н	11	11	\perp	X																
			11/24/21	9:08:00 AM	AV	.so						11	X					-											
-				(1			H	TT	Π	1.17			-													
								T X		11	11	++						-	-		-								
	/			1		-	-	-	+	+	++	+	-	-		-							20						
			_	0.5						\perp	\perp																		
								1				\mathbf{I}					Tir												
	/p =									11	11	77											-						
		0		-					-	+	+	+	-	-	-	-	_						100						
								-	-	H	1	11					-		1.1.3		114								
						-												CIT			11			7					
\rightarrow								11				П						-											
								\top			+	+	-		-	-		-	-	-	-	-	-						
								+	+	H	-	H	-	-	_	_	-	Ų,					1						
	Turnaround Time (Business days)			-	_			Ш															20						
	Standard 10 Business Days	Approved By (SGS F	PMJ: / Date:				Data D	rel 1)	[_ N	YASP C			T				Com	nents / S	Special	Instruct	ions		-/					
	6 Business Days RUSH			- 1			al "8" (Lev Level 3+4)				YASP C		уВ	- 1	60.00m							1	1	2/					
	3 Business Days RUSH					J Reduce					tate For				INIT	AL /	4381	SSA	/EN	r		0							
	2 Business Days RUSH					ommerch					DD Form		2	- 1						-		_	_		_				
	1 Business Day EMERGENCY	_					ommercial	*A* = D			ther NY	ASPE	1	-									-						
[3	Other 1/14/1900						Commercial														1	_	_						
a.raerg	ency & Rush T/A data available via Lablick. Approx	ral needed for RUSHI	Emergency TAT		200								al Raw c	feta	LAB	LV	ERIF	ICA	TION	Mund	-	omlani	Name of	and-conditions					
Hatiman	phostor: Date /	14:00	Sample Custon	dy must be doo	umented	below e	ach time:	sample	s cho	ngo po	ossessie	on, inc	luding	courie							- A	Onven		Actio-conditions	_				
1	1-15	29/20	-	To	1XX		R	elinquis	hed By:						0	ata / Time	1/5	20	lacelyed I	or V	K	7	-	11.					
	shed by: Date /		eceived By:	1 2	ZDI		R	elinquisi	hed By:	_	_		_	_		1/30			ecsived I		R	20	219	Kin.					
Relinqu	shed by: Date / 1	Time: 8	ecolved By:				C	ratody S	esit	-	L	Inte	d	-	reserved	****	Marries	- 1		•	Contin								

635850 xls Omi Date: 4110118

> JD35850: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD35850		Client:	Client: SGS NJ			Project: 2ND AVENUE AND 33-39TH STREET, BROOKL				
Date / Time Received: 11/30/2021 3:00:00 PM			Delivery Method: FX			Airbill #'s: 5272 0636 6565				
Therm ID: IR 1;			Therm CF: 0.2; # of Cool			of Coolers	s: 1			
Cooler Temps (Raw Measure	ed) °C: Cool	er 1: (4.0);							
Cooler Temps (Correcte	ed) °C: Cool	er 1: (4.2);							
Cooler Information	Y or	N	1	Sample Information			Y or	N	N/A	
Custody Seals Present	✓			1. Sample labels present on	n bottles		✓			
2. Custody Seals Intact	✓			2. Samples preserved prope	erly		✓			
3. Temp criteria achieved	✓			3. Sufficient volume/contain	ners recvd for	analysis:	✓			
4. Cooler temp verification	IR Gun			4. Condition of sample			<u>Intact</u>			
5. Cooler media	Ice (Bag)			5. Sample recvd within HT			✓			
				6. Dates/Times/IDs on COC	C match Samp	ole Label	✓			
Trip Blank Information	Y or	<u>N</u> _	N/A_	7. VOCs have headspace				✓		
1. Trip Blank present / cooler			✓	8. Bottles received for unsp	ecified tests			✓		
2. Trip Blank listed on COC			✓	9. Compositing instructions	clear				\checkmark	
	W or	9	N/A	10. Voa Soil Kits/Jars receiv	ved past 48hr	s?			\checkmark	
0.70(70.0				11. % Solids Jar received?					\checkmark	
3. Type Of TB Received			✓	12. Residual Chlorine Prese	ent?				~	
Misc. Information										
Number of Encores: 25-Gran	n	5-Gram	Num	ber of 5035 Field Kits:	N	umber of Lal	b Filtered M	letals:		
Test Strip Lot #s:	pH 0-3	23031	 5 p⊦	1 10-12 219813A						
Residual Chlorine Test Strip Lo					-					
Comments										
1										
SM001 Rev. Date 05/24/17 Technicia	n: STEPHEN	IP	Date: 11/30/202	1 3:00:00 P	Reviewer:			Date:		

JD35850: Chain of Custody

Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech 2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD35939

Sampling Dates: 11/29/21 - 11/30/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report:

169

ults contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

how we can serve you better at:

EHS.US.CustomerCare@sgs.com

General Manager

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	11
Section 4: Sample Results	
4.1: JD35939-1: TT-SB-13-7.5-9.5	21
4.2: JD35939-1A: TT-SB-13-7.5-9.5	32
4.3: JD35939-2: TT-SB-14-7.5-9.5	34
4.4: JD35939-2A: TT-SB-14-7.5-9.5	45
4.5: JD35939-3: TT-SB-15-7.5-9.5	47
4.6: JD35939-3A: TT-SB-15-7.5-9.5	58
4.7: JD35939-4: TT-SB-16-7.5-9.5	60
4.8: JD35939-4A: TT-SB-16-7.5-9.5	71
4.9: JD35939-5: TT-SB-17-7.0-9.0	73
4.10: JD35939-5A: TT-SB-17-7.0-9.0	84
4.11: JD35939-6: TT-SB-18-7.0-9.0	86
4.12: JD35939-6A: TT-SB-18-7.0-9.0	97
4.13: JD35939-7: TT-SB-19-7.0-9.0	99
4.14: JD35939-7A: TT-SB-19-7.0-9.0	110
4.15: JD35939-8: TT-SB-20-6.5-8.5	112
4.16: JD35939-8A: TT-SB-20-6.5-8.5	123
4.17: JD35939-9: TT-SB-21-6.5-8.5	125
4.18: JD35939-9A: TT-SB-21-6.5-8.5	136
4.19: JD35939-10: TT-SB-22-6.5-8.5	138
4.20: JD35939-10A: TT-SB-22-6.5-8.5	149
4.21: JD35939-11: TT-SB-23-7.5-9.5	151
4.22: JD35939-11A: TT-SB-23-7.5-9.5	162
Section 5: Misc. Forms	164
5.1: Chain of Custody	165
5.2: Chain of Custody (SGS Orlando, FL)	168

Sample Summary

Tetra Tech

Job No: 2nd Avenue and 33-39th Street, Brooklyn, NY

Sample	Collected			Matr		Client
Number	Date	Time By	Received	Code	Type	Sample ID
This report co		lts reported as = Not detecte			cted. The following app	olies:
JD35939-1	11/29/21	09:10 AV	11/30/21	so	Soil	TT-SB-13-7.5-9.5
JD35939-1A	11/29/21	09:10 AV	11/30/21	so	Soil	TT-SB-13-7.5-9.5
JD35939-2	11/29/21	10:09 AV	11/30/21	so	Soil	TT-SB-14-7.5-9.5
JD35939-2A	11/29/21	10:09 AV	11/30/21	so	Soil	TT-SB-14-7.5-9.5
JD35939-3	11/29/21	11:09 AV	11/30/21	so	Soil	TT-SB-15-7.5-9.5
JD35939-3A	11/29/21	11:09 AV	11/30/21	so	Soil	TT-SB-15-7.5-9.5
JD35939-4	11/29/21	12:11 AV	11/30/21	so	Soil	TT-SB-16-7.5-9.5
JD35939-4A	11/29/21	12:11 AV	11/30/21	so	Soil	TT-SB-16-7.5-9.5
JD35939-5	11/29/21	13:55 AV	11/30/21	so	Soil	TT-SB-17-7.0-9.0
JD35939-5A	11/29/21	13:55 AV	11/30/21	so	Soil	TT-SB-17-7.0-9.0
JD35939-6	11/29/21	14:56 AV	11/30/21	so	Soil	TT-SB-18-7.0-9.0
JD35939-6A	11/29/21	14:56 AV	11/30/21	so	Soil	TT-SB-18-7.0-9.0

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

JD35939

Sample Summary (continued)

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Job No: JD35939

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JD35939-7	11/30/21	08:48 AV	11/30/21	so	Soil	TT-SB-19-7.0-9.0
JD35939-7A	11/30/21	08:48 AV	11/30/21	so	Soil	TT-SB-19-7.0-9.0
JD35939-8	11/30/21	09:36 AV	11/30/21	so	Soil	TT-SB-20-6.5-8.5
JD35939-8A	11/30/21	09:36 AV	11/30/21	so	Soil	TT-SB-20-6.5-8.5
JD35939-9	11/30/21	10:28 AV	11/30/21	so	Soil	TT-SB-21-6.5-8.5
JD35939-9A	11/30/21	10:28 AV	11/30/21	so	Soil	TT-SB-21-6.5-8.5
JD35939-10	11/30/21	11:33 AV	11/30/21	so	Soil	TT-SB-22-6.5-8.5
JD35939-10A	11/30/21	11:33 AV	11/30/21	so	Soil	TT-SB-22-6.5-8.5
JD35939-11	11/30/21	13:30 AV	11/30/21	so	Soil	TT-SB-23-7.5-9.5
JD35939-11A	11/30/21	13:30 AV	11/30/21	so	Soil	TT-SB-23-7.5-9.5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD35939

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/27/2021 5:55:33 P

On 11/30/2021, 22 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of -0.1 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35939 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9769

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-1MS, JD35939-2DUP were used as the QC samples indicated.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88850

- The data for EPA 537M BY ID meets quality control requirements.
- JD35939-11A: Analysis performed at SGS Orlando, FL.
- JD35939-1A: Analysis performed at SGS Orlando, FL.
- JD35939-2A: Analysis performed at SGS Orlando, FL.
- JD35939-3A: Analysis performed at SGS Orlando, FL.
- JD35939-4A: Analysis performed at SGS Orlando, FL.
- JD35939-6A: Analysis performed at SGS Orlando, FL.
- JD35939-8A: Analysis performed at SGS Orlando, FL.
- JD35939-9A: Analysis performed at SGS Orlando, FL.
- JD35939-5A: Analysis performed at SGS Orlando, FL.
- JD35939-10A: Analysis performed at SGS Orlando, FL.
- JD35939-7A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36903

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-1MS, JD35939-1MSD were used as the QC samples indicated.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Anthracene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- Matrix Spike Duplicate Recovery(s) for Acenaphthene, Fluorene, Naphthalene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike /Matrix Spike Duplicate Recovery(s) for Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Chrysene, Fluoranthene, Pyrene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MSD for Naphthalene, Phenanthrene are outside control limits for sample OP36903-MSD.
- JD35939-6 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-2 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-2 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-1 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-9 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-2 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-9 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- OP36903-MSD for Naphthalene: Outside of in house control limits.
- JD35939-1 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- OP36903-MSD for Phenanthrene: Outside of in house control limits.
- JD35939-6 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-10 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-6 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-7 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-7 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-7 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-8 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-8 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-10 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-9 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-1 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-3 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-5 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-3 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-10 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-11 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-11 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-11 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-8 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-4 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD35939-4 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD35939-5 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-5 for Caprolactam: Associated CCV outside of control limits high, sample was ND.

Monday, December 27, 2021

Page 2 of 5

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36903

- JD35939-4 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD35939-3 for 4-Nitrophenol: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36903A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-2MS, JD35939-2MSD were used as the QC samples indicated.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36907

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-1MS, JD35939-1MSD, OP36907-MSMSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for delta-BHC, Endrin ketone are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Aldrin, delta-BHC, Endrin aldehyde are outside control limits. Outside control limits due to matrix interference.
- JD35939-9: Had TBA cleanup.
- JD35939-1: Confirmation run.
- JD35939-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD35939-1 for Endosulfan-II: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35939-1 for Endrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35939-1 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD35939-1 for 4,4'-DDE: More than 40 % RPD for detected concentrations between the two GC columns.
- OP36907-BS1 for Methoxychlor: Reported from 2nd signal. 1st signal used for confirmation.
- JD35939-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36908

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35939-2MS, JD35939-2MSD, OP36908-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD35939-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP36908-MB1 for Tetrachloro-m-xylene: Outside of in house control limits.
- RPD of OP36908-BSD for Aroclor 1260: Analytical precision exceeds in-house control limits.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36906

- All samples were extracted within the recommended method holding time.
- Sample(s) JD35939-3MS, JD35939-3MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD35939-3 for 2,4-DCAA: Outside control limits due to matrix interference.
- JD35939-9 for 2,4-DCAA: Outside control limits due to matrix interference.
- RPD of OP36906-BSD for 2,4-D: Analytical precision exceeds in-house control limits.
- RPD of OP36906-BSD for 2,4,5-T: Analytical precision exceeds in-house control limits.

Metals Analysis By Method SW846 6010D

Matrix: SO

Batch ID: MP30147

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-7MS, JD35939-7MSD, JD35939-7PS, JD35939-7SDL were used as the QC samples for metals.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Iron, Magnesium, Manganese, Potassium are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for Serial Dilution for Arsenic, Cadmium, Selenium, Silver are outside control limits for sample MP30147-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP30147-SD1 for Cobalt: Serial dilution indicates possible matrix interference.

Metals Analysis By Method SW846 7471B

Matrix: SO

Batch ID: MP30119

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35907-1MS, JD35907-1MSD were used as the QC samples for metals.

Matrix: SO

Batch ID: MP30120

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-4MS, JD35939-4MSD were used as the QC samples for metals.

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO

Batch ID: GN24374

Sample(s) JD35936-15DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO

Batch ID: GP37364

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35936-1DUP, JD35936-1MS were used as the QC samples for Cyanide.

Matrix: SO

Batch ID: GP37365

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35939-6DUP, JD35939-6MS, JD35939-7MS were used as the QC samples for Cyanide.

Monday, December 27, 2021

Page 4 of 5

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD35939

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/27/2021 3:41:14

On 11/30/2021, 11 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD35939 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88850

Sample(s) JD36081-11MS, JD36081-11MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for Perfluorotridecanoic acid are outside control limits. Probable cause is due to matrix interference. Matrix Spike Duplicate Recovery(s) for Perfluorotridecanoic acid are outside control limits. Probable cause is due to matrix interference.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney, Client Services (signature on file)	

Summary of Hits Job Number: JD35939 Page 1 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Lab Sample ID Client Sample ID		RL	MDL	Units	Method
Analyte	Qual	KL	MIDL	Omis	Method
JD35939-1 TT-SB-13-7.5-9.5					
Acenaphthene	1780	36	13	ug/kg	SW846 8270E
Acenaphthylene	233	36	18	ug/kg	SW846 8270E
Anthracene	3060	730	450	ug/kg	SW846 8270E
Benzo(a)anthracene	10000	730	210	ug/kg	SW846 8270E
Benzo(a)pyrene	9080	730	330	ug/kg	SW846 8270E
Benzo(b)fluoranthene	11000	730	320	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	6040	730	360	ug/kg	SW846 8270E
Benzo(k)fluoranthene	4110	730	340	ug/kg	SW846 8270E
1,1'-Biphenyl	104	73	5.0	ug/kg	SW846 8270E
Carbazole	946	73	5.3	ug/kg	SW846 8270E
Chrysene	9330	730	230	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	1530	730	320	ug/kg	SW846 8270E
Dibenzofuran	802	73	15	ug/kg	SW846 8270E
Fluoranthene	21600	730	320	ug/kg	SW846 8270E
Fluorene	1420	36	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	6880	730	340	ug/kg	SW846 8270E
2-Methylnaphthalene	281	36	8.2	ug/kg	SW846 8270E
Naphthalene	840	36	10	ug/kg	SW846 8270E
Phenanthrene	12400	730	240	ug/kg	SW846 8270E
Pyrene	18800	730	230	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	52280 J			ug/kg	
Dieldrin ^a	5.3	0.68	0.47	ug/kg	SW846 8081B
4,4'-DDE ^a	2.2	0.68	0.59	ug/kg	SW846 8081B
4,4'-DDT	18.8	0.68	0.60	ug/kg	SW846 8081B
Endrin ^a	10.4	0.68	0.53	ug/kg	SW846 8081B
Endosulfan-II ^a	12.3	0.68	0.42	ug/kg	SW846 8081B
Aluminum	7120	57		mg/kg	SW846 6010D
Arsenic	7.3	2.3		mg/kg	SW846 6010D
Barium	125	23		mg/kg	SW846 6010D
Beryllium	0.47	0.23		mg/kg	SW846 6010D
Calcium	9560	570		mg/kg	SW846 6010D
Chromium	18.1	1.1		mg/kg	SW846 6010D
Cobalt	6.1	5.7		mg/kg	SW846 6010D
Copper	82.5	2.8		mg/kg	SW846 6010D
Iron	15700	57		mg/kg	SW846 6010D
Lead	532	2.3		mg/kg	SW846 6010D
Magnesium	3230	570		mg/kg	SW846 6010D
Manganese	239	1.7		mg/kg	SW846 6010D
Mercury	0.41	0.036		mg/kg	SW846 7471B
Nickel	24.8	4.5		mg/kg	SW846 6010D
Potassium	1200	1100		mg/kg	SW846 6010D
Silver	0.74	0.57		mg/kg	SW846 6010D
Vanadium	21.2	5.7		mg/kg	SW846 6010D

Summary of Hits Job Number: JD35939 Page 2 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Zinc		360	5.7		mg/kg	SW846 6010D
JD35939-1A	TT-SB-13-7.5-9.5					
No hits reported in	n this sample.					
JD35939-2	TT-SB-14-7.5-9.5					
Benzo(a)anthracer	ne	10.0 J	37	10	ug/kg	SW846 8270E
bis(2-Ethylhexyl)p	ohthalate	12.7 J	74	8.6	ug/kg	SW846 8270E
Fluoranthene		17.1 J	37	16	ug/kg	SW846 8270E
Naphthalene		10.2 J	37	10	ug/kg	SW846 8270E
Phenanthrene		12.3 J	37	12	ug/kg	SW846 8270E
Pyrene		16.3 J	37	12	ug/kg	SW846 8270E
Total TIC, Semi-V	Volatile	380 J			ug/kg	
Aluminum		4360	55		mg/kg	SW846 6010D
Arsenic		4.2	2.2		mg/kg	SW846 6010D
Barium		35.8	22		mg/kg	SW846 6010D
Beryllium		0.41	0.22		mg/kg	SW846 6010D
Calcium		1840	550		mg/kg	SW846 6010D
Chromium		9.6	1.1		mg/kg	SW846 6010D
Cobalt		5.9	5.5		mg/kg	SW846 6010D
Copper		26.0	2.8		mg/kg	SW846 6010D
Iron		11900	55		mg/kg	SW846 6010D
Lead		33.4	2.2		mg/kg	SW846 6010D
Magnesium		1160	550		mg/kg	SW846 6010D
Manganese		181	1.7		mg/kg	SW846 6010D
Mercury		0.051	0.036		mg/kg	SW846 7471B
Nickel		16.5	4.4		mg/kg	SW846 6010D
Vanadium		15.4	5.5		mg/kg	SW846 6010D
Zinc		44.4	5.5		mg/kg	SW846 6010D
Cyanide		0.32	0.29		mg/kg	SW846 9012B/LACHAT
JD35939-2A	TT-SB-14-7.5-9.5					
Perfluorooctanesu	lfonic acid ^b	0.86	0.55	0.28	ug/kg	EPA 537M BY ID
JD35939-3	TT-SB-15-7.5-9.5					
Acetone		6.9 J	11	4.6	ug/kg	SW846 8260D
Benzo(a)anthracer	1e	68.5	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene		48.1	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranth	ene	68.7	36	16	ug/kg	SW846 8270E
		28.3 J	36			SW846 8270E
			36	17		SW846 8270E
Benzo(g,h,i)perylo Benzo(k)fluoranth		28.3 J 30.2 J		18 17	ug/kg ug/kg	

Summary of Hits Job Number: JD35939 Page 3 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Lab Sample ID Client Sample ID					
Analyte	Qual	RL	MDL	Units	Method
1,1'-Biphenyl	5.4 J	72	4.9	ug/kg	SW846 8270E
Carbazole	5.4 J	72	5.2	ug/kg	SW846 8270E
Chrysene	72.8	36	11	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	10.2 J	72	8.5	ug/kg	SW846 8270E
Fluoranthene	176	36	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	27.8 J	36	17	ug/kg	SW846 8270E
2-Methylnaphthalene	8.3 J	36	8.2	ug/kg	SW846 8270E
Naphthalene	30.7 J	36	10	ug/kg	SW846 8270E
Phenanthrene	98.8	36	12	ug/kg	SW846 8270E
Pyrene	156	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	610 J			ug/kg	
Aluminum	3340	57		mg/kg	SW846 6010D
Arsenic	4.9	2.3		mg/kg	SW846 6010D
Barium	60.2	23		mg/kg	SW846 6010D
Beryllium	0.31	0.23		mg/kg	SW846 6010D
Calcium	948	570		mg/kg	SW846 6010D
Chromium	10.1	1.1		mg/kg	SW846 6010D
Cobalt	7.9	5.7		mg/kg	SW846 6010D
Copper	58.9	2.9		mg/kg	SW846 6010D
fron (14900	57		mg/kg	SW846 6010D
Lead	160	2.3		mg/kg	SW846 6010D
Magnesium	989	570		mg/kg	SW846 6010D
Manganese	246	1.7		mg/kg	SW846 6010D
Mercury	0.61	0.033		mg/kg	SW846 7471B
Nickel	17.2	4.6		mg/kg	SW846 6010D
Silver	0.63	0.57		mg/kg	SW846 6010D
Vanadium	16.0	5.7		mg/kg	SW846 6010D
Zinc	82.9	5.7		mg/kg	SW846 6010D
Cyanide	0.48	0.25		mg/kg	SW846 9012B/LACHAT
JD35939-3A TT-SB-15-7.5-9.5					
Perfluorooctanoic acid ^b	1.7	0.54	0.27	ug/kg	EPA 537M BY ID
JD35939-4 TT-SB-16-7.5-9.5					
Total TIC, Semi-Volatile	400 J			ug/kg	
Aluminum	6240	57		mg/kg	SW846 6010D
Arsenic	2.4	2.3		mg/kg	SW846 6010D
Barium	33.7	23		mg/kg	SW846 6010D
Beryllium	0.51	0.23		mg/kg	SW846 6010D
Calcium	1340	570		mg/kg	SW846 6010D
Chromium	14.9	1.1		mg/kg	SW846 6010D
Cobalt	6.6	5.7		mg/kg	SW846 6010D
Copper	11.7	2.8		mg/kg	SW846 6010D

Summary of Hits Job Number: JD35939 Page 4 of 9

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Iron	11200	57		mg/kg	SW846 6010D
Lead	8.7	2.3		mg/kg	SW846 6010D
Magnesium	2470	570		mg/kg	SW846 6010D
Manganese	167	1.7		mg/kg	SW846 6010D
Nickel	23.0	4.6		mg/kg	SW846 6010D
Vanadium	21.2	5.7		mg/kg	SW846 6010D
Zinc	32.2	5.7		mg/kg	SW846 6010D

JD35939-4A TT-SB-16-7.5-9.5

No hits reported in this sample.

JD35939-5 TT-SB-17-7.0-9.0

Benzo(a)anthracene	38.7	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	29.4 J	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	36.2	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	21.3 J	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	17.6 J	36	17	ug/kg	SW846 8270E
Chrysene	36.4	36	11	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	19.3 J	72	8.4	ug/kg	SW846 8270E
Fluoranthene	67.0	36	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	22.5 J	36	17	ug/kg	SW846 8270E
Phenanthrene	41.8	36	12	ug/kg	SW846 8270E
Pyrene	65.4	36	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	350 J			ug/kg	
Aluminum	4620	55		mg/kg	SW846 6010D
Arsenic	2.4	2.2		mg/kg	SW846 6010D
Barium	32.6	22		mg/kg	SW846 6010D
Beryllium	0.44	0.22		mg/kg	SW846 6010D
Calcium	1890	550		mg/kg	SW846 6010D
Chromium	12.9	1.1		mg/kg	SW846 6010D
Cobalt	5.7	5.5		mg/kg	SW846 6010D
Copper	13.0	2.7		mg/kg	SW846 6010D
Iron	9690	55		mg/kg	SW846 6010D
Lead	22.2	2.2		mg/kg	SW846 6010D
Magnesium	2050	550		mg/kg	SW846 6010D
Manganese	180	1.6		mg/kg	SW846 6010D
Nickel	21.8	4.4		mg/kg	SW846 6010D
Vanadium	17.5	5.5		mg/kg	SW846 6010D
Zinc	40.3	5.5		mg/kg	SW846 6010D
Cyanide	0.32	0.30		mg/kg	SW846 9012B/LACHAT

Summary of Hits Job Number: JD35939 Page 5 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Analyte	Qual	RL	MDL	Units	Method
JD35939-5A TT-SB-17-7.0-9.0					
No hits reported in this sample.					
JD35939-6 TT-SB-18-7.0-9.0					
Acetone	4.1 J	9.3	3.9	ug/kg	SW846 8260D
Benzo(a)anthracene	22.2 J	37	10	ug/kg	SW846 8270E
Benzo(b)fluoranthene	18.5 J	37	16	ug/kg	SW846 8270E
Chrysene	17.5 J	37	12	ug/kg	SW846 8270E
Fluoranthene	35.2 J	37	17	ug/kg	SW846 8270E
Phenanthrene	14.7 J	37	12	ug/kg	SW846 8270E
Pyrene	28.7 J	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	430 J			ug/kg	
Aluminum	7770	55		mg/kg	SW846 6010D
Arsenic	7.7	2.2		mg/kg	SW846 6010D
Barium	34.3	22		mg/kg	SW846 6010D
Beryllium	0.60	0.22		mg/kg	SW846 6010D
Calcium	1960	550		mg/kg	SW846 6010D
Chromium	16.6	1.1		mg/kg	SW846 6010D
Cobalt	7.4	5.5		mg/kg	SW846 6010D
Copper	19.1	2.7		mg/kg	SW846 6010D
Iron	17900	55		mg/kg	SW846 6010D
Lead	33.9	2.2		mg/kg	SW846 6010D
Magnesium	2610	550		mg/kg	SW846 6010D
Manganese	181	1.6		mg/kg	SW846 6010D
Mercury	0.081	0.028		mg/kg	SW846 7471B
Nickel	16.8	4.4		mg/kg	SW846 6010D
Potassium	1420	1100		mg/kg	SW846 6010D
Silver	0.66	0.55		mg/kg	SW846 6010D
Vanadium	22.9	5.5		mg/kg	SW846 6010D
Zinc	53.8	5.5		mg/kg	SW846 6010D
JD35939-6A TT-SB-18-7.0-9.0					
No hits reported in this sample.					
JD35939-7 TT-SB-19-7.0-9.0					
Benzo(a)anthracene	33.3 J	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	22.9 J	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	25.4 J	36	16	ug/kg	SW846 8270E
Chrysene	27.6 J	36	11	ug/kg	SW846 8270E
Fluoranthene	46.8	36	16	ug/kg	SW846 8270E
Phenanthrene	31.1 J	36	12	ug/kg	SW846 8270E

Summary of Hits Job Number: JD35939 Page 6 of 9

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Pyrene	46.1	36	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	280 J			ug/kg	
Aluminum	4200	56		mg/kg	SW846 6010D
Arsenic	2.9	2.2		mg/kg	SW846 6010D
Beryllium	0.33	0.22		mg/kg	SW846 6010D
Calcium	632	560		mg/kg	SW846 6010D
Chromium	8.2	1.1		mg/kg	SW846 6010D
Copper	11.6	2.8		mg/kg	SW846 6010D
Iron	9140	56		mg/kg	SW846 6010D
Lead	20.4	2.2		mg/kg	SW846 6010D
Magnesium	1290	560		mg/kg	SW846 6010D
Manganese	141	1.7		mg/kg	SW846 6010D
Mercury	0.64	0.036		mg/kg	SW846 7471B
Nickel	10.2	4.5		mg/kg	SW846 6010D
Vanadium	13.9	5.6		mg/kg	SW846 6010D
Zinc	27.8	5.6		mg/kg	SW846 6010D

JD35939-7A TT-SB-19-7.0-9.0

No hits reported in this sample.

JD35939-8 TT-SB-20-6.5-8.5					
Benzo(a)anthracene	54.8	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	48.9	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	60.4	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	36.5 J	37	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	24.2 J	37	17	ug/kg	SW846 8270E
Chrysene	53.4	37	12	ug/kg	SW846 8270E
Fluoranthene	110	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	39.4	37	17	ug/kg	SW846 8270E
Phenanthrene	66.3	37	12	ug/kg	SW846 8270E
Pyrene	91.4	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	640 J			ug/kg	
Aluminum	3720	56		mg/kg	SW846 6010D
Arsenic	5.3	2.2		mg/kg	SW846 6010D
Barium	365	22		mg/kg	SW846 6010D
Beryllium	0.35	0.22		mg/kg	SW846 6010D
Calcium	1400	560		mg/kg	SW846 6010D
Chromium	12.3	1.1		mg/kg	SW846 6010D
Copper	61.1	2.8		mg/kg	SW846 6010D
Iron	11100	56		mg/kg	SW846 6010D
Lead	377	2.2		mg/kg	SW846 6010D
Magnesium	1760	560		mg/kg	SW846 6010D
Manganese	167	1.7		mg/kg	SW846 6010D
-				- 0	

Summary of Hits
Job Number: JD35939

Page 7 of 9

Job Number: JD35939 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 11/29/21 thru 11/30/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Mercury	0.24	0.029		mg/kg	SW846 7471B
Nickel	17.9	4.5		mg/kg	SW846 6010D
Vanadium	15.4	5.6		mg/kg	SW846 6010D
Zinc	323	5.6		mg/kg	SW846 6010D
Cyanide	0.60	0.32		mg/kg	SW846 9012B/LACHAT

JD35939-8A TT-SB-20-6.5-8.5

No hits reported in this sample.

JD35939-9 TT-SB-21-6.5-8.5

Acetone	9.7	9.4	3.9	ug/kg	SW846 8260D
Benzo(a)anthracene	26.4 J	38	11	ug/kg	SW846 8270E
Benzo(a)pyrene	29.2 J	38	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	27.2 J	38	17	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	20.3 J	38	19	ug/kg	SW846 8270E
Chrysene	26.7 J	38	12	ug/kg	SW846 8270E
Fluoranthene	24.3 J	38	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	20.6 J	38	18	ug/kg	SW846 8270E
Phenanthrene	23.1 J	38	13	ug/kg	SW846 8270E
Pyrene	25.1 J	38	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	360 J			ug/kg	
Aluminum	9700	58		mg/kg	SW846 6010D
Arsenic	4.4	2.3		mg/kg	SW846 6010D
Barium	35.9	23		mg/kg	SW846 6010D
Beryllium	0.58	0.23		mg/kg	SW846 6010D
Calcium	1100	580		mg/kg	SW846 6010D
Chromium	14.4	1.2		mg/kg	SW846 6010D
Cobalt	6.6	5.8		mg/kg	SW846 6010D
Copper	12.8	2.9		mg/kg	SW846 6010D
Iron	16100	58		mg/kg	SW846 6010D
Lead	16.4	2.3		mg/kg	SW846 6010D
Magnesium	2300	580		mg/kg	SW846 6010D
Manganese	273	1.8		mg/kg	SW846 6010D
Mercury	0.067	0.029		mg/kg	SW846 7471B
Nickel	13.8	4.7		mg/kg	SW846 6010D
Vanadium	21.2	5.8		mg/kg	SW846 6010D
Zinc	35.8	5.8		mg/kg	SW846 6010D

JD35939-9A TT-SB-21-6.5-8.5

No hits reported in this sample.

Summary of Hits Job Number: JD35939 Page 8 of 9

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 11/29/21 thru 11/30/21**Project:**

Collected:

Lab Correla ID	Client Course In ID	Dogul4/				
Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
TD 25020 40	TTT CD 44 (# 0 #					
JD35939-10	TT-SB-22-6.5-8.5					
Acetone		5.1 J	8.9	3.7	ug/kg	SW846 8260D
Total TIC, Semi-	Volatile	300 J			ug/kg	
Aluminum		6780	58		mg/kg	SW846 6010D
Arsenic		4.6	2.3		mg/kg	SW846 6010D
Barium		32.8	23		mg/kg	SW846 6010D
Beryllium		0.54	0.23		mg/kg	SW846 6010D
Calcium		2650	580		mg/kg	SW846 6010D
Chromium		12.7	1.2		mg/kg	SW846 6010D
Cobalt		6.3	5.8		mg/kg	SW846 6010D
Copper		13.0	2.9		mg/kg	SW846 6010D
Iron		13600	58		mg/kg	SW846 6010D
Lead		15.2	2.3		mg/kg	SW846 6010D
Magnesium		2930	580		mg/kg	SW846 6010D
Manganese		258	1.8		mg/kg	SW846 6010D
Mercury		0.071	0.032		mg/kg	SW846 7471B
Nickel		15.0	4.7		mg/kg	SW846 6010D
Potassium		1200	1200		mg/kg	SW846 6010D
Vanadium		20.4	5.8		mg/kg	SW846 6010D
Zinc		40.3	5.8		mg/kg	SW846 6010D
JD35939-10A	TT-SB-22-6.5-8.5					
No hits reported	in this sample.					
JD35939-11	TT-SB-23-7.5-9.5					
Acetone		7.0 J	9.5	3.9	ug/kg	SW846 8260D
Total TIC, Semi-	Volatile	420 J			ug/kg	
Aluminum		6910	58		mg/kg	SW846 6010D
Arsenic		3.4	2.3		mg/kg	SW846 6010D
Barium		42.4	23		mg/kg	SW846 6010D
Beryllium		0.52	0.23		mg/kg	SW846 6010D
Calcium		2540	580		mg/kg	SW846 6010D
Chromium		13.3	1.2		mg/kg	SW846 6010D
Cobalt		6.0	5.8		mg/kg	SW846 6010D
Copper		10.4	2.9		mg/kg	SW846 6010D
Iron		13300	58		mg/kg	SW846 6010D
Lead		11.7	2.3		mg/kg	SW846 6010D
Magnesium		2490	580		mg/kg	SW846 6010D
Manganese		257	1.7		mg/kg	SW846 6010D
Nickel		14.2	4.6		mg/kg	SW846 6010D
Vanadium		19.2	5.8		mg/kg	SW846 6010D
Zinc		29.5	5.8		mg/kg	SW846 6010D
Zill		ພປ.ປ	J.0		mg/ k g	244040 0010D

Summary of Hits

Page 9 of 9

Job Number: JD35939 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 11/29/21 thru 11/30/21

Lab Sample ID Client Sample ID Result/
Analyte Qual RL MDL Units Method

JD35939-11A TT-SB-23-7.5-9.5

No hits reported in this sample.

(a) More than 40 % RPD for detected concentrations between the two GC columns.

(b) Analysis performed at SGS Orlando, FL.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results		
Report of Analysis		

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240285.D 1 12/02/21 12:07 PS 12/01/21 08:00 n/a VI9769

Run #2

Initial Weight

Run #1 6.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	8.7	3.6	ug/kg	
71-43-2	Benzene	ND	0.43	0.39	ug/kg	
74-97-5	Bromochloromethane	ND	4.3	0.48	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.37	ug/kg	
75-25-2	Bromoform	ND	4.3	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.3	0.66	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.7	2.1	ug/kg	
75-15-0	Carbon disulfide	ND	1.7	0.46	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.7	0.53	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.40	ug/kg	
75-00-3	Chloroethane	ND	4.3	0.51	ug/kg	
67-66-3	Chloroform	ND	1.7	0.45	ug/kg	
74-87-3	Chloromethane	ND	4.3	1.7	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.57	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.60	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.48	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.87	0.36	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.87	0.47	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.87	0.43	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.87	0.43	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.3	0.63	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.87	0.43	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.87	0.41	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.87	0.57	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.87	0.73	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.87	0.53	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.41	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.40	ug/kg	
100-41-4	Ethylbenzene	ND	0.87	0.39	ug/kg	
76-13-1	Freon 113	ND	4.3	2.3	ug/kg	
591-78-6	2-Hexanone	ND	4.3	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-13-7.5-9.5

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg		
79-20-9	Methyl Acetate	ND	4.3	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.76	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.87	0.41	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.3	2.0	ug/kg		
75-09-2	Methylene chloride	ND	4.3	2.3	ug/kg		
100-42-5	Styrene	ND	1.7	0.35	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.52	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.50	ug/kg		
108-88-3	Toluene	ND	0.87	0.45	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.3	2.2	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.3	2.2	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.42	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.48	ug/kg		
79-01-6	Trichloroethene	ND	0.87	0.66	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.3	0.59	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.42	ug/kg		
	m,p-Xylene	ND	0.87	0.78	ug/kg		
95-47-6	o-Xylene	ND	0.87	0.40	ug/kg		
1330-20-7	Xylene (total)	ND	0.87	0.40	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	101%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	104%		75-1	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	98%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	3E115518.D	1	12/05/21 18:32	KLS	12/03/21 12:30	OP36903	E3E5278
Run #2	3E115530.D	20	12/06/21 16:33	KLS	12/03/21 12:30	OP36903	E3E5279

	Initial Weight	Final Volume
Run #1	30.9 g	1.0 ml
Run #2	30.9 g	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	1780	36	13	ug/kg	
208-96-8	Acenaphthylene	233	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	3060 b	730	450	ug/kg	
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	10000 b	730	210	ug/kg	
50-32-8	Benzo(a)pyrene	9080 b	730	330	ug/kg	
205-99-2	Benzo(b)fluoranthene	11000 b	730	320	ug/kg	
191-24-2	Benzo(g,h,i)perylene	6040 b	730	360	ug/kg	
207-08-9	Benzo(k)fluoranthene	4110 b	730	340	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	104	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	946	73	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD35939-1 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Method: SW846 8270E SW846 3546 **Percent Solids:** 88.9

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	73	14	ug/kg	
218-01-9	Chrysene	9330 b	730	230	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	1530 b	730	320	ug/kg	
132-64-9	Dibenzofuran	802	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	8.5	ug/kg	
206-44-0	Fluoranthene	21600 b	730	320	ug/kg	
86-73-7	Fluorene	1420	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	6880 b	730	340	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	281	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	840	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	12400 b	730	240	ug/kg	
129-00-0	Pyrene	18800 b	730	230	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
367-12-4	2-Fluorophenol	42%	17%	10-1	109%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	44%	26%	10-105%		
118-79-6	2,4,6-Tribromophenol	74%	43%	10-135%		
4165-60-0	Nitrobenzene-d5	49%	27%	10-119%		
321-60-8	2-Fluorobiphenyl	53 %	33%	18-112%		
1718-51-0	Terphenyl-d14	54 %	34%	18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	Naphthacenedione		14.43	1100	ug/kg	J
	Unknown		14.52	760		J
	Unknown		14.66	1800	ug/kg	J
	Unknown PAH substance		15.02	3100	ug/kg	J
	Unknown		15.16	2500	ug/kg	J
	Unknown PAH substance		15.25	9500	ug/kg	J
	Unknown		15.47	870	ug/kg	J
	Unknown		15.62	2100	ug/kg	J
	Unknown		15.65	1100	ug/kg	J
	Unknown		15.73	1500	ug/kg	J
	Unknown		15.85	940	ug/kg	J
	Unknown		15.94	1800	ug/kg	J
	Unknown		16.08	780	ug/kg	J
	Unknown		16.28	720	ug/kg	J
	Unknown		16.37	1200	ug/kg	J
	Unknown		16.45	2100	ug/kg	J
	Unknown		16.51	770	ug/kg	J
	Unknown		16.59	3600	ug/kg	J
	Unknown PAH substance		16.87	2100	ug/kg	J
	Unknown PAH substance		16.92	2500	ug/kg	J
	Unknown PAH substance		17.23	2800	ug/kg	J
	Unknown		17.49	850	ug/kg	J
	Unknown		17.63	690	ug/kg	J
	Unknown		17.92	1800	ug/kg	J
	Dibenzopyrene		18.77	5300	ug/kg	J
	Total TIC, Semi-Volatile			52280	ug/kg	J

- (a) Associated CCV outside of control limits high, sample was ND.
- (b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-13-7.5-9.5

 Lab Sample ID:
 JD35939-1
 Date Sampled: 11/29/21

 Matrix:
 SO - Soil
 Date Received: 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105270.D 1 12/18/21 08:53 CS 12/03/21 12:30 OP36903A E4M4891

Run #2

Initial Weight Final Volume Run #1 30.4 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 60%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 60%
 17-91%

 1718-51-0
 Terphenyl-d14
 55%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-13-7.5-9.5

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134411.D 1 12/06/21 00:23 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.7 3.7	8.2 2.1 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	65% 54%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD35939-1
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G171719.D	1	12/03/21 23:54	RK	12/02/21 12:00	OP36907	G1G5924
Run #2 a	1G171902.D	5	12/09/21 04:15	CP	12/02/21 12:00	OP36907	G1G5930

	Initial Weight	Final Volume
Run #1	16.6 g	10.0 ml
Run #2	16.6 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.68	0.56	ug/kg	
319-84-6	alpha-BHC	ND	0.68	0.55	ug/kg	
319-85-7	beta-BHC	ND	0.68	0.61	ug/kg	
319-86-8	delta-BHC	ND	0.68	0.65	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.68	0.50	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.68	0.55	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.68	0.31	ug/kg	
60-57-1	Dieldrin ^b	5.3	0.68	0.47	ug/kg	
72-54-8	4,4'-DDD	ND	0.68	0.62	ug/kg	
72-55-9	4,4'-DDE b	2.2	0.68	0.59	ug/kg	
50-29-3	4,4'-DDT	18.8	0.68	0.60	ug/kg	
72-20-8	Endrin ^b	10.4	0.68	0.53	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.68	0.53	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.68	0.38	ug/kg	
959-98-8	Endosulfan-I	ND	0.68	0.39	ug/kg	
33213-65-9	Endosulfan-II b	12.3	0.68	0.42	ug/kg	
76-44-8	Heptachlor	ND	0.68	0.58	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.68	0.48	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.54	ug/kg	
53494-70-5	Endrin ketone	ND	0.68	0.49	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	79 %	98%	27-1	38%	
877-09-8	Tetrachloro-m-xylene	77%	76 %	27-1	38 %	
2051-24-3	Decachlorobiphenyl	156%	177%	10-1	79 %	
2051-24-3	Decachlorobiphenyl	1661% ^c	1246% °	10-1	79 %	

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Outside control limits due to matrix interference.

Page 1 of 1

Client Sample ID: TT-SB-13-7.5-9.5

Lab Sample ID: JD35939-1 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Method: SW846 8082A SW846 3546 Percent Solids: 88.9

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	XX2475256.D	1	12/06/21 17:51	TL	12/02/21 12:00	OP36908	GXX7676
D #9							

Run #2

	Initial Weight		
Run #1	16.6 g	10.0 ml	
Run #2			

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND ND ND ND ND ND ND N	34 34 34 34 34 34 34	16 21 22 14 30 18 14	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5 CAS No.	Aroclor 1262 Surrogate Recoveries	ND Run# 1	34 Run# 2	22 Limi	ug/kg	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	80% 81% 161% 175% ^a	XVIII / 2	24-1: 24-1: 10-1: 10-1:	52% 52% 72%	

⁽a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-13-7.5-9.5

Lab Sample ID: JD35939-1 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	7120	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	7.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	125	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.47	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	9560	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	18.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.1	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	82.5	2.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	15700	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	532	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	3230	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	239	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.41	0.036	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	24.8	4.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	1200	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.74	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	21.2	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	360	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30119 (4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-13-7.5-9.5

Lab Sample ID: JD35939-1 Date Sampled: 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.27 88.9	0.27	mg/kg %	1 1	12/09/21 00:43 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

JD35939

4.2

Report of Analysis

Client Sample ID: TT-SB-13-7.5-9.5

Lab Sample ID:JD35939-1ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51071.D 1 12/23/21 00:39 AFL 12/15/21 08:30 F:OP88850 F:S3Q714

Run #2

Initial Weight Final Volume

Run #1 2.06 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.27	ug/kg	
	ROALKYLSULFONIC ACIDS					
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.27	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.27	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	

ND = Not detected MD

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-13-7.5-9.5

Lab Sample ID:JD35939-1ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.9

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	91%		40-140%
	13C5-PFPeA	91%		50-150 %
	13C5-PFHxA	91%		50-150 %
	13C4-PFHpA	92%		50-150 %
	13C8-PFOA	92%		50-150 %
	13C9-PFNA	92%		50-150 %
	13C6-PFDA	92%		50-150 %
	13C7-PFUnDA	85 %		40-140%
	13C2-PFDoDA	77%		40-140%
	13C2-PFTeDA	85 %		30-130%
	13C3-PFBS	91%		50-150 %
	13C3-PFHxS	92%		50-150 %
	13C8-PFOS	90%		50-150 %
	13C8-FOSA	77%		30-130%
	d3-MeFOSAA	105%		40-140%
	d5-EtFOSAA	109%		40-140%
	13C2-6:2FTS	87 %		50-150 %
	13C2-8:2FTS	93%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.2

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	11	4.6	ug/kg	
71-43-2	Benzene	ND	0.55	0.50	ug/kg	
74-97-5	Bromochloromethane	ND	5.5	0.62	ug/kg	
75-27-4	Bromodichloromethane	ND	2.2	0.47	ug/kg	
75-25-2	Bromoform	ND	5.5	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.5	0.84	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.7	ug/kg	
75-15-0	Carbon disulfide	ND	2.2	0.59	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.2	0.68	ug/kg	
108-90-7	Chlorobenzene	ND	2.2	0.51	ug/kg	
75-00-3	Chloroethane	ND	5.5	0.65	ug/kg	
67-66-3	Chloroform	ND	2.2	0.57	ug/kg	
74-87-3	Chloromethane	ND	5.5	2.2	ug/kg	
110-82-7	Cyclohexane	ND	2.2	0.72	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.2	0.76	ug/kg	
124-48-1	Dibromochloromethane	ND	2.2	0.62	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.46	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.60	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.55	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.54	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.5	0.80	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.55	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.52	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.72	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.93	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.67	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.2	0.52	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.2	0.52	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.2	0.50	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.50	ug/kg	
76-13-1	Freon 113	ND	5.5	2.9	ug/kg	
591-78-6	2-Hexanone	ND	5.5	2.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Report of Analysis

Client Sample ID: TT-SB-14-7.5-9.5

Lab Sample ID: JD35939-2 **Date Sampled:** 11/29/21 Date Received: 11/30/21 Matrix: SO - Soil Percent Solids: 89.0

Method: SW846 8260D SW846 5035

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.2	1.6	ug/kg		
79-20-9	Methyl Acetate	ND	5.5	1.5	ug/kg		
108-87-2	Methylcyclohexane	ND	2.2	0.96	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.52	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.5	2.5	ug/kg		
75-09-2	Methylene chloride	ND	5.5	2.9	ug/kg		
100-42-5	Styrene	ND	2.2	0.44	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.2	0.66	ug/kg		
127-18-4	Tetrachloroethene	ND	2.2	0.64	ug/kg		
108-88-3	Toluene	ND	1.1	0.58	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.5	2.8	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.5	2.8	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.2	0.53	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.2	0.61	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.84	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.5	0.75	ug/kg		
75-01-4	Vinyl chloride	ND	2.2	0.53	ug/kg		
	m, p-Xylene	ND	1.1	0.99	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.50	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.50	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	n# 2 Limits			
1868-53-7	Dibromofluoromethane	104%	72-130%				
17060-07-0	1,2-Dichloroethane-D4	103%	75-131%				
2037-26-5	Toluene-D8	89%	81-121%				
460-00-4	4-Bromofluorobenzene	99%	60-141%				
CAS No.	Tentatively Identified Compounds		R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3E115502.D 1 12/05/21 11:38 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	370	98	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	37	13	ug/kg	
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone	ND	180	7.9	ug/kg	
120-12-7	Anthracene	ND	37	23	ug/kg	
1912-24-9	Atrazine	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	10.0	37	10	ug/kg	J
50-32-8	Benzo(a)pyrene	ND	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	ND	74	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	74	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

Lab Sample ID: JD35939-2 **Date Sampled:** 11/29/21 SO - Soil Matrix: Date Received: 11/30/21 Method: SW846 8270E SW846 3546 **Percent Solids:** 89.0

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	74	15	ug/kg	
218-01-9	Chrysene	ND	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	37	16	ug/kg	
132-64-9	Dibenzofuran	ND	74	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	74	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	12.7	74	8.6	ug/kg	J
206-44-0	Fluoranthene	17.1	37	16	ug/kg	J
86-73-7	Fluorene	ND	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	74	9.3	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	ND	37	8.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.2	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	10.2	37	10	ug/kg	J
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	12.3	37	12	ug/kg	J
129-00-0	Pyrene	16.3	37	12	ug/kg	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

CAS No. **Surrogate Recoveries** Run# 1 **Run# 2** Limits

367-12-4 2-Fluorophenol 40% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	41% 62% 47%		10-105% 10-135% 10-119%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	49 % 47 %		18-112% 18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
301-02-0	-J		2.74 2.81 12.59	230 420 380 380	ug/kg ug/kg ug/kg ug/kg	J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled: 11/29/21

 Matrix:
 SO - Soil
 Date Received: 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105229.D 1 12/17/21 14:55 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Initial Weight Final Volume
Run #1 30.5 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 59%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 57%
 17-91%

 1718-51-0
 Terphenyl-d14
 55%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134412.D 1 12/06/21 00:50 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Initial Weight Final Volume Run #1 15.1 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	19 3.7 3.7	8.3 2.1 1.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	61% 48%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171722.D 1 12/04/21 00:49 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.6 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.72	0.59	ug/kg	
319-84-6	alpha-BHC	ND	0.72	0.59	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.72	0.33	ug/kg	
60-57-1	Dieldrin	ND	0.72	0.49	ug/kg	
72-54-8	4,4'-DDD	ND	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	ND	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	ND	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.72	0.50	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.57	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	86%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	86%		27-1	38 %	
2051-24-3	Decachlorobiphenyl	86%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	160%				

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

 Lab Sample ID:
 JD35939-2
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475257.D 1 12/06/21 18:09 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.6 g 10.0 ml Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND ND	36 36 36 36 36 36 36 36	17 22 23 15 32 19 15	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	64%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	71%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	158%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	163%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14-7.5-9.5

Lab Sample ID: JD35939-2 Date Sampled: 11/29/21
Matrix: SO - Soil Date Received: 11/30/21
Percent Solids: 89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4360	55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	4.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	35.8	22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.41	0.22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1840	550	mg/kg	1	12/04/21	12/05/21 ND	0	SW846 3050B ⁴
Chromium	9.6	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	5.9	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	26.0	2.8	mg/kg	1	12/04/21	12/05/21 ND		SW846 3050B ⁴
Iron	11900	55	mg/kg	1	12/04/21	12/05/21 ND		SW846 3050B ⁴
Lead	33.4	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	1160	550	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	181	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.051	0.036	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	16.5	4.4	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.55	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	15.4	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	44.4	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520
(2) Instrument QC Batch: MA51546
(3) Prep QC Batch: MP30119
(4) Prep QC Batch: MP30147

JD35939

Page 1 of 1

Client Sample ID: TT-SB-14-7.5-9.5

Lab Sample ID: JD35939-2 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.0

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	0.32 89	0.29	mg/kg %	1 1	12/09/21 00:45 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

JD35939

Client Sample ID: TT-SB-14-7.5-9.5

Lab Sample ID:JD35939-2ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51026.D 1 12/22/21 05:25 AFL 12/15/21 08:30 F:OP88850 F:S3Q713

Run #2

Initial Weight Final Volume
Run #1 2.03 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.28	ug/kg	
DEDEI IIOI	ROALKYLSULFONIC ACIDS	2				
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.28	na/ka	
375-75-3 355-46-4	Perfluorobexanesulfonic acid	ND ND	0.55	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND ND	0.55	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	0.86	0.55	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.28	ug/kg ug/kg	
333-77-3	r emigorouecanesumonic acid	ND	0.33	0.20	ug/ kg	
PERFLUOI	ROOCTANESULFONAMIDE	\mathbf{S}				
754-91-6	PFOSA	ND	0.55	0.28	ug/kg	
DEDEL LIO		A CEPTO A	CID C			
	ROOCTANESULFONAMIDO			0.55	.д.	
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
					0 0	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-14-7.5-9.5 Lab Sample ID: JD35939-2A

Lab Sample ID:JD35939-2ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.0

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	108%		40-140%
	13C5-PFPeA	111%		50-150 %
	13C5-PFHxA	112%		50-150 %
	13C4-PFHpA	113%		50-150 %
	13C8-PFOA	111%		50-150 %
	13C9-PFNA	115%		50-150 %
	13C6-PFDA	117%		50-150 %
	13C7-PFUnDA	123%		40-140%
	13C2-PFDoDA	117%		40-140%
	13C2-PFTeDA	112%		30-130 %
	13C3-PFBS	111%		50-150 %
	13C3-PFHxS	112%		50-150 %
	13C8-PFOS	109%		50-150 %
	13C8-FOSA	122%		30-130%
	d3-MeFOSAA	121%		40-140%
	d5-EtFOSAA	117%		40-140%
	13C2-6:2FTS	107%		50-150 %
	13C2-8:2FTS	108%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 5.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	6.9	11	4.6	ug/kg	J
71-43-2	Benzene	ND	0.56	0.51	ug/kg	
74-97-5	Bromochloromethane	ND	5.6	0.63	ug/kg	
75-27-4	Bromodichloromethane	ND	2.2	0.48	ug/kg	
75-25-2	Bromoform	ND	5.6	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.6	0.86	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.7	ug/kg	
75-15-0	Carbon disulfide	ND	2.2	0.60	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.2	0.69	ug/kg	
108-90-7	Chlorobenzene	ND	2.2	0.51	ug/kg	
75-00-3	Chloroethane	ND	5.6	0.66	ug/kg	
67-66-3	Chloroform	ND	2.2	0.58	ug/kg	
74-87-3	Chloromethane	ND	5.6	2.2	ug/kg	
110-82-7	Cyclohexane	ND	2.2	0.74	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.2	0.78	ug/kg	
124-48-1	Dibromochloromethane	ND	2.2	0.63	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.47	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.61	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.56	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.55	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.6	0.81	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.55	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.53	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.1	0.73	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.94	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.68	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.2	0.53	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.2	0.53	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.2	0.51	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.51	ug/kg	
76-13-1	Freon 113	ND	5.6	3.0	ug/kg	
591-78-6	2-Hexanone	ND	5.6	2.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.2	1.6	ug/kg		
79-20-9	Methyl Acetate	ND	5.6	1.6	ug/kg		
108-87-2	Methylcyclohexane	ND	2.2	0.98	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1	0.53	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.6	2.5	ug/kg		
75-09-2	Methylene chloride	ND	5.6	2.9	ug/kg		
100-42-5	Styrene	ND	2.2	0.45	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.2	0.67	ug/kg		
127-18-4	Tetrachloroethene	ND	2.2	0.65	ug/kg		
108-88-3	Toluene	ND	1.1	0.59	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.6	2.8	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.6	2.8	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.2	0.54	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.2	0.62	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.85	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.6	0.77	ug/kg		
75-01-4	Vinyl chloride	ND	2.2	0.54	ug/kg		
	m,p-Xylene	ND	1.1	1.0	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.51	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.51	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	106%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	105%		75-13	31%		
2037-26-5	Toluene-D8	90%		81-1	21%		
460-00-4	4-Bromofluorobenzene	99%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3E115503.D 1 12/05/21 12:07 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 31.0 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	360	96	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	36	12	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	68.5	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	48.1	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	68.7	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	28.3	36	18	ug/kg	J
207-08-9	Benzo(k)fluoranthene	30.2	36	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	5.4	72	4.9	ug/kg	J
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	5.4	72	5.2	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

Lab Sample ID: JD35939-3 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.3

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	72	14	ug/kg	
218-01-9	Chrysene	72.8	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	10.2	72	8.5	ug/kg	J
206-44-0	Fluoranthene	176	36	16	ug/kg	
86-73-7	Fluorene	ND	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.1	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	27.8	36	17	ug/kg	J
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	8.3	36	8.2	ug/kg	J
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	30.7	36	10	ug/kg	J
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	98.8	36	12	ug/kg	
129-00-0	Pyrene	156	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol **30**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	30% 47% 34% 36% 33%		10-105% 10-135% 10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
57-10-3 301-02-0	System artifact System artifact/aldol-condensation n-Hexadecanoic acid 9-Octadecenamide, (Z)- Total TIC, Semi-Volatile		2.74 2.81 10.18 12.59	200 1600 150 460 610	ug/kg ug/kg ug/kg ug/kg ug/kg	J JN JN

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-15-7.5-9.5

Initial Weight

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105230.D 1 12/17/21 15:16 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Run #1 31.0 g 1.0 ml Run #2

Final Volume

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 42%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 42%
 17-91%

 1718-51-0
 Terphenyl-d14
 39%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

4.5

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134413.D 1 12/06/21 01:18 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.5 3.5	7.7 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	126% ^a 43%			25% 25%	

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171723.D 1 12/04/21 01:07 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin	ND	0.74	0.61	ug/kg		
319-84-6	alpha-BHC	ND	0.74	0.60	ug/kg		
319-85-7	beta-BHC	ND	0.74	0.67	ug/kg		
319-86-8	delta-BHC	ND	0.74	0.71	ug/kg		
58-89-9	gamma-BHC (Lindane)	ND	0.74	0.54	ug/kg		
5103-71-9	alpha-Chlordane	ND	0.74	0.59	ug/kg		
5103-74-2	gamma-Chlordane	ND	0.74	0.33	ug/kg		
60-57-1	Dieldrin	ND	0.74	0.51	ug/kg		
72-54-8	4,4'-DDD	ND	0.74	0.68	ug/kg		
72-55-9	4,4'-DDE	ND	0.74	0.65	ug/kg		
50-29-3	4,4'-DDT	ND	0.74	0.65	ug/kg		
72-20-8	Endrin	ND	0.74	0.57	ug/kg		
1031-07-8	Endosulfan sulfate	ND	0.74	0.58	ug/kg		
7421-93-4	Endrin aldehyde	ND	0.74	0.42	ug/kg		
959-98-8	Endosulfan-I	ND	0.74	0.42	ug/kg		
33213-65-9	Endosulfan-II	ND	0.74	0.46	ug/kg		
76-44-8	Heptachlor	ND	0.74	0.64	ug/kg		
1024-57-3	Heptachlor epoxide	ND	0.74	0.52	ug/kg		
72-43-5	Methoxychlor	ND	1.5	0.59	ug/kg		
53494-70-5	Endrin ketone	ND	0.74	0.53	ug/kg		
8001-35-2	Toxaphene	ND	18	17	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	99%		27-1	38%		
877-09-8	Tetrachloro-m-xylene	95%		27-1	38%		
2051-24-3	Decachlorobiphenyl	101%		10-1	79%		
2051-24-3	Decachlorobiphenyl	99%		10-179%			

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-15-7.5-9.5

 Lab Sample ID:
 JD35939-3
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475260.D 1 12/06/21 19:01 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.2 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND ND ND	37 37 37 37 37 37 37	17 23 24 15 33 20 16	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5 CAS No.	Aroclor 1262 Surrogate Recoveries	ND Run# 1	37 Run# 2	24 Lim		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	93% 89% 91% 88%		24-1 10-1	52% 52% 72% 72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-15-7.5-9.5

Lab Sample ID: JD35939-3 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3340	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	4.9	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	60.2	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.31	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	948	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	10.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	7.9	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	58.9	2.9	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	14900	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	160	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	989	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	246	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.61	0.033	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	17.2	4.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.63	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	16.0	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	82.9	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30119 (4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-15-7.5-9.5

Lab Sample ID: JD35939-3 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.3

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	0.48 89.3	0.25	mg/kg %	1 1	12/09/21 00:46 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

JD35939

Client Sample ID: TT-SB-15-7.5-9.5

Lab Sample ID: JD35939-3A **Date Sampled:** 11/29/21 SO - Soil Matrix: Date Received: 11/30/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.3

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch Analyzed** By **Prep Date Prep Batch** F:S3Q713 Run #1 a 3Q51027.D 1 12/22/21 05:42 AFL 12/15/21 08:30 F:OP88850

Run #2

Final Volume Initial Weight Run #1 2.07 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.54	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.54	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.54	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	1.7	0.54	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.54	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.54	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.54	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.54	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.54	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.54	0.27	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.54	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.54	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.54	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.54	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.54	0.27	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.54	0.27	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.54	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.54	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-15-7.5-9.5 Lab Sample ID: JD35939-3A

Lab Sample ID:JD35939-3ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	106%		40-140%
	13C5-PFPeA	108%		50-150 %
	13C5-PFHxA	109%		50-150 %
	13C4-PFHpA	111%		50-150 %
	13C8-PFOA	111%		50-150 %
	13C9-PFNA	114%		50-150 %
	13C6-PFDA	115%		50-150 %
	13C7-PFUnDA	118%		40-140%
	13C2-PFDoDA	112%		40-140%
	13C2-PFTeDA	110%		30-130 %
	13C3-PFBS	108%		50-150 %
	13C3-PFHxS	113%		50-150 %
	13C8-PFOS	110%		50-150 %
	13C8-FOSA	113%		30-130%
	d3-MeFOSAA	111%		40-140%
	d5-EtFOSAA	107%		40-140%
	13C2-6:2FTS	105%		50-150 %
	13C2-8:2FTS	107%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	8.4	3.5	ug/kg	
71-43-2	Benzene	ND	0.42	0.38	ug/kg	
74-97-5	Bromochloromethane	ND	4.2	0.47	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.36	ug/kg	
75-25-2	Bromoform	ND	4.2	1.1	ug/kg	
74-83-9	Bromomethane	ND	4.2	0.64	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.4	2.0	ug/kg	
75-15-0	Carbon disulfide	ND	1.7	0.45	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.7	0.52	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.39	ug/kg	
75-00-3	Chloroethane	ND	4.2	0.50	ug/kg	
67-66-3	Chloroform	ND	1.7	0.44	ug/kg	
74-87-3	Chloromethane	ND	4.2	1.6	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.55	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.58	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.47	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.84	0.35	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.84	0.46	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.84	0.42	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.84	0.42	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.2	0.61	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.84	0.42	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.84	0.40	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.84	0.55	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.84	0.71	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.84	0.51	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.40	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.40	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.38	ug/kg	
100-41-4	Ethylbenzene	ND	0.84	0.38	ug/kg	
76-13-1	Freon 113	ND	4.2	2.2	ug/kg	
591-78-6	2-Hexanone	ND	4.2	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg		
79-20-9	Methyl Acetate	ND	4.2	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.74	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.84	0.39	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.2	1.9	ug/kg		
75-09-2	Methylene chloride	ND	4.2	2.2	ug/kg		
100-42-5	Styrene	ND	1.7	0.34	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.50	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.49	ug/kg		
108-88-3	Toluene	ND	0.84	0.44	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.2	2.1	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.2	2.1	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.41	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.47	ug/kg		
79-01-6	Trichloroethene	ND	0.84	0.64	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.2	0.58	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.40	ug/kg		
	m,p-Xylene	ND	0.84	0.75	ug/kg		
95-47-6	o-Xylene	ND	0.84	0.39	ug/kg		
1330-20-7	Xylene (total)	ND	0.84	0.39	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	105%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	105%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115504.D 1 12/05/21 12:32 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 31.4 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	38	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	360	96	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	ND	36	12	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.7	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	ND	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	ND	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	4.9	ug/kg	
100-52-7	Benzaldehyde	ND	180	8.9	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.5	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	72	5.2	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.7

D t d D lA LOO OOL CL d D LL N

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	72	14	ug/kg	
218-01-9	Chrysene	ND	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	8.9	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.6	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	72	8.4	ug/kg	
206-44-0	Fluoranthene	ND	36	16	ug/kg	
86-73-7	Fluorene	ND	36	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.1	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	36	17	ug/kg	
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.1	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.3	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	ND	36	12	ug/kg	
129-00-0	Pyrene	ND	36	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.1	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
267 19 4	9 Fluorophonol	250/		10.1	00 0/	

367-12-4 2-Fluorophenol 35% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	36% 54% 41% 42%		10-105% 10-135% 10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compo	-22	R.T.	Est. Conc.	Units	Q
301-02-0	System artifact/aldol-condensation		2.74 2.81 12.59	200 210 400 400	ug/kg ug/kg ug/kg ug/kg	J JN

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-16-7.5-9.5

Initial Weight

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105231.D 1 12/17/21 15:36 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Run #1 31.4 g 1.0 ml Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 50%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 47%
 17-91%

 1718-51-0
 Terphenyl-d14
 54%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3G134416.D 1 12/06/21 02:41 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Initial Weight Final Volume Run #1 15.8 g 5.0 ml Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.6 3.6	8.0 2.0 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	26% 33%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1G171724.D 1 12/04/21 01:25 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 16.6 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.68	0.56	ug/kg	
319-84-6	alpha-BHC	ND	0.68	0.55	ug/kg	
319-85-7	beta-BHC	ND	0.68	0.61	ug/kg	
319-86-8	delta-BHC	ND	0.68	0.65	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.68	0.50	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.68	0.55	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.68	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.68	0.47	ug/kg	
72-54-8	4,4'-DDD	ND	0.68	0.62	ug/kg	
72-55-9	4,4'-DDE	ND	0.68	0.60	ug/kg	
50-29-3	4,4'-DDT	ND	0.68	0.60	ug/kg	
72-20-8	Endrin	ND	0.68	0.53	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.68	0.53	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.68	0.39	ug/kg	
959-98-8	Endosulfan-I	ND	0.68	0.39	ug/kg	
33213-65-9	Endosulfan-II	ND	0.68	0.42	ug/kg	
76-44-8	Heptachlor	ND	0.68	0.59	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.68	0.48	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.54	ug/kg	
53494-70-5	Endrin ketone	ND	0.68	0.49	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	96%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	99%		27-1	38 %	
2051-24-3	Decachlorobiphenyl	81%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	89 %		10-1	79 %	

 $ND = Not detected \qquad MDL = N$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-16-7.5-9.5

 Lab Sample ID:
 JD35939-4
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	XX2475261.D	1	12/06/21 19:19	TL	12/02/21 12:00	OP36908	GXX7676
Dun #9							

Run #2

D //1	Initial Weight	
Run #1 Run #2	16.6 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	(
12674-11-2	Aroclor 1016	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	30	ug/kg	
11097-69-1	Aroclor 1254	ND	34	18	ug/kg	
11096-82-5	Aroclor 1260	ND	34	14	ug/kg	
11100-14-4	Aroclor 1268	ND	34	14	ug/kg	
37324-23-5	Aroclor 1262	ND	34	22	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	uits	
877-09-8	Tetrachloro-m-xylene	103%		24-1	152%	
877-09-8	Tetrachloro-m-xylene	101%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	109%		10-1	1 72 %	
2051-24-3	Decachlorobiphenyl	102%		10-1	1 72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-16-7.5-9.5

Lab Sample ID: JD35939-4 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6240	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.4	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	33.7	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.51	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.57	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1340	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	14.9	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.6	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	11.7	2.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	11200	57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	8.7	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2470	570	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	167	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	< 0.037	0.037	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	23.0	4.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.57	0.57	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	21.2	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	32.2	5.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30120 (4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-16-7.5-9.5

Lab Sample ID: JD35939-4 Date Sampled: 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

RL = Reporting Limit

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.32 88.7	0.32	mg/kg %	1 1	12/09/21 00:47 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Client Sample ID: TT-SB-16-7.5-9.5

Lab Sample ID:JD35939-4ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51073.D 1 12/23/21 01:12 AFL 12/15/21 08:30 F:OP88850 F:S3Q714

Run #2

Initial Weight Final Volume Run #1 1.94 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q		
PERFLUOROALKYLCARBOXYLIC ACIDS								
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg			
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg			
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg			
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg			
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg			
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg			
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg			
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg			
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg			
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg			
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg			
PERFLUOROALKYLSULFONIC ACIDS								
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg			
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg			
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg			
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg			
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg			
PERFLUOI	ROOCTANESULFONAMIDE	S						
754-91-6	PFOSA	ND	0.58	0.29	ug/kg			
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS					
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg			
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg			
FLUOROT	ELOMER SULFONATES							
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg			
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.8

Client Sample ID: TT-SB-16-7.5-9.5

Lab Sample ID:JD35939-4ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	103%		40-140%
	13C5-PFPeA	103%		50-150 %
	13C5-PFHxA	103%		50-150 %
	13C4-PFHpA	103%		50-150 %
	13C8-PFOA	105%		50-150 %
	13C9-PFNA	105%		50-150 %
	13C6-PFDA	106%		50-150 %
	13C7-PFUnDA	104%		40-140%
	13C2-PFDoDA	106%		40-140%
	13C2-PFTeDA	103%		30-130 %
	13C3-PFBS	103%		50-150 %
	13C3-PFHxS	104%		50-150 %
	13C8-PFOS	104%		50-150 %
	13C8-FOSA	107%		30-130%
	d3-MeFOSAA	98%		40-140%
	d5-EtFOSAA	97%		40-140%
	13C2-6:2FTS	99%		50-150 %
	13C2-8:2FTS	101%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.6 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	8.4	3.5	ug/kg	
71-43-2	Benzene	ND	0.42	0.38	ug/kg	
74-97-5	Bromochloromethane	ND	4.2	0.47	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.36	ug/kg	
75-25-2	Bromoform	ND	4.2	1.1	ug/kg	
74-83-9	Bromomethane	ND	4.2	0.64	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.4	2.0	ug/kg	
75-15-0	Carbon disulfide	ND	1.7	0.45	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.7	0.52	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.39	ug/kg	
75-00-3	Chloroethane	ND	4.2	0.50	ug/kg	
67-66-3	Chloroform	ND	1.7	0.44	ug/kg	
74-87-3	Chloromethane	ND	4.2	1.6	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.55	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.58	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.47	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.84	0.35	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.84	0.46	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.84	0.42	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.84	0.41	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.2	0.61	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.84	0.42	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.84	0.39	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.84	0.55	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.84	0.70	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.84	0.51	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.40	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.40	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.38	ug/kg	
100-41-4	Ethylbenzene	ND	0.84	0.38	ug/kg	
76-13-1	Freon 113	ND	4.2	2.2	ug/kg	
591-78-6	2-Hexanone	ND	4.2	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg	{	
79-20-9	Methyl Acetate	ND	4.2	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.73	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.84	0.39	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.2	1.9	ug/kg		
75-09-2	Methylene chloride	ND	4.2	2.2	ug/kg		
100-42-5	Styrene	ND	1.7	0.34	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.50	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.49	ug/kg		
108-88-3	Toluene	ND	0.84	0.44	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.2	2.1	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.2	2.1	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.41	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.46	ug/kg		
79-01-6	Trichloroethene	ND	0.84	0.64	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.2	0.57	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.40	ug/kg		
	m,p-Xylene	ND	0.84	0.75	ug/kg		
95-47-6	o-Xylene	ND	0.84	0.38	ug/kg		
1330-20-7	Xylene (total)	ND	0.84	0.38	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	107%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	105%		75-1	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115505.D 1 12/05/21 12:57 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.9 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	38	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	29	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	360	96	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	ND	36	12	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.7	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	38.7	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	29.4	36	16	ug/kg	J
205-99-2	Benzo(b)fluoranthene	36.2	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	21.3	36	18	ug/kg	J
207-08-9	Benzo(k)fluoranthene	17.6	36	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.7	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	4.9	ug/kg	
100-52-7	Benzaldehyde	ND	180	8.9	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.5	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	72	5.2	ug/kg	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: TT-SB-17-7.0-9.0

Lab Sample ID: JD35939-5 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 **Percent Solids:** 90.3

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	72	14	ug/kg	
218-01-9	Chrysene	36.4	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.8	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	8.9	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.6	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	19.3	72	8.4	ug/kg	J
206-44-0	Fluoranthene	67.0	36	16	ug/kg	
86-73-7	Fluorene	ND	36	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.1	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	22.5	36	17	ug/kg	J
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.1	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.3	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	41.8	36	12	ug/kg	
129-00-0	Pyrene	65.4	36	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.1	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
007 10 4	0 El	4.407		10.1	000/	

367-12-4 2-Fluorophenol 44% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6	Phenol-d5 2,4,6-Tribromophenol	46 % 66 %		10-105% 10-135%		
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	50% 52% 62%		10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
301-02-0	System artifact/aldol-condensation		2.74 2.81 12.59	220 290 350 350	ug/kg ug/kg ug/kg ug/kg	J JN

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled: 11/29/21

 Matrix:
 SO - Soil
 Date Received: 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105232.D 1 12/17/21 15:57 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Initial Weight Final Volume
Run #1 30.9 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 62%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 60%
 17-91%

 1718-51-0
 Terphenyl-d14
 73%
 17-105%

ND = Not detected

ted MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134421.D 1 12/06/21 04:59 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 15.9 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	40 % 47 %		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1G171725.D 1 12/04/21 01:44 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 16.9 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.66	0.54	ug/kg	
319-84-6	alpha-BHC	ND	0.66	0.53	ug/kg	
319-85-7	beta-BHC	ND	0.66	0.59	ug/kg	
319-86-8	delta-BHC	ND	0.66	0.63	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.66	0.48	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.66	0.53	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.66	0.30	ug/kg	
60-57-1	Dieldrin	ND	0.66	0.45	ug/kg	
72-54-8	4,4'-DDD	ND	0.66	0.60	ug/kg	
72-55-9	4,4'-DDE	ND	0.66	0.57	ug/kg	
50-29-3	4,4'-DDT	ND	0.66	0.58	ug/kg	
72-20-8	Endrin	ND	0.66	0.51	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.66	0.51	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.66	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	0.66	0.38	ug/kg	
33213-65-9	Endosulfan-II	ND	0.66	0.41	ug/kg	
76-44-8	Heptachlor	ND	0.66	0.56	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.66	0.46	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.52	ug/kg	
53494-70-5	Endrin ketone	ND	0.66	0.47	ug/kg	
8001-35-2	Toxaphene	ND	16	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	83%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	86%		27-1	38 %	
2051-24-3	Decachlorobiphenyl	67%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	75 %		79 %		

ND = Not detected MDL = Meth

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

 Lab Sample ID:
 JD35939-5
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475262.D 1 12/06/21 19:36 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume
Run #1 16.9 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268	ND ND ND ND ND ND ND ND ND ND ND	33 33 33 33 33 33 33 33	15 20 21 13 29 18 14	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5	Aroclor 1262	ND	33	21	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	82%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	80%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	66%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	83%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-17-7.0-9.0

Lab Sample ID: JD35939-5 Date Sampled: 11/29/21
Matrix: SO - Soil Date Received: 11/30/21
Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4620	55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.4	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	32.6	22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.44	0.22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1890	550	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	12.9	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	5.7	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	13.0	2.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	9690	55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	22.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2050	550	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	180	1.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	< 0.033	0.033	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	21.8	4.4	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.55	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	17.5	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	40.3	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520
(2) Instrument QC Batch: MA51546
(3) Prep QC Batch: MP30120
(4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-17-7.0-9.0

Lab Sample ID: JD35939-5 Date Sampled: 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	0.32 90.3	0.30	mg/kg %	1 1	12/09/21 00:49 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

4.9

Page 1 of 2

Client Sample ID: TT-SB-17-7.0-9.0

Lab Sample ID: JD35939-5A Date Sampled: 11/29/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51029.D 1 12/22/21 06:15 AFL 12/15/21 08:30 F:OP88850 F:S3Q713

Run #2

Initial Weight Final Volume
Run #1 2.09 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.40	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.26	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.53	0.26	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.26	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.53	0.26	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.53	0.26	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.53	0.26	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.26	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.53	0.26	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.26	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.26	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.26	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.26	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.26	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.26	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.53	0.26	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.26	ug/kg	
					0 0	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-17-7.0-9.0

Lab Sample ID:JD35939-5ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	116%		40-140%
	13C5-PFPeA	118%		50-150 %
	13C5-PFHxA	119%		50-150 %
	13C4-PFHpA	119%		50-150 %
	13C8-PFOA	120%		50-150 %
	13C9-PFNA	122%		50-150 %
	13C6-PFDA	124%		50-150 %
	13C7-PFUnDA	126%		40-140%
	13C2-PFDoDA	118%		40-140%
	13C2-PFTeDA	120%		30-130%
	13C3-PFBS	117%		50-150 %
	13C3-PFHxS	119%		50-150 %
	13C8-PFOS	116%		50-150 %
	13C8-FOSA	130%		30-130%
	d3-MeFOSAA	135%		40-140%
	d5-EtFOSAA	132%		40-140%
	13C2-6:2FTS	114%		50-150 %
	13C2-8:2FTS	115%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.1	9.3	3.9	ug/kg	J
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.71	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.3	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.61	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.93	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.93	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.93	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.93	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.93	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.93	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.93	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.93	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.93	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.93	0.42	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.82	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.93	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.4	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.54	ug/kg		
108-88-3	Toluene	ND	0.93	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.45	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.93	0.71	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.93	0.84	ug/kg		
95-47-6	o-Xylene	ND	0.93	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.93	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	107%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	108%		75-1	31%		
2037-26-5	Toluene-D8	87 %		81-1	21%		
460-00-4	4-Bromofluorobenzene	94%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile		0		ug/kg		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115506.D 1 12/05/21 13:23 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	40	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	370	99	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	37	13	ug/kg	
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone	ND	180	8.0	ug/kg	
120-12-7	Anthracene	ND	37	23	ug/kg	
1912-24-9	Atrazine	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	22.2	37	10	ug/kg	J
50-32-8	Benzo(a)pyrene	ND	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	18.5	37	16	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	ND	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	ND	74	5.1	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	74	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	74	15	ug/kg	
218-01-9	Chrysene	17.5	37	12	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	37	16	ug/kg	
132-64-9	Dibenzofuran	ND	74	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	74	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.9	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	74	8.7	ug/kg	
206-44-0	Fluoranthene	35.2	37	17	ug/kg	J
86-73-7	Fluorene	ND	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	74	9.4	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	ND	37	8.4	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.2	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.6	ug/kg	
91-20-3	Naphthalene	ND	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	14	ug/kg	
85-01-8	Phenanthrene	14.7	37	12	ug/kg	J
129-00-0	Pyrene	28.7	37	12	ug/kg	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	0 0	

367-12-4 2-Fluorophenol 35% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-18-7.0-9.0

Lab Sample ID: JD35939-6 **Date Sampled:** 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Method: SW846 8270E SW846 3546 Percent Solids: 89.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	36%		10-105%		
118-79-6	2,4,6-Tribromophenol	56 %		10-135%		
4165-60-0	Nitrobenzene-d5	41%		10-119%		
321-60-8	2-Fluorobiphenyl	42%		18-112 %		
1718-51-0	Terphenyl-d14	47%		18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	System artifact		2.74	230	ug/kg	J
	System artifact/aldol-condensa	ation	2.81	280	ug/kg	
301-02-0	9-Octadecenamide, (Z)-		12.59	430	ug/kg	
	Total TIC, Semi-Volatile			430	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105233.D 1 12/17/21 16:18 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 51%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 49%
 17-91%

 1718-51-0
 Terphenyl-d14
 57%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134422.D 1 12/06/21 05:26 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.5 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	36% 35%		10-1 10-1		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

 Client Sample ID:
 TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6

 Matrix:
 SO - Soil

 Date Sampled:
 11/29/21

 Date Received:
 11/30/21

Method: SW846 8081B SW846 3546 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171726.D 1 12/04/21 02:02 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.5 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL MDL Ur		Units	Q
309-00-2	Aldrin	ND	0.72	0.60	ug/kg	
319-84-6	alpha-BHC	ND	0.72	0.59	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.72	0.33	ug/kg	
60-57-1	Dieldrin	ND	0.72	0.50	ug/kg	
72-54-8	4,4'-DDD	ND	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	ND	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	ND	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.72	0.51	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.58	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	96%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	99%		27-13	38 %	
2051-24-3	Decachlorobiphenyl	91%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	91%	10-179%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-18-7.0-9.0

 Lab Sample ID:
 JD35939-6
 Date Sampled:
 11/29/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475267.D 1 12/06/21 21:04 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Run #1 Initial Weight Final Volume 15.5 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	111%		24-1	. 52 %	
877-09-8	Tetrachloro-m-xylene	106%		24-1	52%	
2051-24-3	Decachlorobiphenyl	119%		10-1	72%	
2051-24-3	Decachlorobiphenyl	103%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-18-7.0-9.0

Lab Sample ID: JD35939-6 Date Sampled: 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	7770	55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	7.7	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	34.3	22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.60	0.22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.55	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1960	550	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	16.6	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	7.4	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	19.1	2.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	17900	55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	33.9	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2610	550	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	181	1.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.081	0.028	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	16.8	4.4	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	1420	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	0.66	0.55	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	22.9	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	53.8	5.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520
(2) Instrument QC Batch: MA51546
(3) Prep QC Batch: MP30120
(4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-18-7.0-9.0

Lab Sample ID: JD35939-6 Date Sampled: 11/29/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	< 0.31	0.31	mg/kg	1	12/09/21 01:00) ЕВ	SW846 9012B/LACHAT
Solids, Percent	89.2		%	1	12/01/21 15:55	5 BG	SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-18-7.0-9.0

Lab Sample ID: JD35939-6A Date Sampled: 11/29/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1 a 3Q51030.D
 1
 12/22/21 06:31 AFL
 12/15/21 08:30 F:OP88850 F:S3Q713

Run #2

Initial Weight Final Volume
Run #1 2.00 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.43	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
00100 01 1	S. Z. I Idolotelomet Suntillate	.,,,		0.20	-6' -6	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-18-7.0-9.0 Lab Sample ID: JD35939-6A

Lab Sample ID:JD35939-6ADate Sampled:11/29/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	119%		40-140%
	13C5-PFPeA	122%		50-150 %
	13C5-PFHxA	122%		50-150 %
	13C4-PFHpA	124%		50-150 %
	13C8-PFOA	123%		50-150 %
	13C9-PFNA	125%		50-150 %
	13C6-PFDA	129%		50-150 %
	13C7-PFUnDA	133%		40-140%
	13C2-PFDoDA	121%		40-140%
	13C2-PFTeDA	122%		30-130%
	13C3-PFBS	120%		50-150 %
	13C3-PFHxS	121%		50-150 %
	13C8-PFOS	122%		50-150 %
	13C8-FOSA	126%		30-130%
	d3-MeFOSAA	135%		40-140%
	d5-EtFOSAA	134%		40-140%
	13C2-6:2FTS	117%		50-150 %
	13C2-8:2FTS	119%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240290.D 1 12/02/21 13:49 PS 12/01/21 09:00 n/a VI9769

Run #2

Initial Weight

Run #1 6.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	8.6	3.6	ug/kg	
71-43-2	Benzene	ND	0.43	0.39	ug/kg	
74-97-5	Bromochloromethane	ND	4.3	0.48	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.37	ug/kg	
75-25-2	Bromoform	ND	4.3	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.3	0.66	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.6	2.1	ug/kg	
75-15-0	Carbon disulfide	ND	1.7	0.46	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.7	0.53	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.40	ug/kg	
75-00-3	Chloroethane	ND	4.3	0.51	ug/kg	
67-66-3	Chloroform	ND	1.7	0.45	ug/kg	
74-87-3	Chloromethane	ND	4.3	1.7	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.57	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.60	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.48	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.86	0.36	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.86	0.47	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.86	0.43	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.86	0.43	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.3	0.63	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.86	0.43	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.86	0.41	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.86	0.56	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.86	0.72	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.86	0.53	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.41	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.41	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.39	ug/kg	
100-41-4	Ethylbenzene	ND	0.86	0.39	ug/kg	
76-13-1	Freon 113	ND	4.3	2.3	ug/kg	
591-78-6	2-Hexanone	ND	4.3	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg	į	
79-20-9	Methyl Acetate	ND	4.3	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.75	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.86	0.40	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.3	2.0	ug/kg		
75-09-2	Methylene chloride	ND	4.3	2.3	ug/kg		
100-42-5	Styrene	ND	1.7	0.35	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.52	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.50	ug/kg		
108-88-3	Toluene	ND	0.86	0.45	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.3	2.2	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.3	2.2	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.42	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.48	ug/kg		
79-01-6	Trichloroethene	ND	0.86	0.66	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.3	0.59	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.41	ug/kg		
	m,p-Xylene	ND	0.86	0.77	ug/kg		
95-47-6	o-Xylene	ND	0.86	0.39	ug/kg		
1330-20-7	Xylene (total)	ND	0.86	0.39	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	107%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	104%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-19-7.0-9.0

Lab Sample ID: JD35939-7 **Date Sampled:** 11/30/21 SO - Soil **Matrix:** Date Received: 11/30/21 Method: SW846 8270E SW846 3546 Percent Solids: 89.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** OP36903 E3E5278 Run #1 3E115509.D 1 12/05/21 14:40 KLS 12/03/21 12:30

Run #2

Initial Weight Final Volume Run #1 31.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	71	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	30	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	63	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	38	ug/kg	
95-48-7	2-Methylphenol	ND	71	23	ug/kg	
	3&4-Methylphenol	ND	71	29	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	360	95	ug/kg	
87-86-5	Pentachlorophenol	ND	140	33	ug/kg	
108-95-2	Phenol	ND	71	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	ND	36	12	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.7	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine	ND	71	15	ug/kg	
56-55-3	Benzo(a)anthracene	33.3	36	10	ug/kg	J
50-32-8	Benzo(a)pyrene	22.9	36	16	ug/kg	J
205-99-2	Benzo(b)fluoranthene	25.4	36	16	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	ND	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	71	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	71	8.7	ug/kg	
92-52-4	1,1'-Biphenyl	ND	71	4.9	ug/kg	
100-52-7	Benzaldehyde	ND	180	8.8	ug/kg	
91-58-7	2-Chloronaphthalene	ND	71	8.5	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	71	5.2	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-19-7.0-9.0

Report of Analysis

Page 2 of 3

Lab Sample ID: JD35939-7 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.2

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	71	14	ug/kg	
218-01-9	Chrysene	27.6	36	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	71	7.6	ug/kg	•
111-44-4	bis(2-Chloroethyl)ether	ND	71	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	71	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	71	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	71	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	71	14	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	71	5.8	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	71	8.9	ug/kg	
84-66-2	Diethyl phthalate	ND	71	7.6	ug/kg	
131-11-3	Dimethyl phthalate	ND	71	6.3	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	71	8.3	ug/kg	
206-44-0	Fluoranthene	46.8	36	16	ug/kg	
86-73-7	Fluorene	ND	36	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	71	9.0	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	36	17	ug/kg	
78-59-1	Isophorone	ND	71	7.6	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.0	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.4	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.9	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.2	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	71	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	71	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	31.1	36	12	ug/kg	J
129-00-0	Pyrene	46.1	36	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.0	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	0 0	

367-12-4 2-Fluorophenol 34% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	36%		10-105%		
118-79-6	2,4,6-Tribromophenol	54 %		10-135%		
4165-60-0	Nitrobenzene-d5	42%		10-119%		
321-60-8	2-Fluorobiphenyl	43%		18-112 %		
1718-51-0	Terphenyl-d14	46%		18-125%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		2.74	200	ug/kg	J
	System artifact/aldol-condens	ation	2.81	220	ug/kg	J
301-02-0	9-Octadecenamide, (Z)-		12.59	280	ug/kg	
	Total TIC, Semi-Volatile			280	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-19-7.0-9.0

Initial Weight

Lab Sample ID: JD35939-7 **Date Sampled:** 11/30/21 SO - Soil Matrix: Date Received: 11/30/21 Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105234.D 1 12/17/21 16:39 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Final Volume Run #1 31.5 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 10-107% **53**% 321-60-8 2-Fluorobiphenyl **50%** 17-91% Terphenyl-d14 1718-51-0 57% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134423.D 1 12/06/21 05:54 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.7 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	47% 45%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171727.D 1 12/04/21 02:20 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 16.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.68	0.56	ug/kg	
319-84-6	alpha-BHC	ND	0.68	0.56	ug/kg	
319-85-7	beta-BHC	ND	0.68	0.62	ug/kg	
319-86-8	delta-BHC	ND	0.68	0.66	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.68	0.50	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.68	0.55	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.68	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.68	0.47	ug/kg	
72-54-8	4,4'-DDD	ND	0.68	0.63	ug/kg	
72-55-9	4,4'-DDE	ND	0.68	0.60	ug/kg	
50-29-3	4,4'-DDT	ND	0.68	0.61	ug/kg	
72-20-8	Endrin	ND	0.68	0.53	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.68	0.53	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.68	0.39	ug/kg	
959-98-8	Endosulfan-I	ND	0.68	0.39	ug/kg	
33213-65-9	Endosulfan-II	ND	0.68	0.43	ug/kg	
76-44-8	Heptachlor	ND	0.68	0.59	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.68	0.48	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.54	ug/kg	
53494-70-5	Endrin ketone	ND	0.68	0.49	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		27-13	88%	
877-09-8	Tetrachloro-m-xylene	92%		27-13	88%	
2051-24-3	Decachlorobiphenyl	78 %		10-17	'9 %	
2051-24-3	Decachlorobiphenyl	84%		10-17	'9 %	

 $ND = Not detected \qquad MDL = M$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-19-7.0-9.0

 Lab Sample ID:
 JD35939-7
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475268.D 1 12/06/21 21:21 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Run #1 Initial Weight Final Volume 16.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	30	ug/kg	
11097-69-1	Aroclor 1254	ND	34	18	ug/kg	
11096-82-5	Aroclor 1260	ND	34	15	ug/kg	
11100-14-4	Aroclor 1268	ND	34	14	ug/kg	
37324-23-5	Aroclor 1262	ND	34	22	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	94%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	91%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	101%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	88%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-19-7.0-9.0

Lab Sample ID: JD35939-7 Date Sampled: 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	Method	Prep Method
Aluminum	4200	56	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 NI	0	SW846 3050B ⁴
Arsenic	2.9	2.2	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Barium	< 22	22	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.33	0.22	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Calcium	632	560	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Chromium	8.2	1.1	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.6	5.6	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Copper	11.6	2.8	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Iron	9140	56	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Lead	20.4	2.2	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Magnesium	1290	560	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Manganese	141	1.7	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.64	0.036	mg/kg	1	12/02/21	12/02/21 SE	SW846 7471B ¹	SW846 7471B ³
Nickel	10.2	4.5	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.56	0.56	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Vanadium	13.9	5.6	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴
Zinc	27.8	5.6	mg/kg	1	12/04/21	12/05/21 NI	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520
(2) Instrument QC Batch: MA51546
(3) Prep QC Batch: MP30120
(4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-19-7.0-9.0

Lab Sample ID: JD35939-7 Date Sampled: 11/30/21
Matrix: SO - Soil Date Received: 11/30/21
Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.28 89.2	0.28	mg/kg %	1 1	12/09/21 01:01 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Report of Analysis

Client Sample ID: TT-SB-19-7.0-9.0

Lab Sample ID: JD35939-7A Date Sampled: 11/30/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a 3Q51031.D 1 12/22/21 06:48 AFL 12/15/21 08:30 F:OP88850 F:S3Q713

Run #2

Initial Weight Final Volume
Run #1 2.04 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.27	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.27	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.27	ug/kg	
DEDEI IIOI	ROOCTANESULFONAMIDO	ACETIC AC	TIDE			
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg ug/kg	
£331-30-0	LUOJAA	ND	1.1	0.33	ug/ ng	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
					0 0	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Date Sampled: 11/30/21

Date Received: 11/30/21

Percent Solids: 89.2

Report of Analysis

Client Sample ID: TT-SB-19-7.0-9.0 Lab Sample ID: JD35939-7A

Matrix: SO - Soil
Method: EPA 537M BY ID IN HOUSE

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	112%		40-140%
	13C5-PFPeA	116%		50-150 %
	13C5-PFHxA	115%		50-150 %
	13C4-PFHpA	117%		50-150 %
	13C8-PFOA	117%		50-150 %
	13C9-PFNA	118%		50-150 %
	13C6-PFDA	123%		50-150 %
	13C7-PFUnDA	125%		40-140%
	13C2-PFDoDA	115%		40-140%
	13C2-PFTeDA	116%		30-130 %
	13C3-PFBS	116%		50-150 %
	13C3-PFHxS	117%		50-150 %
	13C8-PFOS	118%		50-150 %
	13C8-FOSA	114%		30-130%
	d3-MeFOSAA	92%		40-140%
	d5-EtFOSAA	97%		40-140%
	13C2-6:2FTS	108%		50-150 %
	13C2-8:2FTS	111%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.4	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.53	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.41	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.72	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.4	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.51	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.56	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.9	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.66	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.53	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.94	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.94	0.52	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.94	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.94	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.69	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.94	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.94	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.94	0.62	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.94	0.79	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.94	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.94	0.43	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.83	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.57	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.55	ug/kg		
108-88-3	Toluene	ND	0.94	0.50	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.94	0.72	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.65	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.94	0.85	ug/kg		
95-47-6	o-Xylene	ND	0.94	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.94	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	106%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	104%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

is Page 1 of 3

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115510.D 1 12/05/21 15:06 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol	ND	190	24	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	370	99	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	ND	37	13	ug/kg	
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone	ND	190	8.0	ug/kg	
120-12-7	Anthracene	ND	37	23	ug/kg	
1912-24-9	Atrazine	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	54.8	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	48.9	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	60.4	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	36.5	37	19	ug/kg	J
207-08-9	Benzo(k)fluoranthene	24.2	37	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	ND	74	5.1	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	190	13	ug/kg	
86-74-8	Carbazole	ND	74	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-20-6.5-8.5

Lab Sample ID: JD35939-8 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.2

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q	
105-60-2	Caprolactam ^a	ND	74	15	ug/kg		
218-01-9	Chrysene	53.4	37	12	ug/kg		
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg		
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg		
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg		
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg		
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg		
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg		
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg		
123-91-1	1,4-Dioxane	ND	37	24	ug/kg		
53-70-3	Dibenzo(a,h)anthracene	ND	37	16	ug/kg		
132-64-9	Dibenzofuran	ND	74	15	ug/kg		
84-74-2	Di-n-butyl phthalate	ND	74	6.0	ug/kg		
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg		
84-66-2	Diethyl phthalate	ND	74	7.9	ug/kg		
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg		
117-81-7	bis(2-Ethylhexyl)phthalate	ND	74	8.7	ug/kg		
206-44-0	Fluoranthene	110	37	17	ug/kg		
86-73-7	Fluorene	ND	37	17	ug/kg		
118-74-1	Hexachlorobenzene	ND	74	9.4	ug/kg		
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg		
77-47-4	Hexachlorocyclopentadiene a	ND	370	15	ug/kg		
67-72-1	Hexachloroethane	ND	190	18	ug/kg		
193-39-5	Indeno(1,2,3-cd)pyrene	39.4	37	17	ug/kg		
78-59-1	Isophorone	ND	74	7.9	ug/kg		
91-57-6	2-Methylnaphthalene	ND	37	8.4	ug/kg		
88-74-4	2-Nitroaniline	ND	190	8.7	ug/kg		
99-09-2	3-Nitroaniline	ND	190	9.3	ug/kg		
100-01-6	4-Nitroaniline	ND	190	9.6	ug/kg		
91-20-3	Naphthalene	ND	37	10	ug/kg		
98-95-3	Nitrobenzene	ND	74	14	ug/kg		
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg		
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg		
85-01-8	Phenanthrene	66.3	37	12	ug/kg		
129-00-0	Pyrene	91.4	37	12	ug/kg		
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.4	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
367-12-4	2-Fluorophenol	40%		10-1	10-109%		

367-12-4 2-Fluorophenol 10-109% **40**%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	42%		10-105%		
118-79-6	2,4,6-Tribromophenol	61%		10-135%		
4165-60-0	Nitrobenzene-d5	47%		10-119%		
321-60-8	2-Fluorobiphenyl	50 %		18-112%		
1718-51-0	Terphenyl-d14	53 %		18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		2.74	230	ug/kg	J
	System artifact/aldol-condensa	tion	2.81	260	ug/kg	
301-02-0	9-Octadecenamide, (Z)-		12.59	640	ug/kg	
	Total TIC, Semi-Volatile			640	ug/kg	J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-20-6.5-8.5

Lab Sample ID: JD35939-8 **Date Sampled:** 11/30/21 SO - Soil Matrix: Date Received: 11/30/21 Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105235.D 1 12/17/21 17:00 KLS 12/01/21 16:25 OP36903A E4M4890

Run #2

Final Volume Initial Weight Run #1 30.6 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **58**% 10-107% 321-60-8 2-Fluorobiphenyl **56**% 17-91% 1718-51-0 Terphenyl-d14 63% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134424.D 1 12/06/21 06:22 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.6 3.6	8.0 2.0 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	42 % 40 %		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1G171728.D 1 12/04/21 02:38 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.8 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.72	0.59	ug/kg	
319-84-6	alpha-BHC	ND	0.72	0.58	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.72	0.33	ug/kg	
60-57-1	Dieldrin	ND	0.72	0.49	ug/kg	
72-54-8	4,4'-DDD	ND	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	ND	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	ND	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.41	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.72	0.50	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.57	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
877-09-8	Tetrachloro-m-xylene	109%		27-13	88%	
877-09-8	Tetrachloro-m-xylene	112%		27-1 3	88 %	
2051-24-3	Decachlorobiphenyl	98%		10-17	79 %	
2051-24-3	Decachlorobiphenyl	109%	10-179%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-20-6.5-8.5

 Lab Sample ID:
 JD35939-8
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475269.D 1 12/06/21 21:39 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Run #1 Initial Weight Final Volume 15.8 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	103%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	100%		24-1	.52%	
2051-24-3	Decachlorobiphenyl	104%		10-1	72%	
2051-24-3	Decachlorobiphenyl	99%		72%		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Page 1 of 1

Client Sample ID: TT-SB-20-6.5-8.5

Lab Sample ID: JD35939-8 Date Sampled: 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3720	56	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	5.3	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	365	22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.35	0.22	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1400	560	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	12.3	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.6	5.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	61.1	2.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	11100	56	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	377	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	1760	560	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	167	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.24	0.029	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	17.9	4.5	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.2	2.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.56	0.56	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	15.4	5.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	323	5.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520
(2) Instrument QC Batch: MA51546
(3) Prep QC Batch: MP30120
(4) Prep QC Batch: MP30147

JD35939

Client Sample ID: TT-SB-20-6.5-8.5

Lab Sample ID: JD35939-8 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 88.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	0.60	0.32	mg/kg	1	12/09/21 01:02	EB	SW846 9012B/LACHAT
Solids. Percent	88.2		%	1	12/01/21 15:55	BG	SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-20-6.5-8.5 Lab Sample ID: JD35939-8A **Date Sampled:** 11/30/21 SO - Soil Matrix: Date Received: 11/30/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 88.2

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S3Q713 Run #1 a 3Q51032.D 1 12/22/21 07:04 AFL 12/15/21 08:30 F:OP88850

Run #2

Initial Weight Final Volume Run #1 1.96 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOF	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
DEDELI LIOL	ROALKYLSULFONIC ACIDS	2				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg ug/kg	
333-11-3	1 ciriuorouccanesurionic acid	ND	0.30	0.23	ug/ kg	
PERFLUOF	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
DEDELUAL	ROOCTANESULFONAMIDO	ACETIC AC	TIDE			
2355-31-9	MeFOSAA	ND	1.2	0.58	ng/kg	
2991-50-6	EtFOSAA	ND ND	1.2	0.58	ug/kg	
£331-3U-0	EU USAA	ND	1.2	0.30	ug/kg	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
					~ ~	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-20-6.5-8.5

Lab Sample ID: JD35939-8A Date Sampled: 11/30/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 88.2

Method: EPA 537M BY ID IN HOUSE
Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	109%		40-140%
	13C5-PFPeA	112%		50-150 %
	13C5-PFHxA	113%		50-150 %
	13C4-PFHpA	114%		50-150 %
	13C8-PFOA	113%		50-150 %
	13C9-PFNA	113%		50-150 %
	13C6-PFDA	118%		50-150 %
	13C7-PFUnDA	121%		40-140%
	13C2-PFDoDA	111%		40-140%
	13C2-PFTeDA	114%		30-130%
	13C3-PFBS	110%		50-150 %
	13C3-PFHxS	113%		50-150 %
	13C8-PFOS	109%		50-150 %
	13C8-FOSA	121%		30-130%
	d3-MeFOSAA	132%		40-140%
	d5-EtFOSAA	128%		40-140%
	13C2-6:2FTS	109%		50-150 %
	13C2-8:2FTS	110%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	9.7	9.4	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.53	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.72	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.4	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.56	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.53	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.94	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.94	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.94	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.94	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.94	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.94	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.94	0.62	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.94	0.79	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.94	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.94	0.43	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.82	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.55	ug/kg		
108-88-3	Toluene	ND	0.94	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.94	0.72	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.94	0.84	ug/kg		
95-47-6	o-Xylene	ND	0.94	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.94	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	106%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	106%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115511.D 1 12/05/21 15:31 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.9 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	76	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	67	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	76	24	ug/kg	
	3&4-Methylphenol	ND	76	31	ug/kg	
88-75-5	2-Nitrophenol	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	380	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	36	ug/kg	
108-95-2	Phenol	ND	76	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	ND	38	13	ug/kg	
208-96-8	Acenaphthylene	ND	38	19	ug/kg	
98-86-2	Acetophenone	ND	190	8.1	ug/kg	
120-12-7	Anthracene	ND	38	23	ug/kg	
1912-24-9	Atrazine	ND	76	16	ug/kg	
56-55-3	Benzo(a)anthracene	26.4	38	11	ug/kg	J
50-32-8	Benzo(a)pyrene	29.2	38	17	ug/kg	J
205-99-2	Benzo(b)fluoranthene	27.2	38	17	ug/kg	J
191-24-2	Benzo(g,h,i)perylene	20.3	38	19	ug/kg	J
207-08-9	Benzo(k)fluoranthene	ND	38	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	76	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	9.2	ug/kg	
92-52-4	1,1'-Biphenyl	ND	76	5.2	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.4	ug/kg	
91-58-7	2-Chloronaphthalene	ND	76	9.0	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	76	5.5	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-21-6.5-8.5

Lab Sample ID: JD35939-9 **Date Sampled:** 11/30/21 SO - Soil Matrix: Date Received: 11/30/21 Percent Solids: 85.6

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	76	15	ug/kg	
218-01-9	Chrysene	26.7	38	12	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	76	8.1	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	76	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	38	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	38	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	76	32	ug/kg	
123-91-1	1,4-Dioxane	ND	38	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	38	17	ug/kg	
132-64-9	Dibenzofuran	ND	76	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	6.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	9.4	ug/kg	
84-66-2	Diethyl phthalate	ND	76	8.1	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	6.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	8.8	ug/kg	
206-44-0	Fluoranthene	24.3	38	17	ug/kg	J
86-73-7	Fluorene	ND	38	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	76	9.6	ug/kg	
87-68-3	Hexachlorobutadiene	ND	38	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	380	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	20.6	38	18	ug/kg	J
78-59-1	Isophorone	ND	76	8.1	ug/kg	
91-57-6	2-Methylnaphthalene	ND	38	8.5	ug/kg	
88-74-4	2-Nitroaniline	ND	190	8.9	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.5	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.8	ug/kg	
91-20-3	Naphthalene	ND	38	11	ug/kg	
98-95-3	Nitrobenzene	ND	76	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	23.1	38	13	ug/kg	J
129-00-0	Pyrene	25.1	38	12	ug/kg	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

CAS No. **Surrogate Recoveries** Run# 1 **Run# 2** Limits

367-12-4 2-Fluorophenol **33**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	34% 56% 39% 38%		10-105% 10-135% 10-119% 18-112%		
1718-51-0	Terphenyl-d14	43%		18-125%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
301-02-0	System artifact System artifact/aldol-condensa 9-Octadecenamide, (Z)- Total TIC, Semi-Volatile	ition	2.74 2.81 12.59	190 280 360 360	ug/kg ug/kg ug/kg ug/kg	J JN

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

Initial Weight

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105236.D 1 12/17/21 17:20 KLS 12/03/21 12:30 OP36903A E4M4890

Run #2

Run #1 30.9 g 1.0 ml Run #2

Final Volume

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.8 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 48%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 46%
 17-91%

 1718-51-0
 Terphenyl-d14
 53%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134425.D 1 12/06/21 06:49 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	19 3.8 3.8	8.5 2.2 1.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	1189% ^a 31%		10-12 10-12		

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 1G171903.D 1 12/09/21 04:33 CP 12/02/21 12:00 OP36907 G1G5930

Run #2

Initial Weight Final Volume Run #1 15.2 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.77	0.63	ug/kg	
319-84-6	alpha-BHC	ND	0.77	0.62	ug/kg	
319-85-7	beta-BHC	ND	0.77	0.69	ug/kg	
319-86-8	delta-BHC	ND	0.77	0.74	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.77	0.57	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.77	0.62	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.77	0.35	ug/kg	
60-57-1	Dieldrin	ND	0.77	0.53	ug/kg	
72-54-8	4,4'-DDD	ND	0.77	0.71	ug/kg	
72-55-9	4,4'-DDE	ND	0.77	0.67	ug/kg	
50-29-3	4,4'-DDT	ND	0.77	0.68	ug/kg	
72-20-8	Endrin	ND	0.77	0.60	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.77	0.60	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.77	0.44	ug/kg	
959-98-8	Endosulfan-I	ND	0.77	0.44	ug/kg	
33213-65-9	Endosulfan-II	ND	0.77	0.48	ug/kg	
76-44-8	Heptachlor	ND	0.77	0.66	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.77	0.54	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.61	ug/kg	
53494-70-5	Endrin ketone	ND	0.77	0.56	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	94%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	93%		27-1	38%	
2051-24-3	Decachlorobiphenyl	69%		10-1	79 %	
2051-24-3	Decachlorobiphenyl	77%	10-179%			

(a) Had TBA cleanup.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

 Lab Sample ID:
 JD35939-9
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475270.D 1 12/06/21 21:56 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.2 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 11100-14-4	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1268 Aroclor 1268	ND ND ND ND ND ND ND ND ND ND ND ND	38 38 38 38 38 38 38 38	18 24 25 16 34 21 16 16	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
37324-23-5 CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Aroclor 1262 Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	ND Run# 1 91% 90% 92% 84%	38 Run# 2	25 Limit 24-15 24-15 10-17 10-17	52% 52% 72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

Lab Sample ID: JD35939-9 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	9700	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	4.4	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	35.9	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.58	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	1100	580	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	14.4	1.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.6	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	12.8	2.9	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	16100	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	16.4	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2300	580	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	273	1.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.067	0.029	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	13.8	4.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	21.2	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	35.8	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30120 (4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-21-6.5-8.5

Lab Sample ID: JD35939-9 Date Sampled: 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.28 85.6	0.28	mg/kg %	1 1	12/09/21 01:05 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-21-6.5-8.5

Lab Sample ID: JD35939-9A Date Sampled: 11/30/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51033.D 1 12/22/21 07:21 AFL 12/15/21 08:30 F:OP88850 F:S3Q713

Run #2

Initial Weight Final Volume
Run #1 2.02 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	8				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg	
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
					0 0	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-21-6.5-8.5

Page 2 of 2

Report of Analysis

Lab Sample ID:JD35939-9ADate Sampled:11/30/21Matrix:SO - SoilDate Received:11/30/21Method:EPA 537M BY ID IN HOUSEPercent Solids:85.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	114%		40-140%
	13C5-PFPeA	117%		50-150 %
	13C5-PFHxA	116%		50-150 %
	13C4-PFHpA	116%		50-150 %
	13C8-PFOA	117%		50-150 %
	13C9-PFNA	117%		50-150 %
	13C6-PFDA	122%		50-150 %
	13C7-PFUnDA	126%		40-140%
	13C2-PFDoDA	116%		40-140%
	13C2-PFTeDA	115%		30-130%
	13C3-PFBS	117%		50-150 %
	13C3-PFHxS	117%		50-150 %
	13C8-PFOS	113%		50-150 %
	13C8-FOSA	118%		30-130%
	d3-MeFOSAA	108%		40-140%
	d5-EtFOSAA	107%		40-140%
	13C2-6:2FTS	109%		50-150 %
	13C2-8:2FTS	111%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.6 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	5.1	8.9	3.7	ug/kg	J
71-43-2	Benzene	ND	0.45	0.41	ug/kg	
74-97-5	Bromochloromethane	ND	4.5	0.50	ug/kg	
75-27-4	Bromodichloromethane	ND	1.8	0.38	ug/kg	
75-25-2	Bromoform	ND	4.5	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.5	0.68	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.9	2.2	ug/kg	
75-15-0	Carbon disulfide	ND	1.8	0.48	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.8	0.55	ug/kg	
108-90-7	Chlorobenzene	ND	1.8	0.41	ug/kg	
75-00-3	Chloroethane	ND	4.5	0.53	ug/kg	
67-66-3	Chloroform	ND	1.8	0.46	ug/kg	
74-87-3	Chloromethane	ND	4.5	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.8	0.59	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.8	0.62	ug/kg	
124-48-1	Dibromochloromethane	ND	1.8	0.50	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.89	0.38	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.89	0.49	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.89	0.44	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.89	0.44	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.5	0.65	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.89	0.44	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.89	0.42	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.89	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.89	0.75	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.89	0.55	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.8	0.42	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.8	0.42	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.8	0.41	ug/kg	
100-41-4	Ethylbenzene	ND	0.89	0.40	ug/kg	
76-13-1	Freon 113	ND	4.5	2.4	ug/kg	
591-78-6	2-Hexanone	ND	4.5	1.9	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 2

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.8	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.5	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.8	0.78	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.89	0.42	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.5	2.0	ug/kg		
75-09-2	Methylene chloride	ND	4.5	2.3	ug/kg		
100-42-5	Styrene	ND	1.8	0.36	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.8	0.54	ug/kg		
127-18-4	Tetrachloroethene	ND	1.8	0.52	ug/kg		
108-88-3	Toluene	ND	0.89	0.47	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	2.2	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	2.2	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.8	0.43	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.8	0.49	ug/kg		
79-01-6	Trichloroethene	ND	0.89	0.68	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.5	0.61	ug/kg		
75-01-4	Vinyl chloride	ND	1.8	0.43	ug/kg		
	m,p-Xylene	ND	0.89	0.80	ug/kg		
95-47-6	o-Xylene	ND	0.89	0.41	ug/kg		
1330-20-7	Xylene (total)	ND	0.89	0.41	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	107%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	106%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115512.D 1 12/05/21 15:57 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	78	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	24	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	33	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	69	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	150	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	42	ug/kg	
95-48-7	2-Methylphenol	ND	78	25	ug/kg	
	3&4-Methylphenol	ND	78	32	ug/kg	
88-75-5	2-Nitrophenol	ND	190	26	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	390	100	ug/kg	
87-86-5	Pentachlorophenol	ND	160	37	ug/kg	
108-95-2	Phenol	ND	78	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	26	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	29	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	ND	39	13	ug/kg	
208-96-8	Acenaphthylene	ND	39	20	ug/kg	
98-86-2	Acetophenone	ND	190	8.4	ug/kg	
120-12-7	Anthracene	ND	39	24	ug/kg	
1912-24-9	Atrazine	ND	78	17	ug/kg	
56-55-3	Benzo(a)anthracene	ND	39	11	ug/kg	
50-32-8	Benzo(a)pyrene	ND	39	18	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	39	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	39	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	39	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	78	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	78	9.5	ug/kg	
92-52-4	1,1'-Biphenyl	ND	78	5.3	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.7	ug/kg	
91-58-7	2-Chloronaphthalene	ND	78	9.3	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	78	5.6	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-22-6.5-8.5

Lab Sample ID: JD35939-10 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21

Method: SW846 8270E SW846 3546 Percent Solids: 84.8

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	78	15	ug/kg	
218-01-9	Chrysene	ND	39	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	78	8.3	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	78	17	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	78	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	78	13	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	39	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	39	20	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	78	32	ug/kg	
123-91-1	1,4-Dioxane	ND	39	26	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	39	17	ug/kg	
132-64-9	Dibenzofuran	ND	78	16	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	78	6.3	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	78	9.7	ug/kg	
84-66-2	Diethyl phthalate	ND	78	8.3	ug/kg	
131-11-3	Dimethyl phthalate	ND	78	6.9	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	78	9.1	ug/kg	
206-44-0	Fluoranthene	ND	39	17	ug/kg	
86-73-7	Fluorene	ND	39	18	ug/kg	
118-74-1	Hexachlorobenzene	ND	78	9.8	ug/kg	
87-68-3	Hexachlorobutadiene	ND	39	16	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	390	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	39	18	ug/kg	
78-59-1	Isophorone	ND	78	8.3	ug/kg	
91-57-6	2-Methylnaphthalene	ND	39	8.8	ug/kg	
88-74-4	2-Nitroaniline	ND	190	9.2	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.7	ug/kg	
100-01-6	4-Nitroaniline	ND	190	10	ug/kg	
91-20-3	Naphthalene	ND	39	11	ug/kg	
98-95-3	Nitrobenzene	ND	78	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	78	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	ND	39	13	ug/kg	
129-00-0	Pyrene	ND	39	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	38%		10-1	.09%	

367-12-4 2-Fluorophenol 10-109% **38**%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	39 %		10-105%		
118-79-6	2,4,6-Tribromophenol	57 %		10-135%		
4165-60-0	Nitrobenzene-d5	44%		10-119%		
321-60-8	2-Fluorobiphenyl	46%		18-112%		
1718-51-0	Terphenyl-d14	50 %		18-125%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		2.74	240	ug/kg	J
	System artifact/aldol-condensa	2.81	390	ug/kg		
301-02-0	9-Octadecenamide, (Z)-		12.59	300	ug/kg	
	Total TIC, Semi-Volatile			300	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Initial Weight

Compound

Report of Analysis

Analysis Page 1 of 1

 Client Sample ID:
 TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4M105237.D 1 12/17/21 17:41 KLS 12/03/21 12:30 OP36903A E4M4890

RL

MDL

Units

Q

Run #2

CAS No.

Run #1 30.3 g 1.0 ml Run #2

Result

123-91-1 1,4-Dioxane ND 3.9 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 55%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 54%
 17-91%

 1718-51-0
 Terphenyl-d14
 61%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3G134426.D 1 12/06/21 07:17 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Initial Weight Final Volume Run #1 15.6 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	19 3.8 3.8	8.4 2.1 1.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	49 % 44 %		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171730.D 1 12/04/21 03:14 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.77	0.63	ug/kg	
319-84-6	alpha-BHC	ND	0.77	0.62	ug/kg	
319-85-7	beta-BHC	ND	0.77	0.69	ug/kg	
319-86-8	delta-BHC	ND	0.77	0.74	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.77	0.56	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.77	0.62	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.77	0.35	ug/kg	
60-57-1	Dieldrin	ND	0.77	0.53	ug/kg	
72-54-8	4,4'-DDD	ND	0.77	0.70	ug/kg	
72-55-9	4,4'-DDE	ND	0.77	0.67	ug/kg	
50-29-3	4,4'-DDT	ND	0.77	0.68	ug/kg	
72-20-8	Endrin	ND	0.77	0.59	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.77	0.60	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.77	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.77	0.44	ug/kg	
33213-65-9	Endosulfan-II	ND	0.77	0.48	ug/kg	
76-44-8	Heptachlor	ND	0.77	0.66	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.77	0.54	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.61	ug/kg	
53494-70-5	Endrin ketone	ND	0.77	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	101%		27-13	88%	
877-09-8	Tetrachloro-m-xylene	100%		27-13	88%	
2051-24-3	Decachlorobiphenyl	89%		10-17	'9 %	
2051-24-3	Decachlorobiphenyl	94%		10-17	'9 %	

ND = Not detected MD

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-22-6.5-8.5

 Lab Sample ID:
 JD35939-10
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475271.D 1 12/06/21 22:14 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	24	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	16	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	21	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	101%		24-1	. 52 %	
877-09-8	Tetrachloro-m-xylene	98%			.52%	
2051-24-3	Decachlorobiphenyl	103%			.7 2 %	
	2 0					
2051-24-3	Decachlorobiphenyl	94 %		10-1	.72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22-6.5-8.5

JD35939-10

SO - Soil

Page 1 of 1

Report of Analysis

Date Sampled: 11/30/21

Date Received: 11/30/21 Percent Solids: 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Lab Sample ID:

Matrix:

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6780	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	4.6	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	32.8	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.54	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	2650	580	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	12.7	1.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.3	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	13.0	2.9	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	13600	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	15.2	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2930	580	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	258	1.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.071	0.032	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	15.0	4.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	20.4	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	40.3	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30120 (4) Prep QC Batch: MP30147

JD35939

Page 1 of 1

Client Sample ID: TT-SB-22-6.5-8.5

Lab Sample ID: JD35939-10 Date Sampled: 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.24 84.8	0.24	mg/kg %	1 1	12/09/21 01:06 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Report of Analysis

Page 1 of 2

Client Sample ID: TT-SB-22-6.5-8.5 Lab Sample ID: JD35939-10A **Date Sampled:** 11/30/21 **Matrix:** SO - Soil Date Received: 11/30/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 84.8

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S3Q713 Run #1 a 3Q51034.D 1 12/22/21 07:38 AFL 12/15/21 08:30 F:OP88850

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS							
375-22-4	Perfluorobutanoic acid	ND	1.2	0.45	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.59	0.29	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.59	0.29	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.59	0.29	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.59	0.29	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.59	0.29	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.59	0.29	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.59	0.29	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.59	0.29	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.59	0.31	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.59	0.29	ug/kg				
PERFLUOI	PERFLUOROALKYLSULFONIC ACIDS								
375-73-5	Perfluorobutanesulfonic acid	ND	0.59	0.29	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.59	0.29	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.59	0.29	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.59	0.29	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.59	0.29	ug/kg				
PERFI IIOI	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.59	0.29	ug/kg				
701 01 0	1100/1	ND	0.00	0.20	ug/ Ng				
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS						
2355-31-9	MeFOSAA	ND	1.2	0.59	ug/kg				
2991-50-6	EtFOSAA	ND	1.2	0.59	ug/kg				
FLUOROT	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg				
					0 0				

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-22-6.5-8.5

Lab Sample ID: JD35939-10A Date Sampled: 11/30/21

Matrix: SO - Soil Date Received: 11/30/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 84.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	82%		40-140%
	13C5-PFPeA	85 %		50-150 %
	13C5-PFHxA	85 %		50-150 %
	13C4-PFHpA	87 %		50-150 %
	13C8-PFOA	85 %		50-150 %
	13C9-PFNA	85 %		50-150 %
	13C6-PFDA	88 %		50-150 %
	13C7-PFUnDA	91%		40-140%
	13C2-PFDoDA	84%		40-140%
	13C2-PFTeDA	86%		30-130%
	13C3-PFBS	83 %		50-150 %
	13C3-PFHxS	86%		50-150 %
	13C8-PFOS	84%		50-150 %
	13C8-FOSA	92%		30-130%
	d3-MeFOSAA	96%		40-140%
	d5-EtFOSAA	94%		40-140%
	13C2-6:2FTS	80 %		50-150 %
	13C2-8:2FTS	83%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	7.0	9.5	3.9	ug/kg	J
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.53	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.41	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.73	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.5	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.51	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.59	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.44	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.56	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.9	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.66	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.53	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.95	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.95	0.52	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.95	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.95	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.69	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.95	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.95	0.45	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.95	0.62	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.95	0.80	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.95	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.95	0.43	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5

Lab Sample ID: JD35939-11 **Date Sampled:** 11/30/21 Date Received: 11/30/21 Matrix: SO - Soil **Percent Solids:** 86.3

Method: SW846 8260D SW846 5035

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.83	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.95	0.45	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.2	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.57	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.55	ug/kg		
108-88-3	Toluene	ND	0.95	0.50	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.53	ug/kg		
79-01-6	Trichloroethene	ND	0.95	0.72	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.65	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.46	ug/kg		
	m,p-Xylene	ND	0.95	0.85	ug/kg		
95-47-6	o-Xylene	ND	0.95	0.44	ug/kg		
1330-20-7	Xylene (total)	ND	0.95	0.44	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	107%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	104%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Report of Analysis

 Client Sample ID:
 TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3E115513.D 1 12/05/21 16:23 KLS 12/03/21 12:30 OP36903 E3E5278

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	76	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	67	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	41	ug/kg	
95-48-7	2-Methylphenol	ND	76	24	ug/kg	
	3&4-Methylphenol	ND	76	31	ug/kg	
88-75-5	2-Nitrophenol	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol ^a	ND	380	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	36	ug/kg	
108-95-2	Phenol	ND	76	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	ND	38	13	ug/kg	
208-96-8	Acenaphthylene	ND	38	19	ug/kg	
98-86-2	Acetophenone	ND	190	8.1	ug/kg	
120-12-7	Anthracene	ND	38	23	ug/kg	
1912-24-9	Atrazine	ND	76	16	ug/kg	
56-55-3	Benzo(a)anthracene	ND	38	11	ug/kg	
50-32-8	Benzo(a)pyrene	ND	38	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	38	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	38	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	38	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	76	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	9.2	ug/kg	
92-52-4	1,1'-Biphenyl	ND	76	5.2	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.4	ug/kg	
91-58-7	2-Chloronaphthalene	ND	76	9.0	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	76	5.5	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5

Lab Sample ID: JD35939-11 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 86.3

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	76	15	ug/kg	
218-01-9	Chrysene	ND	38	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	76	8.1	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	76	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	38	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	38	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	76	32	ug/kg	
123-91-1	1,4-Dioxane	ND	38	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	38	17	ug/kg	
132-64-9	Dibenzofuran	ND	76	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	6.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	9.4	ug/kg	
84-66-2	Diethyl phthalate	ND	76	8.1	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	6.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	8.9	ug/kg	
206-44-0	Fluoranthene	ND	38	17	ug/kg	
86-73-7	Fluorene	ND	38	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	76	9.6	ug/kg	
87-68-3	Hexachlorobutadiene	ND	38	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	380	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	38	18	ug/kg	
78-59-1	Isophorone	ND	76	8.1	ug/kg	
91-57-6	2-Methylnaphthalene	ND	38	8.6	ug/kg	
88-74-4	2-Nitroaniline	ND	190	8.9	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.5	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.8	ug/kg	
91-20-3	Naphthalene	ND	38	11	ug/kg	
98-95-3	Nitrobenzene	ND	76	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	ND	38	13	ug/kg	
129-00-0	Pyrene	ND	38	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.6	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluoronhenol	39%		10-1	09%	

2-Fluorophenol 367-12-4 **39**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.21

Page 3 of 3

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5 Lab Sample ID: JD35939-11 Matrix: SO - Soil

Method: SW846 8270E SW846 3546

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Date Sampled: 11/30/21 Date Received: 11/30/21 Percent Solids: 86.3

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	41% 60% 47% 49%		10-105% 10-135% 10-119% 18-112%		
1718-51-0	Terphenyl-d14	53 %		18-125 %		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		2.74	230	ug/kg	J
	System artifact/aldol-condensa	tion	2.81	750	ug/kg	
301-02-0	9-Octadecenamide, (Z)-		12.59	420	ug/kg	JN
	Total TIC, Semi-Volatile			420	ug/kg	J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105238.D 1 12/17/21 18:02 KLS 12/03/21 12:30 OP36903A E4M4890

Run #2

Initial Weight Final Volume
Run #1 30.6 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.8 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 58%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 56%
 17-91%

 1718-51-0
 Terphenyl-d14
 65%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3G134427.D 1 12/06/21 07:44 CP 12/02/21 10:10 OP36906 G3G4903

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	19 3.8 3.8	8.5 2.1 1.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	78% 70%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171731.D 1 12/04/21 03:33 RK 12/02/21 12:00 OP36907 G1G5924

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.75	0.62	ug/kg	
319-84-6	alpha-BHC	ND	0.75	0.61	ug/kg	
319-85-7	beta-BHC	ND	0.75	0.68	ug/kg	
319-86-8	delta-BHC	ND	0.75	0.72	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.75	0.55	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.75	0.61	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.75	0.34	ug/kg	
60-57-1	Dieldrin	ND	0.75	0.52	ug/kg	
72-54-8	4,4'-DDD	ND	0.75	0.69	ug/kg	
72-55-9	4,4'-DDE	ND	0.75	0.66	ug/kg	
50-29-3	4,4'-DDT	ND	0.75	0.67	ug/kg	
72-20-8	Endrin	ND	0.75	0.58	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.75	0.59	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.75	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.75	0.43	ug/kg	
33213-65-9	Endosulfan-II	ND	0.75	0.47	ug/kg	
76-44-8	Heptachlor	ND	0.75	0.65	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.75	0.53	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.60	ug/kg	
53494-70-5	Endrin ketone	ND	0.75	0.54	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	100%		27-1	38%	
877-09-8	Tetrachloro-m-xylene	102%		27-1	38%	
2051-24-3	Decachlorobiphenyl	93%		10-1	79%	
2051-24-3	Decachlorobiphenyl	94%		10-1	79 %	

 $ND = Not detected \qquad MDL = Not MDL$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-23-7.5-9.5

 Lab Sample ID:
 JD35939-11
 Date Sampled:
 11/30/21

 Matrix:
 SO - Soil
 Date Received:
 11/30/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475272.D 1 12/06/21 22:31 TL 12/02/21 12:00 OP36908 GXX7676

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	23	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	15	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	20	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	102%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	100%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	106%		10-1	72%	
2051-24-3	Decachlorobiphenyl	92%			72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-23-7.5-9.5

Metals Analysis

Lab Sample ID: JD35939-11 **Date Sampled:** 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6910	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	3.4	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	42.4	23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.52	0.23	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/04/21		SW846 6010D ²	SW846 3050B ⁴
Calcium	2540	580	mg/kg	1	12/04/21		SW846 6010D ²	SW846 3050B ⁴
Chromium	13.3	1.2	mg/kg	1	12/04/21		SW846 6010D ²	SW846 3050B ⁴
Cobalt	6.0	5.8			12/04/21	12/05/21 ND		
			mg/kg	1	12/04/21		SW846 6010D ²	SW846 3050B ⁴
Copper	10.4	2.9	mg/kg	1			SW846 6010D ²	SW846 3050B ⁴
Iron	13300	58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	11.7	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	2490	580	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	257	1.7	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	< 0.037	0.037	mg/kg	1	12/02/21	12/02/21 SB	SW846 7471B ¹	SW846 7471B ³
Nickel	14.2	4.6	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	19.2	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	29.5	5.8	mg/kg	1	12/04/21	12/05/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51520 (2) Instrument QC Batch: MA51546 (3) Prep QC Batch: MP30120 (4) Prep QC Batch: MP30147

Page 1 of 1

Client Sample ID: TT-SB-23-7.5-9.5

Lab Sample ID: JD35939-11 Date Sampled: 11/30/21 Matrix: SO - Soil Date Received: 11/30/21 Percent Solids: 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.32 86.3	0.32	mg/kg %	1 1	12/09/21 01:08 12/01/21 15:55		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Report of Analysis

Page 1 of 2

Client Sample ID: TT-SB-23-7.5-9.5 Lab Sample ID: JD35939-11A **Date Sampled:** 11/30/21 **Matrix:** SO - Soil Date Received: 11/30/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 86.3

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S3Q713 Run #1 a 3Q51035.D 1 12/22/21 07:54 AFL 12/15/21 08:30 F:OP88850 Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg	
DEDELI IIOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
734-31-0	Trosa	ND	0.30	0.23	ug/ ng	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg	
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
					0 0	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-23-7.5-9.5

Page 2 of 2

Report of Analysis

Date Sampled: 11/30/21

Matrix: SO - Soil Date Received: 11/30/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 86.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

JD35939-11A

PFAS List

Lab Sample ID:

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	81%		40-140%
	13C5-PFPeA	84%		50-150 %
	13C5-PFHxA	84%		50-150 %
	13C4-PFHpA	85 %		50-150 %
	13C8-PFOA	84%		50-150 %
	13C9-PFNA	85 %		50-150 %
	13C6-PFDA	88%		50-150 %
	13C7-PFUnDA	90%		40-140%
	13C2-PFDoDA	82 %		40-140%
	13C2-PFTeDA	84%		30-130%
	13C3-PFBS	82 %		50-150 %
	13C3-PFHxS	84%		50-150 %
	13C8-PFOS	81%		50-150 %
	13C8-FOSA	93%		30-130%
	d3-MeFOSAA	97%		40-140%
	d5-EtFOSAA	94%		40-140%
	13C2-6:2FTS	81%		50-150 %
	13C2-8:2FTS	81%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

000	Si Sib	.			OF C						. <u>-</u>							_	Paç	је	of_	_
363				2235 Ro	rth Ameri oute 130, D	ayton, l	4J 0881	0				FED-EX 1	racking #					Bottle Ord	der Control	- 55	1111	21-141
EHSA-QAC-0023-04-FORM-Standard COC			TEI		-0200 FA ww.sgs.co			9/3480				SGS Quo	le #					SGS Job #	-3		59	
Client / Reporting Information			Projec	t Informat											F	Reques	ted An	alysis				Matrix Codes
,	Project Name	N Qu	T		C					_		\vdash		×	-	ľ	ı		\vdash	\Rightarrow	_	DW - Drinking Water
TETRA TECH	Street	AU	<u> </u>	33	2D St.							420	3	å	ر	İ			ıl	\mathcal{A}		GW - Ground Water WW - Water
6 CENTURY DR.	Street				rmation (if di	fferent fro	m Report	to)] ,	רכר רבט	I,4 Diox	Į	=		2	.	3		SW - Surface Water SO - Soil
PARSIPPANY NJ 07954	Broo	KLUN	State	Company N	ame							Tel	길	_	\-	Pce	513	Ú	1	53	-	SL- Sludge SED-Sediment Ol - Oil
Project Contact E-mail	Project#		- 1	Street Addr	ess							1		\ <u>\{ \}</u>	Pest				ı	1		LIQ - Other Liquid
BOB CANSAGAW LOBGER, CAN	Client Purcha	<u>Q</u> T€£₽/ se Order#	4 TECH	City			_	Sta	ate		Zip	0	As 8270	M15401288	.	7		پ_	الجا	-0		SOL - Other Solid WP - Wine
973.630 4045												V8260	82	Ž	8	80	35.	MIA	7 7	5		FB - Field Blank EB-Equipment Blank
Sampler(s) Name(s) Phone #	Project Manag	ger		Attention:								>	-8	88	P8081	Pau82	1 8	×	Σ.	7		RB - Rinse Blank TB - Trip Blank
1. 1114			Colle	ction				<u>`</u>	Number of	preserved						Check	(Lab Us	e Only)			\dashv	1
sos Sample # Field ID / Point of Collection	MEOH/DI Vrai #	Date	Time	Sampled G	Source Chilorinal omp (C) ed (Y/N)	Matrix	# of bottles	E HC	HNO.	NONE DI Water	MEOH											LAB USE ONLY
1 77-58-13-7.5-9.5		11/29/21			G	50	ь	1 2		3	3				,		7		$r \rightarrow$	\Rightarrow		B28
2 77-58-14-75-95	<u> </u>	11/29/21	1009	·	<u>G</u>	50	6			3	k T	1	7								\top	069
3 17-58-15-75-95		11/29/21	1109	AV	Ğ	50	б		11	3	3	1			~			ー	\Box	7	\top	1465
4 TT-58-16-75-95		11/29/21	1211	AV	Ğ	50	6			3	3		7		٠ ٦		7	//	iΠ	4		4989
5 TT- SB-17-7.0-9.0		Mala	1355	ΑU	G	30	6			3	3		V			-	- 1	- 4		7		
6 +1-58-18-70-90		4/29/21	1456	Av	6	So	6			3	3	1	<u> </u>		٢, ٢	/	<u>ا</u>			-	_	
7 7-58-19-7-0-90		11/30/21	0848	Av	G L	50	6		Ш	5	3	/		1	-	_ 4	_		\sqcup			<u> </u>
8 17-58-20-6.5-8.5		11/30/21		1	6	So	6	$\sqcup \!\!\! \perp$	Ш	3	3	\ '\			/	<u> </u>	· ~	'	\vdash	7		
9 77 - 56 - 21 - 6.5 - 8.5	\vdash	11/30/21		AV	9	Sa	6		11	3	3	~			4	-	<u> </u>	- 4	\square	_		
10 TT-58-22-65-85	╽	11/30/21			G	ي کي	6		\perp	3	3	V	<u> </u>	1	7	_ 4			=	4		
11 11-58-23-7.5-9.5	<u> </u>	11/30/4	1330	AV	<u>G</u>	So	6		+	3	3	_			-7	7		-	\vdash	4	+	ļ
Turn Around Time (Bu	isinges Dave	<u> </u>		 		I		Щ,	Deliver	able	لللـ		L			L.,l			Comm	nents / S	necial Inc	structions
Tom Stoand Time (BC	Approved By (S				Commercial	"A" (Lev	el 1)				Category A			DOD-Q	SM5				2011411			
10 Business Days					Commercial					NYASP	Category B						v					
5 Business Days					NJ Reduced						Criteria	_				3	1 5	9	enc	ore		-0 -
3 Business Days*	-			ΙH	Full Tier I (L Commercial				片	State Fo	Criteria							_	1 -1	مد لما:	sa:.am	ont <u>38</u> E(1
1 Business Day*				_	NJ DKQP				_	EDD Fo	rmat											
Other All data available via Lablink Ap	proval needed	for 1-3 Busines				Com	nercial "C	" ≖ Resul	ts + QC	Summary	'B" = Results + Partial Ra	w data						htt			erificati om/en/ten	ms-and-conditions
Relinquished by Date Tirr	18:	Received B		myst be d	locumented	below e	ach time	Relinguis 2	s chang thed By:	ova Na	7/1 /				30/2	ne:	امداد	Received	Ay		1	7
1 II 26 Relinquished by: Date / Tim		Received By:	-γ ٩_	HA	unf,	W Y	X-	2 JO Relingula	$\overline{}$	/V(7-CM	eum	<u>// U</u>	7 1	30/7		<i>∴</i> ∞	2 /	Ren By:	111	pa	× "C
Relinquished by: Date / Tim		Received By:	1				U	4 Custody				Intact					Therm	4		On les	Conl	ler Temp. 'C/ 'C) ()
5		5						Justicial				Not intect	I_	Absent					t Summary			<u>7,38</u>

JD35939: Chain of Custody Page 1 of 3

JD35939

SGS Sample Receipt Summary

Job Number:	JD3593	9	Clie	ent: TE	TRA TE	CH		Project: 2ND AVENUE AI	ND 33-391	H STREET	r, Brookl
Date / Time Received:	11/30/20)21 5:00	0:00 PM	_ De	elivery M	lethod:		Airbill #'s:			
Cooler Temps (Raw Mea	sured) °	C : Co	ooler 1: (1.3);							
Cooler Temps (Cor	rected) ^c	C : Co	ooler 1: (-	-0.1);							
Cooler Security	Y o					Y o		Sample Integrity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:	✓			C Prese		✓		Sample labels present on bottles:	\checkmark		
2. Custody Seals Intact:	✓		4. Smpl	Dates/T	ime OK	✓		2. Container labeling complete:	\checkmark		
Cooler Temperature		Y or	N					3. Sample container label / COC agree:	✓		
1. Temp criteria achieved:		✓						Sample Integrity - Condition	<u>Y</u>	or N	
2. Cooler temp verification	:	IR G	Gun					1. Sample recvd within HT:	v		
3. Cooler media:	_	Ice (E	Bag)					All containers accounted for:	<u> </u>		
4. No. Coolers:		1	<u> </u>					3. Condition of sample:	•	Intact	
Quality Control Preserv	<u>ration</u>	Y or	r N	N/A				Sample Integrity - Instructions	Y	or N	N/A
1. Trip Blank present / coo	ler:			✓				Analysis requested is clear:	<u>.</u>		14024
2. Trip Blank listed on CO	C:			\checkmark				Bottles received for unspecified tests		✓	
3. Samples preserved proj	perly:	✓						Sufficient volume recvd for analysis:	<u> </u>		
4. VOCs headspace free:				✓				Compositing instructions clear:			✓
								5. Filtering instructions clear:			\checkmark
Test Strip Lot #s:	pH 1-	12:	2316	19	_	pН	12+: _	203117A Other: (Specify)			
Comments											
SM089-03											
Rev. Date 12/7/17											

JD35939: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Above Changes Per: Jadon Schiller

Date/Time: 12/13/2021

Requested Date:	12/13/2021	121		Received Date:	11/30/2021
Account Name:	Tetra Tech	ch		Due Date:	12/13/2021
Project Descriptic	on: 2nd Aver	ne and 33-39th	Project Description: 2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated	C/O Initiated By: JADONS	PM:	JBS	TAT (Days):	7
Sample #: JD35939-ALL	5939-ALL		Change:		
			Please move project to T	Please move project to TTN IP90692 and re-sult to ALSE	A S I S I

JD35939: Chain of Custody Page 3 of 3

	CCC			CHAII			3.2			•						OHA	14 6):	Pag	e 1	of 1		
	OUG			SGS Nor 2235 Roi					n				FEO-EX	Tracking #	-	199	HE A	Bottle Chd	r Control		_		300
				TEL. 732-329-	-0200	FAX: T	32-329-		3480				SGS Qu	ote #	- 5	12,911		SGS Job #		In	35939		-
_	Client / Reporting Information	1			_	.com/el	15053	_	_	_			-	_	_	-		2		JD	3333	_	-
Compa	ny Name:	Project Name:		Project	inform	ation	_	_	_	-			1			Reque	sted A	nalysis			1	Matrix Cod	8.5
		2nd Avenue a	and 33-39th St	reet, Brooklyn,	NY										23/		1					DW - Drinking V GW - Ground V	
treat A	ddress	Street		10									1		- 4	115			-41			WW - Wate SW - Surface V	r I
City	State Zp	City		State		Informationy Name	on (if diffe	erent fro	om Re	port to	1					1	V.		П			SV - Surface v SO - Soil St Studge SED-Sedime	
	Gentact E-mail on.schiller@sqs.com	Project #			Street A	daress							1									QJ - QII LIQ - Other Lis AIR - Air	- 1
Phone #		Client Purchase	Order #		City			S	tate		Z	iρ										SOL - Other S WP - Wips FB - Field Bla	
Sample	(s) Name(s) Pho	ne Project Manager			Attention	×							24.									EB-Equipment I RB - Rinse BI TB - Trip Bla	ank
				Colection	1	-		1	Numbe	of press	tryod (S	office .	378										
938 Secopia d	Field ID / Point of Collection	MEON/OFVIal #	Date	Time	Sampled by	Matrix	# of bottles	五	HNOs	H,SO,	Di Waber	ENCOR	LCID537NY21	4								LAB USE OF	NLY
1A	TT-SB-13-7,5-9.5		11/29/21	9:10:00 AM	AV	so		П			П	П	Х						- 1		\neg		
2A	TT-SB-14-7.5-9.5		11/29/21	10:09:00 AM	AV	80		11			IT	Ħ	X										
3A	TT-SB-15-7.5-9.5		11/29/21	11:09:00 AM	AV	so		Ħ			H	T	X										
4A	TT-SB-16-7.5-9.5		11/29/21	12:11:00 PM	AV	so		Ħ	†			Ħ	X								_		-
5A	TT-SB-17-7.0-9.0		11/29/21	1:55:00 PM	AV	80		11	$^{+}$		+	+	X						_	-	_		\dashv
6A	TT-9B-18-7.0-9.0		11/29/21	2:56:00 PM	AV	80		++	+	+	+	†	X						_		+	+	-
7A	TT-SB-19-7,0-9,0		11/30/21	8:48:00 AM	AV	so		H	H	+	Н	††	X		-	+			-	+	+	1	-
8A	TT-SB-20-6.5-8.5		11/30/21	9:36:00 AM	-	so		Ħ	H	+	H	H	X						-	-	-	1	-
9A	TT-SB-21-6.5-8.5		11/30/21	10:28:00 AM	AV	so		Ħ	H	+	H	Ħ	X						-	\dashv	-		-
10A	TT-SB-22-6.5-8.5		11/30/21	11:33:00 AM	AV	so		††	H	+	+	+	X						-	-	-	1	
11A	TT-SB-23-7.5-9.5		11/30/21	1:30:00 PM	AV	so		††	Н	+		+	X						_	_	_	1	H
								$^{+}$	Н	+	H	H	+^						-	-	-	INV	-
	Turnaround Time (Business days)			-			Date	Delive	rable	Informa	ation		-	_	-	NITIA	ASS	essi	MEN	istructio	78°	T THE	-
		Approved By (SGS	PM): / Date:			Commerc							gory A										7
	Standard 10 Business Days 5 Business Days RUSH					Commerc							gory B	- 1									×
	3 Business Days RUSH					FULLT1 (NJ Reduc		4)				Forms							170	14	1		11
	2 Business Days RUSH					Commerc						NYA		-11		ABEL	VER	IFIC/	AIIO	IA_		marker respective	4
	1 Business Day EMERGENCY				l – ,		Commer	cial "A"	≈ Re≈			1117	u. 0										
Ĭ	X Other 1/14/1500						Commer					mary											
Eme	gency & Rush Y/A data available via Lablink Appro	wal needed for RUS			-		Commer	da "C"	* Res	D + 20	C Sun	mary +	Partial Re	w data				http	//www	sqs,ce	om/en/ter	rms-and-conditi	ons
Relins	Done 12	1/2	Sample Cust Received By:	Fe.	de la comenta	od below	each tin	Reting			poss	essio	, includi	ng couri	Dat	17/2/	10	Received	1	10	6.1	ah:i	
Roll	ulahed by: Date /	Time:	Received By:	-	1	•		Reling	ertalu	Ву:					-	itTime:		Received	by:	-	1		
Reling	uished by: Date /	Time:	Received By: 5					Custos	dy Sea				Intact Not intact	0	Preserved with	ere applicat	Therm. It			On Ice	Coc	oler Temp. 'C	> 5

jd35939 xls Rev Date: 4/10/18

> JD35939: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD3593	9	Client:	SGS NJ		Project: 2ND AVE	NUE33-39TH	STRE	ET,BROOKLYN,N
Date / Time Received: 12/2/2021 3:30:00 PM		М	Delivery Method: FX		Airbill #'s:			
Therm ID: IR 1;			Therm CF: 0.2;		# of Coolers: 1			
Cooler Temps (Raw Measure	ed) °C: Coo	ler 1: (2.6	i);					
Cooler Temps (Correcte	ed) °C: Coo	ler 1: (2.8	s);					
Cooler Information	Y or	N_		Sample Information		Y or	. N	N/A_
Custody Seals Present	✓			1. Sample labels present	on bottles	✓		
2. Custody Seals Intact	✓			2. Samples preserved pro	operly	✓		
3. Temp criteria achieved	\checkmark			3. Sufficient volume/conta	ainers recvd for analysis	: v		
4. Cooler temp verification	IR Gun			4. Condition of sample		<u>Intact</u>		
5. Cooler media	Ice (Bag)			5. Sample recvd within H	Т	✓		
				6. Dates/Times/IDs on C	OC match Sample Labe	✓		
rip Blank Information	Y or	<u>N</u> _	N/A_	7. VOCs have headspace	е			✓
1. Trip Blank present / cooler			✓	8. Bottles received for un	specified tests		\checkmark	
2. Trip Blank listed on COC			✓	9. Compositing instruction	ns clear			✓
	W or	s	N/A	10. Voa Soil Kits/Jars red	eived past 48hrs?			\checkmark
0.70(70.0)				11. % Solids Jar received	1?			\checkmark
3. Type Of TB Received			\checkmark	12. Residual Chlorine Pre	esent?			\checkmark
Misc. Information								
Number of Encores: 25-Gran	n	5-Gram	Num	nber of 5035 Field Kits:	Number of	Lab Filtered I	Metals:	
Test Strip Lot #s:	pH 0-3	23031	5 pl	H 10-12 219813A				
Residual Chlorine Test Strip Lo	t #:							
Comments								
SM001 Tb-::-								
Rev. Date 05/24/17 Technicia	n: STEPHE	NP	Date: <u>12/2/2021</u>	3:30:00 PM	Reviewer:		Date:	

JD35939: Chain of Custody

Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36084

Sampling Dates: 12/01/21 - 12/02/21

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 177

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Review standard terms at: http://www.sgs.com/en/terms-and-conditions

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	13
Section 4: Sample Results	
4.1: JD36084-1: TT-SB-24-6.5-8.5	24
4.2: JD36084-1A: TT-SB-24-6.5-8.5	36
4.3: JD36084-2: TT-SB-25-7.0-9.0	38
4.4: JD36084-2A: TT-SB-25-7.0-9.0	49
4.5: JD36084-3: TT-SB-26-6.0-8.0	51
4.6: JD36084-3A: TT-SB-26-6.0-8.0	-
4.7: JD36084-4: TT-SB-27-5.0-7.0	66
4.8: JD36084-4A: TT-SB-27-5.0-7.0	77
4.9: JD36084-5: SDUP-02	79
4.10: JD36084-5A: SDUP-02	91
4.11: JD36084-6: TT-SB-28-7.0-9.0	93
4.12: JD36084-6A: TT-SB-28-7.0-9.0	104
4.13: JD36084-7: TT-SB-29-4.0-6.0	106
4.14: JD36084-7A: TT-SB-29-4.0-6.0	117
4.15: JD36084-8: TT-SB-30-7.0-9.0	119
4.16: JD36084-8A: TT-SB-30-7.0-9.0	130
4.17: JD36084-9: TT-SB-31-6.0-8.0	132
4.18: JD36084-9A: TT-SB-31-6.0-8.0	144
4.19: JD36084-10: TT-SB-32-7.0-9.0	146
4.20: JD36084-10A: TT-SB-32-7.0-9.0	157
4.21: JD36084-11: TT-SB-33-4.5-6.5	159
4.22: JD36084-11A: TT-SB-33-4.5-6.5	170
Section 5: Misc. Forms	172
5.1: Chain of Custody	173
5.2. Chain of Custody (SGS Orlando, FL)	176

Sample Summary

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID	
This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL							
JD36084-1	12/01/21	08:51 AV	12/02/21	so	Soil	TT-SB-24-6.5-8.5	
JD36084-1A	12/01/21	08:51 AV	12/02/21	so	Soil	TT-SB-24-6.5-8.5	
JD36084-2	12/01/21	09:52 AV	12/02/21	so	Soil	TT-SB-25-7.0-9.0	
JD36084-2A	12/01/21	09:52 AV	12/02/21	so	Soil	TT-SB-25-7.0-9.0	
JD36084-3	12/01/21	10:38 AV	12/02/21	so	Soil	TT-SB-26-6.0-8.0	
JD36084-3A	12/01/21	10:38 AV	12/02/21	so	Soil	TT-SB-26-6.0-8.0	
JD36084-4	12/01/21	11:47 AV	12/02/21	so	Soil	TT-SB-27-5.0-7.0	
JD36084-4A	12/01/21	11:47 AV	12/02/21	so	Soil	TT-SB-27-5.0-7.0	
JD36084-5	12/01/21	12:00 AV	12/02/21	so	Soil	SDUP-02	
JD36084-5A	12/01/21	12:00 AV	12/02/21	so	Soil	SDUP-02	
JD36084-6	12/01/21	13:47 AV	12/02/21	so	Soil	TT-SB-28-7.0-9.0	
JD36084-6A	12/01/21	13:47 AV	12/02/21	so	Soil	TT-SB-28-7.0-9.0	

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

JD36084

Job No:

Sample Summary (continued)

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

JD36084 Job No:

Sample	Collected			Matri		Client
Number	Date	Time By	Received	Code	Type	Sample ID
JD36084-7	12/01/21	14:56 AV	12/02/21	so	Soil	TT-SB-29-4.0-6.0
JD36084-7A	12/01/21	14:56 AV	12/02/21	so	Soil	TT-SB-29-4.0-6.0
JD36084-8	12/02/21	08:53 AV	12/02/21	so	Soil	TT-SB-30-7.0-9.0
JD36084-8A	12/02/21	08:53 AV	12/02/21	so	Soil	TT-SB-30-7.0-9.0
JD36084-9	12/02/21	10:50 AV	12/02/21	so	Soil	TT-SB-31-6.0-8.0
JD36084-9A	12/02/21	10:50 AV	12/02/21	so	Soil	TT-SB-31-6.0-8.0
JD36084-10	12/02/21	11:47 AV	12/02/21	so	Soil	TT-SB-32-7.0-9.0
JD36084-10A	12/02/21	11:47 AV	12/02/21	so	Soil	TT-SB-32-7.0-9.0
JD36084-11	12/02/21	13:38 AV	12/02/21	so	Soil	TT-SB-33-4.5-6.5
JD36084-11A	12/02/21	13:38 AV	12/02/21	so	Soil	TT-SB-33-4.5-6.5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No: JD36084

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/31/2021 12:35:54 P

On 12/02/2021, 11 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.1 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36084 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9771

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36084-1MS, JD36084-2DUP were used as the QC samples indicated.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88800

- The data for EPA 537M BY ID meets quality control requirements.
- JD36084-9A: Analysis performed at SGS Orlando, FL.
- JD36084-1A: Analysis performed at SGS Orlando, FL.
- JD36084-11A: Analysis performed at SGS Orlando, FL.
- JD36084-8A: Analysis performed at SGS Orlando, FL.
- JD36084-2A: Analysis performed at SGS Orlando, FL.
- JD36084-3A: Analysis performed at SGS Orlando, FL.
- JD36084-5A: Analysis performed at SGS Orlando, FL.
- JD36084-6A: Analysis performed at SGS Orlando, FL.
- JD36084-4A: Analysis performed at SGS Orlando, FL.
- JD36084-10A: Analysis performed at SGS Orlando, FL.
- JD36084-7A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36957

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36084-1MS, JD36084-1MSD were used as the QC samples indicated.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36957A

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36084-2MS, JD36084-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

Friday, December 31, 2021 Page 1 of 7

Matrix: SO Batch ID: OP36961

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36084-4MS, JD36084-4MSD were used as the QC samples indicated.
- JD36084-3: Had TBA cleanup. Confirmation run.
- JD36084-7: Confirmation run.
- JD36084-1: Had TBA cleanup. Confirmation run.
- OP36961-MB1: Had TBA cleanup.
- JD36084-5: Had TBA cleanup. Confirmation run.
- OP36961-BS1: Had TBA cleanup.
- JD36084-9: Confirmation run.
- OP36961-BS1 for 4,4'-DDD: Outside of in house control limits.
- JD36084-9, JD36084-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP36961-BS1 for Heptachlor epoxide: Outside of in house control limits. Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP36961-BS1 for alpha-BHC: Outside of in house control limits.
- OP36961-BS1 for Aldrin: Outside of in house control limits.
- OP36961-BS1 for 4,4'-DDT: Outside of in house control limits.
- OP36961-BS1 for 4,4'-DDE: Outside of in house control limits.
- OP36961-BS1 for 4,4'-DDD: Outside of in house control limits.
- JD36084-2 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Aldrin: This compound outside control limits biased high in the associated BS.
- JD36084-2 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-2 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for beta-BHC: Outside of in house control limits.
- JD36084-2 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Heptachlor: Outside of in house control limits.
- JD36084-10 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Endrin: This compound outside control limits biased high in the associated BS.
- JD36084-2 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-10 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-4 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Heptachlor: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Aldrin: This compound outside control limits biased high in the associated BS.
- JD36084-2 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-2 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Heptachlor: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for alpha-Chlordane: Outside of in house control limits.

Friday, December 31, 2021

Matrix: SO Batch ID: OP36961

- JD36084-4 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Endrin: Outside of in house control limits.
- JD36084-4 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- JD36084-4 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-4 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for delta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Dieldrin: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-2 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-10 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Tetrachloro-m-xylene: Outside of in house control limits.
- JD36084-2 for delta-BHC: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Heptachlor epoxide: Outside of in house control limits.
- JD36084-2 for Dieldrin: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for gamma-Chlordane: Outside of in house control limits.
- OP36961-BS1 for gamma-BHC (Lindane): Outside of in house control limits.
- OP36961-BS1 for Endrin aldehyde: Outside of in house control limits.
- JD36084-4 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Endosulfan-II: Outside of in house control limits.
- JD36084-2 for Endrin: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Endosulfan-I: Outside of in house control limits.
- OP36961-BS1 for Endosulfan sulfate: Outside of in house control limits.
- OP36961-BS1 for Dieldrin: Outside of in house control limits.
- OP36961-BS1 for delta-BHC: Outside of in house control limits.
- JD36084-4 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-2 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-2 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- JD36084-6 for delta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- JD36084-8 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.
- JD36084-6 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Endrin: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-4 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-8 for Dieldrin: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Heptachlor: This compound outside control limits biased high in the associated BS.

Friday, December 31, 2021

Matrix: SO Batch ID: OP36961

- JD36084-8 for delta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-6 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- JD36084-6 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Dieldrin: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Aldrin: This compound outside control limits biased high in the associated BS.
- JD36084-6 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-10 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-4 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Heptachlor: This compound outside control limits biased high in the associated BS.
- JD36084-8 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Endrin: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-8 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- JD36084-8 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-8 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-6 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-6 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Aldrin: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- JD36084-8 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-8 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-8 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-8 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Heptachlor: This compound outside control limits biased high in the associated BS.
- JD36084-10 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-11 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- JD36084-11 for gamma-BHC (Lindane): This compound outside control limits biased high in the associated BS.
- JD36084-11 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Heptachlor: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Heptachlor epoxide: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Methoxychlor: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- JD36084-6 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-10 for 4,4'-DDD: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Aldrin: This compound outside control limits biased high in the associated BS.
- OP36961-BS1 for Methoxychlor: Outside of in house control limits.

Friday, December 31, 2021

Matrix: SO Batch ID: OP36961

- JD36084-10 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-10 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-10 for delta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Dieldrin: This compound outside control limits biased high in the associated BS.
- JD36084-11 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- JD36084-10 for gamma-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Endosulfan-II: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Endrin: This compound outside control limits biased high in the associated BS.
- JD36084-6 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Endrin: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Endrin aldehyde: This compound outside control limits biased high in the associated BS.
- JD36084-11 for 4,4'-DDE: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Aldrin: This compound outside control limits biased high in the associated BS.
- JD36084-11 for alpha-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-11 for alpha-Chlordane: This compound outside control limits biased high in the associated BS.
- JD36084-11 for beta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-11 for delta-BHC: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Dieldrin: This compound outside control limits biased high in the associated BS.
- JD36084-11 for Endosulfan sulfate: This compound outside control limits biased high in the associated BS.
- JD36084-10 for Endosulfan-I: This compound outside control limits biased high in the associated BS.
- JD36084-6 for 4,4'-DDT: This compound outside control limits biased high in the associated BS.

Matrix: SO Batch ID: OP37171

- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36682-7MS, JD36682-7MSD were used as the QC samples indicated.
- JD36084-9: Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- JD36084-3: Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- JD36084-1: Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- JD36084-7: Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- JD36084-5: Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- JD36084-9 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36084-9 for 4,4'-DDT: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.
- JD36084-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.

Matrix: SO Batch ID: OP36962

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36084-5MS, JD36084-5MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD36084-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP36962-MB1 for Decachlorobiphenyl: Outside of in house control limits.
- OP36962-MB1 for Tetrachloro-m-xylene: Outside of in house control limits.
- OP36962-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36084-9 for Decachlorobiphenyl: Outside control limits due to matrix interference.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36933

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36022-1MS, JD36022-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Recovery(s) for 2,4,5-T, 2,4,5-TP (Silvex) are outside of in house control limits.
- Matrix Spike Duplicate Recovery(s) for 2,4,5-TP (Silvex) are outside of in house control limits.
- OP36933-BSD for 2,4,5-TP (Silvex): Analytical precision exceeds in-house control limits.
- OP36933-BS1 for 2,4,5-TP (Silvex): Outside of in house control limits.
- OP36933-BSD for 2,4-DCAA: Outside of in house control limits.
- OP36933-BS1 for 2,4,5-T: Outside of in house control limits.
- OP36933-BS1 for 2,4-DCAA: Outside of in house control limits.
- OP36933-BSD for 2,4-D: Analytical precision exceeds in-house control limits.
- OP36933-MS/MSD for 2,4-DCAA: Outside of in house control limits.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30189

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36039-1MS, JD36039-1MSD, JD36039-1PS, JD36039-1SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) fo rAluminum, Antimony, Iron are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for Serial Dilution for Cadmium, Cobalt, Lead, Potassium, Selenium are outside control limits. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30190

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36076-1MS, JD36076-1MSD were used as the QC samples for metals.

Friday, December 31, 2021

Page 6 of 7

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24481

Sample(s) JD36081-39DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37404

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36084-1DUP, JD36084-1MS, JD36084-2MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD36084

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/23/2021 9:58:16

On 12/02/2021, 11 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36084 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88800

Sample(s) FA90827-71MS, FA90827-71MSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives exceptas noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney Client Se	rvices (signature on file)

Summary of HitsJob Number: JD36084 Page 1 of 10

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	***	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C 11145	
JD36084-1 TT-SB-24-6.5-8.5					
Acetone	19.1	10	4.2	ug/kg	SW846 8260D
o-Xylene	0.74 J	1.0	0.46	ug/kg	SW846 8260D
Xylene (total)	0.74 J	1.0	0.46	ug/kg	SW846 8260D
Acenaphthene	32.0 J	37	13	ug/kg	SW846 8270E
Acenaphthylene	23.4 J	37	19	ug/kg	SW846 8270E
Anthracene	91.4	37	22	ug/kg	SW846 8270E
Benzo(a)anthracene	381	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	364	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	454	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	258	37	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	160	37	17	ug/kg	SW846 8270E
Carbazole	28.4 J	73	5.3	ug/kg	SW846 8270E
Chrysene	381	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	86.3	37	16	ug/kg	SW846 8270E
Dibenzofuran	16.7 J	73	15	ug/kg	SW846 8270E
Fluoranthene	752	37	16	ug/kg	SW846 8270E
Fluorene	26.9 J	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	311	37	17	ug/kg	SW846 8270E
Phenanthrene	362	37	12	ug/kg	SW846 8270E
Pyrene	801	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	5400 J			ug/kg	
Aldrin ^a	1.9	0.65	0.54	ug/kg	SW846 8081B
gamma-BHC (Lindane) ^a	2.3	0.65	0.48	ug/kg	SW846 8081B
alpha-Chlordane b	2.8	0.65	0.53	ug/kg	SW846 8081B
gamma-Chlordane ^a	2.4	0.65	0.30	ug/kg	SW846 8081B
Dieldrin ^a	1.1	0.65	0.45	ug/kg	SW846 8081B
4,4'-DDD b	5.8	0.65	0.60	ug/kg	SW846 8081B
4,4'-DDE b	5.7	0.65	0.57	ug/kg	SW846 8081B
4,4'-DDT ^c	3.5	0.65	0.58	ug/kg	SW846 8081B
Endosulfan-II b	2.7	0.65	0.41	ug/kg	SW846 8081B
Heptachlor epoxide ^a	0.84	0.65	0.46	ug/kg	SW846 8081B
Aluminum	4260	56		mg/kg	SW846 6010D
Arsenic	2.8	2.3		mg/kg	SW846 6010D
Barium	49.9	23		mg/kg	SW846 6010D
Beryllium	0.24	0.23		mg/kg	SW846 6010D
Calcium	35300	1100		mg/kg	SW846 6010D
Chromium	10.3	1.1		mg/kg	SW846 6010D
Copper	12.6	2.8		mg/kg	SW846 6010D
Iron	9130	56		mg/kg	SW846 6010D
Lead	87.1	2.3		mg/kg	SW846 6010D
Magnesium	7890	560		mg/kg	SW846 6010D
Manganese	193	1.7		mg/kg	SW846 6010D
Mercury	0.24	0.029		mg/kg	SW846 7471B
in a contract of the contract	U.W.I	0.000		6/ N5	5.11010 1 11 1 I

Summary of HitsJob Number: JD36084 Page 2 of 10

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Nickel	17.2	4.5		mg/kg	SW846 6010D
Vanadium	15.1	5.6		mg/kg	SW846 6010D
Zinc	48.5	5.6		mg/kg	SW846 6010D

JD36084-1A TT-SB-24-6.5-8.5

No hits reported in this sample.

JD36084-2 TT-SB-25-7.0-9.0

Acenaphthene	21.8 J	36	12	ug/kg	SW846 8270E
Anthracene	48.0	36	22	ug/kg	SW846 8270E
Benzo(a)anthracene	97.6	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	80.3	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	99.6	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	48.4	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	39.9	36	17	ug/kg	SW846 8270E
Carbazole	18.7 J	72	5.2	ug/kg	SW846 8270E
Chrysene	91.2	36	11	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	29.0 J	36	16	ug/kg	SW846 8270E
Fluoranthene	221	36	16	ug/kg	SW846 8270E
Fluorene	20.6 J	36	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	76.4	36	17	ug/kg	SW846 8270E
Phenanthrene	208	36	12	ug/kg	SW846 8270E
Pyrene	187	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	680 J			ug/kg	
Aluminum	6110	58		mg/kg	SW846 6010D
Arsenic	5.2	2.3		mg/kg	SW846 6010D
Barium	37.0	23		mg/kg	SW846 6010D
Beryllium	0.38	0.23		mg/kg	SW846 6010D
Calcium	1080	580		mg/kg	SW846 6010D
Chromium	11.7	1.2		mg/kg	SW846 6010D
Copper	37.5	2.9		mg/kg	SW846 6010D
Iron	11200	58		mg/kg	SW846 6010D
Lead	55.2	2.3		mg/kg	SW846 6010D
Magnesium	2180	580		mg/kg	SW846 6010D
Manganese	239	1.7		mg/kg	SW846 6010D
Mercury	0.079	0.034		mg/kg	SW846 7471B
Nickel	14.5	4.6		mg/kg	SW846 6010D
Vanadium	17.4	5.8		mg/kg	SW846 6010D
Zinc	50.9	5.8		mg/kg	SW846 6010D
Cyanide	1.9	0.22		mg/kg	SW846 9012B/LACHAT
~J	2.0			b'b	ZZZ OULKE LEIGHT

Summary of HitsJob Number: JD36084 Page 3 of 10

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method		
JD36084-2A TT-SB-25-7.0-9.0							
No hits reported in this sample.							
JD36084-3 TT-SB-26-6.0-8.0							
Acetone	23.6	9.4	3.9	ug/kg	SW846 8260D		
2-Butanone (MEK)	4.5 J	9.4	2.3	ug/kg	SW846 8260D		
Carbon disulfide	0.81 J	1.9	0.50	ug/kg	SW846 8260D		
Ethylbenzene	0.90 J	0.94	0.43	ug/kg	SW846 8260D		
Isopropylbenzene	8.0	1.9	1.3	ug/kg	SW846 8260D		
m,p-Xylene	1.3	0.94	0.85	ug/kg	SW846 8260D		
o-Xylene	0.95	0.94	0.43	ug/kg	SW846 8260D		
Xylene (total)	2.3	0.94	0.43	ug/kg	SW846 8260D		
Total TIC, Volatile	2026 J			ug/kg			
Acenaphthene	3590	37	13	ug/kg	SW846 8270E		
Acenaphthylene	25.6 J	37	19	ug/kg	SW846 8270E		
Anthracene	153	37	22	ug/kg	SW846 8270E		
Benzo(a)anthracene	96.4	37	10	ug/kg	SW846 8270E		
Benzo(a)pyrene	74.5	37	17	ug/kg	SW846 8270E		
Benzo(b)fluoranthene	99.2	37	16	ug/kg	SW846 8270E		
Benzo(g,h,i)perylene	55.6	37	18	ug/kg	SW846 8270E		
Benzo(k)fluoranthene	30.5 J	37	17	ug/kg	SW846 8270E		
1,1'-Biphenyl	26.3 J	73	5.0	ug/kg	SW846 8270E		
Carbazole	96.6	73	5.3	ug/kg	SW846 8270E		
Chrysene	98.9	37	12	ug/kg	SW846 8270E		
Dibenzo(a,h)anthracene	32.6 J	37	16	ug/kg	SW846 8270E		
Dibenzofuran	1570	73	15	ug/kg	SW846 8270E		
bis(2-Ethylhexyl)phthalate	68.6 J	73	8.5	ug/kg	SW846 8270E		
Fluoranthene	415	37	16	ug/kg	SW846 8270E		
Fluorene	1350	37	17	ug/kg	SW846 8270E		
Indeno(1,2,3-cd)pyrene	76.1	37	17	ug/kg	SW846 8270E		
2-Methylnaphthalene	446	37	8.3	ug/kg	SW846 8270E		
Naphthalene	372	37	10	ug/kg	SW846 8270E		
Phenanthrene	1810	37	12	ug/kg	SW846 8270E		
Pyrene	328	37	12	ug/kg	SW846 8270E		
Total TIC, Semi-Volatile	10580 J			ug/kg			
alpha-BHC ^a	1.9	0.72	0.59	ug/kg	SW846 8081B		
gamma-Chlordane ^a	2.0	0.72	0.33	ug/kg	SW846 8081B		
4,4'-DDD b	17.9	0.72	0.66	ug/kg	SW846 8081B		
4,4'-DDE b	5.4	0.72	0.63	ug/kg	SW846 8081B		
Aluminum	4270	58		mg/kg	SW846 6010D		
Arsenic	3.9	2.3		mg/kg	SW846 6010D		
Barium	81.7	23		mg/kg	SW846 6010D		
Beryllium	0.28	0.23		mg/kg	SW846 6010D		

Summary of HitsJob Number: JD36084 Page 4 of 10

Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

12/01/21 thru 12/02/21 **Collected:**

ab Sample ID Client San nalyte	nple ID Result/ Qual	RL	MDL	Units	Method
alcium	29800	1200		mg/kg	SW846 6010D
hromium	9.2	1.2		mg/kg	SW846 6010D
opper	10.7	2.9		mg/kg	SW846 6010D
n	9130	58		mg/kg	SW846 6010D
d	53.6	2.3		mg/kg	SW846 6010D
gnesium	8370	580		mg/kg	SW846 6010D
iganese	582	1.7		mg/kg	SW846 6010D
cury	0.060	0.031		mg/kg	SW846 7471B
kel	12.6	4.6		mg/kg	SW846 6010D
adium	21.4	5.8		mg/kg	SW846 6010D
	77.0	5.8		mg/kg	SW846 6010D
6084-3A TT-SB-26					
hits reported in this samp 36084-4 TT-SB-27-					
6084-4 TT-SB-27-	-5.0-7.0			ng/l-«	
6084-4 TT-SB-27- l TIC, Semi-Volatile	-5.0-7.0 370 J	50		ug/kg	SW/946 6010D
5084-4 TT-SB-27- TTC, Semi-Volatile ninum	-5.0-7.0 370 J 7040	59 2 2		mg/kg	SW846 6010D
6084-4 TT-SB-27- l TIC, Semi-Volatile ninum nic	370 J 7040 3.2	2.3		mg/kg mg/kg	SW846 6010D
6084-4 TT-SB-27- al TIC, Semi-Volatile minum enic um	370 J 7040 3.2 35.1	2.3 23		mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D
6084-4 TT-SB-27- I TIC, Semi-Volatile ninum nic um Ilium	370 J 7040 3.2 35.1 0.52	2.3 23 0.23		mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D
6084-4 TT-SB-27- al TIC, Semi-Volatile minum enic ium yllium cium	370 J 7040 3.2 35.1 0.52 1120	2.3 23 0.23 590		mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D
6084-4 TT-SB-27- Il TIC, Semi-Volatile ninum enic um illium ium omium	370 J 7040 3.2 35.1 0.52 1120 12.7	2.3 23 0.23 590 1.2		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
6084-4 TT-SB-27- I TIC, Semi-Volatile ninum enic um ellium ium omium	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3	2.3 23 0.23 590 1.2 2.9		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
6084-4 TT-SB-27- I TIC, Semi-Volatile ninum nic um illium ium omium	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3 11900	2.3 23 0.23 590 1.2 2.9 59		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
TIC, Semi-Volatile ainum nic am llium um mium neer	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3 11900 25.0	2.3 23 0.23 590 1.2 2.9 59 2.3		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
TT-SB-27- TTC, Semi-Volatile ninum nic um llium ium mium per	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3 11900 25.0 2080	2.3 23 0.23 590 1.2 2.9 59 2.3 590		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
TIC, Semi-Volatile ainum nic um llium um mium mer	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3 11900 25.0	2.3 23 0.23 590 1.2 2.9 59 2.3		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D
6084-4 TT-SB-27- Il TIC, Semi-Volatile ninum enic um Illium	370 J 7040 3.2 35.1 0.52 1120 12.7 11.3 11900 25.0 2080 232	2.3 23 0.23 590 1.2 2.9 59 2.3 590 1.8		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D SW846 6010D

ID36084-44	TT-SR-27-5 0-7 0

Anthracene

Benzo(a)anthracene

Perfluorooctanesulfonic acid ^d	0.35 J	0.55	0.28	ug/kg	EPA 537M BY ID
JD36084-5 SDUP-02					
Acetone Acenaphthene Acenaphthylene	14.9 53.5 91.0	9.1 36 36	3.8 12 18	ug/kg ug/kg ug/kg	SW846 8260D SW846 8270E SW846 8270E

36

36

303

1780

22

10

ug/kg

ug/kg

SW846 8270E

SW846 8270E

Summary of HitsJob Number: JD36084 Page 5 of 10

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID					
Analyte	Qual	RL	MDL	Units	Method
Benzo(a)pyrene	1560	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	1940	36	16	ug/kg ug/kg	SW846 8270E
Benzo(g,h,i)perylene	892	36	18	ug/kg ug/kg	SW846 8270E
Benzo(k)fluoranthene	690	36	17	ug/kg ug/kg	SW846 8270E
Carbazole	45.3 J	72	5.2	ug/kg ug/kg	SW846 8270E
Chrysene	1700	36	3.2 11	ug/kg ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	281	36	16	ug/kg ug/kg	SW846 8270E
Dibenzofuran	24.5 J	72	15	ug/kg ug/kg	SW846 8270E
Fluoranthene	3090	36	16	ug/kg ug/kg	SW846 8270E
Fluorene	45.7	36	17	ug/kg ug/kg	SW846 8270E
	1110	36	17		
Indeno(1,2,3-cd)pyrene	10.1 J	36	17	ug/kg	SW846 8270E
Naphthalene Phononthropo				ug/kg	SW846 8270E
Phenanthrene Primana	1050	36 26	12	ug/kg	SW846 8270E
Pyrene Total TIC Sami Valatile	3030 9060 J	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile		0.66	0.50	ug/kg	CW046 0001D
gamma-BHC (Lindane) ^a	2.1	0.68	0.50	ug/kg	SW846 8081B
4,4'-DDD b	3.2	0.68	0.63	ug/kg	SW846 8081B
4,4'-DDE b	3.1	0.68	0.60	ug/kg	SW846 8081B
Aluminum	4840	58		mg/kg	SW846 6010D
Arsenic	3.5	2.3		mg/kg	SW846 6010D
Barium	71.5	23		mg/kg	SW846 6010D
Beryllium	0.29	0.23		mg/kg	SW846 6010D
Calcium	25100	1200		mg/kg	SW846 6010D
Chromium	12.8	1.2		mg/kg	SW846 6010D
Copper	15.4	2.9		mg/kg	SW846 6010D
Iron	9810	58		mg/kg	SW846 6010D
Lead	115	2.3		mg/kg	SW846 6010D
Magnesium	6320	580		mg/kg	SW846 6010D
Manganese	195	1.7		mg/kg	SW846 6010D
Mercury	0.13	0.029		mg/kg	SW846 7471B
Nickel	16.7	4.6		mg/kg	SW846 6010D
Vanadium	15.1	5.8		mg/kg	SW846 6010D
Zinc	69.4	5.8		mg/kg	SW846 6010D
JD36084-5A SDUP-02					
No hits reported in this sample.					
JD36084-6 TT-SB-28-7.0-9.0					
Acetone	9.7	9.3	3.9	ng/kg	SW846 8260D
Total TIC, Semi-Volatile	9.7 200 J	ฮ.ง	J. J	ug/kg	3 VV 04U 04UUD
	200 J 5460	57		ug/kg	CMOAR ROLOD
Aluminum		57		mg/kg	SW846 6010D
Arsenic	2.8	2.3		mg/kg	SW846 6010D
Barium	29.5	23		mg/kg	SW846 6010D

Summary of HitsJob Number: JD36084 Page 6 of 10

Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Beryllium	0.46	0.23		mg/kg	SW846 6010D
Calcium	1780	570		mg/kg	SW846 6010D
Chromium	12.7	1.1		mg/kg	SW846 6010D
Copper	9.3	2.9		mg/kg	SW846 6010D
Iron	11700	57		mg/kg	SW846 6010D
Lead	16.1	2.3		mg/kg	SW846 6010D
Magnesium	3260	570		mg/kg	SW846 6010D
Manganese	301	1.7		mg/kg	SW846 6010D
Nickel	19.8	4.6		mg/kg	SW846 6010D
Potassium	1100	1100		mg/kg	SW846 6010D
Vanadium	18.6	5.7		mg/kg	SW846 6010D
Zinc	34.2	5.7		mg/kg	SW846 6010D
				- •	

JD36084-6A TT-SB-28-7.0-9.0

No hits reported in this sample.

JD36084-7 TT-SB-29-4.0-6.0

11 50 25 4.0 0.0					
Acetone	4.7 J	10	4.2	ug/kg	SW846 8260D
Benzo(a)anthracene	43.9	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	33.8 J	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	50.4	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	18.2 J	37	18	ug/kg	SW846 8270E
Chrysene	44.0	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	21.4 J	37	16	ug/kg	SW846 8270E
Fluoranthene	80.3	37	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	40.9	37	17	ug/kg	SW846 8270E
Phenanthrene	36.8 J	37	12	ug/kg	SW846 8270E
Pyrene	81.4	37	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	320 J			ug/kg	
Aluminum	5590	55		mg/kg	SW846 6010D
Arsenic	3.1	2.2		mg/kg	SW846 6010D
Barium	31.1	22		mg/kg	SW846 6010D
Beryllium	0.49	0.22		mg/kg	SW846 6010D
Calcium	1660	550		mg/kg	SW846 6010D
Chromium	11.1	1.1		mg/kg	SW846 6010D
Copper	16.0	2.8		mg/kg	SW846 6010D
Iron	11200	55		mg/kg	SW846 6010D
Lead	13.4	2.2		mg/kg	SW846 6010D
Magnesium	2430	550		mg/kg	SW846 6010D
Manganese	276	1.7		mg/kg	SW846 6010D
Mercury	0.072	0.036		mg/kg	SW846 7471B
Nickel	13.4	4.4		mg/kg	SW846 6010D
Potassium	1100	1100		mg/kg	SW846 6010D

Summary of HitsJob Number: JD36084 Page 7 of 10

Account: Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

12/01/21 thru 12/02/21 **Collected:**

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Vanadium	17.0	5.5		mg/kg	SW846 6010D
Zinc	32.3	5.5		mg/kg	SW846 6010D

JD36084-7A TT-SB-29-4.0-6.0

No hits reported in this sample.

JD36084-8 TT-SB-30-7.0-9.0

Acetone	8.8 J	9.7	4.0	ug/kg	SW846 8260D
Anthracene	28.5 J	36	22	ug/kg	SW846 8270E
Benzo(a)anthracene	75.6	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	65.5	36	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	81.0	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	39.8	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	28.7 J	36	17	ug/kg	SW846 8270E
Carbazole	12.3 J	73	5.3	ug/kg	SW846 8270E
Chrysene	77.7	36	11	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	27.0 J	36	16	ug/kg	SW846 8270E
Fluoranthene	151	36	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	59.0	36	17	ug/kg	SW846 8270E
Naphthalene	11.7 J	36	10	ug/kg	SW846 8270E
Phenanthrene	139	36	12	ug/kg	SW846 8270E
Pyrene	161	36	12	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	360 J			ug/kg	
Aluminum	5590	56		mg/kg	SW846 6010D
Arsenic	3.8	2.2		mg/kg	SW846 6010D
Barium	69.2	22		mg/kg	SW846 6010D
Beryllium	0.48	0.22		mg/kg	SW846 6010D
Calcium	4280	560		mg/kg	SW846 6010D
Chromium	13.4	1.1		mg/kg	SW846 6010D
Copper	126	2.8		mg/kg	SW846 6010D
Iron	12900	56		mg/kg	SW846 6010D
Lead	164	2.2		mg/kg	SW846 6010D
Magnesium	2720	560		mg/kg	SW846 6010D
Manganese	174	1.7		mg/kg	SW846 6010D
Mercury	0.26	0.037		mg/kg	SW846 7471B
Nickel	24.3	4.5		mg/kg	SW846 6010D
Potassium	1460	1100		mg/kg	SW846 6010D
Vanadium	19.6	5.6		mg/kg	SW846 6010D
Zinc	100	5.6		mg/kg	SW846 6010D

JD36084-8A TT-SB-30-7.0-9.0

No hits reported in this sample.

Summary of HitsJob Number: JD36084 Page 8 of 10

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36084-9 TT-SB-31-6.0-8.0					
Acetone	4.3 J	8.4	3.5	ug/kg	SW846 8260D
Carbon disulfide	0.57 J	1.7	0.45	ug/kg	SW846 8260D
Acenaphthene	17.8 J	36	12	ug/kg	SW846 8270E
Anthracene	51.5	36	22	ug/kg	SW846 8270E
Benzo(a)anthracene	381	36	10	ug/kg	SW846 8270E
Benzo(a)pyrene	461	36	16	ug/kg	SW846 8270E
Benzo(b)fluoranthene	568	36	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	356	36	18	ug/kg	SW846 8270E
Benzo(k)fluoranthene	204	36	17	ug/kg	SW846 8270E
Carbazole	7.5 J	72	5.2	ug/kg	SW846 8270E
Chrysene	362	36	11	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	104	36	16	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	64.1 J	72	8.5	ug/kg	SW846 8270E
Fluoranthene	545	36	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	429	36	17	ug/kg	SW846 8270E
Phenanthrene	136	36	12	ug/kg	SW846 8270E
Pyrene	644	36	12	ug/kg	SW846 8270E
1,4-Dioxane	2.06 J	3.6	1.8	ug/kg	SW846 8270E BY SIM
Total TIC, Semi-Volatile	720 J			ug/kg	
alpha-Chlordane ^e	14.6	0.66	0.54	ug/kg	SW846 8081B
gamma-Chlordane ^f	21.2	0.66	0.30	ug/kg	SW846 8081B
Dieldrin ^e	4.1	0.66	0.46	ug/kg	SW846 8081B
4,4'-DDE ^f	6.8	0.66	0.58	ug/kg	SW846 8081B
4,4'-DDT ^g	2.7	0.66	0.59	ug/kg	SW846 8081B
Heptachlor ^f	3.2	0.66	0.57	ug/kg	SW846 8081B
Heptachlor epoxide ^e	3.0	0.66	0.47	ug/kg	SW846 8081B
Aluminum	4560	58		mg/kg	SW846 6010D
Barium	34.8	23		mg/kg	SW846 6010D
Beryllium	0.38	0.23		mg/kg	SW846 6010D
Calcium	8460	580		mg/kg	SW846 6010D
Chromium	10.9	1.2		mg/kg	SW846 6010D
Copper	15.4	2.9		mg/kg	SW846 6010D
Iron	10400	58		mg/kg	SW846 6010D
Lead	32.2	2.3		mg/kg	SW846 6010D
Magnesium	3060	580		mg/kg	SW846 6010D
Manganese	136	1.7		mg/kg	SW846 6010D
Mercury	0.038	0.030		mg/kg	SW846 7471B
Nickel	17.7	4.6		mg/kg	SW846 6010D
Vanadium	18.5	5.8		mg/kg	SW846 6010D
Zinc	46.4	5.8		mg/kg	SW846 6010D
ZIIIC	40.4	J.0		mg/ kg	244040 0010D

Summary of HitsJob Number: JD36084 Page 9 of 10

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 12/01/21 thru 12/02/21**Project:**

Collected:

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JD36084-9A	TT-SB-31-6.0-8.0					
No hits reported	in this sample.					
JD36084-10	TT-SB-32-7.0-9.0					
Benzo(a)anthrace Fluoranthene Pyrene 1,4-Dioxane Aluminum Arsenic Barium Beryllium Calcium Chromium Copper Iron Lead Magnesium Manganese Nickel Potassium Sodium Vanadium Zinc	ene	14.9 J 17.2 J 17.7 J 2.09 J 5170 2.7 48.3 0.46 1910 11.9 12.2 11500 19.4 2430 274 13.9 1270 2510 19.2 36.2	38 38 38 3.8 62 2.5 25 0.25 620 1.2 3.1 62 2.5 620 1.8 4.9 1200 1200 6.2 6.2	11 17 12 1.9	ug/kg ug/kg ug/kg mg/kg	SW846 8270E SW846 8270E SW846 8270E SW846 8270E BY SIM SW846 6010D
JD36084-10A	TT-SB-32-7.0-9.0					
No hits reported	in this sample.					
JD36084-11	TT-SB-33-4.5-6.5					
Acetone Acenaphthene Acenaphthylene Anthracene Benzo(a)anthrace Benzo(b)fluorant Benzo(g,h,i)pery Benzo(k)fluorant 1,1'-Biphenyl Carbazole	hene lene	17.0 27.8 J 90.9 146 746 965 985 593 361 5.5 J 15.7 J	9.9 35 35 35 35 35 35 35 35 71	4.1 12 18 22 10 16 16 18 17 4.8 5.1	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	SW846 8260D SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E SW846 8270E
Chrysene		702	35	11	ug/kg	SW846 8270E

Summary of Hits
Page 10 of 10

Job Number: JD36084 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/01/21 thru 12/02/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Dibenzo(a,h)anthracene	157	35	16	ug/kg	SW846 8270E
Dibenzofuran	34.7 J	71	14	ug/kg	SW846 8270E
Fluoranthene	1200	35	16	ug/kg	SW846 8270E
Fluorene	35.8	35	16	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	735	35	17	ug/kg	SW846 8270E
2-Methylnaphthalene	8.7 J	35	8.0	ug/kg	SW846 8270E
Naphthalene	23.7 J	35	10	ug/kg	SW846 8270E
Phenanthrene	282	35	12	ug/kg	SW846 8270E
Pyrene	1350	35	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	4020 J			ug/kg	
Aluminum	5120	58		mg/kg	SW846 6010D
Arsenic	3.2	2.3		mg/kg	SW846 6010D
Barium	35.8	23		mg/kg	SW846 6010D
Beryllium	0.37	0.23		mg/kg	SW846 6010D
Calcium	1760	580		mg/kg	SW846 6010D
Chromium	12.0	1.2		mg/kg	SW846 6010D
Copper	22.7	2.9		mg/kg	SW846 6010D
Iron	10000	58		mg/kg	SW846 6010D
Lead	45.0	2.3		mg/kg	SW846 6010D
Magnesium	2180	580		mg/kg	SW846 6010D
Manganese	167	1.7		mg/kg	SW846 6010D
Mercury	0.10	0.034		mg/kg	SW846 7471B
Nickel	20.8	4.6		mg/kg	SW846 6010D
Vanadium	16.2	5.8		mg/kg	SW846 6010D
Zinc	47.9	5.8		mg/kg	SW846 6010D

JD36084-11A TT-SB-33-4.5-6.5

No hits reported in this sample.

- (a) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. More than 40 % RPD for detected concentrations between the two GC columns.
- (b) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- (c) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.
- (d) Analysis performed at SGS Orlando, FL.
- (e) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. More than 40 % RPD for detected concentrations between the two GC columns.
- (f) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- (g) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time. Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

 Lab Sample ID:
 JD36084-1
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240355.D 1 12/04/21 14:01 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 5.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	19.1	10	4.2	ug/kg	
71-43-2	Benzene	ND	0.50	0.46	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	0.56	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/kg	
75-25-2	Bromoform	ND	5.0	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.77	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	2.0	0.54	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.0	0.62	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.46	ug/kg	
75-00-3	Chloroethane	ND	5.0	0.59	ug/kg	
67-66-3	Chloroform	ND	2.0	0.52	ug/kg	
74-87-3	Chloromethane	ND	5.0	2.0	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.66	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.70	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.56	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.0	0.42	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.55	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.73	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.0	0.47	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.0	0.66	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.84	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.61	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.48	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.48	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.46	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.46	ug/kg	
76-13-1	Freon 113	ND	5.0	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.0	2.1	ug/kg	

 $ND = Not detected \qquad MDL = M$

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36084-1
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.88	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.47	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.0	2.6	ug/kg		
100-42-5	Styrene	ND	2.0	0.40	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.58	ug/kg		
108-88-3	Toluene	ND	1.0	0.53	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.49	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.56	ug/kg		
79-01-6	Trichloroethene	ND	1.0	0.77	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.69	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.48	ug/kg		
	m,p-Xylene	ND	1.0	0.90	ug/kg		
95-47-6	o-Xylene	0.74	1.0	0.46	ug/kg	J	
1330-20-7	Xylene (total)	0.74	1.0	0.46	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	99%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	104%		75-1	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36084-1
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204086.D 1 12/06/21 19:24 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.2 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	98	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	32.0	37	13	ug/kg	J
208-96-8	Acenaphthylene	23.4	37	19	ug/kg	J
98-86-2	Acetophenone	ND	180	7.9	ug/kg	
120-12-7	Anthracene	91.4	37	22	ug/kg	
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	381	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	364	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	454	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	258	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	160	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	ND	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	28.4	73	5.3	ug/kg	J

ND = Not detected MDL = Met

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36084-1 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 **Percent Solids:** 90.5

Method: SW846 8270E SW846 3546 2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	381	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	86.3	37	16	ug/kg	
132-64-9	Dibenzofuran	16.7	73	15	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	73	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	8.6	ug/kg	
206-44-0	Fluoranthene	752	37	16	ug/kg	
86-73-7	Fluorene	26.9	37	17	ug/kg	J
118-74-1	Hexachlorobenzene	ND	73	9.3	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	311	37	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	37	8.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	ND	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	362	37	12	ug/kg	
129-00-0	Pyrene	801	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	38%		10-10	19%	

2-Fluorophenol 367-12-4 **38**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-24-6.5-8.5

 Lab Sample ID:
 JD36084-1
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	38%		10-105%		
118-79-6	2,4,6-Tribromophenol	47%		10-135%		
4165-60-0	Nitrobenzene-d5	36%		10-119%		
321-60-8	2-Fluorobiphenyl	43%		18-112%		
1718-51-0	Terphenyl-d14	46%		18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		3.22	160	ug/kg	J
	System artifact/aldol-condensa	tion	3.27	210	ug/kg	J
13798-23-7	Sulfur		7.11	170	ug/kg	JN
	Sulfur		8.91	190	ug/kg	
203-64-5	4H-Cyclopenta[def]phenanthre	ene	9.67	160	ug/kg	JN
	Unknown		10.06	150	ug/kg	J
	Anthracene dimethyl		10.53	190	ug/kg	J
	Unknown		10.65	180	ug/kg	J
	Unknown		10.70	170	ug/kg	J
10544-50-0	Cyclic octaatomic sulfur		10.88	3900	ug/kg	JN
	Unknown PAH substance		16.69	290	ug/kg	
	Total TIC, Semi-Volatile			5400	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-24-6.5-8.5

Lab Sample ID: JD36084-1 **Date Sampled: 12/01/21** SO - Soil Matrix: Date Received: 12/02/21 Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105390.D 1 12/22/21 07:06 CS 12/04/21 10:20 OP36957A E4M4895

Run #2

Initial Weight Run #1 30.2 g 1.0 ml Run #2

Final Volume

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 48% 10-107% 321-60-8 2-Fluorobiphenyl 44% 17-91% 1718-51-0 Terphenyl-d14 49% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-24-6.5-8.5

 Lab Sample ID:
 JD36084-1
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155527.D 1 12/10/21 05:07 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.5 3.5	7.9 2.0 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	46 % 33 %		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36084-1
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	1G172467.D	1	12/31/21 00:43	RK	12/17/21 14:30	OP37171	G1G5954
Run #2 b	1G172004.D	1	12/13/21 08:32	CP	12/06/21 11:35	OP36961	G1G5934

	Initial Weight	Final Volume
Run #1	16.9 g	10.0 ml
Run #2	15.5 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^c	1.9	0.65	0.54	ug/kg	
319-84-6	alpha-BHC	ND	0.65	0.53	ug/kg	
319-85-7	beta-BHC	ND	0.65	0.59	ug/kg	
319-86-8	delta-BHC	ND	0.65	0.63	ug/kg	
58-89-9	gamma-BHC (Lindane) ^c	2.3	0.65	0.48	ug/kg	
5103-71-9	alpha-Chlordane	2.8	0.65	0.53	ug/kg	
5103-74-2	gamma-Chlordane ^c	2.4	0.65	0.30	ug/kg	
60-57-1	Dieldrin ^c	1.1	0.65	0.45	ug/kg	
72-54-8	4,4'-DDD	5.8	0.65	0.60	ug/kg	
72-55-9	4,4'-DDE	5.7	0.65	0.57	ug/kg	
50-29-3	4,4'-DDT ^d	3.5	0.65	0.58	ug/kg	
72-20-8	Endrin	ND	0.65	0.51	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.65	0.51	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.65	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	0.65	0.38	ug/kg	
33213-65-9	Endosulfan-II	2.7	0.65	0.41	ug/kg	
76-44-8	Heptachlor	ND	0.65	0.56	ug/kg	
1024-57-3	Heptachlor epoxide ^c	0.84	0.65	0.46	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.52	ug/kg	
53494-70-5	Endrin ketone	ND	0.65	0.47	ug/kg	
8001-35-2	Toxaphene	ND	16	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	105%	125%	14-1	45 %	
877-09-8	Tetrachloro-m-xylene	100%	127%	14-1	45 %	
2051-24-3	Decachlorobiphenyl	87%	166%	10-1	97%	
2051-24-3	Decachlorobiphenyl	206% e	286% e	10-1	97%	

⁽a) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

⁽b) Had TBA cleanup. Confirmation run.

Page 2 of 2

Client Sample ID: TT-SB-24-6.5-8.5

 Lab Sample ID:
 JD36084-1
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8081B SW846 3546
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

(c) More than 40 % RPD for detected concentrations between the two GC columns.

(d) Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

(e) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-24-6.5-8.5

 Lab Sample ID:
 JD36084-1
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 RK7030.D
 1
 12/08/21 08:56
 RK
 12/06/21 11:35
 OP36962
 GRK182

Run #2

Initial Weight Final Volume
Run #1 15.5 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	105%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	105%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	67%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	177% a		10-1	72 %	

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-24-6.5-8.5

Lab Sample ID: JD36084-1 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4260	56	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	2.8	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	49.9	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.24	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.56	0.56	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	35300	1100	mg/kg	2	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Chromium	10.3	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.6	5.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	12.6	2.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	9130	56	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	87.1	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	7890	560	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	193	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.24	0.029	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁵
Nickel	17.2	4.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.56	0.56	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.1	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	15.1	5.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	48.5	5.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Instrument QC Batch: MA51564
(4) Prep QC Batch: MP30189
(5) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-24-6.5-8.5

Lab Sample ID: JD36084-1 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.23 90.5	0.23	mg/kg %	1 1	12/09/21 03:03 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

4.2

Report of Analysis

Client Sample ID: TT-SB-24-6.5-8.5

Lab Sample ID:JD36084-1ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82024.D 1 12/22/21 03:04 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume Run #1 1.98 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
					0 0	
PERFLUO	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
	ROOCTANESULFONAMIDO					
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
	ELOMER SULFONATES				_	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-24-6.5-8.5

Lab Sample ID:JD36084-1ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	85 %		40-140%
	13C5-PFPeA	88%		50-150 %
	13C5-PFHxA	90%		50-150 %
	13C4-PFHpA	92%		50-150 %
	13C8-PFOA	92%		50-150 %
	13C9-PFNA	92%		50-150 %
	13C6-PFDA	90%		50-150 %
	13C7-PFUnDA	87 %		40-140%
	13C2-PFDoDA	92%		40-140%
	13C2-PFTeDA	98%		30-130%
	13C3-PFBS	86%		50-150 %
	13C3-PFHxS	87 %		50-150 %
	13C8-PFOS	86%		50-150 %
	13C8-FOSA	59 %		30-130%
	d3-MeFOSAA	97%		40-140%
	d5-EtFOSAA	91%		40-140%
	13C2-6:2FTS	86%		50-150 %
	13C2-8:2FTS	88%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.2

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240356.D 1 12/04/21 14:22 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 6.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.1	3.7	ug/kg	
71-43-2	Benzene	ND	0.45	0.41	ug/kg	
74-97-5	Bromochloromethane	ND	4.5	0.51	ug/kg	
75-27-4	Bromodichloromethane	ND	1.8	0.39	ug/kg	
75-25-2	Bromoform	ND	4.5	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.5	0.69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.1	2.2	ug/kg	
75-15-0	Carbon disulfide	ND	1.8	0.48	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.8	0.56	ug/kg	
108-90-7	Chlorobenzene	ND	1.8	0.42	ug/kg	
75-00-3	Chloroethane	ND	4.5	0.53	ug/kg	
67-66-3	Chloroform	ND	1.8	0.47	ug/kg	
74-87-3	Chloromethane	ND	4.5	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.8	0.59	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.8	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	1.8	0.51	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.91	0.38	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.91	0.49	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.91	0.45	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.91	0.45	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.5	0.66	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.91	0.45	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.91	0.43	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.91	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.91	0.76	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.91	0.55	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.8	0.43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.8	0.43	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.8	0.41	ug/kg	
100-41-4	Ethylbenzene	ND	0.91	0.41	ug/kg	
76-13-1	Freon 113	ND	4.5	2.4	ug/kg	
591-78-6	2-Hexanone	ND	4.5	1.9	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Report of Analysis

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.8	1.3	ug/kg	{	
79-20-9	Methyl Acetate	ND	4.5	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.8	0.79	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.91	0.42	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.5	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.5	2.4	ug/kg		
100-42-5	Styrene	ND	1.8	0.36	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.8	0.54	ug/kg		
127-18-4	Tetrachloroethene	ND	1.8	0.52	ug/kg		
108-88-3	Toluene	ND	0.91	0.48	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.8	0.44	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.8	0.50	ug/kg		
79-01-6	Trichloroethene	ND	0.91	0.69	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.5	0.62	ug/kg		
75-01-4	Vinyl chloride	ND	1.8	0.44	ug/kg		
	m, p-Xylene	ND	0.91	0.81	ug/kg		
95-47-6	o-Xylene	ND	0.91	0.41	ug/kg		
1330-20-7	Xylene (total)	ND	0.91	0.41	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	101%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	103%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204077.D 1 12/06/21 15:12 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 31.0 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	21.8	36	12	ug/kg	J
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	48.0	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	97.6	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	80.3	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	99.6	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	48.4	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	39.9	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	18.7	72	5.2	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	72	14	ug/kg	
218-01-9	Chrysene	91.2	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	29.0	36	16	ug/kg	J
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	72	8.5	ug/kg	
206-44-0	Fluoranthene	221	36	16	ug/kg	
86-73-7	Fluorene	20.6	36	17	ug/kg	J
118-74-1	Hexachlorobenzene	ND	72	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	76.4	36	17	ug/kg	
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	208	36	12	ug/kg	
129-00-0	Pyrene	187	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
		H. C. C.				

367-12-4 2-Fluorophenol 52% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	50 %		10-105%		
118-79-6	2,4,6-Tribromophenol	59 %		10-135%		
4165-60-0	Nitrobenzene-d5	48%		10-119%		
321-60-8	2-Fluorobiphenyl	54 %		18-112%		
1718-51-0	Terphenyl-d14	59 %		18-125%		
CAS No.	Tentatively Identified Comp	R.T.	Est. Conc.	Units	Q	
	System artifact		3.22	200	ug/kg	J
	System artifact/aldol-condensa	ation	3.27	260	ug/kg	
	U nknown		12.97	330	ug/kg	
	Unknown		20.31	350	ug/kg	J
	Total TIC, Semi-Volatile			680	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4M105396.D 1 12/22/21 09:09 CS 12/04/21 10:20 OP36957A E4M4895

Run #2

Initial Weight Final Volume
Run #1 31.0 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 60%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 55%
 17-91%

 1718-51-0
 Terphenyl-d14
 65%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155528.D 1 12/10/21 05:34 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.3 3.3	7.4 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	46 % 55 %	10-125% 10-125%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171967.D 1 12/12/21 19:30 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 16.9 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^a	ND	0.66	0.55	ug/kg	
319-84-6	alpha-BHC ^a	ND	0.66	0.54	ug/kg	
319-85-7	beta-BHC a	ND	0.66	0.60	ug/kg	
319-86-8	delta-BHC a	ND	0.66	0.64	ug/kg	
58-89-9	gamma-BHC (Lindane) ^a	ND	0.66	0.49	ug/kg	
5103-71-9	alpha-Chlordane ^a	ND	0.66	0.54	ug/kg	
5103-74-2	gamma-Chlordane ^a	ND	0.66	0.30	ug/kg	
60-57-1	Dieldrin ^a	ND	0.66	0.46	ug/kg	
72-54-8	4,4'-DDD ^a	ND	0.66	0.61	ug/kg	
72-55-9	4,4'-DDE ^a	ND	0.66	0.58	ug/kg	
50-29-3	4,4'-DDT a	ND	0.66	0.59	ug/kg	
72-20-8	Endrin ^a	ND	0.66	0.52	ug/kg	
1031-07-8	Endosulfan sulfate a	ND	0.66	0.52	ug/kg	
7421-93-4	Endrin aldehyde ^a	ND	0.66	0.38	ug/kg	
959-98-8	Endosulfan-I a	ND	0.66	0.38	ug/kg	
33213-65-9	Endosulfan-II ^a	ND	0.66	0.41	ug/kg	
76-44-8	Heptachlor ^a	ND	0.66	0.57	ug/kg	
1024-57-3	Heptachlor epoxide ^a	ND	0.66	0.47	ug/kg	
72-43-5	Methoxychlor a	ND	1.3	0.53	ug/kg	
53494-70-5	Endrin ketone	ND	0.66	0.48	ug/kg	
8001-35-2	Toxaphene	ND	17	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	59 %	14-145%			
877-09-8	Tetrachloro-m-xylene	58 %	14-145%			
2051-24-3	Decachlorobiphenyl	49%	10-197%			
2051-24-3	Decachlorobiphenyl	55 %	10-197%			

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-25-7.0-9.0

 Lab Sample ID:
 JD36084-2
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7031.D 1 12/08/21 09:13 RK 12/06/21 11:35 OP36962 GRK182

Run #2

Run #1 Initial Weight Final Volume 16.9 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	33	15	ug/kg	
11104-28-2	Aroclor 1221	ND	33	21	ug/kg	
11141-16-5	Aroclor 1232	ND	33	21	ug/kg	
53469-21-9	Aroclor 1242	ND	33	14	ug/kg	
12672-29-6	Aroclor 1248	ND	33	30	ug/kg	
11097-69-1	Aroclor 1254	ND	33	18	ug/kg	
11096-82-5	Aroclor 1260	ND	33	14	ug/kg	
11100-14-4	Aroclor 1268	ND	33	14	ug/kg	
37324-23-5	Aroclor 1262	ND	33	22	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	nits	
877-09-8	Tetrachloro-m-xylene	63 %		24 -1	152 %	
877-09-8	Tetrachloro-m-xylene	60%		24 -1	l 52 %	
2051-24-3	Decachlorobiphenyl	35 %		10 -1	1 72 %	
2051-24-3	Decachlorobiphenyl	66%		10-1	1 72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25-7.0-9.0

Metals Analysis

Lab Sample ID: JD36084-2 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

, , , ,

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6110	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Arsenic	5.2	2.3	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Barium	37.0	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.38	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Calcium	1080	580	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Chromium	11.7	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.8	5.8	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Copper	37.5	2.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	11200	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	55.2	2.3	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Magnesium	2180	580	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	239	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.079	0.034	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁵
Nickel	14.5	4.6	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Vanadium	17.4	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	50.9	5.8	mg/kg	1	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Instrument QC Batch: MA51564
(4) Prep QC Batch: MP30189
(5) Prep QC Batch: MP30190

JD36084

Page 1 of 1

Client Sample ID: TT-SB-25-7.0-9.0

Lab Sample ID: JD36084-2 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	1.9	0.22	mg/kg	1	12/09/21 03:10	EB	SW846 9012B/LACHAT
Solids, Percent	89.1		%	1	12/05/21 15:00	BG	SM2540 G 18TH ED MOD

4.3

JD36084

Client Sample ID: TT-SB-25-7.0-9.0

Lab Sample ID:JD36084-2ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82025.D 1 12/22/21 03:22 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume

Run #1 2.01 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
DEDEI IIOI	ROOCTANESULFONAMIDE	C				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
734-31-0	TTOSA	ND	0.30	0.20	ug/ kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
					0 0	

 $ND = Not detected \qquad MDL = Not detected$

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-25-7.0-9.0 Lab Sample ID: JD36084-2A

Lab Sample ID:JD36084-2ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	85%		40-140%
	13C5-PFPeA	88%		50-150 %
	13C5-PFHxA	91%		50-150 %
	13C4-PFHpA	93%		50-150 %
	13C8-PFOA	93%		50-150 %
	13C9-PFNA	92%		50-150 %
	13C6-PFDA	95 %		50-150 %
	13C7-PFUnDA	94%		40-140%
	13C2-PFDoDA	95 %		40-140%
	13C2-PFTeDA	97 %		30-130%
	13C3-PFBS	88%		50-150 %
	13C3-PFHxS	87 %		50-150 %
	13C8-PFOS	88%		50-150 %
	13C8-FOSA	94%		30-130%
	d3-MeFOSAA	86%		40-140%
	d5-EtFOSAA	83%		40-140%
	13C2-6:2FTS	85 %		50-150 %
	13C2-8:2FTS	90%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.4

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240368.D 1 12/04/21 18:26 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 5.9 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	23.6	9.4	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.53	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.72	ug/kg	
78-93-3	2-Butanone (MEK)	4.5	9.4	2.3	ug/kg	J
75-15-0	Carbon disulfide	0.81	1.9	0.50	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.56	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.53	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.94	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.94	0.52	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.94	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.94	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.69	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.94	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.94	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.94	0.62	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.94	0.79	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.94	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	0.90	0.94	0.43	ug/kg	J
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

4.5

Report of Analysis

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	8.0	1.9	1.3	ug/kg	í	
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.83	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.57	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.55	ug/kg		
108-88-3	Toluene	ND	0.94	0.50	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.94	0.72	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.65	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m, p-Xylene	1.3	0.94	0.85	ug/kg		
95-47-6	o-Xylene	0.95	0.94	0.43	ug/kg		
1330-20-7	Xylene (total)	2.3	0.94	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	106%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	107%		75-13	31%		
2037-26-5	Toluene-D8	87%		81-12	21%		
460-00-4	4-Bromofluorobenzene	97%		60-14	11 %		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est.	Conc.	Units	Q
496-11-7	Indane		9.96	280		ug/kg	JN
	C4 alkyl benzene		10.22	97		ug/kg	J
	C4 alkyl benzene		10.54	97		ug/kg	J
	alkane		10.92	130		ug/kg	J
	C5 alkyl benzene		10.99	82		ug/kg	J
	C5 alkyl benzene		11.22	110		ug/kg	J
	1H-indene-dihydro-dimethyl - i	isome	11.39	69		ug/kg	
	alkane		11.45	190		ug/kg	J
	Naphthalene, tetrahydro -methy		11.68	130		ug/kg	J
	1H-indene-dihydro-dimethyl - i	isome	11.78	120		ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis Page 3 of 3

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	alkane	11.90	170	ug/kg	J
	alkene	12.02	100	ug/kg	
	Naphthalene, tetrahydro-dimethyl -isomer	12.18	71	ug/kg	
	alkane	12.54	120	ug/kg	
	Naphthalene, methyl-isomer	13.11	260	ug/kg	
	Total TIC, Volatile		2026	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

4.5

Report of Analysis

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204089.D 1 12/06/21 20:40 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	3590	37	13	ug/kg	
208-96-8	Acenaphthylene	25.6	37	19	ug/kg	J
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	153	37	22	ug/kg	
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	96.4	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	74.5	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	99.2	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	55.6	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	30.5	37	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	26.3	73	5.0	ug/kg	J
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	96.6	73	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-26-6.0-8.0

Lab Sample ID: JD36084-3 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 **Percent Solids:** 89.8

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	98.9	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	32.6	37	16	ug/kg	J
132-64-9	Dibenzofuran	1570	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	68.6	73	8.5	ug/kg	J
206-44-0	Fluoranthene	415	37	16	ug/kg	
86-73-7	Fluorene	1350	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	76.1	37	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	446	37	8.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	372	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	1810	37	12	ug/kg	
129-00-0	Pyrene	328	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 48% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

4.5

Report of Analysis

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	45%		10-105%		
118-79-6	2,4,6-Tribromophenol	52 %		10-135%		
4165-60-0	Nitrobenzene-d5	45%		10-119%		
321-60-8	2-Fluorobiphenyl	51%		18-112%		
1718-51-0	Terphenyl-d14	51%		18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact		3.22	190	ug/kg	J
	System artifact/aldol-condensa	tion	3.27	750	ug/kg	J
	Pyridine, -dimethyl-		3.96	310	ug/kg	J
496-11-7	Indane		4.66	310	ug/kg	JN
	Naphthalene tetrahydro-methyl	l	5.59	190	ug/kg	J
	Alkane		5.76	350	ug/kg	J
	Alkane		5.88	190	ug/kg	J
90-12-0	Naphthalene, 1-methyl-		6.04	820	ug/kg	JN
	Naphthalene dimethyl		6.45	410	ug/kg	J
	Naphthalene dimethyl		6.52	440	ug/kg	J
	Alkane		6.58	270	ug/kg	J
	Naphthalene dimethyl		6.62	280	ug/kg	J
	Alkane		7.56	410	ug/kg	J
	[1,1'-Biphenyl]-carboxaldehyd	e	7.59	180	ug/kg	J
	Alkane		7.92	790	ug/kg	J
132-65-0	Dibenzothiophene		8.49	210	ug/kg	JN
	Alkane		9.30	180	ug/kg	
	Anthracene methyl		9.54	210	ug/kg	
203-64-5	4H-Cyclopenta[def]phenanthre	ene	9.67	220	ug/kg	
	Alkane		10.08	250	ug/kg	
	Alkane		10.65	190	ug/kg	
	Unknown		10.71	190	ug/kg	J
10544-50-0	Cyclic octaatomic sulfur		10.88	3300	ug/kg	
	Unknown		10.99	220	ug/kg	
	Alkane		14.07	200	ug/kg	
	Alkane		14.82	230	ug/kg	
	Unknown		18.08	230	ug/kg	
	Total TIC, Semi-Volatile			10580	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105391.D 1 12/22/21 07:26 CS 12/04/21 10:20 OP36957A E4M4895

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 64%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 53%
 17-91%

 1718-51-0
 Terphenyl-d14
 58%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

4.5

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155529.D 1 12/10/21 06:03 RK 12/07/21 10:55 OP36933 GOA5500

Report of Analysis

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.5 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	38% 30%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G172468.D	1	12/31/21 01:01	RK	12/17/21 14:30	OP37171	G1G5954
Run #2 b	1G172005.D	1	12/13/21 08:50	CP	12/06/21 11:35	OP36961	G1G5934

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.72	0.60	ug/kg	
319-84-6	alpha-BHC ^c	1.9	0.72	0.59	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane ^c	2.0	0.72	0.33	ug/kg	
60-57-1	Dieldrin	ND	0.72	0.50	ug/kg	
72-54-8	4,4'-DDD	17.9	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	5.4	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	ND	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.72	0.51	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.57	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	118%	112%	14-1	45%	
877-09-8	Tetrachloro-m-xylene	106%	106%	14-1	45%	
2051-24-3	Decachlorobiphenyl	101%	104%	10-1	97%	
2051-24-3	Decachlorobiphenyl	149%	137%	10-1	97%	

⁽a) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

4.5

⁽b) Had TBA cleanup. Confirmation run.

Page 2 of 2

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8081B SW846 3546
 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

(c) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-26-6.0-8.0

 Lab Sample ID:
 JD36084-3
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7032.D 1 12/08/21 09:29 RK 12/06/21 11:35 OP36962 GRK182

Run #2

Run #1 15.4 g Final Volume
10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	111%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	81%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	56 %		10-1	72 %	
2051-24-3	Decachlorobiphenyl	97%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-26-6.0-8.0

Lab Sample ID: JD36084-3 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4270	58	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 NI	0	SW846 3050B ⁴
Arsenic	3.9	2.3	mg/kg	1	12/06/21	12/07/21 NI	•	SW846 3050B ⁴
Barium	81.7	23	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.28	0.23	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Calcium	29800	1200	mg/kg	2	12/06/21	12/08/21 NI	0	SW846 3050B ⁴
Chromium	9.2	1.2	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.8	5.8	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Copper	10.7	2.9	mg/kg	1	12/06/21	12/07/21 NI	0	SW846 3050B ⁴
Iron	9130	58	mg/kg	1	12/06/21	12/07/21 NI	•	SW846 3050B ⁴
Lead	53.6	2.3	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Magnesium	8370	580	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Manganese	582	1.7	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.060	0.031	mg/kg	1	12/06/21	12/06/21 SE	SW846 7471B ¹	SW846 7471B ⁵
Nickel	12.6	4.6	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Vanadium	21.4	5.8	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴
Zinc	77.0	5.8	mg/kg	1	12/06/21	12/07/21 NI	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51535 (2) Instrument QC Batch: MA51558 (3) Instrument QC Batch: MA51564 (4) Prep QC Batch: MP30189 (5) Prep QC Batch: MP30190

JD36084

Page 1 of 1

Client Sample ID: TT-SB-26-6.0-8.0

Lab Sample ID: JD36084-3 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

RL = Reporting Limit

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.23 89.8	0.23	mg/kg %	1 1	12/09/21 03:12 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Client Sample ID: TT-SB-26-6.0-8.0

Lab Sample ID:JD36084-3ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a 2Q82026.D 1 12/22/21 03:41 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume
Run #1 2.01 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.28	ug/kg	
	ROALKYLSULFONIC ACIDS					
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.28	ug/kg	
	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.28	ug/kg	
	ROOCTANESULFONAMIDO					
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.6

Page 2 of 2

Client Sample ID: TT-SB-26-6.0-8.0

Lab Sample ID:JD36084-3ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.8

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	86%		40-140%
	13C5-PFPeA	89 %		50-150 %
	13C5-PFHxA	92%		50-150 %
	13C4-PFHpA	94%		50-150 %
	13C8-PFOA	93%		50-150 %
	13C9-PFNA	95 %		50-150 %
	13C6-PFDA	95 %		50-150 %
	13C7-PFUnDA	91%		40-140%
	13C2-PFDoDA	95 %		40-140%
	13C2-PFTeDA	99%		30-130%
	13C3-PFBS	89 %		50-150 %
	13C3-PFHxS	88 %		50-150 %
	13C8-PFOS	89 %		50-150 %
	13C8-FOSA	89 %		30-130%
	d3-MeFOSAA	89 %		40-140%
	d5-EtFOSAA	86%		40-140%
	13C2-6:2FTS	86%		50-150 %
	13C2-8:2FTS	93%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.3	3.8	ug/kg	
71-43-2	Benzene	ND	0.46	0.42	ug/kg	
74-97-5	Bromochloromethane	ND	4.6	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.6	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.6	0.71	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.3	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.57	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.6	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	4.6	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.61	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.64	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.93	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.93	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.93	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.93	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.6	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.93	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.93	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.93	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.93	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.93	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.42	ug/kg	
100-41-4	Ethylbenzene	ND	0.93	0.42	ug/kg	
76-13-1	Freon 113	ND	4.6	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.6	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg	į	
79-20-9	Methyl Acetate	ND	4.6	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.81	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.93	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.6	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.6	2.4	ug/kg		
100-42-5	Styrene	ND	1.9	0.37	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.54	ug/kg		
108-88-3	Toluene	ND	0.93	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.6	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.6	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.45	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.51	ug/kg		
79-01-6	Trichloroethene	ND	0.93	0.71	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.6	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.93	0.83	ug/kg		
95-47-6	o-Xylene	ND	0.93	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.93	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	101%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	105%		75-1	31%		
2037-26-5	Toluene-D8	89 %		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 F204078.D 1 12/06/21 16:02 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	36	12	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	ND	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	ND	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	ND	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	72	5.2	ug/kg	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID: JD36084-4 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.7

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	72	14	ug/kg	
218-01-9	Chrysene	ND	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	72	8.5	ug/kg	
206-44-0	Fluoranthene	ND	36	16	ug/kg	
86-73-7	Fluorene	ND	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	36	17	ug/kg	
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	ND	36	12	ug/kg	
129-00-0	Pyrene	ND	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluoronhenol	40%		10-1	09%	

2-Fluorophenol 367-12-4 **40**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6	Phenol-d5 2,4,6-Tribromophenol	39 % 46 %		10-105% 10-135%		
4165-60-0	Nitrobenzene-d5	37%		10-119%		
321-60-8	2-Fluorobiphenyl	43%		18-112%		
1718-51-0	Terphenyl-d14	47%		18-125%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	System artifact		3.22	160	ug/kg	J
	System artifact/aldol-condensa	3.27	190	ug/kg	J	
	Unknown		12.98	370	ug/kg	J
	Total TIC, Semi-Volatile			370	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID: JD36084-4 **Date Sampled:** 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105421.D 1 12/23/21 00:18 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Final Volume Initial Weight Run #1 30.8 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **50**% 10-107% 321-60-8 2-Fluorobiphenyl 44% 17-91% 1718-51-0 Terphenyl-d14 51% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155530.D 1 12/10/21 06:31 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.7 3.7	8.2 2.1 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	21% 17%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171969.D 1 12/12/21 20:06 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 15.0 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^a	ND	0.74	0.61	ug/kg	
319-84-6	alpha-BHC ^a	ND	0.74	0.60	ug/kg	
319-85-7	beta-BHC a	ND	0.74	0.67	ug/kg	
319-86-8	delta-BHC ^a	ND	0.74	0.71	ug/kg	
58-89-9	gamma-BHC (Lindane) a	ND	0.74	0.55	ug/kg	
5103-71-9	alpha-Chlordane ^a	ND	0.74	0.60	ug/kg	
5103-74-2	gamma-Chlordane a	ND	0.74	0.34	ug/kg	
60-57-1	Dieldrin ^a	ND	0.74	0.51	ug/kg	
72-54-8	4,4'-DDD a	ND	0.74	0.68	ug/kg	
72-55-9	4,4'-DDE ^a	ND	0.74	0.65	ug/kg	
50-29-3	4,4'-DDT a	ND	0.74	0.66	ug/kg	
72-20-8	Endrin ^a	ND	0.74	0.58	ug/kg	
1031-07-8	Endosulfan sulfate a	ND	0.74	0.58	ug/kg	
7421-93-4	Endrin aldehyde ^a	ND	0.74	0.42	ug/kg	
959-98-8	Endosulfan-I a	ND	0.74	0.43	ug/kg	
33213-65-9	Endosulfan-II ^a	ND	0.74	0.46	ug/kg	
76-44-8	Heptachlor ^a	ND	0.74	0.64	ug/kg	
1024-57-3	Heptachlor epoxide ^a	ND	0.74	0.52	ug/kg	
72-43-5	Methoxychlor a	ND	1.5	0.59	ug/kg	
53494-70-5	Endrin ketone	ND	0.74	0.54	ug/kg	
8001-35-2	Toxaphene	ND	19	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	129%		14-1	45 %	
877-09-8	Tetrachloro-m-xylene	130%		14-1	45 %	
2051-24-3	Decachlorobiphenyl	115%		10-1	97%	
2051-24-3	Decachlorobiphenyl	128%		97%		

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

 Lab Sample ID:
 JD36084-4
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7033.D 1 12/08/21 09:46 RK 12/06/21 11:35 OP36962 GRK182

Run #2

Run #1 Initial Weight Final Volume 15.0 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	ND ND ND ND ND ND ND	37 37 37 37 37 37	17 23 24 15 33 20	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
11100-14-4 37324-23-5 CAS No.	Aroclor 1268 Aroclor 1262 Surrogate Recoveries	ND ND Run# 1	37 37 Run# 2	16 24 Limi	ug/kg ug/kg	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	146% 142% 83% 124%		24-15 24-15 10-17 10-17	52% 72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID: JD36084-4 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	7040	59	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	3.2	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	35.1	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.52	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.59	0.59	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	1120	590	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	12.7	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.9	5.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	11.3	2.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	11900	59	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	25.0	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	2080	590	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	232	1.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	< 0.029	0.029	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	13.4	4.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.59	0.59	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	21.1	5.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	35.8	5.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535 (2) Instrument QC Batch: MA51558 (3) Prep QC Batch: MP30189 (4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID: JD36084-4 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.23 89.7	0.23	mg/kg %	1 1	12/09/21 03:13 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID: JD36084-4A **Date Sampled:** 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.7

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch Analyzed** By **Prep Date Prep Batch** F:S2Q1159 Run #1 a 2Q82027.D 1 12/22/21 03:59 AFL 12/13/21 09:00 F:OP88800

Run #2

Initial Weight Final Volume Run #1 2.02 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOROALKYLCARBOXYLIC ACIDS									
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.28	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.55	0.28	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.28	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.55	0.28	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.55	0.28	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.55	0.28	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.28	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.55	0.28	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.28	ug/kg				
PERFLUOI	ROALKYLSULFONIC ACIDS	S							
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.28	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.28	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.28	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	0.35	0.55	0.28	ug/kg	J			
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.28	ug/kg				
PERFLUOI	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.55	0.28	ug/kg				
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg				
FLUOROTI	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg ug/kg				
20100-21-4	o.a i individumei sumunate	ND	1.1	0.20	ug/ ng				

ND = Not detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-27-5.0-7.0

Lab Sample ID:JD36084-4ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	82%		40-140%
	13C5-PFPeA	85 %		50-150 %
	13C5-PFHxA	88%		50-150 %
	13C4-PFHpA	91%		50-150 %
	13C8-PFOA	89 %		50-150 %
	13C9-PFNA	90%		50-150 %
	13C6-PFDA	93%		50-150 %
	13C7-PFUnDA	89 %		40-140%
	13C2-PFDoDA	91%		40-140%
	13C2-PFTeDA	93%		30-130%
	13C3-PFBS	83 %		50-150 %
	13C3-PFHxS	85 %		50-150 %
	13C8-PFOS	87 %		50-150 %
	13C8-FOSA	88%		30-130%
	d3-MeFOSAA	68 %		40-140%
	d5-EtFOSAA	69 %		40-140%
	13C2-6:2FTS	81%		50-150 %
	13C2-8:2FTS	87%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SDUP-02

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240358.D 1 12/04/21 15:02 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 6.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	14.9	9.1	3.8	ug/kg	
71-43-2	Benzene	ND	0.45	0.41	ug/kg	
74-97-5	Bromochloromethane	ND	4.5	0.51	ug/kg	
75-27-4	Bromodichloromethane	ND	1.8	0.39	ug/kg	
75-25-2	Bromoform	ND	4.5	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.5	0.69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.1	2.2	ug/kg	
75-15-0	Carbon disulfide	ND	1.8	0.49	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.8	0.56	ug/kg	
108-90-7	Chlorobenzene	ND	1.8	0.42	ug/kg	
75-00-3	Chloroethane	ND	4.5	0.54	ug/kg	
67-66-3	Chloroform	ND	1.8	0.47	ug/kg	
74-87-3	Chloromethane	ND	4.5	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.8	0.60	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.8	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	1.8	0.51	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.91	0.38	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.91	0.50	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.91	0.45	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.91	0.45	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.5	0.66	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.91	0.45	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.91	0.43	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.91	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.91	0.76	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.91	0.55	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.8	0.43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.8	0.43	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.8	0.41	ug/kg	
100-41-4	Ethylbenzene	ND	0.91	0.41	ug/kg	
76-13-1	Freon 113	ND	4.5	2.4	ug/kg	
591-78-6	2-Hexanone	ND	4.5	1.9	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.8	1.3	ug/kg	{	
79-20-9	Methyl Acetate	ND	4.5	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.8	0.79	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.91	0.43	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.5	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.5	2.4	ug/kg		
100-42-5	Styrene	ND	1.8	0.36	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.8	0.54	ug/kg		
127-18-4	Tetrachloroethene	ND	1.8	0.53	ug/kg		
108-88-3	Toluene	ND	0.91	0.48	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.8	0.44	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.8	0.50	ug/kg		
79-01-6	Trichloroethene	ND	0.91	0.69	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.5	0.62	ug/kg		
75-01-4	Vinyl chloride	ND	1.8	0.44	ug/kg		
	m,p-Xylene	ND	0.91	0.81	ug/kg		
95-47-6	o-Xylene	ND	0.91	0.42	ug/kg		
1330-20-7	Xylene (total)	ND	0.91	0.42	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	102%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	105%		75-1	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SDUP-02

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204090.D 1 12/06/21 21:05 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	53.5	36	12	ug/kg	
208-96-8	Acenaphthylene	91.0	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	303	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	1780	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	1560	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	1940	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	892	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	690	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	45.3	72	5.2	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Date Sampled: 12/01/21

4.9

Report of Analysis

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	72	14	ug/kg	
218-01-9	Chrysene	1700	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	281	36	16	ug/kg	
132-64-9	Dibenzofuran	24.5	72	15	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	72	8.5	ug/kg	
206-44-0	Fluoranthene	3090	36	16	ug/kg	
86-73-7	Fluorene	45.7	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1110	36	17	ug/kg	
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	10.1	36	10	ug/kg	J
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	1050	36	12	ug/kg	
129-00-0	Pyrene	3030	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 47% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5 Matrix: SO - Soil

Method: SW846 8270E SW846 3546

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Date Received: 12/02/21 Percent Solids: 90.3

Date Sampled: 12/01/21

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	46%		10-105%		
118-79-6	2,4,6-Tribromophenol	59 %		10-135%		
4165-60-0	Nitrobenzene-d5	43%		10-119%		
321-60-8	2-Fluorobiphenyl	53 %		18-112%		
1718-51-0	Terphenyl-d14	55 %		18-125 %		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
	System artifact	3.22	180	ug/kg	J	
		System artifact/aldol-condensation			ug/kg	
	Sulfur		8.93	200	ug/kg	
	Anthracene methyl		9.50	250	ug/kg	
	Phenanthrene methyl		9.54	320	ug/kg	J
203-64-5	4H-Cyclopenta[def]phenanthre	ene	9.68	500	ug/kg	JN
	Phenanthrene methyl		9.73	280	ug/kg	J
	Naphthalene phenyl		10.06	380	ug/kg	J
	Phenanthrene dimethyl		10.54	300	ug/kg	J
	Unknown		10.59	170	ug/kg	J
10544-50-0	Cyclic octaatomic sulfur		10.89	2900	ug/kg	JN
	11H-Benzofluorene		11.98	230	ug/kg	
	11H-Benzofluorene		12.13	160	ug/kg	
	Unknown ketone		13.08	170	ug/kg	J
	Benzonaphthothiophene		13.32	150	ug/kg	J
	Unknown		13.40	200	ug/kg	J
	Unknown		14.10	150	ug/kg	J
	Chrysene methyl		14.81	190	ug/kg	J
	Unknown PAH substance		16.38	400	ug/kg	J
	Unknown PAH substance		16.72	1100	ug/kg	J
	Unknown PAH substance		18.70	360	ug/kg	J
	Unknown PAH substance		19.10	290	ug/kg	J
	Unknown PAH substance		19.15	150	ug/kg	J
	Unknown PAH substance		19.51	210	ug/kg	
	Total TIC, Semi-Volatile			9060	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105392.D 1 12/22/21 07:47 CS 12/04/21 10:20 OP36957A E4M4895

Run #2

Final Volume Initial Weight 1.0 ml

Run #1 30.6 g

Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **58**% 10-107% 321-60-8 2-Fluorobiphenyl **53**% 17-91% 1718-51-0 Terphenyl-d14 63% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Client Sample ID: SDUP-02

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155531.D 1 12/10/21 06:59 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume Run #1 16.7 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.3 3.3	7.4 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	55% 42%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SDUP-02

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

DF File ID **Analyzed** By **Prep Date Prep Batch Analytical Batch** 12/31/21 01:19 RK Run #1 a 1G172469.D 1 12/17/21 14:30 OP37171 G1G5954 Run #2 b OP36961 G1G5934 1G172006.D 1 12/13/21 09:08 CP 12/06/21 11:35

	Initial Weight	Final Volume
Run #1	16.2 g	10.0 ml
Run #2	15.6 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.68	0.56	ug/kg	
319-84-6	alpha-BHC	ND	0.68	0.56	ug/kg	
319-85-7	beta-BHC	ND	0.68	0.62	ug/kg	
319-86-8	delta-BHC	ND	0.68	0.66	ug/kg	
58-89-9	gamma-BHC (Lindane) ^c	2.1	0.68	0.50	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.68	0.55	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.68	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.68	0.47	ug/kg	
72-54-8	4,4'-DDD	3.2	0.68	0.63	ug/kg	
72-55-9	4,4'-DDE	3.1	0.68	0.60	ug/kg	
50-29-3	4,4'-DDT	ND	0.68	0.61	ug/kg	
72-20-8	Endrin	ND	0.68	0.53	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.68	0.53	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.68	0.39	ug/kg	
959-98-8	Endosulfan-I	ND	0.68	0.39	ug/kg	
33213-65-9	Endosulfan-II	ND	0.68	0.43	ug/kg	
76-44-8	Heptachlor	ND	0.68	0.59	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.68	0.48	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.54	ug/kg	
53494-70-5	Endrin ketone	ND	0.68	0.49	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	45%	57 %	14-1	45 %	
877-09-8	Tetrachloro-m-xylene	42%	58 %	14-1	45 %	
2051-24-3	Decachlorobiphenyl	33%	53 %	10-1	97%	
2051-24-3	Decachlorobiphenyl	63%	82 %	10-1	97%	

- (a) Had TBA cleanup. Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- (b) Had TBA cleanup. Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

(c) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.9

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

 Lab Sample ID:
 JD36084-5
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7034.D 1 12/08/21 10:02 RK 12/06/21 11:35 OP36962 GRK182

Run #2

Run #1 Initial Weight Final Volume 15.6 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	17	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	23	ug/kg	
53469-21-9	Aroclor 1242	ND	35	15	ug/kg	
12672-29-6	Aroclor 1248	ND	35	32	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	40%		24-1	.52%	
877-09-8	Tetrachloro-m-xylene	39 %		24-1	52%	
2051-24-3	Decachlorobiphenyl	26%		10-1	72%	
2051-24-3	Decachlorobiphenyl	45%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5 Matrix: SO - Soil

Date Sampled: 12/01/21 Date Received: 12/02/21 Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4840	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic	3.5	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Barium	71.5	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Beryllium	0.29	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cadmium	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Calcium	25100	1200	mg/kg	2	12/06/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Chromium	12.8	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Cobalt	< 5.8	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Copper	15.4	2.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Iron	9810	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	115	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	6320	580	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	195	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.13	0.029	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁵
Nickel	16.7	4.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Silver	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Vanadium	15.1	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	69.4	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51535 (2) Instrument QC Batch: MA51558 (3) Instrument QC Batch: MA51564 (4) Prep QC Batch: MP30189 (5) Prep QC Batch: MP30190

SO - Soil

Report of Analysis

Page 1 of 1

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5

Date Sampled: 12/01/21 Date Received: 12/02/21 Percent Solids: 90.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Matrix:

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	< 0.23	0.23	mg/kg	1	12/09/21 03:14	EB	SW846 9012B/LACHAT
Solids. Percent	90.3		%	1	12/05/21 15:00	BG	SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: SDUP-02 Lab Sample ID: JD36084-5A **Date Sampled:** 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 90.3

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S2Q1159 Run #1 a 2Q82028.D 1 12/22/21 04:18 AFL 12/13/21 09:00 F:OP88800

Run #2

Initial Weight Final Volume Run #1 2.00 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.28	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	5				
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.28	ug/kg	
DEDELLION		ACETIC AC	TIDE			
2355-31-9	ROOCTANESULFONAMIDO MeFOSAA	ND	1.1	0.55	/l	
2991-50-6	EtFOSAA EtFOSAA	ND ND	1.1	0.55 0.55	ug/kg	
2991-30-0	EIFUSAA	ND	1.1	0.55	ug/kg	
	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: SDUP-02
Lab Sample ID: JD36084-5A Date Sampled: 12/01/21
Matrix: SO - Soil Date Received: 12/02/21
Method: EPA 537M BY ID IN HOUSE Percent Solids: 90.3

Method: EPA 537M BY ID IN HOUSE
Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	88%		40-140%
	13C5-PFPeA	92%		50-150 %
	13C5-PFHxA	95%		50-150 %
	13C4-PFHpA	96%		50-150 %
	13C8-PFOA	95 %		50-150 %
	13C9-PFNA	95 %		50-150 %
	13C6-PFDA	95 %		50-150 %
	13C7-PFUnDA	93%		40-140%
	13C2-PFDoDA	97%		40-140%
	13C2-PFTeDA	100%		30-130%
	13C3-PFBS	92%		50-150 %
	13C3-PFHxS	90%		50-150 %
	13C8-PFOS	89 %		50-150 %
	13C8-FOSA	70 %		30-130%
	d3-MeFOSAA	92%		40-140%
	d5-EtFOSAA	89 %		40-140%
	13C2-6:2FTS	89 %		50-150 %
	13C2-8:2FTS	96%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240359.D 1 12/04/21 15:23 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 6.0 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	9.7	9.3	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.42	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.52	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.71	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.3	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.55	ug/kg	
67-66-3	Chloroform	ND	1.9	0.48	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.61	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.52	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.93	0.39	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.93	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.93	0.46	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.93	0.46	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.68	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.93	0.46	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.93	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.93	0.61	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.93	0.78	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.93	0.57	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.44	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.93	0.42	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.82	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.93	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.4	ug/kg		
100-42-5	Styrene	ND	1.9	0.37	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.54	ug/kg		
108-88-3	Toluene	ND	0.93	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.45	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.93	0.71	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.93	0.84	ug/kg		
95-47-6	o-Xylene	ND	0.93	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.93	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	101%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	107%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile	0 ug			ug/kg		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204079.D 1 12/06/21 16:27 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	66	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	40	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	99	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	37	13	ug/kg	
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone	ND	180	7.9	ug/kg	
120-12-7	Anthracene	ND	37	23	ug/kg	
1912-24-9	Atrazine	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	ND	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	ND	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	37	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	ND	74	5.1	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	74	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-28-7.0-9.0

Lab Sample ID: JD36084-6 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21 Method: SW846 8270E SW846 3546 Percent Solids: 89.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	74	15	ug/kg	
218-01-9	Chrysene	ND	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	37	16	ug/kg	
132-64-9	Dibenzofuran	ND	74	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	74	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.9	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	74	8.6	ug/kg	
206-44-0	Fluoranthene	ND	37	16	ug/kg	
86-73-7	Fluorene	ND	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	74	9.3	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	ND	37	8.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.2	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.6	ug/kg	
91-20-3	Naphthalene	ND	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	14	ug/kg	
85-01-8	Phenanthrene	ND	37	12	ug/kg	
129-00-0	Pyrene	ND	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluoronhenol	37%		10-1	09%	

2-Fluorophenol 367-12-4 **37**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Report of Analysis

 Client Sample ID:
 TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6

 Matrix:
 SO - Soil

 Date Sampled:
 12/01/21

 Date Received:
 12/02/21

Method: SW846 8270E SW846 3546 Percent Solids: 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	35% 39% 33% 37% 43%	10-105% 10-135% 10-119% 18-112% 18-125%					
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q		
	System artifact System artifact/aldol-condensation Unknown Total TIC, Semi-Volatile		3.22 3.27 12.97	150 240 200 200	ug/kg ug/kg ug/kg ug/kg	J J		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-28-7.0-9.0 Lab Sample ID: JD36084-6 **Date Sampled:** 12/01/21 SO - Soil Matrix: Date Received: 12/02/21

Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105422.D 1 12/23/21 00:38 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 10-107% 41% 321-60-8 2-Fluorobiphenyl **39**% 17-91% Terphenyl-d14 1718-51-0 45% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155532.D 1 12/10/21 07:27 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	34 % 33 %			25% 25%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171973.D 1 12/12/21 21:19 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 16.3 g 10.0 ml

Run #2

Pesticide TCL List

ND	CAS No.	Compound	Result	RL	MDL	Units	Q
319-85-7 beta-BHC a ND 0.69 0.62 ug/kg 319-86-8 delta-BHC a ND 0.69 0.66 ug/kg 58-89-9 gamma-BHC (Lindane) a ND 0.69 0.51 ug/kg 5103-71-9 alpha-Chlordane a ND 0.69 0.55 ug/kg 5103-74-2 gamma-Chlordane a ND 0.69 0.31 ug/kg 60-57-1 Dieldrin a ND 0.69 0.47 ug/kg 72-54-8 4,4'-DDD a ND 0.69 0.63 ug/kg 72-55-9 4,4'-DDE a ND 0.69 0.60 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 7421-93-4 Endosulfan sulfate a ND 0.69 0.54 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-I a ND	309-00-2	Aldrin ^a	ND	0.69	0.57	ug/kg	
319-86-8 delta-BHC a ND 0.69 0.66 ug/kg	319-84-6	alpha-BHC ^a	ND	0.69	0.56	ug/kg	
319-86-8 delta-BHC a ND 0.69 0.66 ug/kg	319-85-7	beta-BHC a	ND	0.69	0.62		
58-89-9 gamma-BHC (Lindane) a ND 0.69 0.51 ug/kg 5103-71-9 alpha-Chlordane a ND 0.69 0.55 ug/kg 5103-74-2 gamma-Chlordane a ND 0.69 0.31 ug/kg 60-57-1 Dieldrin a ND 0.69 0.47 ug/kg 72-54-8 4,4'-DDD a ND 0.69 0.63 ug/kg 72-55-9 4,4'-DDE a ND 0.69 0.60 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.54 ug/kg 959-98-8 Endosulfan-II a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 1024-57-3 Heptachlor epoxide a	319-86-8	delta-BHC a	ND	0.69	0.66		
5103-74-2 gamma-Chlordane a ND 0.69 0.31 ug/kg 60-57-1 Dieldrin a ND 0.69 0.47 ug/kg 72-54-8 4,4'-DDD a ND 0.69 0.63 ug/kg 72-55-9 4,4'-DDT a ND 0.69 0.60 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.51 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 72-20-8 Endrin a ND 0.69 0.54 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.39 ug/kg 72-20-8 Endrin aldehyde a ND 0.69 0.40 ug/kg 959-98-8 Endosulfan-II a ND 0.69 0.43 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.48 ug/kg 1024-57-3 Heptachlor epoxide a ND </td <td>58-89-9</td> <td>gamma-BHC (Lindane) ^a</td> <td>ND</td> <td>0.69</td> <td>0.51</td> <td></td> <td></td>	58-89-9	gamma-BHC (Lindane) ^a	ND	0.69	0.51		
5103-74-2 gamma-Chlordane a ND 0.69 0.31 ug/kg 60-57-1 Dieldrin a ND 0.69 0.47 ug/kg 72-54-8 4,4'-DDD a ND 0.69 0.63 ug/kg 72-55-9 4,4'-DDT a ND 0.69 0.61 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 1031-07-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-II a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.59 ug/kg 53494-70-5 Endrin ketone	5103-71-9		ND	0.69	0.55		
60-57-1 Dieldrin a ND 0.69 0.47 ug/kg 72-54-8 4,4'-DDD a ND 0.69 0.63 ug/kg 72-55-9 4,4'-DDT a ND 0.69 0.60 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 72-20-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-II a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.59 ug/kg 53494-70-5 Endrin ketone	5103-74-2	gamma-Chlordane a	ND	0.69	0.31		
72-55-9 4,4'-DDE a ND 0.69 0.60 ug/kg 50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 1031-07-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene	60-57-1	Dieldrin ^a	ND	0.69	0.47		
50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 1031-07-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 74% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14	72-54-8	4,4'-DDD ^a	ND	0.69	0.63	ug/kg	
50-29-3 4,4'-DDT a ND 0.69 0.61 ug/kg 72-20-8 Endrin a ND 0.69 0.53 ug/kg 1031-07-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 74% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14	72-55-9	4,4'-DDE ^a	ND	0.69	0.60	ug/kg	
72-20-8 Endrin a ND 0.69 0.53 ug/kg 1031-07-8 Endosulfan sulfate a ND 0.69 0.54 ug/kg 7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	50-29-3	4,4'-DDT a	ND	0.69	0.61		
7421-93-4 Endrin aldehyde a ND 0.69 0.39 ug/kg 959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	72-20-8	Endrin ^a	ND	0.69	0.53		
959-98-8 Endosulfan-I a ND 0.69 0.40 ug/kg 33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	1031-07-8	Endosulfan sulfate a	ND	0.69	0.54	ug/kg	
33213-65-9 Endosulfan-II a ND 0.69 0.43 ug/kg 76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	7421-93-4	Endrin aldehyde ^a	ND	0.69	0.39	ug/kg	
76-44-8 Heptachlor a ND 0.69 0.59 ug/kg 1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	959-98-8	Endosulfan-I a	ND	0.69	0.40	ug/kg	
1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	33213-65-9	Endosulfan-II ^a	ND	0.69	0.43	ug/kg	
1024-57-3 Heptachlor epoxide a ND 0.69 0.48 ug/kg 72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	76-44-8	Heptachlor ^a	ND	0.69	0.59	ug/kg	
72-43-5 Methoxychlor a ND 1.4 0.55 ug/kg 53494-70-5 Endrin ketone ND 0.69 0.50 ug/kg 8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	1024-57-3	Heptachlor epoxide ^a	ND	0.69	0.48		
8001-35-2 Toxaphene ND 17 16 ug/kg CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	72-43-5		ND	1.4	0.55	ug/kg	
CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits 877-09-8 Tetrachloro-m-xylene 73% 14-145% 14-145% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	53494-70-5	Endrin ketone	ND	0.69	0.50		
877-09-8 Tetrachloro-m-xylene 73% 14-145% 877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	8001-35-2	Toxaphene	ND	17	16	ug/kg	
877-09-8 Tetrachloro-m-xylene 74% 14-145% 2051-24-3 Decachlorobiphenyl 64% 10-197%	CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
2051-24-3 Decachlorobiphenyl 64% 10-197%	877-09-8	Tetrachloro-m-xylene	73%		14-14	15%	
	877-09-8	Tetrachloro-m-xylene	74%		14-14	15%	
2051-24-3 Decachlorobiphenyl 67% 10-197%	2051-24-3	Decachlorobiphenyl	64%		10-19	97%	
	2051-24-3	Decachlorobiphenyl	67 %		10-19	97%	

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-28-7.0-9.0

 Lab Sample ID:
 JD36084-6
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7094.D 1 12/08/21 20:04 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Run #1 Initial Weight Final Volume 16.3 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	31	ug/kg	
11097-69-1	Aroclor 1254	ND	34	18	ug/kg	
11096-82-5	Aroclor 1260	ND	34	15	ug/kg	
11100-14-4	Aroclor 1268	ND	34	14	ug/kg	
37324-23-5	Aroclor 1262	ND	34	22	ug/kg	
Q 1 Q 3 7	a .	- " -	- " -			
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	102%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	106%			52%	
2051-24-3	Decachlorobiphenyl	65%			72%	
2051-24-3	Decachlorobiphenyl	86%			72%	
2001 21 0	Decuemoroniphenyi	00/0		10 1	w / O	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-28-7.0-9.0

Lab Sample ID: JD36084-6 **Date Sampled:** 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5460	57	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	2.8	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	29.5	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.46	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.57	0.57	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	1780	570	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	12.7	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.7	5.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	9.3	2.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	11700	57	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	16.1	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	3260	570	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	301	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	< 0.035	0.035	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	19.8	4.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.57	0.57	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	18.6	5.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	34.2	5.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535 (2) Instrument QC Batch: MA51558 (3) Prep QC Batch: MP30189 (4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-28-7.0-9.0

Lab Sample ID: JD36084-6 **Date Sampled: 12/01/21** SO - Soil Matrix: Date Received: 12/02/21 Percent Solids: 89.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	< 0.22	0.22	mg/kg	1	12/09/21 03:16	EB	SW846 9012B/LACHAT
Solids, Percent	89.4		%	1	12/05/21 15:00	BG	SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-28-7.0-9.0

Lab Sample ID: JD36084-6A **Date Sampled:** 12/01/21 SO - Soil Matrix: Date Received: 12/02/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S2Q1159 Run #1 a 2Q82029.D 1 12/22/21 04:36 AFL 12/13/21 09:00 F:OP88800

Run #2

Initial Weight Final Volume 1.0 ml

Run #1 1.99 g

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.43	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	5				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFI LIOR	ROOCTANESULFONAMIDO	ACETIC AC	POT			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
2001 00 0	Lu obiui	ND	1.1	0.00	ug/ Ng	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-28-7.0-9.0

Lab Sample ID:JD36084-6ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:89.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	56 %		40-140%
	13C5-PFPeA	79 %		50-150 %
	13C5-PFHxA	82 %		50-150 %
	13C4-PFHpA	83%		50-150 %
	13C8-PFOA	82 %		50-150 %
	13C9-PFNA	82 %		50-150 %
	13C6-PFDA	86%		50-150 %
	13C7-PFUnDA	85 %		40-140%
	13C2-PFDoDA	85 %		40-140%
	13C2-PFTeDA	88%		30-130%
	13C3-PFBS	80 %		50-150 %
	13C3-PFHxS	80 %		50-150 %
	13C8-PFOS	81%		50-150 %
	13C8-FOSA	43%		30-130%
	d3-MeFOSAA	67 %		40-140%
	d5-EtFOSAA	68 %		40-140%
	13C2-6:2FTS	75 %		50-150 %
	13C2-8:2FTS	81%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240360.D 1 12/04/21 15:43 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 5.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.7	10	4.2	ug/kg	J
71-43-2	Benzene	ND	0.50	0.46	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	0.57	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/kg	
75-25-2	Bromoform	ND	5.0	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.77	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	2.0	0.54	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.0	0.62	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.46	ug/kg	
75-00-3	Chloroethane	ND	5.0	0.60	ug/kg	
67-66-3	Chloroform	ND	2.0	0.52	ug/kg	
74-87-3	Chloromethane	ND	5.0	2.0	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.66	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.70	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.57	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.0	0.42	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.55	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.50	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.73	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.0	0.47	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.0	0.66	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.85	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.62	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.48	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.48	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.46	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.46	ug/kg	
76-13-1	Freon 113	ND	5.0	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.0	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.88	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.47	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.0	2.6	ug/kg		
100-42-5	Styrene	ND	2.0	0.41	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.59	ug/kg		
108-88-3	Toluene	ND	1.0	0.53	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.49	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.56	ug/kg		
79-01-6	Trichloroethene	ND	1.0	0.77	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.69	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.49	ug/kg		
	m,p-Xylene	ND	1.0	0.90	ug/kg		
95-47-6	o-Xylene	ND	1.0	0.46	ug/kg		
1330-20-7	Xylene (total)	ND	1.0	0.46	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	103%		72-13	30%		
17060-07-0	1,2-Dichloroethane-D4	107%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-13	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile		0		ug/kg		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204080.D 1 12/06/21 16:53 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.4 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	37	13	ug/kg	
208-96-8	Acenaphthylene	ND	37	19	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	ND	37	22	ug/kg	
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	43.9	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	33.8	37	17	ug/kg	J
205-99-2	Benzo(b)fluoranthene	50.4	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	18.2	37	18	ug/kg	J
207-08-9	Benzo(k)fluoranthene	ND	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	ND	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.1	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.7	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	73	5.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-29-4.0-6.0

Page 2 of 3

Report of Analysis

Lab Sample ID: JD36084-7 **Date Sampled: 12/01/21** Matrix: SO - Soil Date Received: 12/02/21

Method: SW846 8270E SW846 3546 **Percent Solids:** 90.1

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	44.0	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	21.4	37	16	ug/kg	J
132-64-9	Dibenzofuran	ND	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	6.0	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.1	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.8	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	8.5	ug/kg	
206-44-0	Fluoranthene	80.3	37	16	ug/kg	
86-73-7	Fluorene	ND	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	40.9	37	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	37	8.3	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.5	ug/kg	
91-20-3	Naphthalene	ND	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	36.8	37	12	ug/kg	J
129-00-0	Pyrene	81.4	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.3	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

367-12-4 2-Fluorophenol **36**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	35%		10-105%		
118-79-6	2,4,6-Tribromophenol	42%		10-135%		
4165-60-0	Nitrobenzene-d5	35 %		10-119 %		
321-60-8	2-Fluorobiphenyl	41%		18-112 %		
1718-51-0	Terphenyl-d14	44%		18-125%		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
	System artifact/aldol-condensa	ition	3.27	210	ug/kg	J
	Unknown		12.97	170	ug/kg	J
	Unknown		15.54	150	ug/kg	J
	Total TIC, Semi-Volatile			320	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

SGS

Page 1 of 1

Client Sample ID: TT-SB-29-4.0-6.0

Lab Sample ID: JD36084-7 **Date Sampled:** 12/01/21 SO - Soil Matrix: Date Received: 12/02/21 Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105425.D 1 12/23/21 01:39 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Final Volume Initial Weight Run #1 1.0 ml

30.4 g

Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.7 1.8 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 46% 10-107% 321-60-8 2-Fluorobiphenyl 43% 17-91% Terphenyl-d14 1718-51-0 47% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled:
 12/01/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 OA155533.D 1 12/10/21 07:54 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume Run #1 16.0 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	45% 50%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G172332.D	1	12/23/21 08:24	CP	12/17/21 14:30	OP37171	G1G5947
Run #2 b	1G171974.D	1	12/12/21 21:37	TL	12/06/21 11:35	OP36961	G1G5933

	Initial Weight	Final Volume
Run #1	15.8 g	10.0 ml
Run #2	16.0 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.70	0.58	ug/kg	
319-84-6	alpha-BHC	ND	0.70	0.57	ug/kg	
319-85-7	beta-BHC	ND	0.70	0.64	ug/kg	
319-86-8	delta-BHC	ND	0.70	0.67	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.70	0.52	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.70	0.57	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.70	0.32	ug/kg	
60-57-1	Dieldrin	ND	0.70	0.48	ug/kg	
72-54-8	4,4'-DDD	ND	0.70	0.64	ug/kg	
72-55-9	4,4'-DDE	ND	0.70	0.62	ug/kg	
50-29-3	4,4'-DDT	ND	0.70	0.62	ug/kg	
72-20-8	Endrin	ND	0.70	0.55	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.70	0.55	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.70	0.40	ug/kg	
959-98-8	Endosulfan-I	ND	0.70	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.70	0.44	ug/kg	
76-44-8	Heptachlor	ND	0.70	0.61	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.70	0.49	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.56	ug/kg	
53494-70-5	Endrin ketone	ND	0.70	0.51	ug/kg	
8001-35-2	Toxaphene	ND	18	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	82%	94%	14-14	15%	
877-09-8	Tetrachloro-m-xylene	80%	96%	14-14	15%	
2051-24-3	Decachlorobiphenyl	64%	89%	10-19	97%	
2051-24-3	Decachlorobiphenyl	73 %	96%	10-19	97%	

⁽a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.

(b) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound}$

SGS

Page 1 of 1

Client Sample ID: TT-SB-29-4.0-6.0

 Lab Sample ID:
 JD36084-7
 Date Sampled: 12/01/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7095.D 1 12/08/21 20:20 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Initial Weight Final Volume Run #1 16.0 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	16	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	22	ug/kg	
53469-21-9	Aroclor 1242	ND	35	14	ug/kg	
12672-29-6	Aroclor 1248	ND	35	31	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	117%		24-1	52%	
877-09-8	Tetrachloro-m-xylene	117%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	73%		10-1	72 %	
2051-24-3	Decachlorobiphenyl	103%		10-1	72 %	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-29-4.0-6.0

Lab Sample ID: JD36084-7 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5590	55	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.2	2.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	3.1	2.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	31.1	22	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.49	0.22	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.55	0.55	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	1660	550	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	11.1	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.5	5.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	16.0	2.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	11200	55	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	13.4	2.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	2430	550	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	276	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	0.072	0.036	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	13.4	4.4	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.2	2.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.55	0.55	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	17.0	5.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	32.3	5.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Prep QC Batch: MP30189
(4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-29-4.0-6.0

Lab Sample ID: JD36084-7 Date Sampled: 12/01/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.33 90.1	0.33	mg/kg %	1 1	12/09/21 03:17 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-29-4.0-6.0

Lab Sample ID:JD36084-7ADate Sampled:12/01/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82030.D 1 12/22/21 04:55 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume Run #1 2.04 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOROALKYLCARBOXYLIC ACIDS									
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.54	0.27	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.54	0.27	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.54	0.27	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.54	0.27	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.54	0.27	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.54	0.27	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.54	0.27	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.54	0.27	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.54	0.29	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.54	0.27	ug/kg				
PERFLUOROALKYLSULFONIC ACIDS									
375-73-5	Perfluorobutanesulfonic acid	ND	0.54	0.27	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.54	0.27	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.54	0.27	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.54	0.27	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.54	0.27	ug/kg				
DEDEI HOI	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.54	0.27	ug/kg				
704-01-0	Trosa	ND	0.31	0.21	ug/ kg				
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.54	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.54	ug/kg				
FLUOROT	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg ug/kg				
55100 01 1	o.a 2.4010totomor building			·	6' 6				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Date Sampled: 12/01/21

Date Received: 12/02/21

90.1

Percent Solids:

Report of Analysis

Client Sample ID: TT-SB-29-4.0-6.0 Lab Sample ID: JD36084-7A

Matrix: SO - Soil
Method: EPA 537M BY ID IN HOUSE

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	81%		40-140%
	13C5-PFPeA	84%		50-150 %
	13C5-PFHxA	86%		50-150 %
	13C4-PFHpA	88%		50-150 %
	13C8-PFOA	87 %		50-150 %
	13C9-PFNA	88%		50-150 %
	13C6-PFDA	91%		50-150 %
	13C7-PFUnDA	88%		40-140%
	13C2-PFDoDA	89 %		40-140%
	13C2-PFTeDA	92%		30-130%
	13C3-PFBS	81%		50-150 %
	13C3-PFHxS	84%		50-150 %
	13C8-PFOS	84%		50-150 %
	13C8-FOSA	89 %		30-130%
	d3-MeFOSAA	85 %		40-140%
	d5-EtFOSAA	86%		40-140%
	13C2-6:2FTS	80 %		50-150 %
	13C2-8:2FTS	88%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240361.D 1 12/04/21 16:03 PS 12/03/21 08:00 n/a VI9771

Run #2

Initial Weight

Run #1 5.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	8.8	9.7	4.0	ug/kg	J
71-43-2	Benzene	ND	0.49	0.44	ug/kg	
74-97-5	Bromochloromethane	ND	4.9	0.55	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.42	ug/kg	
75-25-2	Bromoform	ND	4.9	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.9	0.74	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.52	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.60	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.45	ug/kg	
75-00-3	Chloroethane	ND	4.9	0.58	ug/kg	
67-66-3	Chloroform	ND	1.9	0.51	ug/kg	
74-87-3	Chloromethane	ND	4.9	1.9	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.64	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.68	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.55	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.97	0.41	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.97	0.53	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.97	0.48	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.97	0.48	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.9	0.71	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.97	0.48	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.97	0.46	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.97	0.64	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.97	0.82	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.97	0.59	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.46	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.46	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
100-41-4	Ethylbenzene	ND	0.97	0.44	ug/kg	
76-13-1	Freon 113	ND	4.9	2.6	ug/kg	
591-78-6	2-Hexanone	ND	4.9	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	4.9	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.85	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.97	0.46	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.9	2.2	ug/kg		
75-09-2	Methylene chloride	ND	4.9	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.39	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.58	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.56	ug/kg		
108-88-3	Toluene	ND	0.97	0.51	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.9	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.9	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.47	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.54	ug/kg		
79-01-6	Trichloroethene	ND	0.97	0.74	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.9	0.67	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.47	ug/kg		
	m,p-Xylene	ND	0.97	0.87	ug/kg		
95-47-6	o-Xylene	ND	0.97	0.45	ug/kg		
1330-20-7	Xylene (total)	ND	0.97	0.45	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	103%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	107%		75-1	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204081.D 1 12/06/21 17:18 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.6 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	73	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	65	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	73	23	ug/kg	
	3&4-Methylphenol	ND	73	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	150	34	ug/kg	
108-95-2	Phenol	ND	73	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	ND	36	13	ug/kg	
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	28.5	36	22	ug/kg	J
1912-24-9	Atrazine	ND	73	16	ug/kg	
56-55-3	Benzo(a)anthracene	75.6	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	65.5	36	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	81.0	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	39.8	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	28.7	36	17	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	73	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	73	8.9	ug/kg	
92-52-4	1,1'-Biphenyl	ND	73	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	73	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	12.3	73	5.3	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	73	14	ug/kg	
218-01-9	Chrysene	77.7	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	73	7.8	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	73	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	73	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	73	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	73	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	27.0	36	16	ug/kg	J
132-64-9	Dibenzofuran	ND	73	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	73	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	73	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	73	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	73	6.5	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	73	8.5	ug/kg	
206-44-0	Fluoranthene	151	36	16	ug/kg	
86-73-7	Fluorene	ND	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	73	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	59.0	36	17	ug/kg	
78-59-1	Isophorone	ND	73	7.8	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.6	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.1	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	11.7	36	10	ug/kg	J
98-95-3	Nitrobenzene	ND	73	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	73	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	139	36	12	ug/kg	
129-00-0	Pyrene	161	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	48%	10-109%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	46% 51% 44%		10-105% 10-135% 10-119%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	52% 54%		18-112% 18-125%		
CAS No.	o. Tentatively Identified Compou		R.T.	Est. Conc.	Units	Q
	System artifact System artifact/aldol-condensation Unknown Total TIC, Semi-Volatile		3.22 3.27 12.97	180 470 360 360	ug/kg ug/kg ug/kg ug/kg	J J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Page 1 of 1

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4M105423.D 1 12/23/21 00:59 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Initial Weight Final Volume
Run #1 30.6 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.6 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 57%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 53%
 17-91%

 1718-51-0
 Terphenyl-d14
 56%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 OA155534.D 1 12/10/21 08:22 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.7 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	41% 37%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171975.D 1 12/12/21 21:55 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 16.1 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL MDL Unit		Units	Q
309-00-2	Aldrin ^a	ND	0.69	0.57	ug/kg	
319-84-6	alpha-BHC ^a	ND	0.69	0.56	ug/kg	
319-85-7	beta-BHC ^a	ND	0.69	0.62	ug/kg	
319-86-8	delta-BHC ^a	ND	0.69	0.66	ug/kg	
58-89-9	gamma-BHC (Lindane) a	ND	0.69	0.51	ug/kg	
5103-71-9	alpha-Chlordane ^a	ND	0.69	0.56	ug/kg	
5103-74-2	gamma-Chlordane ^a	ND	0.69	0.31	ug/kg	
60-57-1	Dieldrin ^a	ND	0.69	0.47	ug/kg	
72-54-8	4,4'-DDD a	ND	0.69	0.63	ug/kg	
72-55-9	4,4'-DDE ^a	ND	0.69	0.60	ug/kg	
50-29-3	4,4'-DDT a	ND	0.69	0.61	ug/kg	
72-20-8	Endrin ^a	ND	0.69	0.54	ug/kg	
1031-07-8	Endosulfan sulfate ^a	ND	0.69	0.54	ug/kg	
7421-93-4	Endrin aldehyde ^a	ND	0.69	0.39	ug/kg	
959-98-8	Endosulfan-I ^a	ND	0.69	0.40	ug/kg	
33213-65-9	Endosulfan-II ^a	ND	0.69	0.43	ug/kg	
76-44-8	Heptachlor ^a	ND	0.69	0.59	ug/kg	
1024-57-3	Heptachlor epoxide ^a	ND	0.69	0.48	ug/kg	
72-43-5	Methoxychlor ^a	ND	1.4	0.55	ug/kg	
53494-70-5	Endrin ketone	ND	0.69	0.50	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
877-09-8	Tetrachloro-m-xylene	127%		14-145%		
877-09-8	Tetrachloro-m-xylene	107%		14-1	45%	
2051-24-3	Decachlorobiphenyl	108%		10-1	97%	
2051-24-3	Decachlorobiphenyl	109%	10-197%			

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-30-7.0-9.0

 Lab Sample ID:
 JD36084-8
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7096.D 1 12/08/21 20:36 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Initial Weight Final Volume Run #1 16.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	31	ug/kg	
11097-69-1	Aroclor 1254	ND	34	19	ug/kg	
11096-82-5	Aroclor 1260	ND	34	15	ug/kg	
11100-14-4	Aroclor 1268	ND	34	15	ug/kg	
37324-23-5	Aroclor 1262	ND	34	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
877-09-8	Tetrachloro-m-xylene	114%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	112%		24-1	52 %	
2051-24-3	Decachlorobiphenyl	67%		10-1	72%	
2051-24-3	Decachlorobiphenyl	97%	10-172%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-30-7.0-9.0

Lab Sample ID: JD36084-8 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed E	By Method	Prep Method
Aluminum	5590	56	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Antimony	< 2.2	2.2	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Arsenic	3.8	2.2	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Barium	69.2	22	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Beryllium	0.48	0.22	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.56	0.56	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Calcium	4280	560	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Chromium	13.4	1.1	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.6	5.6	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Copper	126	2.8	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Iron	12900	56	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Lead	164	2.2	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Magnesium	2720	560	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Manganese	174	1.7	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Mercury	0.26	0.037	mg/kg	1	12/06/21	12/06/21 s	B SW846 7471B ¹	SW846 7471B ⁴
Nickel	24.3	4.5	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Potassium	1460	1100	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Selenium	< 2.2	2.2	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Silver	< 0.56	0.56	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Vanadium	19.6	5.6	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³
Zinc	100	5.6	mg/kg	1	12/06/21	12/07/21 N	ND SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Prep QC Batch: MP30189
(4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-30-7.0-9.0

Lab Sample ID: JD36084-8 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.27 90.1	0.27	mg/kg %	1 1	12/09/21 03:18 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-30-7.0-9.0

Lab Sample ID: JD36084-8A Date Sampled: 12/02/21

Matrix: SO - Soil Date Received: 12/02/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 90.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82031.D 1 12/22/21 05:13 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume
Run #1 1.95 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.43	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.57	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.57	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.57	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.57	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.57	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.57	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.57	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.57	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.57	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.57	0.28	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.57	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.57	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.57	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.57	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.57	0.28	ug/kg	
PERFI LIOR	ROOCTANESULFONAMIDE	2				
754-91-6	PFOSA	ND	0.57	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.57	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.57	ug/kg	
FLUOROTE	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
		_			00	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Date Sampled: 12/02/21

Date Received: 12/02/21

90.1

Percent Solids:

Report of Analysis

Client Sample ID: TT-SB-30-7.0-9.0 Lab Sample ID: JD36084-8A Matrix: SO - Soil

Method: EPA 537M BY ID IN HOUSE

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	87%		40-140%
	13C5-PFPeA	90%		50-150 %
	13C5-PFHxA	93%		50-150 %
	13C4-PFHpA	96%		50-150 %
	13C8-PFOA	94%		50-150 %
	13C9-PFNA	95%		50-150 %
	13C6-PFDA	98%		50-150 %
	13C7-PFUnDA	95 %		40-140%
	13C2-PFDoDA	96%		40-140%
	13C2-PFTeDA	98%		30-130%
	13C3-PFBS	90%		50-150 %
	13C3-PFHxS	90%		50-150 %
	13C8-PFOS	89 %		50-150 %
	13C8-FOSA	62 %		30-130%
	d3-MeFOSAA	81%		40-140%
	d5-EtFOSAA	83%		40-140%
	13C2-6:2FTS	88%		50-150 %
	13C2-8:2FTS	97%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.6 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	4.3	8.4	3.5	ug/kg	J
71-43-2	Benzene	ND	0.42	0.38	ug/kg	
74-97-5	Bromochloromethane	ND	4.2	0.47	ug/kg	
75-27-4	Bromodichloromethane	ND	1.7	0.36	ug/kg	
75-25-2	Bromoform	ND	4.2	1.1	ug/kg	
74-83-9	Bromomethane	ND	4.2	0.65	ug/kg	
78-93-3	2-Butanone (MEK)	ND	8.4	2.1	ug/kg	
75-15-0	Carbon disulfide	0.57	1.7	0.45	ug/kg	J
56-23-5	Carbon tetrachloride	ND	1.7	0.52	ug/kg	
108-90-7	Chlorobenzene	ND	1.7	0.39	ug/kg	
75-00-3	Chloroethane	ND	4.2	0.50	ug/kg	
67-66-3	Chloroform	ND	1.7	0.44	ug/kg	
74-87-3	Chloromethane	ND	4.2	1.7	ug/kg	
110-82-7	Cyclohexane	ND	1.7	0.55	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.7	0.59	ug/kg	
124-48-1	Dibromochloromethane	ND	1.7	0.47	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.84	0.36	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.84	0.46	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.84	0.42	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.84	0.42	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.2	0.61	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.84	0.42	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.84	0.40	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.84	0.55	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.84	0.71	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.84	0.52	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.7	0.40	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.7	0.40	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.7	0.39	ug/kg	
100-41-4	Ethylbenzene	ND	0.84	0.38	ug/kg	
76-13-1	Freon 113	ND	4.2	2.3	ug/kg	
591-78-6	2-Hexanone	ND	4.2	1.8	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.7	1.2	ug/kg		
79-20-9	Methyl Acetate	ND	4.2	1.2	ug/kg		
108-87-2	Methylcyclohexane	ND	1.7	0.74	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.84	0.40	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.2	1.9	ug/kg		
75-09-2	Methylene chloride	ND	4.2	2.2	ug/kg		
100-42-5	Styrene	ND	1.7	0.34	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.7	0.51	ug/kg		
127-18-4	Tetrachloroethene	ND	1.7	0.49	ug/kg		
108-88-3	Toluene	ND	0.84	0.44	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.2	2.1	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.2	2.1	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.7	0.41	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.7	0.47	ug/kg		
79-01-6	Trichloroethene	ND	0.84	0.64	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.2	0.58	ug/kg		
75-01-4	Vinyl chloride	ND	1.7	0.41	ug/kg		
	m,p-Xylene	ND	0.84	0.76	ug/kg		
95-47-6	o-Xylene	ND	0.84	0.39	ug/kg		
1330-20-7	Xylene (total)	ND	0.84	0.39	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	102%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	107%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204091.D 1 12/06/21 21:31 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	72	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	31	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	64	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	39	ug/kg	
95-48-7	2-Methylphenol	ND	72	23	ug/kg	
	3&4-Methylphenol	ND	72	30	ug/kg	
88-75-5	2-Nitrophenol	ND	180	24	ug/kg	
100-02-7	4-Nitrophenol	ND	360	97	ug/kg	
87-86-5	Pentachlorophenol	ND	140	34	ug/kg	
108-95-2	Phenol	ND	72	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	24	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	27	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	22	ug/kg	
83-32-9	Acenaphthene	17.8	36	12	ug/kg	J
208-96-8	Acenaphthylene	ND	36	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.8	ug/kg	
120-12-7	Anthracene	51.5	36	22	ug/kg	
1912-24-9	Atrazine	ND	72	15	ug/kg	
56-55-3	Benzo(a)anthracene	381	36	10	ug/kg	
50-32-8	Benzo(a)pyrene	461	36	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	568	36	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	356	36	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	204	36	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	72	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	72	8.8	ug/kg	
92-52-4	1,1'-Biphenyl	ND	72	5.0	ug/kg	
100-52-7	Benzaldehyde	ND	180	9.0	ug/kg	
91-58-7	2-Chloronaphthalene	ND	72	8.6	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	7.5	72	5.2	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-31-6.0-8.0

Page 2 of 3

Report of Analysis

Lab Sample ID: JD36084-9 **Date Sampled: 12/02/21** Matrix: SO - Soil Date Received: 12/02/21 **Percent Solids:** 89.7

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	72	14	ug/kg	
218-01-9	Chrysene	362	36	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	72	7.7	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	72	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	72	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	72	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	36	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	36	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	72	30	ug/kg	
123-91-1	1,4-Dioxane	ND	36	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	104	36	16	ug/kg	
132-64-9	Dibenzofuran	ND	72	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	72	5.9	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	72	9.0	ug/kg	
84-66-2	Diethyl phthalate	ND	72	7.7	ug/kg	
131-11-3	Dimethyl phthalate	ND	72	6.4	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	64.1	72	8.5	ug/kg	J
206-44-0	Fluoranthene	545	36	16	ug/kg	
86-73-7	Fluorene	ND	36	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	72	9.2	ug/kg	
87-68-3	Hexachlorobutadiene	ND	36	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	360	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	429	36	17	ug/kg	
78-59-1	Isophorone	ND	72	7.7	ug/kg	
91-57-6	2-Methylnaphthalene	ND	36	8.2	ug/kg	
88-74-4	2-Nitroaniline	ND	180	8.5	ug/kg	
99-09-2	3-Nitroaniline	ND	180	9.0	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.4	ug/kg	
91-20-3	Naphthalene	ND	36	10	ug/kg	
98-95-3	Nitrobenzene	ND	72	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	72	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	136	36	12	ug/kg	
129-00-0	Pyrene	644	36	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.2	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
007 10 4	0 Ell	F.00 /		10 10	2007	

367-12-4 2-Fluorophenol **56**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Report of Analysis

Client Sample ID: TT-SB-31-6.0-8.0 Lab Sample ID: JD36084-9 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	54 %		10-105%		
118-79-6	2,4,6-Tribromophenol 54%			10-135%		
4165-60-0	Nitrobenzene-d5	51%		10-119%		
321-60-8	2-Fluorobiphenyl	63%		18-112%		
1718-51-0	Terphenyl-d14	65 %		18-125 %		
CAS No.	Tentatively Identified Compe	R.T.	Est. Conc.	Units	Q	
	System artifact		3.22	210	ug/kg	J
	System artifact/aldol-condensa	tion	3.28	850	ug/kg	
	U nknown		12.99	170	ug/kg	J
	Unknown PAH substance	16.38	150	ug/kg	J	
	Unknown PAH substance	16.71	400	ug/kg	J	
	Total TIC, Semi-Volatile			720	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105393.D 1 12/22/21 08:07 CS 12/04/21 10:20 OP36957A E4M4895

Run #2

Initial Weight Final Volume
Run #1 30.8 g 1.0 ml
Run #2

CAS No. Compound Result RL MDL Units Q
123-91-1 1,4-Dioxane 2.06 3.6 1.8 ug/kg J

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 73%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 65%
 17-91%

 1718-51-0
 Terphenyl-d14
 74%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank
N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155538.D 1 12/10/21 10:13 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume Run #1 16.4 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.6 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	51% 38%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 2

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	1G172333.D	1	12/23/21 08:42	CP	12/17/21 14:30	OP37171	G1G5947
Run #2 b	1G171976.D	1	12/12/21 22:13	TL	12/06/21 11:35	OP36961	G1G5933

	Initial Weight	Final Volume
Run #1	16.8 g	10.0 ml
Run #2	15.6 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.66	0.55	ug/kg	
319-84-6	alpha-BHC	ND	0.66	0.54	ug/kg	
319-85-7	beta-BHC	ND	0.66	0.60	ug/kg	
319-86-8	delta-BHC	ND	0.66	0.64	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.66	0.49	ug/kg	
5103-71-9	alpha-Chlordane ^c	14.6	0.66	0.54	ug/kg	
5103-74-2	gamma-Chlordane	21.2	0.66	0.30	ug/kg	
60-57-1	Dieldrin ^c	4.1	0.66	0.46	ug/kg	
72-54-8	4,4'-DDD	ND	0.66	0.61	ug/kg	
72-55-9	4,4'-DDE	6.8	0.66	0.58	ug/kg	
50-29-3	4,4'-DDT ^d	2.7	0.66	0.59	ug/kg	
72-20-8	Endrin	ND	0.66	0.52	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.66	0.52	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.66	0.38	ug/kg	
959-98-8	Endosulfan-I	ND	0.66	0.38	ug/kg	
33213-65-9	Endosulfan-II	ND	0.66	0.41	ug/kg	
76-44-8	Heptachlor	3.2	0.66	0.57	ug/kg	
1024-57-3	Heptachlor epoxide ^c	3.0	0.66	0.47	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.53	ug/kg	
53494-70-5	Endrin ketone	ND	0.66	0.48	ug/kg	
8001-35-2	Toxaphene	ND	17	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	83%	71%	14-1	45%	
877-09-8	Tetrachloro-m-xylene	87 %	60%	14-1	45%	
2051-24-3	Decachlorobiphenyl	53 %	106%	10-1	97%	
2051-24-3	Decachlorobiphenyl	152%	534% e	10-1	97%	

- (a) Re-extracted due to BS outside in house QC limits. Originally prep date was within holding time.
- (b) Confirmation run.
- (c) More than 40 % RPD for detected concentrations between the two GC columns.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Method:
 SW846 8081B SW846 3546
 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

(d) Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only. More than 40% RPD for detected concentrations between the two GC columns.

(e) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7097.D 1 12/08/21 20:53 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Initial Weight Final Volume
Run #1 15.6 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	67 %		24-1	52%	
877-09-8	Tetrachloro-m-xylene	54 %		24-1	.52%	
2051-24-3	Decachlorobiphenyl	44%		10-1	72%	
2051-24-3	Decachlorobiphenyl	228% a		10-1	72%	

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-31-6.0-8.0

Lab Sample ID: JD36084-9 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4560	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	34.8	23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.38	0.23	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	8460	580	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	10.9	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.8	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	15.4	2.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	10400	58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	32.2	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	3060	580	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	136	1.7	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	0.038	0.030	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	17.7	4.6	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	18.5	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	46.4	5.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Prep QC Batch: MP30189
(4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-31-6.0-8.0

Lab Sample ID: JD36084-9 Date Sampled: 12/02/21
Matrix: SO - Soil Date Received: 12/02/21
Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.26 89.7	0.26	mg/kg %	1 1	12/09/21 03:20 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-31-6.0-8.0 Lab Sample ID: JD36084-9A **Date Sampled:** 12/02/21 SO - Soil Matrix: Date Received: 12/02/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.7

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S2Q1159 Run #1 a 2Q82032.D 1 12/22/21 05:32 AFL 12/13/21 09:00 F:OP88800

Run #2

Final Volume Initial Weight Run #1 2.04 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.55	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.55	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.55	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.55	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.55	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.27	ug/kg	
	ROALKYLSULFONIC ACIDS					
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.27	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.55	0.27	ug/kg	
					88	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg	
EI HODOW	ELOMED CHI EONATEC					
27619-97-2	ELOMER SULFONATES 6:2 Fluorotelomer sulfonate	ND	1.1	0.27	/1	
	****	ND ND			ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

 Client Sample ID:
 TT-SB-31-6.0-8.0

 Lab Sample ID:
 JD36084-9A

 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil

 Date Received:
 12/02/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 89.7

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	83%		40-140%
	13C5-PFPeA	86%		50-150 %
	13C5-PFHxA	88%		50-150 %
	13C4-PFHpA	90%		50-150 %
	13C8-PFOA	90%		50-150 %
	13C9-PFNA	90%		50-150 %
	13C6-PFDA	88%		50-150 %
	13C7-PFUnDA	84%		40-140%
	13C2-PFDoDA	89 %		40-140%
	13C2-PFTeDA	96%		30-130%
	13C3-PFBS	86%		50-150 %
	13C3-PFHxS	86%		50-150 %
	13C8-PFOS	84%		50-150 %
	13C8-FOSA	91%		30-130%
	d3-MeFOSAA	93%		40-140%
	d5-EtFOSAA	88%		40-140%
	13C2-6:2FTS	83%		50-150 %
	13C2-8:2FTS	88%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.0	3.7	ug/kg	
71-43-2	Benzene	ND	0.45	0.41	ug/kg	
74-97-5	Bromochloromethane	ND	4.5	0.50	ug/kg	
75-27-4	Bromodichloromethane	ND	1.8	0.39	ug/kg	
75-25-2	Bromoform	ND	4.5	1.2	ug/kg	
74-83-9	Bromomethane	ND	4.5	0.69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.0	2.2	ug/kg	
75-15-0	Carbon disulfide	ND	1.8	0.48	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.8	0.56	ug/kg	
108-90-7	Chlorobenzene	ND	1.8	0.41	ug/kg	
75-00-3	Chloroethane	ND	4.5	0.53	ug/kg	
67-66-3	Chloroform	ND	1.8	0.47	ug/kg	
74-87-3	Chloromethane	ND	4.5	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.8	0.59	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.8	0.63	ug/kg	
124-48-1	Dibromochloromethane	ND	1.8	0.50	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.90	0.38	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.90	0.49	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.90	0.45	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.90	0.44	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.5	0.65	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.90	0.45	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.90	0.42	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.90	0.59	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.90	0.76	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.90	0.55	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.8	0.43	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.8	0.43	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.8	0.41	ug/kg	
100-41-4	Ethylbenzene	ND	0.90	0.41	ug/kg	
76-13-1	Freon 113	ND	4.5	2.4	ug/kg	
591-78-6	2-Hexanone	ND	4.5	1.9	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.8	1.3	ug/kg		
79-20-9	Methyl Acetate	ND	4.5	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.8	0.79	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.90	0.42	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.5	2.0	ug/kg		
75-09-2	Methylene chloride	ND	4.5	2.4	ug/kg		
100-42-5	Styrene	ND	1.8	0.36	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.8	0.54	ug/kg		
127-18-4	Tetrachloroethene	ND	1.8	0.52	ug/kg		
108-88-3	Toluene	ND	0.90	0.47	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.5	2.3	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.5	2.3	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.8	0.44	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.8	0.50	ug/kg		
79-01-6	Trichloroethene	ND	0.90	0.69	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.5	0.62	ug/kg		
75-01-4	Vinyl chloride	ND	1.8	0.43	ug/kg		
	m, p-Xylene	ND	0.90	0.81	ug/kg		
95-47-6	o-Xylene	ND	0.90	0.41	ug/kg		
1330-20-7	Xylene (total)	ND	0.90	0.41	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	105%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	107%		75-13	31%		
2037-26-5	Toluene-D8	89%		81-12	21%		
460-00-4	4-Bromofluorobenzene	97%		60-14	11%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204082.D 1 12/06/21 17:43 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	76	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	68	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	190	41	ug/kg	
95-48-7	2-Methylphenol	ND	76	24	ug/kg	
	3&4-Methylphenol	ND	76	31	ug/kg	
88-75-5	2-Nitrophenol	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol	ND	380	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	36	ug/kg	
108-95-2	Phenol	ND	76	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	23	ug/kg	
83-32-9	Acenaphthene	ND	38	13	ug/kg	
208-96-8	Acenaphthylene	ND	38	19	ug/kg	
98-86-2	Acetophenone	ND	190	8.2	ug/kg	
120-12-7	Anthracene	ND	38	23	ug/kg	
1912-24-9	Atrazine	ND	76	16	ug/kg	
56-55-3	Benzo(a)anthracene	14.9	38	11	ug/kg	J
50-32-8	Benzo(a)pyrene	ND	38	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	ND	38	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	38	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	38	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	76	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	76	9.3	ug/kg	
92-52-4	1,1'-Biphenyl	ND	76	5.2	ug/kg	
100-52-7	Benzaldehyde	ND	190	9.4	ug/kg	
91-58-7	2-Chloronaphthalene	ND	76	9.0	ug/kg	
106-47-8	4-Chloroaniline	ND	190	14	ug/kg	
86-74-8	Carbazole	ND	76	5.5	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-32-7.0-9.0

Lab Sample ID: JD36084-10 **Date Sampled: 12/02/21** Matrix: SO - Soil Date Received: 12/02/21 Method: SW846 8270E SW846 3546 **Percent Solids:** 85.4

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	76	15	ug/kg	
218-01-9	Chrysene	ND	38	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	76	8.1	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	76	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	76	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	76	12	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	38	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	38	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	76	32	ug/kg	
123-91-1	1,4-Dioxane	ND	38	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	38	17	ug/kg	
132-64-9	Dibenzofuran	ND	76	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	76	6.2	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	76	9.5	ug/kg	
84-66-2	Diethyl phthalate	ND	76	8.1	ug/kg	
131-11-3	Dimethyl phthalate	ND	76	6.8	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	76	8.9	ug/kg	
206-44-0	Fluoranthene	17.2	38	17	ug/kg	J
86-73-7	Fluorene	ND	38	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	76	9.6	ug/kg	
87-68-3	Hexachlorobutadiene	ND	38	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	380	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	38	18	ug/kg	
78-59-1	Isophorone	ND	76	8.1	ug/kg	
91-57-6	2-Methylnaphthalene	ND	38	8.6	ug/kg	
88-74-4	2-Nitroaniline	ND	190	9.0	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.5	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.8	ug/kg	
91-20-3	Naphthalene	ND	38	11	ug/kg	
98-95-3	Nitrobenzene	ND	76	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	76	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	ND	38	13	ug/kg	
129-00-0	Pyrene	17.7	38	12	ug/kg	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.7	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi		

367-12-4 2-Fluorophenol **49**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6	Phenol-d5 2,4,6-Tribromophenol	48 % 55 %		10-105% 10-135%		
4165-60-0 321-60-8 1718-51-0	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	47% 52% 60%		10-119% 18-112% 18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact System artifact/aldol-condensa Total TIC, Semi-Volatile	tion	3.22 3.27	190 280 0	ug/kg ug/kg ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0 Lab Sample ID: JD36084-10

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8270E BY SIM
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105424.D 1 12/23/21 01:19 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Initial Weight Final Volume Run #1 30.8 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane 2.09 3.8 1.9 ug/kg J

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 60%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 54%
 17-91%

 1718-51-0
 Terphenyl-d14
 64%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 OA155539.D 1 12/10/21 10:41 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume Run #1 15.5 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	19 3.8 3.8	8.4 2.1 1.9	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	30% 30%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171977.D 1 12/12/21 22:31 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 15.3 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^a	ND	0.77	0.63	ug/kg	
319-84-6	alpha-BHC ^a	ND	0.77	0.62	ug/kg	
319-85-7	beta-BHC a	ND	0.77	0.69	ug/kg	
319-86-8	delta-BHC ^a	ND	0.77	0.73	ug/kg	
58-89-9	gamma-BHC (Lindane) a	ND	0.77	0.56	ug/kg	
5103-71-9	alpha-Chlordane ^a	ND	0.77	0.62	ug/kg	
5103-74-2	gamma-Chlordane a	ND	0.77	0.35	ug/kg	
60-57-1	Dieldrin ^a	ND	0.77	0.53	ug/kg	
72-54-8	4,4'-DDD a	ND	0.77	0.70	ug/kg	
72-55-9	4,4'-DDE ^a	ND	0.77	0.67	ug/kg	
50-29-3	4,4'-DDT a	ND	0.77	0.68	ug/kg	
72-20-8	Endrin ^a	ND	0.77	0.59	ug/kg	
1031-07-8	Endosulfan sulfate a	ND	0.77	0.60	ug/kg	
7421-93-4	Endrin aldehyde ^a	ND	0.77	0.43	ug/kg	
959-98-8	Endosulfan-I ^a	ND	0.77	0.44	ug/kg	
33213-65-9	Endosulfan-II ^a	ND	0.77	0.48	ug/kg	
76-44-8	Heptachlor ^a	ND	0.77	0.66	ug/kg	
1024-57-3	Heptachlor epoxide ^a	ND	0.77	0.54	ug/kg	
72-43-5	Methoxychlor a	ND	1.5	0.61	ug/kg	
53494-70-5	Endrin ketone	ND	0.77	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	120%		14-1	45%	
877-09-8	Tetrachloro-m-xylene	119%		14-1	45 %	
2051-24-3	Decachlorobiphenyl	99%		10-1	97%	
2051-24-3	Decachlorobiphenyl	109%		10-1	97%	

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7098.D 1 12/08/21 21:09 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Initial Weight Final Volume Run #1 15.3 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	24	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	16	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	21	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits	
877-09-8	Tetrachloro-m-xylene	142%		24-	152%	
877-09-8	Tetrachloro-m-xylene	141%		24-	152%	
2051-24-3	Decachlorobiphenyl	77%		10-	172%	
2051-24-3	Decachlorobiphenyl	156%		10-	172%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0

Lab Sample ID: JD36084-10 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5170	62	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.5	2.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	2.7	2.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	48.3	25	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.46	0.25	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.62	0.62	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	1910	620	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	11.9	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 6.2	6.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	12.2	3.1	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	11500	62	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	19.4	2.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	2430	620	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	274	1.8	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	< 0.030	0.030	mg/kg	1	12/06/21	12/06/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	13.9	4.9	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	1270	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.5	2.5	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.62	0.62	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	2510	1200	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	19.2	6.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	36.2	6.2	mg/kg	1	12/06/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535
(2) Instrument QC Batch: MA51558
(3) Prep QC Batch: MP30189
(4) Prep QC Batch: MP30190

Page 1 of 1

Client Sample ID: TT-SB-32-7.0-9.0

Lab Sample ID: JD36084-10 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.27 85.4	0.27	mg/kg %	1 1	12/09/21 03:24 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-32-7.0-9.0

Lab Sample ID:JD36084-10ADate Sampled:12/02/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82033.D 1 12/22/21 05:50 AFL 12/13/21 09:00 F:OP88800 F:S2Q1159

Run #2

Initial Weight Final Volume

Run #1 1.99 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q		
PERFLUOROALKYLCARBOXYLIC ACIDS								
375-22-4	Perfluorobutanoic acid	ND	1.2	0.45	ug/kg			
2706-90-3	Perfluoropentanoic acid	ND	0.59	0.29	ug/kg			
307-24-4	Perfluorohexanoic acid	ND	0.59	0.29	ug/kg			
375-85-9	Perfluoroheptanoic acid	ND	0.59	0.29	ug/kg			
335-67-1	Perfluorooctanoic acid	ND	0.59	0.29	ug/kg			
375-95-1	Perfluorononanoic acid	ND	0.59	0.29	ug/kg			
335-76-2	Perfluorodecanoic acid	ND	0.59	0.29	ug/kg			
2058-94-8	Perfluoroundecanoic acid	ND	0.59	0.29	ug/kg			
307-55-1	Perfluorododecanoic acid	ND	0.59	0.29	ug/kg			
72629-94-8	Perfluorotridecanoic acid	ND	0.59	0.31	ug/kg			
376-06-7	Perfluorotetradecanoic acid	ND	0.59	0.29	ug/kg			
PERFLUOR	ROALKYLSULFONIC ACIDS	5						
375-73-5	Perfluorobutanesulfonic acid	ND	0.59	0.29	ug/kg			
355-46-4	Perfluorohexanesulfonic acid	ND	0.59	0.29	ug/kg			
375-92-8	Perfluoroheptanesulfonic acid	ND	0.59	0.29	ug/kg			
1763-23-1	Perfluorooctanesulfonic acid	ND	0.59	0.29	ug/kg			
335-77-3	Perfluorodecanesulfonic acid	ND	0.59	0.29	ug/kg			
PERFLUOR	ROOCTANESULFONAMIDE	S						
754-91-6	PFOSA	ND	0.59	0.29	ug/kg			
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS					
2355-31-9	MeFOSAA	ND	1.2	0.59	ug/kg			
2991-50-6	EtFOSAA	ND	1.2	0.59	ug/kg			
EI HOROTI	ELOMER SULFONATES							
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg			
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg ug/kg			
33100-34-4	0.2 Fiduluteivillei Suliollate	ND	1.6	บ.ผฮ	ug/ k g			

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

 Client Sample ID:
 TT-SB-32-7.0-9.0

 Lab Sample ID:
 JD36084-10A
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: 85.4

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	86%		40-140%
	13C5-PFPeA	90%		50-150 %
	13C5-PFHxA	92%		50-150 %
	13C4-PFHpA	93%		50-150 %
	13C8-PFOA	94%		50-150 %
	13C9-PFNA	94%		50-150 %
	13C6-PFDA	95%		50-150 %
	13C7-PFUnDA	94%		40-140%
	13C2-PFDoDA	94%		40-140%
	13C2-PFTeDA	96%		30-130%
	13C3-PFBS	87 %		50-150 %
	13C3-PFHxS	88%		50-150 %
	13C8-PFOS	89 %		50-150 %
	13C8-FOSA	70 %		30-130%
	d3-MeFOSAA	86%		40-140%
	d5-EtFOSAA	83%		40-140%
	13C2-6:2FTS	83%		50-150 %
	13C2-8:2FTS	85 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 5.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	17.0	9.9	4.1	ug/kg	
71-43-2	Benzene	ND	0.50	0.45	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	0.56	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/kg	
75-25-2	Bromoform	ND	5.0	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.76	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.9	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	2.0	0.53	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.0	0.61	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.46	ug/kg	
75-00-3	Chloroethane	ND	5.0	0.59	ug/kg	
67-66-3	Chloroform	ND	2.0	0.52	ug/kg	
74-87-3	Chloromethane	ND	5.0	1.9	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.65	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.56	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.99	0.42	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.99	0.54	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.99	0.49	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.99	0.49	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.72	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.99	0.49	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.99	0.47	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.99	0.65	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.99	0.83	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.99	0.61	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.47	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.47	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.45	ug/kg	
100-41-4	Ethylbenzene	ND	0.99	0.45	ug/kg	
76-13-1	Freon 113	ND	5.0	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.0	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.87	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.99	0.47	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.0	2.6	ug/kg		
100-42-5	Styrene	ND	2.0	0.40	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.58	ug/kg		
108-88-3	Toluene	ND	0.99	0.52	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.48	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.55	ug/kg		
79-01-6	Trichloroethene	ND	0.99	0.76	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.68	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.48	ug/kg		
	m, p-Xylene	ND	0.99	0.89	ug/kg		
95-47-6	o-Xylene	ND	0.99	0.46	ug/kg		
1330-20-7	Xylene (total)	ND	0.99	0.46	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	103%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	105%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-12	21%		
460-00-4	4-Bromofluorobenzene	96%		60-14	11%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Report of Analysis

 Client Sample ID:
 TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

Method: SW846 8270E SW846 3546 Percent Solids: 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 F204085.D 1 12/06/21 18:59 KLS 12/04/21 10:20 OP36957 EF8943

Run #2

Initial Weight Final Volume Run #1 30.9 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	71	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	22	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	30	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	63	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	180	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	180	38	ug/kg	
95-48-7	2-Methylphenol	ND	71	23	ug/kg	
	3&4-Methylphenol	ND	71	29	ug/kg	
88-75-5	2-Nitrophenol	ND	180	23	ug/kg	
100-02-7	4-Nitrophenol	ND	350	94	ug/kg	
87-86-5	Pentachlorophenol	ND	140	33	ug/kg	
108-95-2	Phenol	ND	71	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	180	23	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	26	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	27.8	35	12	ug/kg	J
208-96-8	Acenaphthylene	90.9	35	18	ug/kg	
98-86-2	Acetophenone	ND	180	7.6	ug/kg	
120-12-7	Anthracene	146	35	22	ug/kg	
1912-24-9	Atrazine	ND	71	15	ug/kg	
56-55-3	Benzo(a)anthracene	746	35	10	ug/kg	
50-32-8	Benzo(a)pyrene	965	35	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	985	35	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	593	35	18	ug/kg	
207-08-9	Benzo(k)fluoranthene	361	35	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	71	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	71	8.6	ug/kg	
92-52-4	1,1'-Biphenyl	5.5	71	4.8	ug/kg	J
100-52-7	Benzaldehyde	ND	180	8.8	ug/kg	
91-58-7	2-Chloronaphthalene	ND	71	8.4	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	15.7	71	5.1	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Report of Analysis

Client Sample ID: TT-SB-33-4.5-6.5

Lab Sample ID: JD36084-11 **Date Sampled: 12/02/21** Matrix: SO - Soil Date Received: 12/02/21 **Percent Solids:** 91.5

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	71	14	ug/kg	
218-01-9	Chrysene	702	35	11	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	71	7.6	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	71	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	71	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	71	11	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	35	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	35	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	71	29	ug/kg ug/kg	
123-91-1	1,4-Dioxane	ND	35	23	ug/kg ug/kg	
53-70-3	Dibenzo(a,h)anthracene	157	35	16	ug/kg ug/kg	
132-64-9	Dibenzofuran	34.7	71	14	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	71	5.8	ug/kg	٠
117-84-0	Di-n-octyl phthalate	ND	71	8.8	ug/kg	
84-66-2	Diethyl phthalate	ND	71	7.5	ug/kg	
131-11-3	Dimethyl phthalate	ND	71	6.3	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	71	8.3	ug/kg	
206-44-0	Fluoranthene	1200	35	16	ug/kg ug/kg	
86-73-7	Fluorene	35.8	35	16	ug/kg ug/kg	
118-74-1	Hexachlorobenzene	ND	71	8.9	ug/kg	
87-68-3	Hexachlorobutadiene	ND	35	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	350	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	735	35	17	ug/kg ug/kg	
78-59-1	Isophorone	ND	71	7.6	ug/kg ug/kg	
91-57-6	2-Methylnaphthalene	8.7	35	8.0	ug/kg	J
88-74-4	2-Nitroaniline	ND	180	8.3	ug/kg	•
99-09-2	3-Nitroaniline	ND	180	8.8	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.2	ug/kg	
91-20-3	Naphthalene	23.7	35	10	ug/kg	J
98-95-3	Nitrobenzene	ND	71	14	ug/kg	_
621-64-7	N-Nitroso-di-n-propylamine	ND	71	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	282	35	12	ug/kg	
129-00-0	Pyrene	1350	35	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	9.0	ug/kg	
	, , , ,				oo	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
	0.77					

367-12-4 2-Fluorophenol 41% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Percent Solids: 91.5

Report of Analysis

 Client Sample ID:
 TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

Method: SW846 8270E SW846 3546

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2	Phenol-d5	40%		10-105%	
118-79-6	2,4,6-Tribromophenol	49%		10-135%	
4165-60-0	Nitrobenzene-d5	38%		10-119%	
321-60-8	2-Fluorobiphenyl	45 %		18-112 %	
1718-51-0	Terphenyl-d14	50 %		18-125%	
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units Q
	System artifact		3.22	160	ug/kg J
	System artifact/aldol-condensa	tion	3.27	200	ug/kg J
203-64-5	4H-Cyclopenta[def]phenanthre	ene	9.67	250	ug/kg JN
	Naphthalene phenyl		10.05	150	ug/kg J
	Phenanthrene dimethyl		10.52	150	ug/kg J
	Pyrene methyl		11.97	160	ug/kg J
	Pyrene methyl		12.11	160	ug/kg J
	Unknown		12.98	190	ug/kg J
	Unknown		13.39	150	ug/kg J
	Unknown		14.08	150	ug/kg J
	Chrysene methyl		14.80	180	ug/kg J
	Unknown PAH substance		16.36	270	ug/kg J
	Unknown PAH substance		16.70	710	ug/kg J
	Unknown		17.05	150	ug/kg J
	Unknown PAH substance		18.68	260	ug/kg J
	Unknown PAH substance		19.08	230	ug/kg J
	Unknown PAH substance		19.49	210	ug/kg J
	Unknown		19.94	240	ug/kg J
	Unknown		20.25	410	ug/kg J
	Total TIC, Semi-Volatile			4020	ug/kg J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Initial Weight

30.9 g

Page 1 of 1

Report of Analysis

 Client Sample ID:
 TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

Method: SW846 8270E BY SIM SW846 3546 Percent Solids: 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

1.0 ml

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

Run #1 4M105426.D 1 12/23/21 02:00 NAP 12/04/21 10:20 OP36957A E4M4896

Run #2

Run #1

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.5 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 49%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 45%
 17-91%

 1718-51-0
 Terphenyl-d14
 52%
 17-105%

ND = Not detected

detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155540.D 1 12/10/21 11:09 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume Run #1 15.2 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.6 3.6	8.0 2.0 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	51% 38%			25% 25%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled:
 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 1G171978.D 1 12/12/21 22:49 TL 12/06/21 11:35 OP36961 G1G5933

Run #2

Initial Weight Final Volume Run #1 15.1 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
309-00-2	Aldrin ^a	ND	0.72	0.60	ug/kg		
319-84-6	alpha-BHC ^a	ND	0.72	0.59	ug/kg		
319-85-7	beta-BHC ^a	ND	0.72	0.65	ug/kg		
319-86-8	delta-BHC ^a	ND	0.72	0.69	ug/kg		
58-89-9	gamma-BHC (Lindane) a	ND	0.72	0.53	ug/kg		
5103-71-9	alpha-Chlordane a	ND	0.72	0.58	ug/kg		
5103-74-2	gamma-Chlordane ^a	ND	0.72	0.33	ug/kg		
60-57-1	Dieldrin ^a	ND	0.72	0.50	ug/kg		
72-54-8	4,4'-DDD a	ND	0.72	0.66	ug/kg		
72-55-9	4,4'-DDE ^a	ND	0.72	0.63	ug/kg		
50-29-3	4,4'-DDT a	ND	0.72	0.64	ug/kg		
72-20-8	Endrin ^a	ND	0.72	0.56	ug/kg		
1031-07-8	Endosulfan sulfate a	ND	0.72	0.57	ug/kg		
7421-93-4	Endrin aldehyde ^a	ND	0.72	0.41	ug/kg		
959-98-8	Endosulfan-I ^a	ND	0.72	0.42	ug/kg		
33213-65-9	Endosulfan-II ^a	ND	0.72	0.45	ug/kg		
76-44-8	Heptachlor ^a	ND	0.72	0.62	ug/kg		
1024-57-3	Heptachlor epoxide ^a	ND	0.72	0.51	ug/kg		
72-43-5	Methoxychlor ^a	ND	1.4	0.58	ug/kg		
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg		
8001-35-2	Toxaphene	ND	18	17	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
877-09-8	Tetrachloro-m-xylene	69%		14-1	45%		
877-09-8	Tetrachloro-m-xylene	67%		14-1	45%		
2051-24-3	Decachlorobiphenyl	62%		10-1	97%		
2051-24-3	Decachlorobiphenyl	175%		10-197%			

(a) This compound outside control limits biased high in the associated BS.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Report of Analysis

 Client Sample ID:
 TT-SB-33-4.5-6.5

 Lab Sample ID:
 JD36084-11
 Date Sampled: 12/02/21

 Matrix:
 SO - Soil
 Date Received: 12/02/21

 Matrix:
 SO - Soil
 Date Received:
 12/02/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7099.D 1 12/08/21 21:26 TL 12/06/21 11:35 OP36962 GRK183

Run #2

Initial Weight Final Volume Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	77%		24-1	52 %	
877-09-8	Tetrachloro-m-xylene	73%		24-1	52%	
2051-24-3	Decachlorobiphenyl	48%		10-1	72%	
2051-24-3	Decachlorobiphenyl	118%		10-1	72%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.21

Report of Analysis

Client Sample ID: TT-SB-33-4.5-6.5

Lab Sample ID: JD36084-11 **Date Sampled: 12/02/21** Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	By Method	Prep Method
Aluminum	5120	58	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Antimony	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Arsenic	3.2	2.3	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Barium	35.8	23	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Beryllium	0.37	0.23	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Calcium	1760	580	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Chromium	12.0	1.2	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.8	5.8	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Copper	22.7	2.9	mg/kg	1	12/06/21	12/07/21 N		SW846 3050B ³
Iron	10000	58	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Lead	45.0	2.3	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Magnesium	2180	580	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Manganese	167	1.7	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Mercury	0.10	0.034	mg/kg	1	12/06/21	12/06/21 s	B SW846 7471B ¹	SW846 7471B ⁴
Nickel	20.8	4.6	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Potassium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Selenium	< 2.3	2.3	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Silver	< 0.58	0.58	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Sodium	< 1200	1200	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Thallium	< 1.2	1.2	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Vanadium	16.2	5.8	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³
Zinc	47.9	5.8	mg/kg	1	12/06/21	12/07/21 N	ID SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51535 (2) Instrument QC Batch: MA51558 (3) Prep QC Batch: MP30189 (4) Prep QC Batch: MP30190

RL = Reporting Limit

Page 1 of 1

Client Sample ID: TT-SB-33-4.5-6.5

Lab Sample ID: JD36084-11 Date Sampled: 12/02/21 Matrix: SO - Soil Date Received: 12/02/21 Percent Solids: 91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.25 91.5	0.25	mg/kg %	1 1	12/09/21 03:25 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Page 1 of 2

Client Sample ID: TT-SB-33-4.5-6.5 Lab Sample ID: JD36084-11A **Date Sampled:** 12/02/21 SO - Soil Matrix: Date Received: 12/02/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: 91.5

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S2Q1159 Run #1 a 2Q82036.D 1 12/22/21 06:46 AFL 12/13/21 09:00 F:OP88800 Run #2

Initial Weight Final Volume Run #1 1.96 g 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	8				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg ug/kg	
00100 01 1	o. ~ I individually summing			0.20	-6' -6	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-33-4.5-6.5

Lab Sample ID: JD36084-11A

Lab Sample ID:JD36084-11ADate Sampled:12/02/21Matrix:SO - SoilDate Received:12/02/21Method:EPA 537M BY ID IN HOUSEPercent Solids:91.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	83%		40-140%
	13C5-PFPeA	86%		50-150 %
	13C5-PFHxA	89 %		50-150 %
	13C4-PFHpA	90%		50-150 %
	13C8-PFOA	89 %		50-150 %
	13C9-PFNA	86%		50-150 %
	13C6-PFDA	83%		50-150 %
	13C7-PFUnDA	79 %		40-140%
	13C2-PFDoDA	88%		40-140%
	13C2-PFTeDA	96%		30-130%
	13C3-PFBS	87 %		50-150 %
	13C3-PFHxS	86%		50-150 %
	13C8-PFOS	85 %		50-150 %
	13C8-FOSA	51 %		30-130%
	d3-MeFOSAA	79 %		40-140%
	d5-EtFOSAA	78 %		40-140%
	13C2-6:2FTS	83%		50-150 %
	13C2-8:2FTS	80 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

	$\mathcal{L}($	/								- 1												
	Ś	しし	CH.	AIN	OF C	UST	OD	1		/•-									Pag	je _	_ of _	_
S(4S					orth Amer					1 -		FED-EX 1	racking #					Bottle Order Control #				
			TE		Route 130, I 29-0200 FA				/	ړ.		SGS Quote #						JB 11112				141
EHSA-QAC-0023-04-FORM-Standard COC					www.sgs.c							JD 36084										
Client / Reporting Information Company Name:	Project Name	Project Information								Requested Analysis					Matrix Codes							
		ND .	1	\$ 3300 St.										Diox						-		DW - Drinking Wate
TETRA TECH	Street	AUG	. ¥	\$ 35 3E.								- 1		- (I	اد				- 1	2		GW - Ground Water WW - Water
6 CENTURY DR.	Street			Billing Information (if different from Report to)								2	62	7	75	=				ź		SW - Surface Water SO - Soil
City State Zip	City		State	Company Name								-	Tat 12	-	.	80	STD	3		3		SL- Sludge
PARSIPPANY N) 07954	Beson Project #	xcyn	NY	Street Address								TCL*20	· (=	Ī	5	Š	Ŋ	~		3		SED-Sediment OI - Oil
BUS (ANTAGAMO ROBET. LANTAG	AUD @ 1	ETRATECI	1.60,0	Street Ad	uress							`		5	PEST							LIQ - Other Liquid AIR - Air
Phone #	Client Purcha			City				St	ate		Zip		2	2		7	\(\sigma \)	£	ᆡ			SOL - Other Solid WP - Wipe
(973) 630-4045												8260	827	2	8	30	1518	X MIA	MTA	2		FB - Field Blank EB-Equipment Blan
Sampler(s) Name(s) Phone #	Project Mana	ger		Attention								8	46	88	20	PBo	#	7	2	ج		RB - Rinse Blank TB - Trip Blank
A. VIII.			Colle	ection		_			Number o	of preserved E	Sottles			120	•	-	(Lab Us	e Only)				IB - Inp Blank
			T		Source	1		Π.	Т.Т	, iii ia	- H	S 4	- i		1.63					- T	()	7 7
SGS Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Grab (G) Chlorina Comp (C) ed (Y/N)	Matrix	# of bottles	P 3	NH ON I	NON DI W	MEO	2. 6			ja.					8		LAB USE ONLY
1 TI-58-24-6.5-8.5	9	12/01/21	0851	AN	6	(0	6		11	3	3		-	~	7		-	-		1	-	D2
2 TT-5B-25-7.0-9.0		12/01/21		1-1-		So	6		71	3	3		4			_	u		-	7	-	PZC
3 17-50-20-6.0-8.0	6	12/01/21		1	-	50	6		77	3	3			7	-1		- 4		- 1	4	_	SVB
4 15-58-27-5.0-70	,	12/01/21				Sο	6	\top	11	3	3	1	7		~					1	-	FACORE
5 SDVP-02	· c	12/0 V21	1200	-	T~ T	50	6		\top	3	3			-				- 4	-	7		1443
6 17-58-28-7-0-90	•	12/01/21				50	6			3	3	7	-		_	_	_	_		7		4995
7 TT-58-29-4.0-6.0		12/01/2	1456	12/1/4	6	50	6			3	3			7		/		1		7		
1 Tr-58-30-7.0-9.0	,	12/02/21			6	50	6	П	П	3	3	V	1	~	V	-	- 1	<u></u>	T	4	-	A
9 TT-58-31-6.0-8.0	•	12/01/11	1050	AV	6	50	6		\Box	3	3	7	-	-	77			7		4		7 3.
19 TI-58-32-70-9.0	0	12/02/11	1147		6	50	6		\top	3	3		~	7					-	+	-	
11 TT-58-33-45-65	,	12/02/4		AV	6	50	6		\Box	3	3		4		-			-		4		
		10,000,0	7,500	1				\top	\top												\neg	
Turn Around Time (Bus	siness Days)							Delive	rable									Comme	ents / S	pecial Inst	tructions
	Approved By (S	GS PM): / Date:			Commercial	"A" (Lev	el 1)			NYASP C	ategory A			DOD-Q	SM5		, ,				7	
10 Business Days					Commercial		1 2)			NYASP C					- 1	<i>-</i>	\times	٠ (enco	C)	>	
5 Business Days				=	NJ Reduced					MA MCP	_	_)				(:
3 Business Days* 2 Business Days*				-	Full Tier I (L				님	CT RCP		_						Initia	Accar		. 3R	الحوز)
1 Business Day*	Commercial "C" State Forms NJ DKQP EDD Format																					
Other	ther ,								Commercial "A" = Results only, Commercial "B" = Results + QC Summary							ummary Lisbel Verification						
All data available via Lablink Approval needed for 1-3 Business Day TAT Commercial **Commercial											is-and-conditions											
Relinquisted by: Date Time	ء ال	Received By:	7	17 7	a seamented	Jaion 6		Religions	hed By:	11		711	7	1	Date / Tim	e: [12	Received E	sy:	_		
1 1202		· /)	4	M		_		2 V	10			<u> </u>	8	-	12	10	101	2	1	<u>~</u>		
Relinquished by: Date / Time	: '	Received By:						Relinquia 4	sh y ld By:						Date / Tim	• '		Received 4	95:			-

JD36084: Chain of Custody Page 1 of 3

SGS Sample Receipt Summary

Job Number: JD36	084 Client:	TETRA TECH	Project: 2ND AVENUE AND	33-39TH STREET, BROOKL
Date / Time Received: 12/2/2	2021 5:18:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Measured Cooler Temps (Corrected	,			
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free:	Or N	• -	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample: Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N ✓
Test Strip Lot #s: pH Comments	1-12: 231619	pH 12+:	203117A Other: (Specify)	
SM089-03 Rev. Date 12/7/17				

JD36084: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

Requested Date:	12/13/2021	Received Date:	12/2/2021
Account Name:	Tetra Tech	Due Date:	12/13/2021
Project Description:	2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	JADONS PM: JBS	TAT (Days):	7
Sample #: JD36084-ALL	34-ALL Change:		

Please move project to TTNJP90692 and re-sub to ALSE.

Above Changes Per: Jadon Schiller

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Date/Time: 12/13/2021

JD36084: Chain of Custody Page 3 of 3

	CCC			CHAI					_	•									age '	1 01 1		
	OUO			SGS Nor 2235 Ro	ıte 130,	Dayto	n, NJ 0	8810					FED	Ex Tracking				Bottle Order	Consu a			1
				TEL. 732-329-		FAX: 7		3499/	3480	•			8GS	SGS Quote # SGS Job #					J	JD36084		
	Client / Reporting Information			Project			susa									Renu	ested A	natvsis	_		Matrix Codes	
ompany	Name:	Project Name:																				i
reet Ad			and 33-39th St	reet, Brooklyn,	NY										200						DW - Drinking Water GW - Ground Water	
reet Ad	oress .	Street			1000		SY N				_	_	-						- 1		WW - Water SW - Surface Water	
пу	Stale Zip	City		State	Compan	nformation y Name	en (if diffe	rent fi	rom A	eport	to)						1				SO - Soil SL- Sludge SED-Sediment	
olect Co Jador	ontact E-mail :schiller@sgs.com	Project B			Street Ac	Street Address													OI - Oil LIQ - Other Liquid AIR - Air			
none #		Client Purchase	Order #		City State Zip Altention:					1							SOL - Other Solid WP - Wipe					
ampler(:	Name(s) Pho	ne Project Manager	,													FB - Field Blank EB-Equipment Blank RB - Rinse Blank TB - Trip Blank						
T				Callection					Mint	er of pr	eservo	d Bottes								1 1	To - Trip dialik	
GS rplo #	Field ID / Point of Collection	MEOH/DI Visi #	Dies	Time	Sampled	Matrix	# of bottes	HG.	NaOH HNO ₃	H,50,	NONE DI Welor	MEDH	LCID537NY21								LAB USE ONLY	
A	TT-SB-24-6.5-8.5		12/1/21	8:51:00 AM	AV	so		Ħ		П		Ħ	X	7								1
A	TT-SB-25-7.0-9.0		12/1/21	9:52:00 AM	AV	so		Ħ	+	H	T	Ħ	×	-		1	1					
A	TT-SB-26-6.0-8.0		12/1/21	10:38:00 AN	AV	so		1	1	H	+	1	X	-		1		-				
A	TT-SB-27-5.0-7.0		12/1/21	11:47:00 AN	AV	so		11	1	Ħ	+	\vdash	×									
iA	SDUP-02		12/1/21	12:00:00 PN	AV	so		11	T	Ħ	T		×			1						
A	TT-SB-28-7.0-9,0		12/1/21	1:47:00 PM	AV	so		11	1	Ħ	+		×			1	1111					
Α	TT-SB-29-4.0-6.0		12/1/21	2:56:00 PM	AV	so		Ħ		Ħ	1		X									
A	TT-SB-30-7.0-9.0		12/2/21	8:53:00 AM	AV	so		Ħ	1	T	1		X									
A	TT-SB-31-6,0-8.0		12/2/21	10:50:00 AM	AV	so		Ħ	1	Ħ	1		×					1				
DA	TT-SB-32-7,0-9.0		12/2/21	11:47:00 AM	AV	so		П	T	H	T		×								1	-
1A	TT-SB-33-4,5-6,5	-	12/2/21	1:38:00 PM	AV	so		П	T	\Box	T		X				MITTI	AL AS	SESSIV	ENT	1	10
									T	Ħ	T						0.4111	75.50	SENSIY			
	Turnaround Time (Business days)									Infor				-		-	Com	ments / Sp	ecial Instruc	tions	•	-
	Standard 10 Business Days	Approved By (SGS	PM): / Date:			ommerc ommerc							itegory A								6	00
	5 Business Days RUSH					ULLT1 (,	F	_	ate For					LABE	L VER	RIFICA	HON_		
	3 Business Days RUSH					ij Reduc	d					DD Forr	nat									
	2 Business Days RUSH				MJ Reduced EDD Format Commercial "C" X Other NYASPB					ASPB	_											
	1 Business Day EMERGENCY	-					Commerc															
Emerg	Other 1/14/1900 Indy & Rush T/A data available via Lablink Appro-	val needed for RUS	H/Emergency TAT				Commerc Commerc						a Destint I	Pow dolo				http://	ALAKAN SAR	comienter	ms-and-conditions	
					umente	d below	each tim	e san	nples	chan	ge po	ssessi	on inclu	ding cour	ier delivery.			TRUES	www.sys.	COLLABINGL	ins-and-conditions	1
Ballosai	1-h	13/21	Received By:	Fe	e documented below each time samples change possession, inclined by: Refine plane d by: Refine plane d by: Refine plane d by: Refine plane d by:					Sion, including courier delivery. Dale / Time: 9:30 [216[21] 2 2						_						
Rellage	shed by: Date /	Time:	Received By:							Date / Time: Received By:												
Relingui	shed by: Date /	Time:	Received By:					Custo	ody Se	4 10		-	Intact		Preserved with	re applica	bla	-	On lo	Ceol	er Tamp, *C	
			5										Not infact Absent Thorm, ID:						Dle			

Rov Dale: 4/10/18

JD36084: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD36084		Client:	SGS NJ		Project: 2ND AVENU	Project: 2ND AVENUE AND 33-39TH STREET							
ate / Time Received: 12/6/2021	9:30:00 A	AM	Delivery Method:	FEDEX	Airbill #'s: 52720636	8410							
Therm ID: IR 1;			Therm CF: 0.2;		# of Coolers: 1								
Cooler Temps (Raw Measured)	° C : Cod	oler 1: (2.6);										
Cooler Temps (Corrected)	°C: Cod	oler 1: (2.8);										
Cooler Information	Y or	N_	1	Sample Information		Y o	r N	N/A					
1. Custody Seals Present	✓			1. Sample labels present	t on bottles	✓							
2. Custody Seals Intact	\checkmark			2. Samples preserved pre	operly	✓							
3. Temp criteria achieved	✓			3. Sufficient volume/cont	ainers recvd for analysis:	✓							
4. Cooler temp verification	IR Gun			4. Condition of sample		<u>Intact</u>							
5. Cooler media	Ice (Bag)			5. Sample recvd within H	IT	✓							
				6. Dates/Times/IDs on C	OC match Sample Label	✓							
rip Blank Information	Y or	<u>N</u> _	N/A_	7. VOCs have headspace	е			✓					
1. Trip Blank present / cooler			✓	8. Bottles received for un	specified tests		✓						
2. Trip Blank listed on COC			✓	9. Compositing instructio	ns clear			\checkmark					
	W oi	. e	N/A	10. Voa Soil Kits/Jars red	ceived past 48hrs?			\checkmark					
				11. % Solids Jar received	d?			\checkmark					
3. Type Of TB Received			\checkmark	12. Residual Chlorine Pro	esent?			\checkmark					
Misc. Information													
Number of Encores: 25-Gram		5-Gram	Num	ber of 5035 Field Kits:	Number of La	ab Filtered	Metals:						
Test Strip Lot #s: p	H 0-3	23031	 5 p⊦	1 10-12 219813A									
Residual Chlorine Test Strip Lot #	:		<u> </u>										
Comments													
SM001 Rev. Date 05/24/17 Technician:	DEVANO)	Date: 12/6/2021	9:30:00 AM	Reviewer:		Date:						

JD36084: Chain of Custody

Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36115

Sampling Date: 12/03/21

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 72

TNI TNI TNI TNI TNI

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	10
Section 4: Sample Results	14
4.1: JD36115-1: TT-SB-34-4.0-6.0	15
4.2: JD36115-1A: TT-SB-34-4.0-6.0	26
4.3: JD36115-2: TT-SB-35-3.0-5.0	
4.4: JD36115-2A: TT-SB-35-3.0-5.0	39
4.5: JD36115-3: TT-SB-36-6.0-8.0	41
4.6: JD36115-3A: TT-SB-36-6.0-8.0	52
4.7: JD36115-4: TT-SB-37-7.0-9.0	54
4.8: JD36115-4A: TT-SB-37-7.0-9.0	65
Section 5: Misc. Forms	67
5.1: Chain of Custody	68
5.2: Chain of Custody (SGS Orlando, FL)	71

Sample Summary

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Job No: JD36115

Sample Number	Collected Date	l Time By	Received	Matr Code		Client Sample ID
This report c Organics ND		ults reported a = Not detect			cted. The following ap L	plies:
JD36115-1	12/03/21	08:15 AV	12/03/21	so	Soil	TT-SB-34-4.0-6.0
JD36115-1A	12/03/21	08:15 AV	12/03/21	so	Soil	TT-SB-34-4.0-6.0
JD36115-2	12/03/21	09:47 AV	12/03/21	so	Soil	TT-SB-35-3.0-5.0
JD36115-2A	12/03/21	09:47 AV	12/03/21	so	Soil	TT-SB-35-3.0-5.0
JD36115-3	12/03/21	11:08 AV	12/03/21	so	Soil	TT-SB-36-6.0-8.0
JD36115-3A	12/03/21	11:08 AV	12/03/21	so	Soil	TT-SB-36-6.0-8.0
JD36115-4	12/03/21	12:18 AV	12/03/21	so	Soil	TT-SB-37-7.0-9.0
JD36115-4A	12/03/21	12:18 AV	12/03/21	so	Soil	TT-SB-37-7.0-9.0

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD36115

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/29/2021 3:29:54 P

On 12/03/2021, 8 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 0.9 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36115 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: VI9773

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD36176-2MS, JD36176-3DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- VI9773-BS for 1,2-Dichlorobenzene: Outside of in house control limits, but within reasonable method recovery limits.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88849

- The data for EPA 537M BY ID meets quality control requirements.
- JD36115-3A: Analysis performed at SGS Orlando, FL.
- JD36115-2A: Analysis performed at SGS Orlando, FL.
- JD36115-4A: Analysis performed at SGS Orlando, FL.
- JD36115-1A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36963

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36063-1MS, JD36063-1MSD were used as the QC samples indicated.
- Sample(s) JD36115-1, JD36115-3, JD36115-4 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- Matrix Spike Recovery(s) for Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Chrysene, Fluoranthene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, Pyrene are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Chrysene, Fluoranthene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, Pyrene are outside control limits. Outside control limits due to matrix interference.
- JD36115-2: Dilution required due to viscosity of the extract matrix.
- JD36115-2 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high,sample was ND.
- JD36115-2 for Atrazine: Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for Caprolactam: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36115-4 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for Hexachlorocyclopentadiene: Associated CCV outside of control limits high, sample was ND.

Wednesday, December 29, 2021

Page 2 of 5

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP36963

- JD36115-4 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36115-3 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36115-1 for Atrazine: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP36963A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP36973

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36144-5MS, JD36144-5MSD, OP36973-MSMSD were used as the QC samples indicated.
- JD36115-2: Confirmation run.
- OP36973-BS1 for 4,4'-DDT: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36115-1 for 4,4'-DDD: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36115-2 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- OP36973-BSD for 4,4'-DDT: Reported from the 1st signal. The %D of the CCV on the 2nd signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36115-1 for 4,4'-DDT: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36115-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD36115-2 for 4,4'-DDE: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36115-2 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP36974

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36144-10MS, JD36144-10MSD, OP36974-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- OP36974-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP36974-BSD for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36115-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP36933

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36022-1MS, JD36022-1MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- OP36933-BSD for 2,4-D are outside control limits.
- Matrix Spike Recovery(s) for 2,4,5-T, 2,4,5-TP (Silvex) are outside control limits.
- Matrix Spike Duplicate Recovery(s) for 2,4,5-TP (Silvex) are outside control limits.
- OP36933-BS1/BSD for 2,4,5-TP (Silvex): Outside of in house control limits.
- RPD of OP36933-BSD for 2,4,5-TP (Silvex): Analytical precision exceeds in-house control limits.
- RPD of OP36933-BSD for 2,4-D: Analytical precision exceeds in-house control limits.
- OP36933-BSD for 2,4-DCAA: Outside of in house control limits.
- OP36933-BS1 for 2,4-DCAA: Outside of in house control limits.
- OP36933-BS1/BSD for 2,4,5-T: Outside of in house control limits.

Metals Analysis By Method SW846 6010D

Matrix: SO Batch ID: MP30201

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36097-2MS, JD36097-2MSD, JD36097-2PS, JD36097-2SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Aluminum, Antimony are outside control limits. Spike recovery indicates possible matrix interference.
- Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Iron, Magnesium are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for Serial Dilution for Antimony, Arsenic, Beryllium, Cadmium, Selenium, Silver, Sodium, Thallium are outside control limits for sample MP30201-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- JD36115-2 for Thallium: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Silver: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Cobalt: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Chromium: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Cadmium: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Beryllium: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Barium: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Copper: Elevated detection limit due to dilution required for high interfering element.
- JD36115-2 for Selenium: Elevated detection limit due to dilution required for high interfering element.

Metals Analysis By Method SW846 7471B

Matrix: SO Batch ID: MP30212

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36039-1MS, JD36039-1MSD were used as the QC samples for metals.

Wednesday, December 29, 2021

Page 4 of 5

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24483

Sample(s) JD36106-4DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37440

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD35487-3DUP, JD36115-1MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- RPD(s) for Duplicate for Cyanide are outside control limits for sample GP37440-D1. RPD acceptable due to low duplicate and sample concentrations.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD36115

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/29/2021 9:47:29

On 12/03/2021, 4 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.6 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36115 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88849

Sample(s) JD36176-13AMS, JD36176-13AMSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:
Ariel Hartney, Client Services (signature on file)

Summary of HitsJob Number: JD36115 Page 1 of 4

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Collected: 12/03/21

Lab Sample ID Client Sample II					
Analyte	Qual	RL	MDL	Units	Method
JD36115-1 TT-SB-34-4.0-6.	0				
Acenaphthene	72.5	39	14	ug/kg	SW846 8270E
Acenaphthylene	43.2	39	20	ug/kg	SW846 8270E
Anthracene	294	39	24	ug/kg	SW846 8270E
Benzo(a)anthracene	1020	39	11	ug/kg	SW846 8270E
Benzo(a)pyrene	870	39	18	ug/kg	SW846 8270E
Benzo(b)fluoranthene	994	39	17	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	504	39	20	ug/kg	SW846 8270E
Benzo(k)fluoranthene	406	39	18	ug/kg	SW846 8270E
1,1'-Biphenyl	12.3 J	79	5.4	ug/kg	SW846 8270E
Carbazole	71.5 J	79	5.7	ug/kg	SW846 8270E
Chrysene	1140	39	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	145	39	17	ug/kg	SW846 8270E
Dibenzofuran	68.0 J	79	16	ug/kg	SW846 8270E
Di-n-butyl phthalate	21.2 JB	79	6.4	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	57.6 J	79	9.2	ug/kg	SW846 8270E
Fluoranthene	1760	39	18	ug/kg	SW846 8270E
Fluorene	56.1	39	18	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	579	39	18	ug/kg	SW846 8270E
2-Methylnaphthalene	34.1 J	39	8.9	ug/kg	SW846 8270E
Naphthalene	72.9	39	11	ug/kg	SW846 8270E
Phenanthrene	1180	39	13	ug/kg	SW846 8270E
Pyrene	2050	39	13	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	3290 J			ug/kg	
4,4'-DDD a	2.3	0.77	0.70	ug/kg	SW846 8081B
4,4'-DDT ^a	6.3	0.77	0.68	ug/kg	SW846 8081B
Aluminum	6160	63		mg/kg	SW846 6010D
Arsenic	4.2	2.5		mg/kg	SW846 6010D
Barium	31.8	25		mg/kg	SW846 6010D
Beryllium	0.39	0.25		mg/kg	SW846 6010D
Calcium	16500	630		mg/kg	SW846 6010D
Chromium	15.1	1.3		mg/kg	SW846 6010D
Copper	17.6	3.2		mg/kg	SW846 6010D
Iron	14800	63		mg/kg	SW846 6010D
Lead	180	2.5		mg/kg	SW846 6010D
Magnesium	3180	630		mg/kg	SW846 6010D
Manganese	223	1.9		mg/kg	SW846 6010D
Mercury	0.22	0.033		mg/kg	SW846 7471B
Nickel	21.7	5.1		mg/kg	SW846 6010D
Vanadium	23.0	6.3		mg/kg	SW846 6010D
Zinc	46.3	6.3		mg/kg	SW846 6010D

Summary of HitsJob Number: JD36115 Page 2 of 4

Tetra Tech **Account:**

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

12/03/21 **Collected:**

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JD36115-1A	TT-SB-34-4.0-6.0					

No hits reported in this sample.

JD36115-2 TT-SB-35-3.0-5.0

Acenaphthene ^b	83.0	70	24	ug/kg	SW846 8270E
Acenaphthylene ^b	73.3	70	35	ug/kg	SW846 8270E
Anthracene b	274	70	43	ug/kg	SW846 8270E
Benzo(a)anthracene ^b	852	70	20	ug/kg	SW846 8270E
Benzo(a)pyrene ^b	762	70	32	ug/kg	SW846 8270E
Benzo(b)fluoranthene b	986	70	31	ug/kg	SW846 8270E
Benzo(g,h,i)perylene ^b	474	70	35	ug/kg	SW846 8270E
Benzo(k)fluoranthene b	403	70	33	ug/kg	SW846 8270E
1,1'-Biphenyl ^b	10.5 J	140	9.6	ug/kg	SW846 8270E
Carbazole ^b	93.8 J	140	10	ug/kg	SW846 8270E
Chrysene ^b	862	70	22	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene b	161	70	31	ug/kg	SW846 8270E
Dibenzofuran ^b	55.2 J	140	28	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate b	230	140	16	ug/kg	SW846 8270E
Fluoranthene b	1760	70	31	ug/kg	SW846 8270E
Fluorene ^b	84.3	70	32	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene ^b	559	70	33	ug/kg	SW846 8270E
2-Methylnaphthalene ^b	28.8 J	70	16	ug/kg	SW846 8270E
Naphthalene ^b	32.0 J	70	20	ug/kg	SW846 8270E
Phenanthrene b	1210	70	23	ug/kg	SW846 8270E
Pyrene ^b	1630	70	22	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	1940 J			ug/kg	
alpha-Chlordane ^a	4.0	0.70	0.57	ug/kg	SW846 8081B
gamma-Chlordane	3.9	0.70	0.32	ug/kg	SW846 8081B
Dieldrin ^a	1.7	0.70	0.48	ug/kg	SW846 8081B
4,4'-DDD	3.5	0.70	0.64	ug/kg	SW846 8081B
4,4'-DDE a	11.7	0.70	0.62	ug/kg	SW846 8081B
4,4'-DDT	22.1	0.70	0.62	ug/kg	SW846 8081B
Endrin ketone	8.9	0.70	0.51	ug/kg	SW846 8081B
Aluminum	4250	51		mg/kg	SW846 6010D
Calcium	77500	2600		mg/kg	SW846 6010D
Chromium ^c	7.9	5.1		mg/kg	SW846 6010D
Copper ^c	19.4	13		mg/kg	SW846 6010D
Iron	7910	51		mg/kg	SW846 6010D
Lead	79.1	2.1		mg/kg	SW846 6010D
Magnesium	6380	510		mg/kg	SW846 6010D
Manganese	301	1.5		mg/kg	SW846 6010D
Mercury	0.18	0.029		mg/kg	SW846 7471B
Vanadium	21.0	5.1		mg/kg	SW846 6010D
				0 0	

Summary of HitsJob Number: JD36115 Page 3 of 4

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/03/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method			
Zinc	70.2	5.1		mg/kg	SW846 6010D			
JD36115-2A TT-SB-35-3.0-5.0								
No hits reported in this sample.								
JD36115-3 TT-SB-36-6.0-8.0								
Benzo(a)anthracene	36.7 36.4	35 35	9.9	ug/kg	SW846 8270E			
Benzo(a)pyrene			16	ug/kg	SW846 8270E			
Benzo(b)fluoranthene	39.5	35	15	ug/kg	SW846 8270E			
Benzo(g,h,i)perylene	21.6 J	35	18	ug/kg	SW846 8270E			
Benzo(k)fluoranthene	17.7 J	35	16	ug/kg	SW846 8270E			
Chrysene	34.2 J	35	11	ug/kg	SW846 8270E			
Di-n-butyl phthalate	21.1 JB	70	5.7	ug/kg	SW846 8270E			
bis(2-Ethylhexyl)phthalate	50.9 J	70	8.2	ug/kg	SW846 8270E			
Fluoranthene	57.2	35	16	ug/kg	SW846 8270E			
Indeno(1,2,3-cd)pyrene	23.8 J	35	16	ug/kg	SW846 8270E			
Phenanthrene	16.2 J	35	12	ug/kg	SW846 8270E			
Pyrene	61.6	35	11	ug/kg	SW846 8270E			
Total TIC, Semi-Volatile	180 J			ug/kg	CHIOAC COLOD			
Aluminum	2760	55		mg/kg	SW846 6010D			
Arsenic	3.2 626	2.2		mg/kg	SW846 6010D			
Calcium		550		mg/kg	SW846 6010D			
Chromium	6.8 3.8	1.1 2.7		mg/kg	SW846 6010D			
Copper				mg/kg	SW846 6010D			
Iron	8390 8.7	55 2.2		mg/kg	SW846 6010D			
Lead				mg/kg	SW846 6010D			
Magnesium	1870 97.0	550 1.6		mg/kg	SW846 6010D			
Manganese Mercury	97.0 0.075	1.6 0.030		mg/kg mg/kg	SW846 6010D SW846 7471B			
Nickel	14.3	0.030 4.4		mg/kg	SW846 6010D			
Vanadium	9.3	5.5			SW846 6010D			
Zinc	18.3	5.5		mg/kg mg/kg	SW846 6010D			
JD36115-3A TT-SB-36-6.0-8.0								
No hits reported in this sample.								
JD36115-4 TT-SB-37-7.0-9.0								
Methylene chloride	3.2 J	4.9	2.5	ug/kg	SW846 8260D			
Benzo(a)anthracene	37.5	34	9.8	ug/kg	SW846 8270E			
Benzo(a)pyrene	35.2	34	16	ug/kg	SW846 8270E			
Benzo(b)fluoranthene	39.3	34	15	ug/kg	SW846 8270E			
> (~)		~ -		~~ ~~				

Summary of Hits
Page 4 of 4

Job Number: JD36115 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/03/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Benzo(g,h,i)perylene	21.9 J	34	17	ug/kg	SW846 8270E
Chrysene	29.9 J	34	11	ug/kg	SW846 8270E
Di-n-butyl phthalate	42.5 JB	69	5.6	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate	39.8 J	69	8.1	ug/kg	SW846 8270E
Fluoranthene	53.4	34	15	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	23.6 J	34	16	ug/kg	SW846 8270E
Phenanthrene	24.8 J	34	12	ug/kg	SW846 8270E
Pyrene	54.8	34	11	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	220 J			ug/kg	
Aluminum	2410	54		mg/kg	SW846 6010D
Calcium	4160	540		mg/kg	SW846 6010D
Chromium	7.4	1.1		mg/kg	SW846 6010D
Copper	5.9	2.7		mg/kg	SW846 6010D
Iron	6040	54		mg/kg	SW846 6010D
Lead	11.3	2.2		mg/kg	SW846 6010D
Magnesium	1720	540		mg/kg	SW846 6010D
Manganese	77.2	1.6		mg/kg	SW846 6010D
Mercury	0.056	0.028		mg/kg	SW846 7471B
Nickel	18.9	4.3		mg/kg	SW846 6010D
Vanadium	9.5	5.4		mg/kg	SW846 6010D
Zinc	20.3	5.4		mg/kg	SW846 6010D

JD36115-4A TT-SB-37-7.0-9.0

No hits reported in this sample.

- (a) More than 40 % RPD for detected concentrations between the two GC columns.
- (b) Dilution required due to viscosity of the extract matrix.
- (c) Elevated detection limit due to dilution required for high interfering element.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results	
Report of Analysis	

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 6.5 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.4	3.9	ug/kg	
71-43-2	Benzene	ND	0.47	0.43	ug/kg	
74-97-5	Bromochloromethane	ND	4.7	0.53	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.40	ug/kg	
75-25-2	Bromoform	ND	4.7	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.7	0.72	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.4	2.3	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.50	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.58	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.43	ug/kg	
75-00-3	Chloroethane	ND	4.7	0.56	ug/kg	
67-66-3	Chloroform	ND	1.9	0.49	ug/kg	
74-87-3	Chloromethane	ND	4.7	1.8	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.62	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.65	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.53	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.94	0.40	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.94	0.51	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.94	0.47	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.94	0.47	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.7	0.69	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.94	0.47	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.94	0.44	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.94	0.62	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.94	0.79	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.94	0.58	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.45	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.45	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.43	ug/kg	
100-41-4	Ethylbenzene	ND	0.94	0.43	ug/kg	
76-13-1	Freon 113	ND	4.7	2.5	ug/kg	
591-78-6	2-Hexanone	ND	4.7	2.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.3	ug/kg	[
79-20-9	Methyl Acetate	ND	4.7	1.3	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.82	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.94	0.44	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.7	2.1	ug/kg		
75-09-2	Methylene chloride	ND	4.7	2.5	ug/kg		
100-42-5	Styrene	ND	1.9	0.38	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.56	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.55	ug/kg		
108-88-3	Toluene	ND	0.94	0.49	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.7	2.4	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	4.7	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.46	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.52	ug/kg		
79-01-6	Trichloroethene	ND	0.94	0.72	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.7	0.64	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.45	ug/kg		
	m,p-Xylene	ND	0.94	0.84	ug/kg		
95-47-6	o-Xylene	ND	0.94	0.43	ug/kg		
1330-20-7	Xylene (total)	ND	0.94	0.43	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	106%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	105%		75-1	31%		
2037-26-5	Toluene-D8	87 %		81-1	21%		
460-00-4	4-Bromofluorobenzene	97%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M176884.D 1 12/08/21 21:06 KLS 12/07/21 10:45 OP36963 EM7603

Run #2

Initial Weight Final Volume Run #1 31.2 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	79	19	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	200	24	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	200	34	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	200	70	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	200	150	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	200	42	ug/kg	
95-48-7	2-Methylphenol	ND	79	25	ug/kg	
	3&4-Methylphenol	ND	79	32	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	200	26	ug/kg	
100-02-7	4-Nitrophenol	ND	390	100	ug/kg	
87-86-5	Pentachlorophenol	ND	160	37	ug/kg	
108-95-2	Phenol	ND	79	21	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	200	26	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	200	29	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	200	23	ug/kg	
83-32-9	Acenaphthene	72.5	39	14	ug/kg	
208-96-8	Acenaphthylene	43.2	39	20	ug/kg	
98-86-2	Acetophenone ^a	ND	200	8.4	ug/kg	
120-12-7	Anthracene	294	39	24	ug/kg	
1912-24-9	Atrazine ^a	ND	79	17	ug/kg	
56-55-3	Benzo(a)anthracene	1020	39	11	ug/kg	
50-32-8	Benzo(a)pyrene	870	39	18	ug/kg	
205-99-2	Benzo(b)fluoranthene	994	39	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	504	39	20	ug/kg	
207-08-9	Benzo(k)fluoranthene	406	39	18	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	79	15	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	79	9.6	ug/kg	
92-52-4	1,1'-Biphenyl	12.3	79	5.4	ug/kg	J
100-52-7	Benzaldehyde	ND	200	9.7	ug/kg	
91-58-7	2-Chloronaphthalene	ND	79	9.3	ug/kg	
106-47-8	4-Chloroaniline	ND	200	14	ug/kg	
86-74-8	Carbazole	71.5	79	5.7	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-34-4.0-6.0

Lab Sample ID: JD36115-1 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 81.6

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	79	16	ug/kg	
218-01-9	Chrysene	1140	39	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	79	8.4	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	79	17	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	79	14	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	79	13	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	39	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	39	20	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	79	33	ug/kg	
123-91-1	1,4-Dioxane	ND	39	26	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	145	39	17	ug/kg	
132-64-9	Dibenzofuran	68.0	79	16	ug/kg	J
84-74-2	Di-n-butyl phthalate	21.2	79	6.4	ug/kg	JB
117-84-0	Di-n-octyl phthalate	ND	79	9.8	ug/kg	
84-66-2	Diethyl phthalate	ND	79	8.4	ug/kg	
131-11-3	Dimethyl phthalate	ND	79	7.0	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	57.6	79	9.2	ug/kg	J
206-44-0	Fluoranthene	1760	39	18	ug/kg	
86-73-7	Fluorene	56.1	39	18	ug/kg	
118-74-1	Hexachlorobenzene	ND	79	9.9	ug/kg	
87-68-3	Hexachlorobutadiene	ND	39	16	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	390	16	ug/kg	
67-72-1	Hexachloroethane	ND	200	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	579	39	18	ug/kg	
78-59-1	Isophorone	ND	79	8.4	ug/kg	
91-57-6	2-Methylnaphthalene	34.1	39	8.9	ug/kg	J
88-74-4	2-Nitroaniline ^a	ND	200	9.3	ug/kg	
99-09-2	3-Nitroaniline	ND	200	9.8	ug/kg	
100-01-6	4-Nitroaniline	ND	200	10	ug/kg	
91-20-3	Naphthalene	72.9	39	11	ug/kg	
98-95-3	Nitrobenzene	ND	79	15	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine a	ND	79	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	200	14	ug/kg	
85-01-8	Phenanthrene	1180	39	13	ug/kg	
129-00-0	Pyrene	2050	39	13	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	200	10	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

367-12-4 2-Fluorophenol **54**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5		10-105%			
118-79-6	2,4,6-Tribromophenol	89%		10-135%		
4165-60-0	Nitrobenzene-d5	73%		10-119%		
321-60-8	2-Fluorobiphenyl	69 %		18-112 %		
1718-51-0	Terphenyl-d14	65 %		18-125%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
	System artifact	3.21	210	ug/kg	J	
	system artifact/aldol-condensat	3.28	420	ug/kg	J	
	Phenanthrene, methyl-	11.54	260	ug/kg		
	Phenanthrene, methyl-		11.59	350	ug/kg	
	unknown		11.74	320	ug/kg	
	Phenanthrene methyl		11.79	180	ug/kg	
	Naphthalene, phenyl-		12.15	280	ug/kg	
	Phenanthrene, dimethyl-		12.63	230	ug/kg	
	Pyrene methyl		14.03	170	ug/kg	
	Octadecenamide, (Z)-		14.93	200	ug/kg	
	unknown		15.31	220	ug/kg	
	unknown PAH substances		18.19	620	ug/kg	
	unknown		18.59	190	ug/kg	
	unknown		19.31	270	ug/kg	
	Total TIC, Semi-Volatile			3290	ug/kg	
					o	•

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-34-4.0-6.0

Initial Weight

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105338.D 1 12/21/21 07:25 CS 12/07/21 10:45 OP36963A E4M4893

Run #2

Run #1 31.2 g 1.0 ml Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.9 2.0 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 70%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 66%
 17-91%

 1718-51-0
 Terphenyl-d14
 66%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 OA155541.D 1 12/10/21 11:37 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	20 3.9 3.9	8.8 2.2 2.0	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	42% 41%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723473.D 1 12/10/21 09:51 CP 12/07/21 11:25 OP36973 G4G3679

Run #2

Initial Weight Final Volume Run #1 16.0 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.77	0.63	ug/kg	
319-84-6	alpha-BHC	ND	0.77	0.62	ug/kg	
319-85-7	beta-BHC	ND	0.77	0.69	ug/kg	
319-86-8	delta-BHC	ND	0.77	0.74	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.77	0.56	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.77	0.62	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.77	0.35	ug/kg	
60-57-1	Dieldrin	ND	0.77	0.53	ug/kg	
72-54-8	4,4'-DDD a	2.3	0.77	0.70	ug/kg	
72-55-9	4,4'-DDE	ND	0.77	0.67	ug/kg	
50-29-3	4,4'-DDT a	6.3	0.77	0.68	ug/kg	
72-20-8	Endrin	ND	0.77	0.60	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.77	0.60	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.77	0.43	ug/kg	
959-98-8	Endosulfan-I	ND	0.77	0.44	ug/kg	
33213-65-9	Endosulfan-II	ND	0.77	0.48	ug/kg	
76-44-8	Heptachlor	ND	0.77	0.66	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.77	0.54	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.61	ug/kg	
53494-70-5	Endrin ketone	ND	0.77	0.55	ug/kg	
8001-35-2	Toxaphene	ND	19	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	113%		14-1	45%	
877-09-8	Tetrachloro-m-xylene	139%		14-1	45%	
2051-24-3	Decachlorobiphenyl	118%		10-1	97%	
2051-24-3	Decachlorobiphenyl	352% b				

- (a) More than 40 % RPD for detected concentrations between the two GC columns.
- (b) Outside control limits due to matrix interference.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-34-4.0-6.0

 Lab Sample ID:
 JD36115-1
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 RK7202.D 1 12/10/21 09:50 RK 12/07/21 11:25 OP36974 GRK186

Run #2

Initial Weight Final Volume Run #1 16.0 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	18	ug/kg	
11104-28-2	Aroclor 1221	ND	38	24	ug/kg	
11141-16-5	Aroclor 1232	ND	38	24	ug/kg	
53469-21-9	Aroclor 1242	ND	38	16	ug/kg	
12672-29-6	Aroclor 1248	ND	38	34	ug/kg	
11097-69-1	Aroclor 1254	ND	38	21	ug/kg	
11096-82-5	Aroclor 1260	ND	38	16	ug/kg	
11100-14-4	Aroclor 1268	ND	38	16	ug/kg	
37324-23-5	Aroclor 1262	ND	38	25	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	103%		10-1	63%	
877-09-8	Tetrachloro-m-xylene	88%		10-1	63%	
2051-24-3	Decachlorobiphenyl	71%		10-2	15%	
2051-24-3	Decachlorobiphenyl	274% a		10-2	15%	

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-34-4.0-6.0

Lab Sample ID: JD36115-1 **Date Sampled:** 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6160	63	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.5	2.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	4.2	2.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	31.8	25	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	0.39	0.25	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.63	0.63	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	16500	630	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	15.1	1.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 6.3	6.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	17.6	3.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	14800	63	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	180	2.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	3180	630	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	223	1.9	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	0.22	0.033	mg/kg	1	12/07/21	12/07/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	21.7	5.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	< 1300	1300	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.5	2.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.63	0.63	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1300	1300	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.3	1.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	23.0	6.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	46.3	6.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51548 (2) Instrument QC Batch: MA51561 (3) Prep QC Batch: MP30201 (4) Prep QC Batch: MP30212

Page 1 of 1

Client Sample ID: TT-SB-34-4.0-6.0

Lab Sample ID: JD36115-1 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 81.6

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.27 81.6	0.27	mg/kg %	1 1	12/09/21 03:58 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

JD36115

Report of Analysis

Client Sample ID: TT-SB-34-4.0-6.0

Lab Sample ID:JD36115-1ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82226.D 1 12/24/21 19:36 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume
Run #1 1.99 g 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOROALKYLCARBOXYLIC ACIDS									
375-22-4	Perfluorobutanoic acid	ND	1.2	0.47	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.62	0.31	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.62	0.31	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.62	0.31	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.62	0.31	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.62	0.31	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.62	0.31	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.62	0.31	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.62	0.31	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.62	0.33	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.62	0.31	ug/kg				
PERFLUOR	ROALKYLSULFONIC ACIDS	5							
375-73-5	Perfluorobutanesulfonic acid	ND	0.62	0.31	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.62	0.31	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.62	0.31	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.62	0.31	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.62	0.31	ug/kg				
PERFLUOR	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.62	0.31	ug/kg				
DEDEI HOL	ROOCTANESULFONAMIDO	ACETIC AC	TDC						
2355-31-9	MeFOSAA	ND	1.2	0.62	ug/kg				
2991-50-6	EtFOSAA	ND	1.2	0.62	ug/kg ug/kg				
2001-00-0	Lu OJAA	110	1.6	0.02	ug/ ng				
FLUOROTI	ELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.31	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.31	ug/kg				

ND = Not detected M

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Client Sample ID: TT-SB-34-4.0-6.0

Lab Sample ID:JD36115-1ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:81.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	105%		40-140%
	13C5-PFPeA	102%		50-150 %
	13C5-PFHxA	103%		50-150 %
	13C4-PFHpA	103%		50-150 %
	13C8-PFOA	105%		50-150 %
	13C9-PFNA	103%		50-150 %
	13C6-PFDA	99%		50-150 %
	13C7-PFUnDA	88%		40-140%
	13C2-PFDoDA	94%		40-140%
	13C2-PFTeDA	108%		30-130%
	13C3-PFBS	106%		50-150 %
	13C3-PFHxS	106%		50-150 %
	13C8-PFOS	105%		50-150 %
	13C8-FOSA	98%		30-130%
	d3-MeFOSAA	107%		40-140%
	d5-EtFOSAA	113%		40-140%
	13C2-6:2FTS	103%		50-150 %
	13C2-8:2FTS	105%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240425.D 1 12/07/21 13:38 PS 12/03/21 12:21 n/a VI9773

Run #2

Initial Weight

Run #1 5.2 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	4.2	ug/kg	
71-43-2	Benzene	ND	0.51	0.46	ug/kg	
74-97-5	Bromochloromethane	ND	5.1	0.57	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.44	ug/kg	
75-25-2	Bromoform	ND	5.1	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.1	0.78	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	2.0	0.55	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.0	0.63	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.47	ug/kg	
75-00-3	Chloroethane	ND	5.1	0.60	ug/kg	
67-66-3	Chloroform	ND	2.0	0.53	ug/kg	
74-87-3	Chloromethane	ND	5.1	2.0	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.67	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.71	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.57	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.0	0.43	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.56	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.51	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.50	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.1	0.74	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.0	0.50	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.0	0.48	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.0	0.67	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.86	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.62	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.48	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.48	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.47	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.46	ug/kg	
76-13-1	Freon 113	ND	5.1	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.1	2.2	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	5.1	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.89	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.48	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.1	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.1	2.7	ug/kg		
100-42-5	Styrene	ND	2.0	0.41	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.61	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.59	ug/kg		
108-88-3	Toluene	ND	1.0	0.54	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.1	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.1	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.49	ug/kg	į	
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.56	ug/kg	į	
79-01-6	Trichloroethene	ND	1.0	0.78	ug/kg	į	
75-69-4	Trichlorofluoromethane	ND	5.1	0.70	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.49	ug/kg	į	
	m,p-Xylene	ND	1.0	0.91	ug/kg	į	
95-47-6	o-Xylene	ND	1.0	0.47	ug/kg	į	
1330-20-7	Xylene (total)	ND	1.0	0.47	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	108%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	107%		75-1	31%		
2037-26-5	Toluene-D8	86%		81-1	21%		
460-00-4	4-Bromofluorobenzene	96%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.3

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a M176927.D 2 12/10/21 23:30 KLS 12/07/21 10:45 OP36963 EM7605

Run #2

Initial Weight Final Volume Run #1 30.4 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	140	34	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	350	43	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	350	60	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	350	120	ug/kg	
51-28-5	2,4-Dinitrophenol ^b	ND	350	260	ug/kg	
534-52-1	4,6-Dinitro-o-cresol b	ND	350	75	ug/kg	
95-48-7	2-Methylphenol	ND	140	45	ug/kg	
	3&4-Methylphenol	ND	140	57	ug/kg	
88-75-5	2-Nitrophenol ^b	ND	350	46	ug/kg	
100-02-7	4-Nitrophenol	ND	700	190	ug/kg	
87-86-5	Pentachlorophenol	ND	280	66	ug/kg	
108-95-2	Phenol	ND	140	36	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol b	ND	350	46	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	350	52	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	350	42	ug/kg	
83-32-9	Acenaphthene	83.0	70	24	ug/kg	
208-96-8	Acenaphthylene	73.3	70	35	ug/kg	
98-86-2	Acetophenone ^b	ND	350	15	ug/kg	
120-12-7	Anthracene	274	70	43	ug/kg	
1912-24-9	Atrazine ^c	ND	140	30	ug/kg	
56-55-3	Benzo(a)anthracene	852	70	20	ug/kg	
50-32-8	Benzo(a)pyrene	762	70	32	ug/kg	
205-99-2	Benzo(b)fluoranthene	986	70	31	ug/kg	
191-24-2	Benzo(g,h,i)perylene	474	70	35	ug/kg	
207-08-9	Benzo(k)fluoranthene	403	70	33	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	140	27	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	140	17	ug/kg	
92-52-4	1,1'-Biphenyl	10.5	140	9.6	ug/kg	J
100-52-7	Benzaldehyde	ND	350	17	ug/kg	
91-58-7	2-Chloronaphthalene	ND	140	17	ug/kg	
106-47-8	4-Chloroaniline	ND	350	25	ug/kg	
86-74-8	Carbazole	93.8	140	10	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

Lab Sample ID: JD36115-2 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 94.3

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	140	28	ug/kg	
218-01-9	Chrysene	862	70	22	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	140	15	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	140	30	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	140	25	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	140	23	ug/kg	
121-14-2	2,4-Dinitrotoluene b	ND	70	22	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	70	35	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	140	58	ug/kg	
123-91-1	1,4-Dioxane	ND	70	46	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	161	70	31	ug/kg	
132-64-9	Dibenzofuran	55.2	140	28	ug/kg	J
84-74-2	Di-n-butyl phthalate	ND	140	11	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	140	17	ug/kg	
84-66-2	Diethyl phthalate	ND	140	15	ug/kg	
131-11-3	Dimethyl phthalate	ND	140	12	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	230	140	16	ug/kg	
206-44-0	Fluoranthene	1760	70	31	ug/kg	
86-73-7	Fluorene	84.3	70	32	ug/kg	
118-74-1	Hexachlorobenzene	ND	140	18	ug/kg	
87-68-3	Hexachlorobutadiene ^b	ND	70	28	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	700	28	ug/kg	
67-72-1	Hexachloroethane	ND	350	35	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	559	70	33	ug/kg	
78-59-1	Isophorone	ND	140	15	ug/kg	
91-57-6	2-Methylnaphthalene	28.8	70	16	ug/kg	J
88-74-4	2-Nitroaniline b	ND	350	16	ug/kg	
99-09-2	3-Nitroaniline	ND	350	17	ug/kg	
100-01-6	4-Nitroaniline	ND	350	18	ug/kg	
91-20-3	Naphthalene	32.0	70	20	ug/kg	J
98-95-3	Nitrobenzene	ND	140	27	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine b	ND	140	20	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	350	26	ug/kg	
85-01-8	Phenanthrene	1210	70	23	ug/kg	
129-00-0	Pyrene	1630	70	22	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	350	18	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

367-12-4 2-Fluorophenol **54**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled: 12/03/21

 Matrix:
 SO - Soil
 Date Received: 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits				
4165-62-2	Phenol-d5	54 %	10-105%					
118-79-6	2,4,6-Tribromophenol	83%		10-135%				
4165-60-0	Nitrobenzene-d5	77%		10-119 %				
321-60-8	2-Fluorobiphenyl	69 %		18-112 %				
1718-51-0	Terphenyl-d14	66%		18-125 %				
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q		
	System artifact/aldol-condensa	tion	3.26	390	ug/kg			
000 04 5	Phenanthrene methyl		11.57	290	ug/kg			
203-64-5	4H-Cyclopenta[def]phenanthre	ne	11.70	300	ug/kg			
	Octadecenamide		14.89	300	ug/kg			
	Unknown PAH substance		18.15	630	ug/kg			
	Unknown		19.74	420	ug/kg	J		
	Total TIC, Semi-Volatile			1940	ug/kg	J		

- (a) Dilution required due to viscosity of the extract matrix.
- (b) Associated CCV outside of control limits high, sample was ND.
- (c) Associated CCV outside of control limits high, sample was ND. Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

Initial Weight

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105335.D 2 12/21/21 06:24 CS 12/07/21 10:45 OP36963A E4M4893

Run #2

Run #1 30.4 g 1.0 ml Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 7.0 3.5 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

Final Volume

 4165-60-0
 Nitrobenzene-d5
 64%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 55%
 17-91%

 1718-51-0
 Terphenyl-d14
 57%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 OA155542.D 1 12/10/21 12:05 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Initial Weight Final Volume
Run #1 16.3 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	16 3.3 3.3	7.3 1.8 1.6	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	68 % 53 %		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	4G9723474.D	1	12/10/21 10:06	CP	12/07/21 11:25	OP36973	G4G3679
Run #2 a	4G9723522.D	5	12/14/21 02:10	TL	12/07/21 11:25	OP36973	G4G3681

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.70	0.58	ug/kg	
319-84-6	alpha-BHC	ND	0.70	0.57	ug/kg	
319-85-7	beta-BHC	ND	0.70	0.63	ug/kg	
319-86-8	delta-BHC	ND	0.70	0.67	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.70	0.52	ug/kg	
5103-71-9	alpha-Chlordane ^b	4.0	0.70	0.57	ug/kg	
5103-74-2	gamma-Chlordane	3.9	0.70	0.32	ug/kg	
60-57-1	Dieldrin ^b	1.7	0.70	0.48	ug/kg	
72-54-8	4,4'-DDD	3.5	0.70	0.64	ug/kg	
72-55-9	4,4'-DDE ^b	11.7	0.70	0.62	ug/kg	
50-29-3	4,4'-DDT	22.1	0.70	0.62	ug/kg	
72-20-8	Endrin	ND	0.70	0.55	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.70	0.55	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.70	0.40	ug/kg	
959-98-8	Endosulfan-I	ND	0.70	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.70	0.44	ug/kg	
76-44-8	Heptachlor	ND	0.70	0.61	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.70	0.49	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.56	ug/kg	
53494-70-5	Endrin ketone	8.9	0.70	0.51	ug/kg	
8001-35-2	Toxaphene	ND	18	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	86%	92%	14-1	45 %	
877-09-8	Tetrachloro-m-xylene	88%	101%	14-1	45 %	
2051-24-3	Decachlorobiphenyl	107%	76 %	10-1	97%	
2051-24-3	Decachlorobiphenyl	165%	158%	10-1	97 %	

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

Client Sample ID: TT-SB-35-3.0-5.0

 Lab Sample ID:
 JD36115-2
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7203.D 1 12/10/21 10:06 RK 12/07/21 11:25 OP36974 GRK186

Run #2

Initial Weight Final Volume Run #1 15.1 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	16	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	22	ug/kg	
53469-21-9	Aroclor 1242	ND	35	14	ug/kg	
12672-29-6	Aroclor 1248	ND	35	31	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
077 00 0	T	700/		10.1	000/	
877-09-8	Tetrachloro-m-xylene	73%			63%	
877-09-8	Tetrachloro-m-xylene	66%			63%	
2051-24-3	Decachlorobiphenyl	39 %		10-2	15%	
2051-24-3	Decachlorobiphenyl	156%		10-2	15%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-35-3.0-5.0

Lab Sample ID: JD36115-2 Date Sampled: 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	4250	51	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Antimony	< 2.1	2.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Arsenic a	< 10	10	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Barium ^a	< 100	100	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Beryllium ^a	< 1.0	1.0	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Cadmium ^a	< 2.6	2.6	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Calcium	77500	2600	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Chromium ^a	7.9	5.1	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Cobalt ^a	< 26	26	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Copper ^a	19.4	13	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Iron	7910	51	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Lead	79.1	2.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Magnesium	6380	510	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Manganese	301	1.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Mercury	0.18	0.029	mg/kg	1	12/07/21	12/07/21 SB	SW846 7471B ¹	SW846 7471B ⁵
Potassium	< 1000	1000	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Selenium ^a	< 10	10	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Silver a	< 2.6	2.6	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Sodium	< 1000	1000	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Thallium ^a	< 5.1	5.1	mg/kg	5	12/07/21	12/08/21 ND	SW846 6010D ³	SW846 3050B ⁴
Vanadium	21.0	5.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴
Zinc	70.2	5.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA51548
(2) Instrument QC Batch: MA51561
(3) Instrument QC Batch: MA51571
(4) Prep QC Batch: MP30201
(5) Prep QC Batch: MP30212

(a) Elevated detection limit due to dilution required for high interfering element.

4.3

Page 1 of 1

Client Sample ID: TT-SB-35-3.0-5.0

Lab Sample ID: JD36115-2 Date Sampled: 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.23 94.3	0.23	mg/kg %	1 1	12/09/21 04:16 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

Client Sample ID: TT-SB-35-3.0-5.0

Lab Sample ID:JD36115-2ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 ^a 2Q82227.D 1 12/24/21 19:54 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume Run #1 1.99 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.40	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.53	0.27	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.53	0.27	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.53	0.27	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.53	0.27	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.53	0.27	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.53	0.27	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.53	0.27	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.53	0.27	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.53	0.28	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.53	0.27	ug/kg	
PERFLUOR	ROALKYLSULFONIC ACIDS	5				
375-73-5	Perfluorobutanesulfonic acid	ND	0.53	0.27	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.53	0.27	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.53	0.27	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.53	0.27	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.53	0.27	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDES	S				
754-91-6	PFOSA	ND	0.53	0.27	ug/kg	
	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.53	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.53	ug/kg	
	ELOMER SULFONATES				_	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-35-3.0-5.0

Lab Sample ID:JD36115-2ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:94.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	88%		40-140%
	13C5-PFPeA	87 %		50-150 %
	13C5-PFHxA	88%		50-150 %
	13C4-PFHpA	90%		50-150 %
	13C8-PFOA	92%		50-150 %
	13C9-PFNA	91%		50-150 %
	13C6-PFDA	89 %		50-150 %
	13C7-PFUnDA	89 %		40-140%
	13C2-PFDoDA	91%		40-140%
	13C2-PFTeDA	94%		30-130%
	13C3-PFBS	93%		50-150 %
	13C3-PFHxS	95 %		50-150 %
	13C8-PFOS	97%		50-150 %
	13C8-FOSA	95 %		30-130%
	d3-MeFOSAA	77%		40-140%
	d5-EtFOSAA	83%		40-140%
	13C2-6:2FTS	82 %		50-150 %
	13C2-8:2FTS	89 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.4

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 I240426.D 1 12/07/21 13:58 PS 12/03/21 12:21 n/a VI9773

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	4.3	ug/kg	
71-43-2	Benzene	ND	0.52	0.48	ug/kg	
74-97-5	Bromochloromethane	ND	5.2	0.59	ug/kg	
75-27-4	Bromodichloromethane	ND	2.1	0.45	ug/kg	
75-25-2	Bromoform	ND	5.2	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.2	0.80	ug/kg	
78-93-3	2-Butanone (MEK)	ND	10	2.5	ug/kg	
75-15-0	Carbon disulfide	ND	2.1	0.56	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.1	0.65	ug/kg	
108-90-7	Chlorobenzene	ND	2.1	0.48	ug/kg	
75-00-3	Chloroethane	ND	5.2	0.62	ug/kg	
67-66-3	Chloroform	ND	2.1	0.54	ug/kg	
74-87-3	Chloromethane	ND	5.2	2.1	ug/kg	
110-82-7	Cyclohexane	ND	2.1	0.69	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.1	0.73	ug/kg	
124-48-1	Dibromochloromethane	ND	2.1	0.59	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.0	0.44	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.57	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.52	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.52	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.2	0.76	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.0	0.52	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.0	0.49	ug/kg	
75-35-4	1,1-Dichloroethene	ND	1.0	0.69	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.88	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.64	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.1	0.50	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.1	0.50	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.1	0.48	ug/kg	
100-41-4	Ethylbenzene	ND	1.0	0.47	ug/kg	
76-13-1	Freon 113	ND	5.2	2.8	ug/kg	
591-78-6	2-Hexanone	ND	5.2	2.2	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.1	1.5	ug/kg		
79-20-9	Methyl Acetate	ND	5.2	1.5	ug/kg		
108-87-2	Methylcyclohexane	ND	2.1	0.92	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.49	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.2	2.4	ug/kg		
75-09-2	Methylene chloride	ND	5.2	2.7	ug/kg		
100-42-5	Styrene	ND	2.1	0.42	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.1	0.63	ug/kg		
127-18-4	Tetrachloroethene	ND	2.1	0.61	ug/kg		
108-88-3	Toluene	ND	1.0	0.55	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.2	2.6	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.2	2.6	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.1	0.51	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.1	0.58	ug/kg		
79-01-6	Trichloroethene	ND	1.0	0.80	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.2	0.72	ug/kg		
75-01-4	Vinyl chloride	ND	2.1	0.50	ug/kg		
	m, p-Xylene	ND	1.0	0.94	ug/kg		
95-47-6	o-Xylene	ND	1.0	0.48	ug/kg		
1330-20-7	Xylene (total)	ND	1.0	0.48	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts		
1868-53-7	Dibromofluoromethane	106%		72-13	30 %		
17060-07-0	1,2-Dichloroethane-D4	109%		75-13	31%		
2037-26-5	Toluene-D8	88%		81-13	21%		
460-00-4	4-Bromofluorobenzene	94%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M176873.D 1 12/08/21 15:46 KLS 12/07/21 10:45 OP36963 EM7603

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	70	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	180	21	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	180	30	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	180	62	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	180	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	180	37	ug/kg	
95-48-7	2-Methylphenol	ND	70	22	ug/kg	
	3&4-Methylphenol	ND	70	29	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	180	23	ug/kg	
100-02-7	4-Nitrophenol	ND	350	94	ug/kg	
87-86-5	Pentachlorophenol	ND	140	33	ug/kg	
108-95-2	Phenol	ND	70	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	180	23	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	180	26	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	180	21	ug/kg	
83-32-9	Acenaphthene	ND	35	12	ug/kg	
208-96-8	Acenaphthylene	ND	35	18	ug/kg	
98-86-2	Acetophenone ^a	ND	180	7.5	ug/kg	
120-12-7	Anthracene	ND	35	21	ug/kg	
1912-24-9	Atrazine ^a	ND	70	15	ug/kg	
56-55-3	Benzo(a)anthracene	36.7	35	9.9	ug/kg	
50-32-8	Benzo(a)pyrene	36.4	35	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	39.5	35	15	ug/kg	
191-24-2	Benzo(g,h,i)perylene	21.6	35	18	ug/kg	J
207-08-9	Benzo(k)fluoranthene	17.7	35	16	ug/kg	J
101-55-3	4-Bromophenyl phenyl ether	ND	70	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	70	8.5	ug/kg	
92-52-4	1,1'-Biphenyl	ND	70	4.8	ug/kg	
100-52-7	Benzaldehyde	ND	180	8.7	ug/kg	
91-58-7	2-Chloronaphthalene	ND	70	8.3	ug/kg	
106-47-8	4-Chloroaniline	ND	180	13	ug/kg	
86-74-8	Carbazole	ND	70	5.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

Lab Sample ID: JD36115-3 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 93.6

Method: SW846 8270E SW846 3546 **Percent Solids:**

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	70	14	ug/kg	
218-01-9	Chrysene	34.2	35	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	70	7.5	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	70	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	70	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	70	11	ug/kg	
121-14-2	2,4-Dinitrotoluene a	ND	35	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	35	18	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	70	29	ug/kg	
123-91-1	1,4-Dioxane	ND	35	23	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	35	15	ug/kg	
132-64-9	Dibenzofuran	ND	70	14	ug/kg	
84-74-2	Di-n-butyl phthalate	21.1	70	5.7	ug/kg	JB
117-84-0	Di-n-octyl phthalate	ND	70	8.7	ug/kg	
84-66-2	Diethyl phthalate	ND	70	7.5	ug/kg	
131-11-3	Dimethyl phthalate	ND	70	6.2	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	50.9	70	8.2	ug/kg	J
206-44-0	Fluoranthene	57.2	35	16	ug/kg	
86-73-7	Fluorene	ND	35	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	70	8.9	ug/kg	
87-68-3	Hexachlorobutadiene	ND	35	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	350	14	ug/kg	
67-72-1	Hexachloroethane	ND	180	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	23.8	35	16	ug/kg	J
78-59-1	Isophorone	ND	70	7.5	ug/kg	
91-57-6	2-Methylnaphthalene	ND	35	7.9	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	180	8.3	ug/kg	
99-09-2	3-Nitroaniline	ND	180	8.8	ug/kg	
100-01-6	4-Nitroaniline	ND	180	9.1	ug/kg	
91-20-3	Naphthalene	ND	35	9.9	ug/kg	
98-95-3	Nitrobenzene	ND	70	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine a	ND	70	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	180	13	ug/kg	
85-01-8	Phenanthrene	16.2	35	12	ug/kg	J
129-00-0	Pyrene	61.6	35	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	180	8.9	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

367-12-4 2-Fluorophenol **52**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	59 %		10-105%		
118-79-6	2,4,6-Tribromophenol	91%		10-135%		
4165-60-0	Nitrobenzene-d5	73 %		10-119%		
321-60-8	2-Fluorobiphenyl	66%		18-112 %		
1718-51-0	Terphenyl-d14	70 %		18-125 %		
CAS No.	Tentatively Identified Comp	ounds	R.T.	Est. Conc.	Units	Q
	system artifact system artifact/aldol-condensa	tion	3.21 3.28	200 2300	ug/kg ug/kg	
301-02-0	9-Octadecenamide, (Z)-		14.91	180	ug/kg	JN
	Total TIC, Semi-Volatile			180	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105333.D 1 12/21/21 05:44 CS 12/07/21 10:45 OP36963A E4M4893

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.5 1.8 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 74%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 69%
 17-91%

 1718-51-0
 Terphenyl-d14
 74%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155543.D 1 12/10/21 12:33 RK 12/07/21 10:55 OP36933 GOA5500

Report of Analysis

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	16 3.2 3.2	7.2 1.8 1.6	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	24% 22%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

4.5

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723475.D 1 12/10/21 10:21 CP 12/07/21 11:25 OP36973 G4G3679

Run #2

Initial Weight Final Volume Run #1 15.4 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.69	0.57	ug/kg	
319-84-6	alpha-BHC	ND	0.69	0.56	ug/kg	
319-85-7	beta-BHC	ND	0.69	0.63	ug/kg	
319-86-8	delta-BHC	ND	0.69	0.67	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.69	0.51	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.69	0.56	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.69	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.69	0.48	ug/kg	
72-54-8	4,4'-DDD	ND	0.69	0.64	ug/kg	
72-55-9	4,4'-DDE	ND	0.69	0.61	ug/kg	
50-29-3	4,4'-DDT	ND	0.69	0.61	ug/kg	
72-20-8	Endrin	ND	0.69	0.54	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.69	0.54	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.69	0.39	ug/kg	
959-98-8	Endosulfan-I	ND	0.69	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.69	0.43	ug/kg	
76-44-8	Heptachlor	ND	0.69	0.60	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.69	0.49	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.55	ug/kg	
53494-70-5	Endrin ketone	ND	0.69	0.50	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	57%		14-1	45%	
877-09-8	Tetrachloro-m-xylene	63%		14-1	45%	
2051-24-3	Decachlorobiphenyl	40%		10-1	97%	
2051-24-3	Decachlorobiphenyl	50 %		10-1	97%	

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

 Lab Sample ID:
 JD36115-3
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7204.D 1 12/10/21 10:22 RK 12/07/21 11:25 OP36974 GRK186

Run #2

Run #1 Initial Weight Final Volume 15.4 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	16	ug/kg	
11104-28-2	Aroclor 1221	ND	35	22	ug/kg	
11141-16-5	Aroclor 1232	ND	35	22	ug/kg	
53469-21-9	Aroclor 1242	ND	35	14	ug/kg	
12672-29-6	Aroclor 1248	ND	35	31	ug/kg	
11097-69-1	Aroclor 1254	ND	35	19	ug/kg	
11096-82-5	Aroclor 1260	ND	35	15	ug/kg	
11100-14-4	Aroclor 1268	ND	35	15	ug/kg	
37324-23-5	Aroclor 1262	ND	35	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	63%		10-1	63%	
877-09-8	Tetrachloro-m-xylene	60%		10-1	63%	
2051-24-3	Decachlorobiphenyl	31%		10-2	15%	
2051-24-3	Decachlorobiphenyl	90%		10-2	15%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-36-6.0-8.0

Lab Sample ID: JD36115-3 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2760	55	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	3.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	< 22	22	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	< 0.22	0.22	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.55	0.55	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	626	550	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	6.8	1.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.5	5.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	3.8	2.7	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	8390	55	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	8.7	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	1870	550	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	97.0	1.6	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	0.075	0.030	mg/kg	1	12/07/21	12/07/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	14.3	4.4	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	< 1100	1100	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.55	0.55	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	9.3	5.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	18.3	5.5	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51548 (2) Instrument QC Batch: MA51561 (3) Prep QC Batch: MP30201 (4) Prep QC Batch: MP30212

Page 1 of 1

Client Sample ID: TT-SB-36-6.0-8.0

Lab Sample ID: JD36115-3 Date Sampled: 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	\mathbf{RL}	Units	DF	Analyzed	By	Method

Cyanide	< 0.21	0.21	mg/kg	1	12/09/21 04:17 EB	SW846 9012B/LACHAT
Solids, Percent	93.6		%	1	12/05/21 15:00 BG	SM2540 G 18TH ED MOD

4.5

4.6

Report of Analysis

Client Sample ID: TT-SB-36-6.0-8.0

Lab Sample ID:JD36115-3ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:93.6

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 a 2Q82228.D 1 12/24/21 20:13 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume Run #1 1.96 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q			
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS							
375-22-4	Perfluorobutanoic acid	ND	1.1	0.41	ug/kg				
2706-90-3	Perfluoropentanoic acid	ND	0.55	0.27	ug/kg				
307-24-4	Perfluorohexanoic acid	ND	0.55	0.27	ug/kg				
375-85-9	Perfluoroheptanoic acid	ND	0.55	0.27	ug/kg				
335-67-1	Perfluorooctanoic acid	ND	0.55	0.27	ug/kg				
375-95-1	Perfluorononanoic acid	ND	0.55	0.27	ug/kg				
335-76-2	Perfluorodecanoic acid	ND	0.55	0.27	ug/kg				
2058-94-8	Perfluoroundecanoic acid	ND	0.55	0.27	ug/kg				
307-55-1	Perfluorododecanoic acid	ND	0.55	0.27	ug/kg				
72629-94-8	Perfluorotridecanoic acid	ND	0.55	0.29	ug/kg				
376-06-7	Perfluorotetradecanoic acid	ND	0.55	0.27	ug/kg				
	ROALKYLSULFONIC ACIDS								
375-73-5	Perfluorobutanesulfonic acid	ND	0.55	0.27	ug/kg				
355-46-4	Perfluorohexanesulfonic acid	ND	0.55	0.27	ug/kg				
375-92-8	Perfluoroheptanesulfonic acid	ND	0.55	0.27	ug/kg				
1763-23-1	Perfluorooctanesulfonic acid	ND	0.55	0.27	ug/kg				
335-77-3	Perfluorodecanesulfonic acid	ND	0.55	0.27	ug/kg				
PERFLUOI	ROOCTANESULFONAMIDE	S							
754-91-6	PFOSA	ND	0.55	0.27	ug/kg				
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS						
2355-31-9	MeFOSAA	ND	1.1	0.55	ug/kg				
2991-50-6	EtFOSAA	ND	1.1	0.55	ug/kg				
FLUOROT	FLUOROTELOMER SULFONATES								
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg				
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.27	ug/kg				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-36-6.0-8.0 Lab Sample ID: JD36115-3A **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 93.6

Method: EPA 537M BY ID IN HOUSE **Percent Solids:** 2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	100%		40-140%
	13C5-PFPeA	99%		50-150 %
	13C5-PFHxA	99%		50-150 %
	13C4-PFHpA	99%		50-150 %
	13C8-PFOA	102%		50-150 %
	13C9-PFNA	97%		50-150 %
	13C6-PFDA	92%		50-150 %
	13C7-PFUnDA	89 %		40-140%
	13C2-PFDoDA	96%		40-140%
	13C2-PFTeDA	101%		30-130%
	13C3-PFBS	101%		50-150 %
	13C3-PFHxS	100%		50-150 %
	13C8-PFOS	100%		50-150 %
	13C8-FOSA	98%		30-130%
	d3-MeFOSAA	110%		40-140%
	d5-EtFOSAA	112%		40-140%
	13C2-6:2FTS	100%		50-150 %
	13C2-8:2FTS	100%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Page 1 of 2

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Run #2

Initial Weight

Run #1 5.4 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	9.7	4.0	ug/kg	
71-43-2	Benzene	ND	0.49	0.44	ug/kg	
74-97-5	Bromochloromethane	ND	4.9	0.55	ug/kg	
75-27-4	Bromodichloromethane	ND	1.9	0.42	ug/kg	
75-25-2	Bromoform	ND	4.9	1.3	ug/kg	
74-83-9	Bromomethane	ND	4.9	0.74	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.7	2.4	ug/kg	
75-15-0	Carbon disulfide	ND	1.9	0.52	ug/kg	
56-23-5	Carbon tetrachloride	ND	1.9	0.60	ug/kg	
108-90-7	Chlorobenzene	ND	1.9	0.45	ug/kg	
75-00-3	Chloroethane	ND	4.9	0.58	ug/kg	
67-66-3	Chloroform	ND	1.9	0.51	ug/kg	
74-87-3	Chloromethane	ND	4.9	1.9	ug/kg	
110-82-7	Cyclohexane	ND	1.9	0.64	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	1.9	0.68	ug/kg	
124-48-1	Dibromochloromethane	ND	1.9	0.55	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.97	0.41	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.97	0.53	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.97	0.48	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.97	0.48	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	4.9	0.71	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.97	0.48	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.97	0.46	ug/kg	
75-35-4	1,1-Dichloroethene	ND	0.97	0.64	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.97	0.82	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.97	0.59	ug/kg	
78-87-5	1,2-Dichloropropane	ND	1.9	0.46	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	1.9	0.46	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	1.9	0.44	ug/kg	
100-41-4	Ethylbenzene	ND	0.97	0.44	ug/kg	
76-13-1	Freon 113	ND	4.9	2.6	ug/kg	
591-78-6	2-Hexanone	ND	4.9	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.9	1.4	ug/kg		
79-20-9	Methyl Acetate	ND	4.9	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	1.9	0.85	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.97	0.46	ug/kg	:	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	4.9	2.2	ug/kg	:	
75-09-2	Methylene chloride	3.2	4.9	2.5	ug/kg	J	
100-42-5	Styrene	ND	1.9	0.39	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.9	0.58	ug/kg		
127-18-4	Tetrachloroethene	ND	1.9	0.56	ug/kg		
108-88-3	Toluene	ND	0.97	0.51	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	4.9	2.4	ug/kg	:	
120-82-1	1,2,4-Trichlorobenzene	ND	4.9	2.4	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	1.9	0.47	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	1.9	0.54	ug/kg	:	
79-01-6	Trichloroethene	ND	0.97	0.74	ug/kg		
75-69-4	Trichlorofluoromethane	ND	4.9	0.67	ug/kg		
75-01-4	Vinyl chloride	ND	1.9	0.47	ug/kg		
	m, p-Xylene	ND	0.97	0.87	ug/kg		
95-47-6	o-Xylene	ND	0.97	0.45	ug/kg		
1330-20-7	Xylene (total)	ND	0.97	0.45	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	106%		72-1	30 %		
17060-07-0	1,2-Dichloroethane-D4	106%		75-13	31%		
2037-26-5	Toluene-D8	86%		81-1	21%		
460-00-4	4-Bromofluorobenzene	95%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176874.D 1 12/08/21 16:15 KLS 12/07/21 10:45 OP36963 EM7603

Run #2

Initial Weight Final Volume Run #1 30.5 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	69	17	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	170	21	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	170	29	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	170	61	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	170	130	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	170	37	ug/kg	
95-48-7	2-Methylphenol	ND	69	22	ug/kg	
	3&4-Methylphenol	ND	69	28	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	170	23	ug/kg	
100-02-7	4-Nitrophenol	ND	340	92	ug/kg	
87-86-5	Pentachlorophenol	ND	140	32	ug/kg	
108-95-2	Phenol	ND	69	18	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	170	23	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	170	26	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	170	21	ug/kg	
83-32-9	Acenaphthene	ND	34	12	ug/kg	
208-96-8	Acenaphthylene	ND	34	18	ug/kg	
98-86-2	Acetophenone ^a	ND	170	7.4	ug/kg	
120-12-7	Anthracene	ND	34	21	ug/kg	
1912-24-9	Atrazine ^a	ND	69	15	ug/kg	
56-55-3	Benzo(a)anthracene	37.5	34	9.8	ug/kg	
50-32-8	Benzo(a)pyrene	35.2	34	16	ug/kg	
205-99-2	Benzo(b)fluoranthene	39.3	34	15	ug/kg	
191-24-2	Benzo(g,h,i)perylene	21.9	34	17	ug/kg	J
207-08-9	Benzo(k)fluoranthene	ND	34	16	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	69	13	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	69	8.4	ug/kg	
92-52-4	1,1'-Biphenyl	ND	69	4.7	ug/kg	
100-52-7	Benzaldehyde	ND	170	8.6	ug/kg	
91-58-7	2-Chloronaphthalene	ND	69	8.2	ug/kg	
106-47-8	4-Chloroaniline	ND	170	12	ug/kg	
86-74-8	Carbazole	ND	69	5.0	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-37-7.0-9.0

Lab Sample ID: JD36115-4 **Date Sampled: 12/03/21** Matrix: SO - Soil Date Received: 12/03/21 **Percent Solids:** 95.1

Method: SW846 8270E SW846 3546 2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam ^a	ND	69	14	ug/kg	
218-01-9	Chrysene	29.9	34	11	ug/kg	J
111-91-1	bis(2-Chloroethoxy)methane	ND	69	7.4	ug/kg	_
111-44-4	bis(2-Chloroethyl)ether	ND	69	15	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	69	12	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	69	11	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	34	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	34	17	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	69	29	ug/kg	
123-91-1	1,4-Dioxane	ND	34	23	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	34	15	ug/kg	
132-64-9	Dibenzofuran	ND	69	14	ug/kg	
84-74-2	Di-n-butyl phthalate	42.5	69	5.6	ug/kg	JB
117-84-0	Di-n-octyl phthalate	ND	69	8.6	ug/kg	
84-66-2	Diethyl phthalate	ND	69	7.3	ug/kg	
131-11-3	Dimethyl phthalate	ND	69	6.1	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	39.8	69	8.1	ug/kg	J
206-44-0	Fluoranthene	53.4	34	15	ug/kg	
86-73-7	Fluorene	ND	34	16	ug/kg	
118-74-1	Hexachlorobenzene	ND	69	8.7	ug/kg	
87-68-3	Hexachlorobutadiene	ND	34	14	ug/kg	
77-47-4	Hexachlorocyclopentadiene a	ND	340	14	ug/kg	
67-72-1	Hexachloroethane	ND	170	17	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	23.6	34	16	ug/kg	J
78-59-1	Isophorone	ND	69	7.4	ug/kg	
91-57-6	2-Methylnaphthalene	ND	34	7.8	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	170	8.1	ug/kg	
99-09-2	3-Nitroaniline	ND	170	8.6	ug/kg	
100-01-6	4-Nitroaniline	ND	170	8.9	ug/kg	
91-20-3	Naphthalene	ND	34	9.7	ug/kg	
98-95-3	Nitrobenzene	ND	69	13	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	69	10	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	170	13	ug/kg	
85-01-8	Phenanthrene	24.8	34	12	ug/kg	J
129-00-0	Pyrene	54.8	34	11	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	170	8.8	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	0 0	

367-12-4 2-Fluorophenol 44% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	47%		10-105%		
118-79-6 4165-60-0	2,4,6-Tribromophenol Nitrobenzene-d5	81 % 57 %		10-135% 10-119%		
321-60-8	2-Fluorobiphenyl	54 %		18-112%		
1718-51-0	Terphenyl-d14	58 %		18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	system artifact	.•	3.21	140	ug/kg	
301-02-0	system artifact/aldol-condensate 9-Octadecenamide, (Z)-	uon	3.27 14.91	250 220	ug/kg ug/kg	
001 0£-0	Total TIC, Semi-Volatile		11.01	220	ug/kg	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

Initial Weight

Lab Sample ID: JD36115-4 **Date Sampled:** 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Method: SW846 8270E BY SIM SW846 3546 **Percent Solids:** 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** E4M4893 Run #1 4M105334.D 1 12/21/21 06:04 CS 12/07/21 10:45 OP36963A

Run #2

Final Volume Run #1 30.5 g 1.0 ml Run #2

CAS No. Compound **MDL** Units Result RLQ

123-91-1 1,4-Dioxane ND 3.4 1.7 ug/kg

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 60% 10-107% 321-60-8 2-Fluorobiphenyl **56%** 17-91% 1718-51-0 Terphenyl-d14 61% 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155544.D 1 12/10/21 13:01 RK 12/07/21 10:55 OP36933 GOA5500

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.4 3.4	7.5 1.9 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	35% 31%		10-12 10-12		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4G9723476.D 1 12/10/21 10:36 CP 12/07/21 11:25 OP36973 G4G3679

Run #2

Initial Weight Final Volume Run #1 16.3 g 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.65	0.53	ug/kg	
319-84-6	alpha-BHC	ND	0.65	0.52	ug/kg	
319-85-7	beta-BHC	ND	0.65	0.58	ug/kg	
319-86-8	delta-BHC	ND	0.65	0.62	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.65	0.48	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.65	0.52	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.65	0.29	ug/kg	
60-57-1	Dieldrin	ND	0.65	0.44	ug/kg	
72-54-8	4,4'-DDD	ND	0.65	0.59	ug/kg	
72-55-9	4,4'-DDE	ND	0.65	0.57	ug/kg	
50-29-3	4,4'-DDT	ND	0.65	0.57	ug/kg	
72-20-8	Endrin	ND	0.65	0.50	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.65	0.50	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.65	0.37	ug/kg	
959-98-8	Endosulfan-I	ND	0.65	0.37	ug/kg	
33213-65-9	Endosulfan-II	ND	0.65	0.40	ug/kg	
76-44-8	Heptachlor	ND	0.65	0.56	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.65	0.45	ug/kg	
72-43-5	Methoxychlor	ND	1.3	0.51	ug/kg	
53494-70-5	Endrin ketone	ND	0.65	0.47	ug/kg	
8001-35-2	Toxaphene	ND	16	15	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
877-09-8	Tetrachloro-m-xylene	84%		14-1	45%	
877-09-8	Tetrachloro-m-xylene	96%		14-1	45%	
2051-24-3	Decachlorobiphenyl	56 %		10-1	97%	
2051-24-3	Decachlorobiphenyl	88%				

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

 Lab Sample ID:
 JD36115-4
 Date Sampled:
 12/03/21

 Matrix:
 SO - Soil
 Date Received:
 12/03/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 RK7205.D 1 12/10/21 10:39 RK 12/07/21 11:25 OP36974 GRK186

Run #2

Initial Weight Final Volume Run #1 16.3 g 10.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	32	15	ug/kg	
11104-28-2	Aroclor 1221	ND	32	20	ug/kg	
11141-16-5	Aroclor 1232	ND	32	21	ug/kg	
53469-21-9	Aroclor 1242	ND	32	13	ug/kg	
12672-29-6	Aroclor 1248	ND	32	29	ug/kg	
11097-69-1	Aroclor 1254	ND	32	17	ug/kg	
11096-82-5	Aroclor 1260	ND	32	14	ug/kg	
11100-14-4	Aroclor 1268	ND	32	14	ug/kg	
37324-23-5	Aroclor 1262	ND	32	21	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	90%		10-1	63%	
877-09-8	Tetrachloro-m-xylene	85 %		10-1	63 %	
2051-24-3	Decachlorobiphenyl	51%		10-2	15%	
2051-24-3	Decachlorobiphenyl	81%		10-2	15%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

Lab Sample ID: JD36115-4 **Date Sampled:** 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	2410	54	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Antimony	< 2.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Arsenic	< 2.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Barium	< 22	22	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Beryllium	< 0.22	0.22	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cadmium	< 0.54	0.54	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Calcium	4160	540	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Chromium	7.4	1.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Cobalt	< 5.4	5.4	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Copper	5.9	2.7	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Iron	6040	54	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Lead	11.3	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Magnesium	1720	540	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Manganese	77.2	1.6	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Mercury	0.056	0.028	mg/kg	1	12/07/21	12/07/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	18.9	4.3	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Potassium	< 1100	1100	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Selenium	< 2.2	2.2	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Silver	< 0.54	0.54	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Sodium	< 1100	1100	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Thallium	< 1.1	1.1	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Vanadium	9.5	5.4	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³
Zinc	20.3	5.4	mg/kg	1	12/07/21	12/07/21 ND	SW846 6010D ²	SW846 3050B ³

(1) Instrument QC Batch: MA51548 (2) Instrument QC Batch: MA51561 (3) Prep QC Batch: MP30201 (4) Prep QC Batch: MP30212

Page 1 of 1

Client Sample ID: TT-SB-37-7.0-9.0

Lab Sample ID: JD36115-4 Date Sampled: 12/03/21 Matrix: SO - Soil Date Received: 12/03/21 Percent Solids: 95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.25 95.1	0.25	mg/kg %	1 1	12/09/21 04:18 12/05/21 15:00		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

JD36115

Client Sample ID: TT-SB-37-7.0-9.0

Lab Sample ID:JD36115-4ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82229.D 1 12/24/21 20:31 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume Run #1 2.05 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q				
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS								
375-22-4	Perfluorobutanoic acid	ND	1.0	0.39	ug/kg					
2706-90-3	Perfluoropentanoic acid	ND	0.51	0.26	ug/kg					
307-24-4	Perfluorohexanoic acid	ND	0.51	0.26	ug/kg					
375-85-9	Perfluoroheptanoic acid	ND	0.51	0.26	ug/kg					
335-67-1	Perfluorooctanoic acid	ND	0.51	0.26	ug/kg					
375-95-1	Perfluorononanoic acid	ND	0.51	0.26	ug/kg					
335-76-2	Perfluorodecanoic acid	ND	0.51	0.26	ug/kg					
2058-94-8	Perfluoroundecanoic acid	ND	0.51	0.26	ug/kg					
307-55-1	Perfluorododecanoic acid	ND	0.51	0.26	ug/kg					
72629-94-8	Perfluorotridecanoic acid	ND	0.51	0.27	ug/kg					
376-06-7	Perfluorotetradecanoic acid	ND	0.51	0.26	ug/kg					
PERFLUOROALKYLSULFONIC ACIDS										
375-73-5	Perfluorobutanesulfonic acid	ND	0.51	0.26	ug/kg					
355-46-4	Perfluorohexanesulfonic acid	ND	0.51	0.26	ug/kg					
375-92-8	Perfluoroheptanesulfonic acid	ND	0.51	0.26	ug/kg					
1763-23-1	Perfluorooctanesulfonic acid	ND	0.51	0.26	ug/kg					
335-77-3	Perfluorodecanesulfonic acid	ND	0.51	0.26	ug/kg					
PERFLUOI	PERFLUOROOCTANESULFONAMIDES									
754-91-6	PFOSA	ND	0.51	0.26	ug/kg					
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS							
2355-31-9	MeFOSAA	ND	1.0	0.51	ug/kg					
2991-50-6	EtFOSAA	ND	1.0	0.51	ug/kg					
FLUOROT	ELOMER SULFONATES									
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.0	0.26	ug/kg					
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.0	0.26	ug/kg					

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.8

Client Sample ID: TT-SB-37-7.0-9.0

Lab Sample ID:JD36115-4ADate Sampled:12/03/21Matrix:SO - SoilDate Received:12/03/21Method:EPA 537M BY ID IN HOUSEPercent Solids:95.1

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	110%		40-140%
	13C5-PFPeA	108%		50-150 %
	13C5-PFHxA	109%		50-150 %
	13C4-PFHpA	109%		50-150 %
	13C8-PFOA	111%		50-150 %
	13C9-PFNA	111%		50-150 %
	13C6-PFDA	112%		50-150 %
	13C7-PFUnDA	110%		40-140%
	13C2-PFDoDA	110%		40-140%
	13C2-PFTeDA	111%		30-130%
	13C3-PFBS	111%		50-150 %
	13C3-PFHxS	111%		50-150 %
	13C8-PFOS	111%		50-150 %
	13C8-FOSA	116%		30-130%
	d3-MeFOSAA	116%		40-140%
	d5-EtFOSAA	117%		40-140%
	13C2-6:2FTS	105%		50-150 %
	13C2-8:2FTS	115%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

SGS	5°	, 5U		AIN SGS N 2235 I L. 732-3	orth /	Amer 130, E	ica Inc Dayton,	Day	ton 10	80					FED-EX T	-					Bottle Ord	der Contro	28 <u> </u>	<u> 5</u> 5-	-[1]	1121-141
EHSA-QAC-0023-04-FORM-Standard COC						sgs.co	om/ehsi	usa						_									2	کند	6	15
Client / Reporting Information Company Name:	Project Name		Projec	t Inform	ation									-					₹eque:	sted Ar	nalysis				-	Matrix Codes
TETRA TECH	Z ^r		#	33	2P	56										0	Diox.		=				121			DW - Drinking Water GW - Ground Water WW - Water
6 CENTURY DR.				Billing I	nformati	on (if di	fferent fro	om Report	t to)						52	1,7	h 1	=	+	۸ ا	717		7			SW - Surface Water SO - Soil
City State Zip	City		State	Company	y Name				,						721	TCL 12	, ¥	RB	PERT 1	ST			537			SL- Sludge SED-Sediment OI - Oil
Project Coptable E-mail B:3 (ANTABACIC ROBUST. CAN	Project #) retra	recit.	Street Ac	dress										ا م	2	ζ			:	٤	7				LIQ - Other Liquid AIR - Air
Phone # (973) 630 4045 Sampler(s) Name(s) Phone #	Client Purchas	ie Order#		City						State			Zip		097	8270	S8270	18081	T4081	A815	XMeth	METAL	413			SOL - Other Solid WP - Wipe FB - Field Blank
Sampler(s) Name(s) Phone #	Project Manag	ier		Attention	:										>	AB	88	₹	7	₹	×	Σ	2			EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
			Colle	ction						Numb	er of p	reserved		-				p⊢	Check	(Lab Us	se Only)				=	
Sgs Sample # Field ID / Point of Collection	MEOH/DI Vial#		Time	Sampled by	Grab (G) Comp (C)	Source Chlorinat ed (Y/N)	Matrix	# of bottle	Ξ	HOW	HNO,															LAB USE ONLY
TT-58-34-4.0-60		12/03/21	0815	AV	G		50	6				3	3	7	V	٦ -	7	- 1	- V	1	レ		abla			
2 11-53-35-30-50		12/05/11		AV	G		Su	6				3	3		~	~	//			~	-		~			ash
3 17-53-36-60-80	$\sqcup \sqcup$	12/03/21		Av	G		50	6	_		1	3	3	$\overline{}$	6	<u></u>	7	レ	<u> </u>	<u></u>	<u>ر</u> ب		~			97.0
4 17-58-37-7.0-9.0	100	12/03/4	1218	AU	9		50	6	_	\sqcup	\bot	3	3	1	4			- 4	/ レ	1			<u> </u>		Ш	479
1											_	Ш	Ц.	$\perp \perp$								ш		ш	\sqcup	509
		-				-		-	├		+	Н	H	Н	-			-			-	\vdash		Н	\vdash	Enloe
				-	 		-		-		+	Н	+	+								\vdash	-	\vdash	\vdash	July
									-		+	\vdash	+	╁┤	\dashv					\vdash	\vdash		$\vdash\vdash$	\vdash	\vdash	4918
					ļ	-					+-	╁┼	H	+	\dashv			_			\vdash	\vdash		\vdash	\vdash	7110
									Н		+	╁┼	++-	+	\dashv					-	\vdash	\vdash	$\vdash\vdash\vdash$	\vdash	\vdash	
	-				ļ				Н	\vdash	+	H		+	-					<u> </u>	$\vdash\vdash$	\vdash	$\vdash \vdash$	\vdash	H	
Turn Around Time (Bu	siness Davs)		Щ			1				Deli	iveral	ble	Ш.	<u> </u>						<u> </u>	لـــــا	Comr	nents /	Speci	al Inet	ructions
10 Business Days	Approved By (S				-		"A" (Leve				_ ·	YASP (ategory	•			DOD-0	ISM5	• 3	x Sg	Enl	ore s	rents /	Specie	<u> </u>	EIN
5 Business Days					-		(Level 3)				_		Criteria		_						nitial .	Asse	esme	ant_	21 1	$ \omega$ \sim
3 Business Days* 2 Business Days*				=	-	ier I (L mercial				Ę	=		Criteria	a	_						Label	l Veri	Roati	OA		-
1 Business Days*					- NY DI		U."			Ė	=	tate Fo			_											

Approval needed for 1-3 Business Day 1AT

Commercial "A" = Results
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re
Commercial "C" = Re

ommercial "A" = Results only: **Ommercial "B" = Results + QC Summary
Commercial "C" = Results + QC Summary **Pagiel Raw data
slow each time symples change possession, in the courier delivery

inlact Not intac

> JD36115: Chain of Custody Page 1 of 3

Therm ID: On Ice see Sample Recollpt Summary

Date / Time: 1243/21

http://www.sgs.com/en/terms-and-conditions

SGS Sample Receipt Summary

Job Number: JD361	15 Client: TET	RA TECH	Project: 2ND AVENUE AND 33-39TH STREET, BROOKL						
Date / Time Received: 12/3/2	021 5:15:00 PM Deli	ivery Method:	Airbill #'s:						
Cooler Temps (Raw Measured) Cooler Temps (Corrected)	, ,								
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification:	Or N		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition	Y or N □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
3. Cooler media: 4. No. Coolers: Quality Control Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC:	Ice (Bag)		Sample recvd within HT: All containers accounted for: Condition of sample: Sample Integrity - Instructions Analysis requested is clear: Bottles received for unspecified tests	Y or N N/A V □					
Samples preserved properly: VOCs headspace free:			3. Sufficient volume recvd for analysis:4. Compositing instructions clear:5. Filtering instructions clear:						
Test Strip Lot #s: pH 1	-12: 231619	pH 12+:	203117A Other: (Specify)						
Comments									

SM089-03 Rev. Date 12/7/17

> JD36115: Chain of Custody Page 2 of 3

5.1

Page 1 of 1

Requested Date:	12/13/2021		Received Date:	12/3/2021
Account Name:	Tetra Tech		Due Date:	12/13/2021
Project Description:	2nd Avenue and 33-39	2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS		PM: JBS	TAT (Days):	2
Sample #: JD36115-ALL	5-ALL	mple #: JD36115-ALL Change:		
Dent:		Please move project to T	Please move project to TTNJP90692 and re-sub to ALSE.	ALSE.

TAT

Dept:

Date/Time: 12/13/2021 Above Changes Per: Jadon Schiller

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

JD36115: Chain of Custody Page 3 of 3

Project Name 2nd Avenue and 33-39th Street, Brooklyn, NY Prest Address Sized Sized Street Brooklyn, NY State Company Name SOS Job # ed Analysis	JD36111	Matrix Codes DV - Untrike Water GW - Ground Water WY - Water WY - Water GW - Ground Water WY - Water GW - GW - GW - GW - GW - GW - GW - GW	
Www.sgs.com/ehsusas Client / Reporting Information Project Information Project Information Requeste 2nd Avenue and 33-39th Street, Brooklyn, NY Sheet Address Sheet Address Sheet Address Sheet Address Sheet Address Sheet Company Name Company Name	1 3 3 3 3	JD36118	Matrix Codes DW - Drinking West GW - Ground Wate WW - Water SW - Surface Wate SO - Soil SL - Shadpe SED - Sh
Project Information Project Information Requeste	ed Analysis		DW - Drinking Wats GW - Ground Wate WW - Water WW - Water GW - Surface Wate GO - GO GO - GO LG - GO LG - GO LG - GO GO GO GO GO GO GO GO GO GO GO GO GO G
Company Manne. Project Name 2nd Avenue and 33-39th Street, Brooklyn, NY Street Address Street Stre			DW - Drinking Wats GW - Ground Wate WW - Water WW - Water GW - Surface Wate GO - GO GO - GO LG - GO LG - GO LG - GO GO GO GO GO GO GO GO GO GO GO GO GO G
Direct Address Size			GW - Ground Water WW - Water SW - Surface Water SU - Surface Water SU - Sudge SED-Sedment OI - Oil LIQ - Other Liquid AIR - A'r SOL - Other Solid WP - Wipe FI - Field Blank EB-Equipment Blank RB - Rinse Blank
Bulley Information of different from Report to)			5W - Surface Wate 8O - Soil 8L - Studge SED-Sedment OI - Oil LIO - Other Liquid AIR - Air SOL - Other Soid WP - Wipe FB - Field Blank EB-Equipment Blant RB - Rinse Blank
Copy State Zip City State Company Name			SL- Sludge SED-Sedment OI - Oil LIQ - Other Liquid AIR - Air SOL - Other Solid WP - Wipe FB - Field Blank EB-Equipment Blank RB - Rinse Blank
jadon schiller@eas.com Client Purchase Order # City State Zp Client Purchase Order # Financiers State Zp Client Purchase Order # Reference Application State Zp Client Purchase Order # City State Zp			LIQ - Other Liquid AIR - Air SOL - Other Solid WP - Wipe FB - Field Blank EB-Equipment Blank RB - Rinse Blank
Genoter(s) Name(s) Phone Project Manager Affender			WP - Wipe FB - Field Blank EB-Equipment Blank RB - Rinse Blank
AV.			EB-Equipment Blant RB - Rinse Blank
Collection Collec			TO THE DIRECT
SOS Field ID / Point of Collection McOHOLVal # Date Time Sampled by Matter Society I I I I I I I I I I I I I I I I I I I			
			LAB USE ONLY
1A TT-SB-34-4.0-6.0 12/3/21 8:15:00 AM AV so X			
2A TT-9B-35-3.0-5.0 12/3/21 9.47.00 AM AV SO X			
3A TT-SB-36-6.0-8.0 12/3/21 11:08:00 AM AV SO X			
4A TT-SB-37-7,0-9.0 12/3/21 12:18:00 PM AV SO X			
	-	-1	
	-	-	_
		-++	+
			_
	\rightarrow		
		11	
		11	
	Comments / Special	I logituations	,
Approved By (SGS PM): (Dute: Commercial "A" (Level 1) NYASP Category A Commercial "B" (Level 2) NYASP Category B INITIAL ASSESSMEN	14	W	
6 Business Days RUSH FULLT1 (Level 3-44) State Forms	-	1	-
J Businoss Days RUSH NJ Reduced EDD Format		0	
2 Business Days RUSH Commercial "C" X Other NYASPB	SM	1	
☐ 1 Business Day EMERGENCY Commercial "A" = Results Orly [X] Other 1/14/1900 Commercial "B" = Results + QC Sammany LABEL VERIFICATIO	IN SIVI	1	and the second
[X] Other 1/14/1909 Commercial "B" = Results + QC Summary LADEL YERIFICATIVE Emergency & Rush T/A data available via Lablink Approval needed for RUSH/Emergency TAT Commercial "C" = Results + QC Summary + Partial Raw data		w.sas.adin/en/t	tegns-and-conditions
Sample Custody must be documented below each time samples change possession, including courier delivery.		0/	101
Relinquished by: Dale / Time: Received By: Relinquished By: Quality / 6(C.E. Raceived By	TOI	1/1
Relimpulated by DARFTime: Received By: Relimpulated By: Oake Time: 3 4	Received by:	7	
Reliniquishnul by: Date / Time: Received Dy: Cushody Seal # Irand Preserved where applicable S Indicated Aboute Indicated Aboute Indicated Aboute Indicated Aboute Indicated I	om IO	Onice C	Carter Temp 10 24

jd36115 xls Rev Dale: 4/10/18

> JD36115: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD36115	Client: DAYTON NJ	Project:	2ND AVENUE	E AND 33-39TH	H STREET, BROOKL
Date / Time Received: 12/8/2021 10:45:00 AM	Delivery Method:	FED EX Airbill #'s	:		
Therm ID: IR 1;	Therm CF: 0.2;		# of Coolers	: 1	
Cooler Temps (Raw Measured) °C: Coole	r 1: (2.4);				
Cooler Temps (Corrected) °C: Coole	r 1: (2.6);				
Cooler Information Y or	N_	Sample Information		Y or N	_N/A_
1. Custody Seals Present		1. Sample labels present on bottles		v	
2. Custody Seals Intact ✓		2. Samples preserved properly		v	
3. Temp criteria achieved ✓		3. Sufficient volume/containers recvd f	or analysis:	v	
4. Cooler temp verification IR Gun		4. Condition of sample		<u>Intact</u>	
5. Cooler media <u>Ice (Bag)</u>		5. Sample recvd within HT		v	
		6. Dates/Times/IDs on COC match Sa	mple Label	v	
Trip Blank Information Y or	NN/A	7. VOCs have headspace			V
1. Trip Blank present / cooler		8. Bottles received for unspecified test	is		
2. Trip Blank listed on COC		9. Compositing instructions clear			✓
W	C N/A	10. Voa Soil Kits/Jars received past 48	3hrs?		✓
<u>W or</u>		11. % Solids Jar received?			✓
3. Type Of TB Received		12. Residual Chlorine Present?			<u>~</u>
Misc. Information					
Number of Encores: 25-Gram 5	5-Gram Numb	per of 5035 Field Kits:	Number of Lab	Filtered Metals:	
Test Strip Lot #s: pH 0-3	230315 pH				
Residual Chlorine Test Strip Lot #:		·		···	
Comments					
SM001 Rev. Date 05/24/17 Technician: CARLOSD	Date: 12/8/2021 1	10:45:00 A Reviewer:		Date	:

JD36115: Chain of Custody Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36272

Sampling Date: 12/06/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 62

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	10
Section 4: Sample Results	14
4.1: JD36272-1: TT-SB-38-7.5-9.5	15
4.2: JD36272-1A: TT-SB-38-7.5-9.5	27
4.3: JD36272-2: TT-SB-39-6.5-8.5	29
4.4: JD36272-2A: TT-SB-39-6.5-8.5	40
4.5: JD36272-3: TT-SB-40-6.0-8.0	42
4.6: JD36272-3A: TT-SB-40-6.0-8.0	54
Section 5: Misc. Forms	56
5.1: Chain of Custody	57
5.2: Chain of Custody (SGS Orlando, FL)	61

Sample Summary

Tetra Tech

Job No: JD36272

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample	Collected			Matr		Client
Number	Date	Time By	Received	Code	Type	Sample ID
This report co					cted. The following app	plies:
Organics ND		Not detected	ed above th	e MDl	L	
JD36272-1	12/06/21	08:55 AV	12/07/21	SO	Soil	TT-SB-38-7.5-9.5
JD36272-1A	12/06/21	08:55 AV	12/07/21	SO	Soil	TT-SB-38-7.5-9.5
JD36272-2	12/06/21	10:24 AV	12/07/21	SO	Soil	TT-SB-39-6.5-8.5
JD36272-2A	12/06/21	10:24 AV	12/07/21	so	Soil	TT-SB-39-6.5-8.5
JD36272-2AI	12/06/21	10:24 AV	12/07/21	so	Soil Dup/MSD	TT-SB-39-6.5-8.5
JD36272-2AS	12/06/21	10:24 AV	12/07/21	SO	Soil Matrix Spike	TT-SB-39-6.5-8.5
JD36272-2D	12/06/21	10:24 AV	12/07/21	so	Soil Dup/MSD	TT-SB-39-6.5-8.5
JD36272-2S	12/06/21	10:24 AV	12/07/21	so	Soil Matrix Spike	TT-SB-39-6.5-8.5
JD36272-3	12/06/21	11:53 AV	12/07/21	so	Soil	TT-SB-40-6.0-8.0
JD36272-3A	12/06/21	11:53 AV	12/07/21	so	Soil	TT-SB-40-6.0-8.0

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No: JD36272

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 1/5/2022 11:40:56 AM

On 12/07/2021, 6 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.3 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36272 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: SO Batch ID: V3C7574

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36272-2MS, JD36272-2MSD were used as the QC samples indicated.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Chlorobenzene, Cyclohexane, Isopropylbenzene, m,p-Xylene, Methylcyclohexane, o-Xylene, Tetrachloroethene, Xylene (total) are outside control limits. Outside control limits due to matrix interference.
- Matrix Spike Duplicate Recovery(s) for Bromoform, Carbon tetrachloride, Cyclohexane, Ethylbenzene, Styrene are outside control limits. Outside control limits due to matrix interference.
- RPD(s) for MSD for 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, m,p-Xylene, Xylene (total) are outside control limits for sample JD36272-2MSD. Outside control limits due to matrix interference.
- JD36272-2 for Carbon disulfide: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36272-3 for 1,1-Dichloroethene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36272-3 for Carbon disulfide: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte.
- JD36272-1 for 1,1-Dichloroethene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36272-2 for 1,1-Dichloroethene: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36272-1 for Carbon disulfide: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: F:OP88849

- The data for EPA 537M BY ID meets quality control requirements.
- JD36272-2A: Analysis performed at SGS Orlando, FL.
- JD36272-1A: Analysis performed at SGS Orlando, FL.
- JD36272-3A: Analysis performed at SGS Orlando, FL.

Wednesday, January 5, 2022

Page 1 of 5

MS Semi-volatiles By Method SW846 8270E

Matrix: SO Batch ID: OP37036

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36272-2MS, JD36272-2MSD were used as the QC samples indicated.
- Sample(s) JD36272-1 have compound(s) reported with a "B" qualifier, indicating analyte is found in the associated method blank.
- Matrix Spike Recovery(s) for 2,4-Dinitrophenol, 4-Nitrophenol, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, , Chrysene, Fluoranthene, Hexachlorocyclopentadiene, Indeno(1,2,3-cd)pyrene, Phenanthrene, Pyrene are outside control limits. Outside control limits due to matrix interference and dilution
- Matrix Spike Recovery(s) for Anthracene, Benzo(k)fluoranthene are outside control limits. Outside control limits due to matrix interference and dilution
- JD36272-2: Dilution required due to viscosity of the extract matrix.
- JD36272-2 for Hexachlorocyclopentadiene: Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.
- JD36272-2 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high,sample was ND.
- JD36272-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high,sample was ND.
- JD36272-3 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high,sample was ND.
- JD36272-1 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for 2-Nitroaniline: Associated CCV outside of control limits high,sample was ND.
- JD36272-3 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for 2,4-Dinitrophenol: Associated CCV outside of control limits high,sample was ND.
- JD36272-1 for Acetophenone: Associated CCV outside of control limits high,sample was ND.
- JD36272-3 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high,sample was ND.
- JD36272-3 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36272-3 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36272-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: SO Batch ID: OP37036A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36272-2MS, JD36272-2MSD were used as the QC samples indicated.
- JD36272-2: Dilution required due to viscosity of the extract matrix.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: SO Batch ID: OP37039

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36272-2MS, JD36272-2MSD, OP37039-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD36272-1: Had TBA cleanup. Confirmation run.
- OP37039-MB1: Had TBA cleanup.
- JD36272-1: Had TBA cleanup.
- JD36272-2: Had TBA cleanup. Confirmation run.
- JD36272-2: Had TBA cleanup.
- JD36272-3: Confirmation run.
- JD36272-3 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD36272-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD36272-1 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-2 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for Aldrin: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for alpha-Chlordane: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for gamma-BHC (Lindane): More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD36272-3 for alpha-BHC: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for 4,4'-DDE: More than 40 % RPD for detected concentrations between the two GC columns.
- JD36272-3 for Dieldrin: More than 40 % RPD for detected concentrations between the two GC columns.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: SO Batch ID: OP37040

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36272-2MS, JD36272-2MSD, OP37040-MSMSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD36272-2: Had TBA cleanup.
- JD36272-2: Had TBA cleanup. Confirmation run.
- JD36272-3: Had TBA cleanup.
- JD36272-3: Had TBA cleanup. Confirmation run.
- JD36272-1: Confirmation run.
- JD36272-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- JD36272-3 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP37040-BSD for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP37040-BS1 for Aroclor 1016: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- OP37040-BSD for Aroclor 1016: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36272-1 for Decachlorobiphenyl: Outside control limits due to matrix interference.
- OP37040-BS1 for Aroclor 1260: Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.

Wednesday, January 5, 2022

Page 3 of 5

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: SO Batch ID: OP37035

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36272-2MS, JD36272-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike Duplicate Recovery(s) for 2,4-D, 2,4,5-T are outside control limits. Outside control limits due to matrix interference
- RPD(s) for MSD for 2,4,5-T, 2,4-D are outside control limits for sample OP37035-MSD. Analytical precision exceeds inhouse control limits.
- JD36272-2: Dilution required due to viscosity of the extract matrix.
- OP37035-MS/MSD: Dilution required due to viscosity of the extract matrix.
- JD36272-2 for 2,4-DCAA: Outside control limits due to matrix interference.
- OP37035-BS1 for 2,4,5-TP (Silvex): Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.
- JD36272-3 for 2,4-DCAA: Outside control limits due to matrix interference.
- JD36272-1 for 2,4-DCAA: Outside control limits due to matrix interference.
- OP37035-BSD for 2,4,5-TP (Silvex): Reported from the 2nd signal. The %D of the CCV on the 1st signal exceeds the method criteria of 20%, so it being used for confirmation only.

Metals Analysis By Method SW846 6010D

Matrix: SO

Batch ID: MP3028

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36272-2PS, JD36272-2SDL, JD36272-2MS, JD36272-2MSD were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Antimony, Magnesium, Zinc are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike Duplicate Recovery(s) for Aluminum, Antimony, Magnesium are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.
- Matrix Spike / Matrix Spike Duplicate Recovery(s) for Calcium, Iron are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for MSD for Zinc are outside control limits for sample MP30281-S2. High rpd due to possible sample nonhomogeneity.
- RPD(s) for Serial Dilution for Antimony, Arsenic, Cadmium, Selenium, Silver, Thallium, Magnesium, Sodium, Zinc are outside control limits for sample MP30281-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- JD36272-1 for Selenium: Elevated detection limit due to dilution required for high interfering element.
- JD36272-1 for Manganese: Elevated detection limit due to dilution required for high interfering element.
- JD36272-1 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36272-1 for Thallium: Elevated detection limit due to dilution required for high interfering element.
- JD36272-1 for Silver: Elevated detection limit due to dilution required for high interfering element.
- JD36272-1 for Copper: Elevated detection limit due to dilution required for high interfering element.

Metals Analysis By Method SW846 7471B

Matrix: SO

Batch ID: MP30267

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36272-2MS, JD36272-2MSD were used as the QC samples for metals.

Wednesday, January 5, 2022

Page 4 of 5

General Chemistry By Method SM2540 G 18TH ED MOD

Matrix: SO Batch ID: GN24560

Sample(s) JD36272-2DUP were used as the QC samples for Solids, Percent.

General Chemistry By Method SW846 9012B/LACHAT

Matrix: SO Batch ID: GP37469

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36272-2DUP, JD36272-2MS were used as the QC samples for Cyanide.
- Matrix Spike Recovery(s) for Cyanide are outside control limits. Spike recovery indicates possible matrix interference.
- RPD(s) for Duplicate for Cyanide are outside control limits for sample GP37469-D1. RPD acceptable due to low duplicate and sample concentrations.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD36272

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/29/2021 10:37:52

On 12/07/2021, 3 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 0.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36272 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: SO Batch ID: OP88849

Sample(s) JD36176-13AMS, JD36176-13AMSD were used as the QC samples indicated.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney, Client Services (sign	nature on file)

Summary of Hits Job Number: JD36272 Page 1 of 4

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

12/06/21 **Collected:**

Lab Sample ID - Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36272-1 TT-SB-38-7.5-9.5					
Acetone	11.5 J	12	4.9	ug/kg	SW846 8260D
Acenaphthene	233	37	13	ug/kg	SW846 8270E
Acenaphthylene	78.1	37	19	ug/kg	SW846 8270E
Anthracene	619	37	23	ug/kg	SW846 8270E
Benzo(a)anthracene	1120	37	10	ug/kg	SW846 8270E
Benzo(a)pyrene	1130	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	1470	37	16	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	664	37	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	570	37	17	ug/kg	SW846 8270E
1,1'-Biphenyl	44.4 J	74	5.1	ug/kg	SW846 8270E
Carbazole	293	74	5.4	ug/kg	SW846 8270E
Chrysene	1150	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	219	37	16	ug/kg	SW846 8270E
Dibenzofuran	237	74	15	ug/kg	SW846 8270E
Di-n-butyl phthalate	13.6 JB	74	6.0	ug/kg	SW846 8270E
ois(2-Ethylhexyl)phthalate	56.0 J	74	8.7	ug/kg	SW846 8270E
Fluoranthene	2170	37	17	ug/kg	SW846 8270E
Fluorene	322	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	806	37	17	ug/kg	SW846 8270E
2-Methylnaphthalene	157	37	8.4	ug/kg	SW846 8270E
Naphthalene	273	37	10	ug/kg	SW846 8270E
Phenanthrene	2010	37	12	ug/kg	SW846 8270E
Pyrene	2180	37	12	ug/kg	SW846 8270E
Γotal TIC, Semi-Volatile	7430 J			ug/kg	
Aldrin ^a	2.1	0.72	0.59	ug/kg	SW846 8081B
Dieldrin ^a	1.1	0.72	0.50	ug/kg	SW846 8081B
1,4'-DDD ^b	4.8	0.72	0.66	ug/kg	SW846 8081B
1,4'-DDE b	4.3	0.72	0.63	ug/kg	SW846 8081B
1 ,4'-DDT ^b	4.8	0.72	0.64	ug/kg	SW846 8081B
Áluminum	7760	60		mg/kg	SW846 6010D
Arsenic ^c	9.4	4.8		mg/kg	SW846 6010D
Barium	425	24		mg/kg	SW846 6010D
Beryllium	0.52	0.24		mg/kg	SW846 6010D
Cadmium	0.69	0.60		mg/kg	SW846 6010D
Calcium	30900	1200		mg/kg	SW846 6010D
Chromium	16.4	1.2		mg/kg	SW846 6010D
Cobalt	6.5	6.0		mg/kg	SW846 6010D
Copper ^c	45.5	6.0		mg/kg	SW846 6010D
ron	25500	120		mg/kg	SW846 6010D
Lead	563	2.4		mg/kg	SW846 6010D
Magnesium	4230	600		mg/kg	SW846 6010D
Manganese ^c	261	3.6		mg/kg	SW846 6010D
Mercury	0.40	0.037		mg/kg	SW846 7471B

Summary of Hits Job Number: JD36272 Page 2 of 4

Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

12/06/21 **Collected:**

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Nickel	26.4	4.8		mg/kg	SW846 6010D
Potassium	1390	1200		mg/kg	SW846 6010D
Vanadium	25.0	6.0		mg/kg	SW846 6010D
Zinc	342	12		mg/kg	SW846 6010D
Cyanide	0.38	0.25		mg/kg	SW846 9012B/LACHAT

JD36272-1A TT-SB-38-7.5-9.5

No hits reported in this sample.

JD36272-2 TT-SB-39-6.5-8.5

Acetone	10.1 J	11	4.5	ug/kg	SW846 8260D
Acenaphthene d	258	180	62	ug/kg	SW846 8270E
Anthracene d	604	180	110	ug/kg	SW846 8270E
Benzo(a)anthracene d	1300	180	51	ug/kg	SW846 8270E
Benzo(a)pyrene ^d	1300	180	81	ug/kg	SW846 8270E
Benzo(b)fluoranthene d	1780	180	79	ug/kg	SW846 8270E
Benzo(g,h,i)perylene d	670	180	89	ug/kg	SW846 8270E
Benzo(k)fluoranthene d	610	180	83	ug/kg	SW846 8270E
1,1'-Biphenyl ^d	43.5 J	360	24	ug/kg	SW846 8270E
Carbazole d	271 J	360	26	ug/kg	SW846 8270E
Chrysene d	1280	180	56	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene d	250	180	79	ug/kg	SW846 8270E
Dibenzofuran d	237 J	360	73	ug/kg	SW846 8270E
Di-n-butyl phthalate ^d	126 J	360	29	ug/kg	SW846 8270E
bis(2-Ethylhexyl)phthalate d	465	360	42	ug/kg	SW846 8270E
Fluoranthene d	2900	180	80	ug/kg	SW846 8270E
Fluorene ^d	363	180	82	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene ^d	961	180	84	ug/kg	SW846 8270E
2-Methylnaphthalene ^d	167 J	180	40	ug/kg	SW846 8270E
Naphthalene d	279	180	50	ug/kg	SW846 8270E
Phenanthrene d	2090	180	60	ug/kg	SW846 8270E
Pyrene d	2680	180	57	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	1100 J			ug/kg	
Aldrin ^a	1.2	0.69	0.57	ug/kg	SW846 8081B
gamma-BHC (Lindane) ^a	3.1	0.69	0.51	ug/kg	SW846 8081B
4,4'-DDD b	9.5	0.69	0.63	ug/kg	SW846 8081B
4,4'-DDE ^b	14.8	0.69	0.60	ug/kg	SW846 8081B
Aluminum	6390	55		mg/kg	SW846 6010D
Arsenic	5.2	2.2		mg/kg	SW846 6010D
Barium	63.4	22		mg/kg	SW846 6010D
Beryllium	0.42	0.22		mg/kg	SW846 6010D
Calcium	43100	2800		mg/kg	SW846 6010D
Chromium	13.1	1.1		mg/kg	SW846 6010D

Summary of Hits Job Number: JD36272 Page 3 of 4

Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

12/06/21 Collected:

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Cobalt	6.1	5.5		mg/kg	SW846 6010D
Copper	28.6	2.8		mg/kg	SW846 6010D
Iron	12800	55		mg/kg	SW846 6010D
Lead	79.4	2.2		mg/kg	SW846 6010D
Magnesium	7350	550		mg/kg	SW846 6010D
Manganese	202	1.7		mg/kg	SW846 6010D
Mercury	0.086	0.037		mg/kg	SW846 7471B
Nickel	23.9	4.4		mg/kg	SW846 6010D
Potassium	1250	1100		mg/kg	SW846 6010D
Silver	1.1	0.55		mg/kg	SW846 6010D
Vanadium	23.8	5.5		mg/kg	SW846 6010D
Zinc	68.5	11		mg/kg	SW846 6010D

JD36272-2A TT-SB-39-6.5-8.5

No hits reported in this sample.

JD36272-3 TT-SB-40-6.0-8.0

Acetone	19.4	9.9	4.1	ug/kg	SW846 8260D
Carbon disulfide ^e	0.90 J	2.0	0.53	ug/kg	SW846 8260D
Total TIC, Volatile	123.3 J			ug/kg	
Acenaphthene	347	37	13	ug/kg	SW846 8270E
Acenaphthylene	250	37	19	ug/kg	SW846 8270E
Anthracene	894	37	23	ug/kg	SW846 8270E
Benzo(a)anthracene	1860	37	11	ug/kg	SW846 8270E
Benzo(a)pyrene	1970	37	17	ug/kg	SW846 8270E
Benzo(b)fluoranthene	2490	37	17	ug/kg	SW846 8270E
Benzo(g,h,i)perylene	1200	37	19	ug/kg	SW846 8270E
Benzo(k)fluoranthene	904	37	17	ug/kg	SW846 8270E
1,1'-Biphenyl	40.3 J	75	5.1	ug/kg	SW846 8270E
Carbazole	297	75	5.4	ug/kg	SW846 8270E
Chrysene	2130	37	12	ug/kg	SW846 8270E
Dibenzo(a,h)anthracene	350	37	17	ug/kg	SW846 8270E
Dibenzofuran	384	75	15	ug/kg	SW846 8270E
Fluoranthene	5110	370	170	ug/kg	SW846 8270E
Fluorene	469	37	17	ug/kg	SW846 8270E
Indeno(1,2,3-cd)pyrene	1490	37	18	ug/kg	SW846 8270E
2-Methylnaphthalene	86.3	37	8.4	ug/kg	SW846 8270E
Naphthalene	265	37	11	ug/kg	SW846 8270E
Phenanthrene	4870	370	130	ug/kg	SW846 8270E
Pyrene	5670	370	120	ug/kg	SW846 8270E
Total TIC, Semi-Volatile	11120 J			ug/kg	
Aldrin ^f	2.6	0.73	0.60	ug/kg	SW846 8081B
alpha-BHC ^f	0.74	0.73	0.59	ug/kg	SW846 8081B
•				0 0	

Summary of Hits
Page 4 of 4

Job Number: JD36272 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/06/21

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
gamma-BHC (Lindane) ^f	3.1	0.73	0.54	ug/kg	SW846 8081B
alpha-Chlordane ^f	5.5	0.73	0.59	ug/kg	SW846 8081B
Dieldrin ^f	2.2	0.73	0.50	ug/kg	SW846 8081B
4,4'-DDD	49.2	0.73	0.67	ug/kg	SW846 8081B
4,4'-DDE ^f	12.7	0.73	0.64	ug/kg	SW846 8081B
4,4'-DDT	10.5	0.73	0.64	ug/kg	SW846 8081B
Endosulfan-II	5.6	0.73	0.45	ug/kg	SW846 8081B
Aluminum	6240	54		mg/kg	SW846 6010D
Arsenic	6.4	2.2		mg/kg	SW846 6010D
Barium	738	22		mg/kg	SW846 6010D
Beryllium	0.37	0.22		mg/kg	SW846 6010D
Cadmium	0.64	0.54		mg/kg	SW846 6010D
Calcium	34400	2700		mg/kg	SW846 6010D
Chromium	18.7	1.1		mg/kg	SW846 6010D
Copper	26.6	2.7		mg/kg	SW846 6010D
Iron	11600	54		mg/kg	SW846 6010D
Lead	374	2.2		mg/kg	SW846 6010D
Magnesium	5560	540		mg/kg	SW846 6010D
Manganese	271	1.6		mg/kg	SW846 6010D
Mercury	0.11	0.033		mg/kg	SW846 7471B
Nickel	17.2	4.4		mg/kg	SW846 6010D
Silver	1.1	0.54		mg/kg	SW846 6010D
Vanadium	21.3	5.4		mg/kg	SW846 6010D
Zinc	455	11		mg/kg	SW846 6010D

JD36272-3A TT-SB-40-6.0-8.0

No hits reported in this sample.

- (a) Had TBA cleanup. More than 40 % RPD for detected concentrations between the two GC columns.
- (b) Had TBA cleanup.
- (c) Elevated detection limit due to dilution required for high interfering element.
- (d) Dilution required due to viscosity of the extract matrix.
- (e) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte.
- (f) More than 40 % RPD for detected concentrations between the two GC columns.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Sample Results	
Report of Analysis	

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3C171893.D 1 12/08/21 16:25 PS 12/08/21 08:36 n/a V3C7574

Run #2

Initial Weight

Run #1 4.9 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	11.5	12	4.9	ug/kg	J
71-43-2	Benzene	ND	0.59	0.54	ug/kg	
74-97-5	Bromochloromethane	ND	5.9	0.66	ug/kg	
75-27-4	Bromodichloromethane	ND	2.4	0.51	ug/kg	
75-25-2	Bromoform	ND	5.9	1.6	ug/kg	
74-83-9	Bromomethane	ND	5.9	0.90	ug/kg	
78-93-3	2-Butanone (MEK)	ND	12	2.9	ug/kg	
75-15-0	Carbon disulfide ^a	ND	2.4	0.63	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.4	0.73	ug/kg	
108-90-7	Chlorobenzene	ND	2.4	0.54	ug/kg	
75-00-3	Chloroethane	ND	5.9	0.70	ug/kg	
67-66-3	Chloroform	ND	2.4	0.61	ug/kg	
74-87-3	Chloromethane	ND	5.9	2.3	ug/kg	
110-82-7	Cyclohexane	ND	2.4	0.78	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.4	0.82	ug/kg	
124-48-1	Dibromochloromethane	ND	2.4	0.66	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.2	0.50	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.2	0.65	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.2	0.59	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.2	0.58	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.9	0.86	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.2	0.59	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.2	0.56	ug/kg	
75-35-4	1,1-Dichloroethene ^a	ND	1.2	0.78	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.2	0.99	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.2	0.72	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.4	0.56	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.4	0.56	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.4	0.54	ug/kg	
100-41-4	Ethylbenzene	ND	1.2	0.54	ug/kg	
76-13-1	Freon 113	ND	5.9	3.2	ug/kg	
591-78-6	2-Hexanone	ND	5.9	2.5	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.4	1.7	ug/kg		
79-20-9	Methyl Acetate	ND	5.9	1.6	ug/kg		
108-87-2	Methylcyclohexane	ND	2.4	1.0	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.2	0.56	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.9	2.7	ug/kg		
75-09-2	Methylene chloride	ND	5.9	3.1	ug/kg		
100-42-5	Styrene	ND	2.4	0.48	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.4	0.71	ug/kg		
127-18-4	Tetrachloroethene	ND	2.4	0.69	ug/kg		
108-88-3	Toluene	ND	1.2	0.62	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.9	3.0	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.9	3.0	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.4	0.57	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.4	0.66	ug/kg		
79-01-6	Trichloroethene	ND	1.2	0.90	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.9	0.81	ug/kg		
75-01-4	Vinyl chloride	ND	2.4	0.57	ug/kg		
	m,p-Xylene	ND	1.2	1.1	ug/kg		
95-47-6	o-Xylene	ND	1.2	0.54	ug/kg		
1330-20-7	Xylene (total)	ND	1.2	0.54	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	103%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	118%		75-1	31%		
2037-26-5	Toluene-D8	96%		81-1	21%		
460-00-4	4-Bromofluorobenzene	114%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 3

Client Sample ID: TT-SB-38-7.5-9.5

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 M176924.D 1 12/10/21 22:02 KLS 12/08/21 12:05 OP37036 EM7605

Run #2

Initial Weight Final Volume Run #1 31.3 g 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	74	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	66	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol a	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	74	24	ug/kg	
	3&4-Methylphenol	ND	74	30	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	190	24	ug/kg	
100-02-7	4-Nitrophenol	ND	370	99	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	74	19	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	233	37	13	ug/kg	
208-96-8	Acenaphthylene	78.1	37	19	ug/kg	
98-86-2	Acetophenone ^a	ND	190	8.0	ug/kg	
120-12-7	Anthracene	619	37	23	ug/kg	
1912-24-9	Atrazine ^a	ND	74	16	ug/kg	
56-55-3	Benzo(a)anthracene	1120	37	10	ug/kg	
50-32-8	Benzo(a)pyrene	1130	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	1470	37	16	ug/kg	
191-24-2	Benzo(g,h,i)perylene	664	37	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	570	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	74	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	74	9.0	ug/kg	
92-52-4	1,1'-Biphenyl	44.4	74	5.1	ug/kg	J
100-52-7	Benzaldehyde	ND	190	9.2	ug/kg	
91-58-7	2-Chloronaphthalene	ND	74	8.8	ug/kg	
106-47-8	4-Chloroaniline	ND	190	13	ug/kg	
86-74-8	Carbazole	293	74	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-1
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	74	15	ug/kg	
218-01-9	Chrysene	1150	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	74	7.9	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	74	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	74	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	74	12	ug/kg	
121-14-2	2,4-Dinitrotoluene a	ND	37	11	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	74	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	24	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	219	37	16	ug/kg	
132-64-9	Dibenzofuran	237	74	15	ug/kg	
84-74-2	Di-n-butyl phthalate	13.6	74	6.0	ug/kg	JB
117-84-0	Di-n-octyl phthalate	ND	74	9.2	ug/kg	
84-66-2	Diethyl phthalate	ND	74	7.9	ug/kg	
131-11-3	Dimethyl phthalate	ND	74	6.6	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	56.0	74	8.7	ug/kg	J
206-44-0	Fluoranthene	2170	37	17	ug/kg	
86-73-7	Fluorene	322	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	74	9.4	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	18	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	806	37	17	ug/kg	
78-59-1	Isophorone	ND	74	7.9	ug/kg	
91-57-6	2-Methylnaphthalene	157	37	8.4	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	190	8.7	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.3	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.6	ug/kg	
91-20-3	Naphthalene	273	37	10	ug/kg	
98-95-3	Nitrobenzene	ND	74	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine a	ND	74	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	2010	37	12	ug/kg	
129-00-0	Pyrene	2180	37	12	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.4	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 32% 10-109%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	36 %		10-105%		
118-79-6	2,4,6-Tribromophenol	39%		10-135%		
4165-60-0	Nitrobenzene-d5	45%		10-119%		
321-60-8	2-Fluorobiphenyl	42%		18-112%		
1718-51-0	Terphenyl-d14	41%		18-125%		
CAS No.	- 0		R.T.	E-4 C	TI24	•
CAS No.	Tentatively Identified Compo	ounas	K.1.	Est. Conc.	Umis	Ų
	System artifact		2.78	320	ug/kg	J
	System artifact		3.19	210	ug/kg	J
	System artifact/aldol-condensa	tion	3.27	4500	ug/kg	J
	C3 alkyl benzene		4.39	190	ug/kg	J
	Unknown		8.69	330	ug/kg	J
	Unknown		10.14	290	ug/kg	J
	Unknown		10.19	270	ug/kg	J
	Phenanthrene methyl		11.52	260	ug/kg	J
	Phenanthrene methyl		11.57	340	ug/kg	J
203-64-5	4H-Cyclopenta[def]phenanthre	ene	11.70	460	ug/kg	JN
	Phenanthrene methyl		11.76	210	ug/kg	J
	Naphthalene, phenyl-		12.13	290	ug/kg	J
	Phenanthrene dimethyl		12.62	220	ug/kg	J
	Unknown		12.73	190	ug/kg	J
	Unknown		12.78	250	ug/kg	J
	Unknown		12.99	190	ug/kg	J
	Pyrene methyl		13.99	430	ug/kg	J
	Pyrene methyl		14.13	230	ug/kg	J
	Octadecenamide		14.90	230	ug/kg	J
	Unknown		15.28	210	ug/kg	J
	Unknown PAH substance		17.87	400	ug/kg	J
	Unknown PAH substance		18.16	930	ug/kg	
	Unknown		18.95	220	ug/kg	J
	Unknown		19.06	280	ug/kg	J
	Unknown		19.74	280	ug/kg	
	Unknown		19.87	260	ug/kg	
	Unknown PAH substance		20.24	210	ug/kg	
	Unknown PAH substance		20.71	260	ug/kg	
	Total TIC, Semi-Volatile			7430	ug/kg	J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-38-7.5-9.5

 Lab Sample ID:
 JD36272-1
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105482.D 1 12/24/21 01:37 CS 12/08/21 15:47 OP37036A E4M4898

Run #2

Initial Weight Final Volume Run #1 31.3 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 54%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 53%
 17-91%

 1718-51-0
 Terphenyl-d14
 54%
 17-105%

ND = Not detected

d MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-38-7.5-9.5

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134528.D 1 12/11/21 01:07 RK 12/09/21 09:55 OP37035 G3G4907

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	17 3.5 3.5	7.8 2.0 1.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	165% ^a 9% ^a		10-1 10-1	25% 25%	

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	1G172107.D	1	12/16/21 01:58	CP	12/09/21 11:25	OP37039	G1G5938
Run #2 b	1G172135.D	5	12/16/21 22:09	TL	12/09/21 11:25	OP37039	G1G5939

	Initial Weight	Final Volume
Run #1	16.1 g	10.0 ml
Run #2	16.1 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^c	2.1	0.72	0.59	ug/kg	
319-84-6	alpha-BHC	ND	0.72	0.59	ug/kg	
319-85-7	beta-BHC	ND	0.72	0.65	ug/kg	
319-86-8	delta-BHC	ND	0.72	0.69	ug/kg	
58-89-9	gamma-BHC (Lindane)	ND	0.72	0.53	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.72	0.58	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.72	0.33	ug/kg	
60-57-1	Dieldrin ^c	1.1	0.72	0.50	ug/kg	
72-54-8	4,4'-DDD	4.8	0.72	0.66	ug/kg	
72-55-9	4,4'-DDE	4.3	0.72	0.63	ug/kg	
50-29-3	4,4'-DDT	4.8	0.72	0.64	ug/kg	
72-20-8	Endrin	ND	0.72	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.72	0.56	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.72	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.72	0.42	ug/kg	
33213-65-9	Endosulfan-II	ND	0.72	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.72	0.62	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.72	0.51	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.57	ug/kg	
53494-70-5	Endrin ketone	ND	0.72	0.52	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	82%	100%	14-1	45%	
877-09-8	Tetrachloro-m-xylene	80%	79 %	14-1	45 %	
2051-24-3	Decachlorobiphenyl	83%	93%	10-1	97%	
2051-24-3	Decachlorobiphenyl	202% d	222% d	10-1	97%	

⁽a) Had TBA cleanup.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Had TBA cleanup. Confirmation run.

⁽c) More than 40 % RPD for detected concentrations between the two GC columns.

Page 2 of 2

Client Sample ID: TT-SB-38-7.5-9.5

 Lab Sample ID:
 JD36272-1
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8081B SW846 3546
 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Pesticide TCL List

CAS No. Compound Result RL MDL Units Q

(d) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-38-7.5-9.5

 Lab Sample ID:
 JD36272-1
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	RK7270.D	1	12/13/21 08:02	CP	12/09/21 11:25	OP37040	GRK187
Run #2 a	RK7336.D	1	12/14/21 14:22	TL	12/09/21 11:25	OP37040	GRK189

	Initial Weight	Final Volume
Run #1	16.1 g	10.0 ml
Run #2	16.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	22	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	19	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	90%	91%	10-1	63%	
877-09-8	Tetrachloro-m-xylene	81%	86%	10-1	63%	
2051-24-3	Decachlorobiphenyl	55 %	58 %	10-2	215%	
2051-24-3	Decachlorobiphenyl	225% b	231% b	10-2	215%	

⁽a) Confirmation run.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Outside control limits due to matrix interference.

Page 1 of 1

Client Sample ID: TT-SB-38-7.5-9.5

Lab Sample ID: JD36272-1 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	7760	60	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.4	2.4	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic ^ă	9.4	4.8	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Barium	425	24	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.52	0.24	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	0.69	0.60	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	30900	1200	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	16.4	1.2	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	6.5	6.0	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper ^a	45.5	6.0	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Iron	25500	120	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Lead	563	2.4	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	4230	600	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese a	261	3.6	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Mercury	0.40	0.037	mg/kg	1	12/09/21	12/09/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	26.4	4.8	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	1390	1200	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium ^a	< 4.8	4.8	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Silver ^a	< 1.2	1.2	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Sodium	< 1200	1200	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium ^a	< 2.4	2.4	mg/kg	2	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Vanadium	25.0	6.0	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	342	12	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51559
(2) Instrument QC Batch: MA51591
(3) Instrument QC Batch: MA51612
(4) Prep QC Batch: MP30267
(5) Prep QC Batch: MP30281

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 1

Client Sample ID: TT-SB-38-7.5-9.5

Lab Sample ID: JD36272-1 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	0.38 86.2	0.25	mg/kg %	1 1	12/14/21 16:17 12/08/21 16:11		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

4.2

Report of Analysis

Client Sample ID: TT-SB-38-7.5-9.5

Lab Sample ID:JD36272-1ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82237.D 1 12/24/21 23:00 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume

Run #1 2.00 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.2	0.44	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.58	0.29	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.58	0.29	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.58	0.29	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.58	0.29	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.58	0.29	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.58	0.29	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.58	0.29	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.58	0.29	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.58	0.31	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.58	0.29	ug/kg	
					0 0	
PERFLUOF	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	0.58	0.29	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.58	0.29	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.58	0.29	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.58	0.29	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.58	0.29	ug/kg	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.58	0.29	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.2	0.58	ug/kg	
2991-50-6	EtFOSAA	ND	1.2	0.58	ug/kg	
	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.2	0.29	ug/kg	

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.2

Report of Analysis

Client Sample ID: TT-SB-38-7.5-9.5

Lab Sample ID:JD36272-1ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:86.2

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	85%		40-140%
	13C5-PFPeA	84%		50-150 %
	13C5-PFHxA	84%		50-150 %
	13C4-PFHpA	86%		50-150 %
	13C8-PFOA	85 %		50-150 %
	13C9-PFNA	81%		50-150 %
	13C6-PFDA	77%		50-150 %
	13C7-PFUnDA	73 %		40-140%
	13C2-PFDoDA	80 %		40-140%
	13C2-PFTeDA	90%		30-130%
	13C3-PFBS	87 %		50-150 %
	13C3-PFHxS	88%		50-150 %
	13C8-PFOS	84%		50-150 %
	13C8-FOSA	72 %		30-130%
	d3-MeFOSAA	83%		40-140%
	d5-EtFOSAA	90%		40-140%
	13C2-6:2FTS	85 %		50-150 %
	13C2-8:2FTS	83%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-2
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3C171892.D 1 12/08/21 15:59 PS 12/08/21 08:36 n/a V3C7574

Run #2

Initial Weight

Run #1 5.1 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	10.1	11	4.5	ug/kg	J
71-43-2	Benzene	ND	0.54	0.49	ug/kg	
74-97-5	Bromochloromethane	ND	5.4	0.61	ug/kg	
75-27-4	Bromodichloromethane	ND	2.2	0.46	ug/kg	
75-25-2	Bromoform	ND	5.4	1.5	ug/kg	
74-83-9	Bromomethane	ND	5.4	0.83	ug/kg	
78-93-3	2-Butanone (MEK)	ND	11	2.6	ug/kg	
75-15-0	Carbon disulfide ^a	ND	2.2	0.58	ug/kg	
56-23-5	Carbon tetrachloride	ND	2.2	0.67	ug/kg	
108-90-7	Chlorobenzene	ND	2.2	0.50	ug/kg	
75-00-3	Chloroethane	ND	5.4	0.64	ug/kg	
67-66-3	Chloroform	ND	2.2	0.56	ug/kg	
74-87-3	Chloromethane	ND	5.4	2.1	ug/kg	
110-82-7	Cyclohexane	ND	2.2	0.71	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.2	0.75	ug/kg	
124-48-1	Dibromochloromethane	ND	2.2	0.61	ug/kg	
106-93-4	1,2-Dibromoethane	ND	1.1	0.46	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	1.1	0.59	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	1.1	0.54	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	1.1	0.54	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.4	0.79	ug/kg	
75-34-3	1,1-Dichloroethane	ND	1.1	0.54	ug/kg	
107-06-2	1,2-Dichloroethane	ND	1.1	0.51	ug/kg	
75-35-4	1,1-Dichloroethene ^a	ND	1.1	0.71	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	1.1	0.91	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	1.1	0.66	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.2	0.51	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.2	0.51	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.2	0.50	ug/kg	
100-41-4	Ethylbenzene	ND	1.1	0.49	ug/kg	
76-13-1	Freon 113	ND	5.4	2.9	ug/kg	
591-78-6	2-Hexanone	ND	5.4	2.3	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-39-6.5-8.5

 Lab Sample ID:
 JD36272-2
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.2	1.5	ug/kg		
79-20-9	Methyl Acetate	ND	5.4	1.5	ug/kg		
108-87-2	Methylcyclohexane	ND	2.2	0.95	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	1.1 0.51 ug/kg				
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.4	2.5	ug/kg		
75-09-2	Methylene chloride	ND	5.4	2.8	ug/kg		
100-42-5	Styrene	ND	2.2	0.44	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.2	0.65	ug/kg		
127-18-4	Tetrachloroethene	ND	2.2	0.63	ug/kg		
108-88-3	Toluene	ND	1.1	0.57	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.4	2.7	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.4	2.7	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.2	0.52	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.2	0.60	ug/kg		
79-01-6	Trichloroethene	ND	1.1	0.83	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.4	0.74	ug/kg		
75-01-4	Vinyl chloride	ND	2.2	0.52	ug/kg		
	m,p-Xylene	ND	1.1	0.97	ug/kg		
95-47-6	o-Xylene	ND	1.1	0.50	ug/kg		
1330-20-7	Xylene (total)	ND	1.1	0.50	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	104%		72-1	30%		
17060-07-0	1,2-Dichloroethane-D4	116%		75-1	31%		
2037-26-5	Toluene-D8	108%		81-1	21%		
460-00-4	4-Bromofluorobenzene	119%		60-1	41%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	Total TIC, Volatile			0		ug/kg	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Lab Sample ID: JD36272-2 **Date Sampled:** 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Method: SW846 8270E SW846 3546 **Percent Solids:** 90.5

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** 12/08/21 12:05 OP37036 EM7612 Run #1 a M177067.D 5 12/17/21 15:16 JY

Run #2

Final Volume Initial Weight 30.9 g 1.0 ml

Run #1 Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	360	88	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	890	110	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	890	150	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	890	320	ug/kg	
51-28-5	2,4-Dinitrophenol ^b	ND	890	670	ug/kg	
534-52-1	4,6-Dinitro-o-cresol b	ND	890	190	ug/kg	
95-48-7	2-Methylphenol	ND	360	110	ug/kg	
	3&4-Methylphenol	ND	360	150	ug/kg	
88-75-5	2-Nitrophenol ^b	ND	890	120	ug/kg	
100-02-7	4-Nitrophenol	ND	1800	480	ug/kg	
87-86-5	Pentachlorophenol	ND	720	170	ug/kg	
108-95-2	Phenol	ND	360	93	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	890	120	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	890	130	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	890	110	ug/kg	
83-32-9	Acenaphthene	258	180	62	ug/kg	
208-96-8	Acenaphthylene	ND	180	91	ug/kg	
98-86-2	Acetophenone b	ND	890	38	ug/kg	
120-12-7	Anthracene	604	180	110	ug/kg	
1912-24-9	Atrazine ^b	ND	360	77	ug/kg	
56-55-3	Benzo(a)anthracene	1300	180	51	ug/kg	
50-32-8	Benzo(a)pyrene	1300	180	81	ug/kg	
205-99-2	Benzo(b)fluoranthene	1780	180	79	ug/kg	
191-24-2	Benzo(g,h,i)perylene	670	180	89	ug/kg	
207-08-9	Benzo(k)fluoranthene	610	180	83	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	360	69	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	360	44	ug/kg	
92-52-4	1,1'-Biphenyl	43.5	360	24	ug/kg	J
100-52-7	Benzaldehyde	ND	890	44	ug/kg	
91-58-7	2-Chloronaphthalene	ND	360	43	ug/kg	
106-47-8	4-Chloroaniline	ND	890	64	ug/kg	
86-74-8	Carbazole	271	360	26	ug/kg	J

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36272-2 **Date Sampled: 12/06/21** Matrix: SO - Soil Date Received: 12/07/21 **Percent Solids:** 90.5

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result RL MDL		MDL	Units	Q
105-60-2	Caprolactam ^b	ND	360	71	ug/kg	
218-01-9	Chrysene	1280	180	56	ug/kg ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	360	38	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	360	77	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	360	64	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	360	58	ug/kg	
121-14-2	2,4-Dinitrotoluene b	ND	180	55	ug/kg	
606-20-2	2,6-Dinitrotoluene b	ND	180	90	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	360	150	ug/kg	
123-91-1	1,4-Dioxane	ND	180	120	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	250	180	79	ug/kg	
132-64-9	Dibenzofuran	237	360	73	ug/kg	J
84-74-2	Di-n-butyl phthalate	126	360	29	ug/kg	J
117-84-0	Di-n-octyl phthalate	ND	360	45	ug/kg	
84-66-2	Diethyl phthalate	ND	360	38	ug/kg	
131-11-3	Dimethyl phthalate	ND	360	32	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	465	360	42	ug/kg	
206-44-0	Fluoranthene	2900	180	80	ug/kg	
86-73-7	Fluorene	363	180	82	ug/kg	
118-74-1	Hexachlorobenzene	ND	360	45	ug/kg	
87-68-3	Hexachlorobutadiene ^b	ND	180	72	ug/kg	
77-47-4	Hexachlorocyclopentadiene ^c	ND	1800	71	ug/kg	
67-72-1	Hexachloroethane b	ND	890	89	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	961	180	84	ug/kg	
78-59-1	Isophorone	ND	360	38	ug/kg	
91-57-6	2-Methylnaphthalene	167	180	40	ug/kg	J
88-74-4	2-Nitroaniline b	ND	890	42	ug/kg	
99-09-2	3-Nitroaniline	ND	890	45	ug/kg	
100-01-6	4-Nitroaniline	ND	890	46	ug/kg	
91-20-3	Naphthalene	279	180	50	ug/kg	
98-95-3	Nitrobenzene	ND	360	69	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine b	ND	360	52	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	890	65	ug/kg	
85-01-8	Phenanthrene	2090	180	60	ug/kg	
129-00-0	Pyrene	2680	180	57	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	890	45	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol **38**% 10-109%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-2
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	42%		10-105%		
118-79-6	2,4,6-Tribromophenol	42%		10-135%		
4165-60-0	Nitrobenzene-d5	50 %		10-119%		
321-60-8	2-Fluorobiphenyl	45%		18-112 %		
1718-51-0	Terphenyl-d14	43%		18-125 %		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	unknown PAH substance		18.27	1100	ug/kg	J
	Total TIC, Semi-Volatile			1100	ug/kg	

- (a) Dilution required due to viscosity of the extract matrix.
- (b) Associated CCV outside of control limits high, sample was ND.
- (c) Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-39-6.5-8.5

 Lab Sample ID:
 JD36272-2
 Date Sampled: 12/06/21

 Matrix:
 SO - Soil
 Date Received: 12/07/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 4M105486.D 5 12/24/21 02:58 CS 12/08/21 15:47 OP37036A E4M4898

Run #2

Initial Weight Final Volume
Run #1 30.9 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 18 8.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 58%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 52%
 17-91%

 1718-51-0
 Terphenyl-d14
 52%
 17-105%

(a) Dilution required due to viscosity of the extract matrix.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-39-6.5-8.5

 Lab Sample ID:
 JD36272-2
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3G134529.D 5 12/11/21 01:35 RK 12/09/21 09:55 OP37035 G3G4907

Run #2

Initial Weight Final Volume Run #1 15.8 g 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	87 17 17	39 9.9 8.7	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	126% ^b 59%		10-12 10-12		

- (a) Dilution required due to viscosity of the extract matrix.
- (b) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-39-6.5-8.5

 Lab Sample ID:
 JD36272-2
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	1G172109.D	1	12/16/21 02:34	CP	12/09/21 11:25	OP37039	G1G5938
Run #2 b	1G172137.D	5	12/16/21 22:46	TL	12/09/21 11:25	OP37039	G1G5939

	Initial Weight	Final Volume
Run #1	16.0 g	10.0 ml
Run #2	16.0 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^c	1.2	0.69	0.57	ug/kg	
319-84-6	alpha-BHC	ND	0.69	0.56	ug/kg	
319-85-7	beta-BHC	ND	0.69	0.62	ug/kg	
319-86-8	delta-BHC	ND	0.69	0.66	ug/kg	
58-89-9	gamma-BHC (Lindane) ^c	3.1	0.69	0.51	ug/kg	
5103-71-9	alpha-Chlordane	ND	0.69	0.56	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.69	0.31	ug/kg	
60-57-1	Dieldrin	ND	0.69	0.47	ug/kg	
72-54-8	4,4'-DDD	9.5	0.69	0.63	ug/kg	
72-55-9	4,4'-DDE	14.8	0.69	0.60	ug/kg	
50-29-3	4,4'-DDT	ND	0.69	0.61	ug/kg	
72-20-8	Endrin	ND	0.69	0.54	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.69	0.54	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.69	0.39	ug/kg	
959-98-8	Endosulfan-I	ND	0.69	0.40	ug/kg	
33213-65-9	Endosulfan-II	ND	0.69	0.43	ug/kg	
76-44-8	Heptachlor	ND	0.69	0.59	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.69	0.48	ug/kg	
72-43-5	Methoxychlor	ND	1.4	0.55	ug/kg	
53494-70-5	Endrin ketone	ND	0.69	0.50	ug/kg	
8001-35-2	Toxaphene	ND	17	16	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	75 %	91%	14-1	45%	
877-09-8	Tetrachloro-m-xylene	75 %	84%	14-1	45%	
2051-24-3	Decachlorobiphenyl	46%	67%	10-1	97%	
2051-24-3	Decachlorobiphenyl	121%	166%	10-1	97%	

⁽a) Had TBA cleanup.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Had TBA cleanup. Confirmation run.

⁽c) More than 40 % RPD for detected concentrations between the two GC columns.

Client Sample ID: TT-SB-39-6.5-8.5

 Lab Sample ID:
 JD36272-2
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	RK7394.D	1	12/16/21 00:31	CP	12/09/21 11:25	OP37040	GRK191
Run #2 b	RK7355.D	1	12/15/21 03:09	CP	12/09/21 11:25	OP37040	GRK190

	Initial Weight	Final Volume
Run #1	16.0 g	10.0 ml
Run #2	16.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	34	16	ug/kg	
11104-28-2	Aroclor 1221	ND	34	21	ug/kg	
11141-16-5	Aroclor 1232	ND	34	22	ug/kg	
53469-21-9	Aroclor 1242	ND	34	14	ug/kg	
12672-29-6	Aroclor 1248	ND	34	31	ug/kg	
11097-69-1	Aroclor 1254	ND	34	19	ug/kg	
11096-82-5	Aroclor 1260	ND	34	15	ug/kg	
11100-14-4	Aroclor 1268	ND	34	15	ug/kg	
37324-23-5	Aroclor 1262	ND	34	23	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	72 %	70 %	10-1	63%	
877-09-8	Tetrachloro-m-xylene	78 %	73%	10-1	63%	
2051-24-3	Decachlorobiphenyl	37 %	34%	10-2	215%	
2051-24-3	Decachlorobiphenyl	160%	118%	10-2	215%	

⁽a) Had TBA cleanup.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Had TBA cleanup. Confirmation run.

Lab Sample ID: JD36272-2 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6390	55	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.2	2.2	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Arsenic	5.2	2.2	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Barium	63.4	22	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.42	0.22	mg/kg	1	12/10/21	12/13/21 NI		SW846 3050B ⁵
Cadmium	< 0.55	0.55	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Calcium	43100	2800	mg/kg	5	12/10/21	12/15/21 NI	SW846 6010D ³	SW846 3050B ⁵
Chromium	13.1	1.1	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Cobalt	6.1	5.5	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Copper	28.6	2.8	mg/kg	1	12/10/21	12/13/21 NI	0	SW846 3050B ⁵
Iron	12800	55	mg/kg	1	12/10/21	12/13/21 NI		SW846 3050B ⁵
Lead	79.4	2.2	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Magnesium	7350	550	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Manganese	202	1.7	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.086	0.037	mg/kg	1	12/09/21	12/09/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	23.9	4.4	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Potassium	1250	1100	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.2	2.2	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Silver	1.1	0.55	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Vanadium	23.8	5.5	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵
Zinc	68.5	11	mg/kg	1	12/10/21	12/13/21 NI	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51559
(2) Instrument QC Batch: MA51591
(3) Instrument QC Batch: MA51612
(4) Prep QC Batch: MP30267
(5) Prep QC Batch: MP30281

Page 1 of 1

Client Sample ID: TT-SB-39-6.5-8.5

Lab Sample ID: JD36272-2 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Solids, Percent	< 0.32 90.5	0.32	mg/kg %	1 1	12/14/21 16:19 12/08/21 16:11		SW846 9012B/LACHAT SM2540 G 18TH ED MOD

4.3

JD36272

Lab Sample ID:JD36272-2ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82238.D 1 12/24/21 23:18 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume Run #1 1.98 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	ACIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

 $ND = Not detected \qquad MDL =$

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 2

Client Sample ID: TT-SB-39-6.5-8.5

Lab Sample ID:JD36272-2ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:90.5

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	96%		40-140%
	13C5-PFPeA	95%		50-150 %
	13C5-PFHxA	95%		50-150 %
	13C4-PFHpA	96%		50-150 %
	13C8-PFOA	96%		50-150 %
	13C9-PFNA	95 %		50-150 %
	13C6-PFDA	90%		50-150 %
	13C7-PFUnDA	83 %		40-140%
	13C2-PFDoDA	88%		40-140%
	13C2-PFTeDA	98%		30-130%
	13C3-PFBS	97%		50-150 %
	13C3-PFHxS	97%		50-150 %
	13C8-PFOS	95 %		50-150 %
	13C8-FOSA	97%		30-130%
	d3-MeFOSAA	103%		40-140%
	d5-EtFOSAA	109%		40-140%
	13C2-6:2FTS	94%		50-150 %
	13C2-8:2FTS	95 %		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.4

4.5

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 3C171894.D 1 12/08/21 16:50 PS 12/08/21 08:36 n/a V3C7574

Run #2

Initial Weight

Run #1 5.7 g

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	19.4	9.9	4.1	ug/kg	
71-43-2	Benzene	ND	0.50	0.45	ug/kg	
74-97-5	Bromochloromethane	ND	5.0	0.56	ug/kg	
75-27-4	Bromodichloromethane	ND	2.0	0.43	ug/kg	
75-25-2	Bromoform	ND	5.0	1.4	ug/kg	
74-83-9	Bromomethane	ND	5.0	0.76	ug/kg	
78-93-3	2-Butanone (MEK)	ND	9.9	2.4	ug/kg	
75-15-0	Carbon disulfide ^a	0.90	2.0	0.53	ug/kg	J
56-23-5	Carbon tetrachloride	ND	2.0	0.61	ug/kg	
108-90-7	Chlorobenzene	ND	2.0	0.46	ug/kg	
75-00-3	Chloroethane	ND	5.0	0.59	ug/kg	
67-66-3	Chloroform	ND	2.0	0.52	ug/kg	
74-87-3	Chloromethane	ND	5.0	1.9	ug/kg	
110-82-7	Cyclohexane	ND	2.0	0.65	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.69	ug/kg	
124-48-1	Dibromochloromethane	ND	2.0	0.56	ug/kg	
106-93-4	1,2-Dibromoethane	ND	0.99	0.42	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	0.99	0.54	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	0.99	0.49	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	0.99	0.49	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	5.0	0.72	ug/kg	
75-34-3	1,1-Dichloroethane	ND	0.99	0.49	ug/kg	
107-06-2	1,2-Dichloroethane	ND	0.99	0.47	ug/kg	
75-35-4	1,1-Dichloroethene ^b	ND	0.99	0.65	ug/kg	
156-59-2	cis-1,2-Dichloroethene	ND	0.99	0.83	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	0.99	0.61	ug/kg	
78-87-5	1,2-Dichloropropane	ND	2.0	0.47	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	2.0	0.47	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	2.0	0.45	ug/kg	
100-41-4	Ethylbenzene	ND	0.99	0.45	ug/kg	
76-13-1	Freon 113	ND	5.0	2.7	ug/kg	
591-78-6	2-Hexanone	ND	5.0	2.1	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID: JD36272-3 **Date Sampled: 12/06/21** Date Received: 12/07/21 Matrix: SO - Soil **Percent Solids:** 88.3

Method: SW846 8260D SW846 5035

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	2.0	1.4	ug/kg	ſ	
79-20-9	Methyl Acetate	ND	5.0	1.4	ug/kg		
108-87-2	Methylcyclohexane	ND	2.0	0.87	ug/kg		
1634-04-4	Methyl Tert Butyl Ether	ND	0.99	0.47	ug/kg		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	2.3	ug/kg		
75-09-2	Methylene chloride	ND	5.0	2.6	ug/kg		
100-42-5	Styrene	ND	2.0	0.40	ug/kg		
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	0.60	ug/kg		
127-18-4	Tetrachloroethene	ND	2.0	0.58	ug/kg		
108-88-3	Toluene	ND	0.99	0.52	ug/kg		
87-61-6	1,2,3-Trichlorobenzene	ND	5.0	2.5	ug/kg		
120-82-1	1,2,4-Trichlorobenzene	ND	5.0	2.5	ug/kg		
71-55-6	1,1,1-Trichloroethane	ND	2.0	0.48	ug/kg		
79-00-5	1,1,2-Trichloroethane	ND	2.0	0.55	ug/kg		
79-01-6	Trichloroethene	ND	0.99	0.76	ug/kg		
75-69-4	Trichlorofluoromethane	ND	5.0	0.68	ug/kg		
75-01-4	Vinyl chloride	ND	2.0	0.48	ug/kg		
	m,p-Xylene	ND	0.99	0.89	ug/kg		
95-47-6	o-Xylene	ND	0.99	0.45	ug/kg		
1330-20-7	Xylene (total)	ND	0.99	0.45	ug/kg		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lir	nits		
1868-53-7	Dibromofluoromethane	105%		72-	130%		
17060-07-0	1,2-Dichloroethane-D4	120%		75-	131%		
2037-26-5	Toluene-D8	103%		81-	121%		
460-00-4	4-Bromofluorobenzene	109%		60-	141%		
CAS No.	Tentatively Identified Compo	unds	R.T.	Est	. Conc.	Units	Q
	unknown		10.61	6.1		ug/kg	J
	1H-indene-dihydro-dimethyl- is	somer	10.90	7.1		ug/kg	
91-20-3	Naphthalene	JULIUI	11.05	9.1		ug/kg	
01 20 0	1H-indene-dihydro-dimethyl- is	somer	11.31	20		ug/kg	
	unknown		11.44	8		ug/kg	
	unknown		11.55	5.3		ug/kg	
	1H-Indene-dihydro-trimethyl- i	somer	11.61	6.3			J
	alkane	-	11.77	7.2			J
91-57-6	Naphthalene, 2-methyl-		11.91	15		ug/kg	
	Naphthalene, methyl- isomer		12.05	13		ug/kg	
	. , ,					0 0	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8260D
 SW846 5035
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Tentatively Identified Compounds	R.T.	Est. Conc.	Units	Q
	unknown	12.14	8	ug/kg	J
	unknown	12.26	7.2	ug/kg	J
	alkane	12.36	11	ug/kg	J
	Total TIC, Volatile		123.3	ug/kg	J

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

4.5

Report of Analysis

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	M176925.D	1	12/10/21 22:32	KLS	12/08/21 12:05	OP37036	EM7605
Run #2	M177008.D	10	12/13/21 21:47	KLS	12/08/21 12:05	OP37036	EM7608

	Initial Weight	Final Volume
Run #1	30.3 g	1.0 ml
Run #2	30.3 g	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	75	18	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	190	23	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	190	32	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	190	67	ug/kg	
51-28-5	2,4-Dinitrophenol ^a	ND	190	140	ug/kg	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	190	40	ug/kg	
95-48-7	2-Methylphenol	ND	75	24	ug/kg	
	3&4-Methylphenol	ND	75	31	ug/kg	
88-75-5	2-Nitrophenol ^a	ND	190	25	ug/kg	
100-02-7	4-Nitrophenol	ND	370	100	ug/kg	
87-86-5	Pentachlorophenol	ND	150	35	ug/kg	
108-95-2	Phenol	ND	75	20	ug/kg	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	190	25	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	190	28	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	190	22	ug/kg	
83-32-9	Acenaphthene	347	37	13	ug/kg	
208-96-8	Acenaphthylene	250	37	19	ug/kg	
98-86-2	Acetophenone ^a	ND	190	8.0	ug/kg	
120-12-7	Anthracene	894	37	23	ug/kg	
1912-24-9	Atrazine ^a	ND	75	16	ug/kg	
56-55-3	Benzo(a)anthracene	1860	37	11	ug/kg	
50-32-8	Benzo(a)pyrene	1970	37	17	ug/kg	
205-99-2	Benzo(b)fluoranthene	2490	37	17	ug/kg	
191-24-2	Benzo(g,h,i)perylene	1200	37	19	ug/kg	
207-08-9	Benzo(k)fluoranthene	904	37	17	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	75	14	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	75	9.1	ug/kg	
92-52-4	1,1'-Biphenyl	40.3	75	5.1	ug/kg	J
100-52-7	Benzaldehyde	ND	190	9.3	ug/kg	
91-58-7	2-Chloronaphthalene	ND	75	8.9	ug/kg	
106-47-8	4-Chloroaniline	ND	190	13	ug/kg	
86-74-8	Carbazole	297	75	5.4	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID: JD36272-3 **Date Sampled: 12/06/21** Matrix: SO - Soil Date Received: 12/07/21 **Percent Solids:** 88.3

Method: SW846 8270E SW846 3546

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	75	15	ug/kg	
218-01-9	Chrysene	2130	37	12	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	75	8.0	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	75	16	ug/kg	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	75	13	ug/kg	
7005-72-3	4-Chlorophenyl phenyl ether	ND	75	12	ug/kg	
121-14-2	2,4-Dinitrotoluene ^a	ND	37	12	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	37	19	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	75	31	ug/kg	
123-91-1	1,4-Dioxane	ND	37	25	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	350	37	17	ug/kg	
132-64-9	Dibenzofuran	384	75	15	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	75	6.1	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	75	9.3	ug/kg	
84-66-2	Diethyl phthalate	ND	75	8.0	ug/kg	
131-11-3	Dimethyl phthalate	ND	75	6.7	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	75	8.7	ug/kg	
206-44-0	Fluoranthene	5110 b	370	170	ug/kg	
86-73-7	Fluorene	469	37	17	ug/kg	
118-74-1	Hexachlorobenzene	ND	75	9.5	ug/kg	
87-68-3	Hexachlorobutadiene ^a	ND	37	15	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	370	15	ug/kg	
67-72-1	Hexachloroethane	ND	190	19	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	1490	37	18	ug/kg	
78-59-1	Isophorone	ND	75	8.0	ug/kg	
91-57-6	2-Methylnaphthalene	86.3	37	8.4	ug/kg	
88-74-4	2-Nitroaniline ^a	ND	190	8.8	ug/kg	
99-09-2	3-Nitroaniline	ND	190	9.3	ug/kg	
100-01-6	4-Nitroaniline	ND	190	9.7	ug/kg	
91-20-3	Naphthalene	265	37	11	ug/kg	
98-95-3	Nitrobenzene	ND	75	14	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	75	11	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	190	14	ug/kg	
85-01-8	Phenanthrene	4870 b	370	130	ug/kg	
129-00-0	Pyrene	5670 b	370	120	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	190	9.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%	42%	10-1	09%	

367-12-4 2-Fluorophenol 10-109% **38**% 42%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8270E
 SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	39 %	38%	10-105%		
118-79-6	2,4,6-Tribromophenol	54 %	67%	10-135%		
4165-60-0	Nitrobenzene-d5	52 %	56 %	10-119%		
321-60-8	2-Fluorobiphenyl	46%	57 %	18-112%		
1718-51-0	Terphenyl-d14	46%	60%	18-125%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact/aldol-condensate	tion	3.26	470	ug/kg	J
	Alkane		6.10	270	ug/kg	J
	Alkane		7.59	480	ug/kg	J
	Unknown		7.78	240	ug/kg	J
	Naphthalene trimethyl		8.35	270	ug/kg	J
	Naphthalene trimethyl		8.48	280	ug/kg	J
	Alkane		9.70	660	ug/kg	J
	9H-Fluorene, methyl-		9.89	210	ug/kg	J
132-65-0	Dibenzothiophene		10.33	330	ug/kg	JN
	Phenanthrene methyl		11.52	490	ug/kg	
	Phenanthrene methyl		11.57	610	ug/kg	J
	Phenanthrene methyl		11.66	230	ug/kg	J
203-64-5	4H-Cyclopenta[def]phenanthre	ne	11.71	920	ug/kg	
	Phenanthrene methyl		11.77	370	ug/kg	
	Naphthalene, phenyl-		12.13	700	ug/kg	J
	Phenanthrene dimethyl		12.62	370	ug/kg	
	Unknown		12.98	270	ug/kg	J
	Pyrene methyl		14.00	300	ug/kg	J
	Pyrene methyl		14.14	270	ug/kg	J
	Unknown		15.28	270	ug/kg	J
	Unknown PAH substance		17.88	560	ug/kg	J
	Unknown PAH substance		18.16	1600	ug/kg	J
	Unknown		19.88	420	ug/kg	
	Unknown PAH substance		20.25	300	ug/kg	
	Unknown PAH substance		20.30	290	ug/kg	
	Unknown PAH substance		20.71	410		J
	Total TIC, Semi-Volatile			11120	ug/kg	J

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

⁽b) Result is from Run# 2

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8270E BY SIM SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4M105483.D 1 12/24/21 01:57 CS 12/08/21 15:47 OP37036A E4M4898

Run #2

Initial Weight Final Volume Run #1 30.3 g 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 3.7 1.9 ug/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 59%
 10-107%

 321-60-8
 2-Fluorobiphenyl
 55%
 17-91%

 1718-51-0
 Terphenyl-d14
 60%
 17-105%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8151A
 SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 3G134532.D 1 12/11/21 02:57 RK 12/09/21 09:55 OP37035 G3G4907

Report of Analysis

Run #2

Run #1 Initial Weight Final Volume 5.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	18 3.7 3.7	8.2 2.1 1.8	ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	1164% ^a 59%	10-125% 10-125%			

(a) Outside control limits due to matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1G172108.D	1	12/16/21 02:16	CP	12/09/21 11:25	OP37039	G1G5938
Run #2 a	1G172136.D	5	12/16/21 22:28	TL	12/09/21 11:25	OP37039	G1G5939

	Initial Weight	Final Volume
Run #1	15.6 g	10.0 ml
Run #2	15.6 g	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin ^b	2.6	0.73	0.60	ug/kg	
319-84-6	alpha-BHC ^b	0.74	0.73	0.59	ug/kg	
319-85-7	beta-BHC	ND	0.73	0.66	ug/kg	
319-86-8	delta-BHC	ND	0.73	0.70	ug/kg	
58-89-9	gamma-BHC (Lindane) b	3.1	0.73	0.54	ug/kg	
5103-71-9	alpha-Chlordane ^b	5.5	0.73	0.59	ug/kg	
5103-74-2	gamma-Chlordane	ND	0.73	0.33	ug/kg	
60-57-1	Dieldrin ^b	2.2	0.73	0.50	ug/kg	
72-54-8	4,4'-DDD	49.2	0.73	0.67	ug/kg	
72-55-9	4,4'-DDE ^b	12.7	0.73	0.64	ug/kg	
50-29-3	4,4'-DDT	10.5	0.73	0.64	ug/kg	
72-20-8	Endrin	ND	0.73	0.56	ug/kg	
1031-07-8	Endosulfan sulfate	ND	0.73	0.57	ug/kg	
7421-93-4	Endrin aldehyde	ND	0.73	0.41	ug/kg	
959-98-8	Endosulfan-I	ND	0.73	0.42	ug/kg	
33213-65-9	Endosulfan-II	5.6	0.73	0.45	ug/kg	
76-44-8	Heptachlor	ND	0.73	0.63	ug/kg	
1024-57-3	Heptachlor epoxide	ND	0.73	0.51	ug/kg	
72-43-5	Methoxychlor	ND	1.5	0.58	ug/kg	
53494-70-5	Endrin ketone	ND	0.73	0.53	ug/kg	
8001-35-2	Toxaphene	ND	18	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	100%	105%	14-1	45%	
877-09-8	Tetrachloro-m-xylene	100%	89%	14-1	45%	
2051-24-3	Decachlorobiphenyl	152%	129%	10-1	97%	
2051-24-3	Decachlorobiphenyl	403 % ^c	353% с	10-1	97%	

⁽a) Confirmation run.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

⁽b) More than 40 % RPD for detected concentrations between the two GC columns.

⁽c) Outside control limits due to matrix interference.

Report of Analysis

Client Sample ID: TT-SB-40-6.0-8.0

 Lab Sample ID:
 JD36272-3
 Date Sampled:
 12/06/21

 Matrix:
 SO - Soil
 Date Received:
 12/07/21

 Method:
 SW846 8082A
 SW846 3546
 Percent Solids:
 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	RK7393.D	1	12/16/21 00:14	CP	12/09/21 11:25	OP37040	GRK191
Run #2 b	RK7354.D	1	12/15/21 02:53	CP	12/09/21 11:25	OP37040	GRK190

	Initial Weight	Final Volume
Run #1	15.6 g	10.0 ml
Run #2	15.6 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	17	ug/kg	
11104-28-2	Aroclor 1221	ND	36	23	ug/kg	
11141-16-5	Aroclor 1232	ND	36	23	ug/kg	
53469-21-9	Aroclor 1242	ND	36	15	ug/kg	
12672-29-6	Aroclor 1248	ND	36	32	ug/kg	
11097-69-1	Aroclor 1254	ND	36	20	ug/kg	
11096-82-5	Aroclor 1260	ND	36	15	ug/kg	
11100-14-4	Aroclor 1268	ND	36	15	ug/kg	
37324-23-5	Aroclor 1262	ND	36	24	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	87 %	82 %	10-1	63%	
877-09-8	Tetrachloro-m-xylene	92%	87%	10-1	63%	
2051-24-3	Decachlorobiphenyl	93%	84%	10-2	215%	
2051-24-3	Decachlorobiphenyl	261% ^c	240% c		215%	

⁽a) Had TBA cleanup.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

⁽b) Had TBA cleanup. Confirmation run.

⁽c) Outside control limits due to matrix interference.

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID: JD36272-3 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	6240	54	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Antimony	< 2.2	2.2	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Arsenic	6.4	2.2	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Barium	738	22	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Beryllium	0.37	0.22	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cadmium	0.64	0.54	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Calcium	34400	2700	mg/kg	5	12/10/21	12/15/21 ND	SW846 6010D ³	SW846 3050B ⁵
Chromium	18.7	1.1	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Cobalt	< 5.4	5.4	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Copper	26.6	2.7	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Iron	11600	54	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Lead	374	2.2	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Magnesium	5560	540	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Manganese	271	1.6	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Mercury	0.11	0.033	mg/kg	1	12/09/21	12/09/21 SB	SW846 7471B ¹	SW846 7471B ⁴
Nickel	17.2	4.4	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Potassium	< 1100	1100	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Selenium	< 2.2	2.2	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Silver	1.1	0.54	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Sodium	< 1100	1100	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Thallium	< 1.1	1.1	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Vanadium	21.3	5.4	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵
Zinc	455	11	mg/kg	1	12/10/21	12/13/21 ND	SW846 6010D ²	SW846 3050B ⁵

(1) Instrument QC Batch: MA51559
(2) Instrument QC Batch: MA51591
(3) Instrument QC Batch: MA51612
(4) Prep QC Batch: MP30267
(5) Prep QC Batch: MP30281

Report of Analysis

Page 1 of 1

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID: JD36272-3 Date Sampled: 12/06/21 Matrix: SO - Soil Date Received: 12/07/21 Percent Solids: 88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide	< 0.24	0.24	mg/kg	1	12/14/21 16:20		SW846 9012B/LACHAT
Solids, Percent	88.3		%	1	12/08/21 16:11	BG	SM2540 G 18TH ED MOD

4.5

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID:JD36272-3ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82239.D 1 12/24/21 23:37 AFL 12/15/21 08:30 F:OP88849 F:S2Q1162

Run #2

Initial Weight Final Volume Run #1 2.03 g 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	ND	1.1	0.42	ug/kg	
2706-90-3	Perfluoropentanoic acid	ND	0.56	0.28	ug/kg	
307-24-4	Perfluorohexanoic acid	ND	0.56	0.28	ug/kg	
375-85-9	Perfluoroheptanoic acid	ND	0.56	0.28	ug/kg	
335-67-1	Perfluorooctanoic acid	ND	0.56	0.28	ug/kg	
375-95-1	Perfluorononanoic acid	ND	0.56	0.28	ug/kg	
335-76-2	Perfluorodecanoic acid	ND	0.56	0.28	ug/kg	
2058-94-8	Perfluoroundecanoic acid	ND	0.56	0.28	ug/kg	
307-55-1	Perfluorododecanoic acid	ND	0.56	0.28	ug/kg	
72629-94-8	Perfluorotridecanoic acid	ND	0.56	0.30	ug/kg	
376-06-7	Perfluorotetradecanoic acid	ND	0.56	0.28	ug/kg	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	ND	0.56	0.28	ug/kg	
355-46-4	Perfluorohexanesulfonic acid	ND	0.56	0.28	ug/kg	
375-92-8	Perfluoroheptanesulfonic acid	ND	0.56	0.28	ug/kg	
1763-23-1	Perfluorooctanesulfonic acid	ND	0.56	0.28	ug/kg	
335-77-3	Perfluorodecanesulfonic acid	ND	0.56	0.28	ug/kg	
					0 0	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	0.56	0.28	ug/kg	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	1.1	0.56	ug/kg	
2991-50-6	EtFOSAA	ND	1.1	0.56	ug/kg	
	ELOMER SULFONATES				_	
27619-97-2	6:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	1.1	0.28	ug/kg	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 2 of 2

Client Sample ID: TT-SB-40-6.0-8.0

Lab Sample ID:JD36272-3ADate Sampled:12/06/21Matrix:SO - SoilDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:88.3

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	99%		40-140%
	13C5-PFPeA	98%		50-150 %
	13C5-PFHxA	98%		50-150 %
	13C4-PFHpA	99%		50-150 %
	13C8-PFOA	99%		50-150 %
	13C9-PFNA	96%		50-150 %
	13C6-PFDA	91%		50-150 %
	13C7-PFUnDA	87 %		40-140%
	13C2-PFDoDA	93%		40-140%
	13C2-PFTeDA	102%		30-130%
	13C3-PFBS	98%		50-150 %
	13C3-PFHxS	99%		50-150 %
	13C8-PFOS	98%		50-150 %
	13C8-FOSA	68 %		30-130%
	d3-MeFOSAA	105%		40-140%
	d5-EtFOSAA	108%		40-140%
	13C2-6:2FTS	96%		50-150 %
	13C2-8:2FTS	96%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.6

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

	909	50 SU_	-	СН	_		CU		DDY	.	_					- -		_						of _	
	<u> </u>				2235	Route	130, Da	yton, i	IJ 08810)	PED-EX Tracking #						Boss Job # 50 36272								
EH	l SA-QAC-0023-04-FORM-Standard C	ос	TEL. 732-329-0200 FAX: 732-329-349 www.sgs.com/ehsusa										/3480 SGS Quote #						5GS John JD 36272						
	Client / Reporting Information		Project Information														メ		Reques	sted Ar	alysis				Matrix Codes
	ny Name:	Project Name	·			QD.					-	_			-	_	000	i		 		ĺΨ	.	i '	DW - Drinking Water
1	ETRA TECH	- 4	2 Av.	<u>e 1</u>	<u> 25</u>		>€.								2	3	5	್ತ	=			12			GW - Ground Water WW - Water
	CENTURY DR.	Street			Billian I		/16 -1166-		Report to						Z,						2	7	-		SW - Surface Water
PA	RSIPPANY NJ 079	SY Brook	OKWN	State	Company	Name	on in ame	ent iron	r Reputito						걸	זטר	<u>۲</u>	EST	PcB	STJ	ري دي	377			SO - Soil SL- Sludge SED-Sediment OI - Oil
Project Bo E	Compet E-mail Rossar Par	Project #	TETRA TEC	H.CoM	Street Ad	dress										2		Δ	2		د ا	8			LIQ - Other Liquid AIR - Air SOL - Other Solid
9°	3-630-4045	Client Purcha	se Order#		City				-		State	-		Zip	V8260	AB 8170	8270	P808(- 60	315	MTAL	Ō			WP - Wipe FB - Field Blank
Sample		one # Project Mana	iger		Attention] >	48	<i>α</i>		108d	- 1	×	5			EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
				Col	ection	,					Numb	er of po	reserved B	- W				p⊦	Check	(Lab Us	e Only)		\equiv		
SGS Sample #	Field ID / Point of Collection	MEOH/DI Vial a	# Date	Time	Sampled by	Grab (G) Comp (C)	Source Chlorinated (Y/N)	Matrix	# of bottles	웃	HORN	H _S SO,		MEOH			<u>,</u>								LAB USE ONLY
- 1	TT-58-38-7.5-9.	ζ <u>'</u>	12/06/21	1855	Av	16_		So	6			_	3	3			<u>~</u>	<u></u>	1	~		4	\perp		DIZ
1	TT-58-39-6.5-8.	5 D	206/21	1024	AV	G		So	18				٩	9	\ \		<u> </u>	<u> </u>	//	~	/ レ				P37
3	TT-58-40-6.0-8		2/06/2	1453	A√	6		5.	6				3	3	V		/	/_	\		/_				SUB
																									1412
																									49103
	-																					iΠ		\Box	
																						П		\top	
												Т										ΠT			
						1						T										\Box		\Box	
	-									П	Н	+-										o		+	
	Turn Around Time	(Business Days	3)	L						-	Deliv	/erab	le			l						Commo	ents / Sp	ecial Insti	ructions
	_	Approved By (SGS PM): / Date:				mercial "A				Ĕ	_		ategory A			DOD-C	2SM5		,		_		20	سره
	10 Business Days 5 Business Days				-	_	mercial "B educed (L		2)		Ļ	_	IYASP C AA MCP	ategory B Criteria					M	:/M:	S D -	- 17	- 55-	54-	6.5-8.5
	3 Business Days*				-	_	Fler I (Lev					_	TRCP		_				, ,	Y Th	mart	, .			TS 34
	2 Business Days*	Commercial "C"									Ē	s	state For	ms											
	1 Business Day*										. [DD Form						FY	476	L.	Abril V	/unifica	.*า	1>
Other Commercial */ All data available via Lablink Approval needed for 1-3 Business Day AT Commercial Commercial */								nercial "C"	= Res	sults + C	C Sun	mmary +	Partial Ray	w data					<u>'</u>	Labrai Verificativan 15 http://www.sgs.com/en/terms-and-conditions					
	Sample Cular only inject be documented below each till Refindebertox / / / I Date (Time;) Refindebertox / / / / //								ach time s	ampl	les cha	nge p	048688	ion, incl	uding cou	rier deli		Date / Th	no: 19	^-	Received	Bud.			5
1	GAVAL ALEX VAMI	Jo 7/21 131	71 Usl	W	K_					2 L	16	W.	V_				_	141	14	00	2	100	mit	· /-	wa
Relii 3	duisfied by: Da	e / Time:	Received By:							Reline 4	quished	By:						Date / Tie			Received 4	By:			
Reli	quished by: Dar	e / Time:	Received By:							Custo	ody Soal	*								Therm I	ID:		On ke	Cooler	Temp. G ^c ?)

JD36272: Chain of Custody Page 1 of 4

SGS Sample Receipt Summary

Job Number: JD3	6272	c	lient: 1	TETRA TE	CH	Project:	2ND AVENUE AND	33-39	TH ST	REET,	BROOKL
Date / Time Received: 12/7	/2021 7	:00:00 PM	1	Delivery M	ethod:	Airbill #	s:				
Cooler Temps (Raw Measure	•	8: (2.5); (Cooler 1:	Cooler 9 : (0.6);	9: (2.5); Cc Cooler 2: (*	oler 10: (2.6);	3.7); Cooler 4: (3.0); Cooler 5 2.3); Cooler 4: (1.6); Cooler 5		,		. ,	
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact:		3.	COC Pre	esent: /Time OK	<u>Y or N</u> ✓ □ ✓ □	Sample Integrity - Docume 1. Sample labels present on b 2. Container labeling complet	ottles:	Y ✓ ✓	or		
Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: Quality Control_Preservatio	✓	IR Gun ce (Bag) 10 or N				3. Sample container label / Co Sample Integrity - Condit 1. Sample recvd within HT: 2. All containers accounted fo 3. Condition of sample: Sample Integrity - Instruc	r:	Y	or Intact		 _N/A
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free:	□ □		V V			Analysis requested is clea Bottles received for unspe Sufficient volume recvd for Compositing instructions clear: Filtering instructions clear:	cified tests analysis: lear:				>
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly: VOCs headspace free:			✓		pH 12+:	Bottles received for unspe Sufficient volume recvd for Compositing instructions c Filtering instructions clear:	cified tests analysis: lear:	□ ✓			

SM089-03 Rev. Date 12/7/17

> JD36272: Chain of Custody Page 2 of 4

JD36272: Chain of Custody Page 3 of 4

5.1

Page 1 of 1

Requested Date:	12/13/2021	Received Date:	12/7/2021
Account Name:	Tetra Tech	Due Date:	12/13/2021
Project Description:	Project Description: 2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	JADONS PM: JBS	TAT (Days):	7

Sample #: JD36272-ALL Dept:

TAT

Change: Please move project to TTNJP90692 and re-sub to ALSE.

Above Changes Per: Jadon Schiller Date/Time: 12/13/2021

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

JD36272: Chain of Custody Page 4 of 4

	CCC			CHAI	35		CO 2			Y							10	1		1	Page	e 1 of	1	
	202			SGS Nor 2235 Ros	th Am	erica I	nc, - D	ayto 8810	n				I	FED-EX T	racking &	,		_		Bottle Orde	Control 8			-
				TEL. 732-329-	0200	FAX: 7	32-329-		348	0				SGS Que				-	-	SGS Job #	-	JD3627	72	
-	Client / Reporting Information	1		Project	-	comie	-	-		arve.			-	_			-	Reques	ted Ar	shiele		- ODGOZI	_	Matrix Codes
Compan	y Name:	Project Name:		Project	monn	ation								7				Keques	HEG AT	alysis				Mainx Codes
treet A	ddress	2nd Avenue Street	and 33-39th St	reet, Brooklyn,	NY							1		7	6									DW - Drinking Wate GW - Ground Wate WW - Water
ity	State	Zip City		State		Informati ny Namo	on (it ditte	rent fr	om I	Report to)	-	=											SW - Surface Wate SO - Soil SL- Studge SED-Sediment
roject (Project #			Street A	ddress	-				-		-		+									OI - Oil LIQ - Other Liquid
hone #	n.schiller@sqs.com	Client Purchase	Order #		City			-	State		-	Zip	\dashv	+14DA										AIR - Air SOL - Other Solid WP - Wipe
	s) Name(s)	Phone Project Manage	r		Attentor	1:			_		_	-	-	CMS										FB - Field Blank EB-Equipment Blank RB - Rinse Blank
AV				Collection		_		-	_	-			_	721										TB - Trip Blank
aga emple #	Field ID / Point of Collection	MEOH/DI Visi #	Date	Time	Sampled	Matrix	# of	Į.	HORN	SAL SAL	Di Water	MECH	П	LCID537NY21, LCMS+14DAY									1	LAB USE ONLY
1A	TT-SB-38-7.5-9.5		12/6/21	8:55:00 AM	AV	so	DOGLES	+	2 1	1 2	0	2 111	H	X		-	-				-	-		DAB USE UNLY
2A	TT-SB-39-6.5-8.5		12/6/21	10:24:00 AN		so		H	+	+	Н	+	H	x			-				+	-		
2AD	TT-SB-39-6.5-8.5		12/6/21	10:24:00 AN		so		H	+	+	Н	+	Н	X						-	+	+		
2AS	TT-SB-39-6.5-8.5		12/6/21	10:24:00 AM	-	so		Н	+	+	H	+	Н	x	-	-		-		-	+	+	\vdash	
3A	TT-SB-40-6.0-8.0		12/6/21	11:53:00 AM	AV	so		H	+	+	H	t	Н	x						1	+	+		
								Ħ	1	T	П		Ħ											
								П		П			П											
								П					П		- 7									
													П											
								П	1	11			Ц									2		0
								П	1	11	Ц	1	Н			-IN	MA	AS	SESS	MEN	T .	1	V	V
_		4					VII.	Ш		Ш	Ш		Ш			-			100					10
_	Turnaround Time (Business days)	Approved By (SG:				Commerc				le Inform		ASP C				_	_		Com	nents / S	pecial los	tructions	1	/
	Standard 10 Business Days	Approved by (acc	a Ping, P Date.			Commerc				H		ASP C										1/	1	/
	5 Business Days RUSH					FULLT1				Ξ	St	ate For	rms			LA	BEL	VER	IFIC	ATIO	N	1		<u> </u>
	3 Business Days RUSH	_	_			NJ Reduc						D For			- 1								6	/
	2 Business Days RUSH	_				Commerc						her N	YASE	PB	-									
	1 Business Day EMERGENCY Other 1/14/1900	-	_				Commen																	
	gency & Rush T/A data available via Lablink A	oproval needed for RUS	H/Emergency TAT				Commerc							rtial Raw	data					http:	//www.s	gs.com/e	n/terr	s-and-conditions
		Date/Time: 19:00	Sample Cust	ody must be do	cuments	woled be	each tim				e po	55055	ion, i	neludin	couri	er delix			-		-	9	,	/
mi	had Rappy	12/8/21	received By:					Reline 2	quish	ed By:						1	2/9	k	226	fecrived E	de	000	a	Oh.
Relinqu	rished by:	Date / Time:	Received By:					Retine	quist	ed By:							Date / Ti	THE		Received t	"	/		
Ratings	lahed by:	Date / Time:	Received By:					Custo	kiy S	ea) #			Ü ı	ntact Not intact		Preserve	d where	applicable		-		in fice	Cools	Temp. 'C

0.4 JR#4

jd36272 xls Rev Date: 4/10/18

> JD36272: Chain of Custody Page 1 of 2 SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD3	6272	Client: S	GGS NJ	Project: 2ND AVENU	JE AND 33-39	TH STREET,	BROOKL
Date / Time Received: 12/9	/2021 3:30:00 P	M D	Delivery Method: FX	Airbill #'s:			
Therm ID: IR 1;		Т	Therm CF: 0.2;	# of Cooler	s: 1		
Cooler Temps (Raw Meas	sured) °C: Cool	er 1: (0.2);					
Cooler Temps (Corr	ected) °C: Cool	er 1: (0.4);					
Cooler Information	Y or	N_	Sample Information		Y or	N N/A	
1. Custody Seals Present	\checkmark		Sample labels present of	on bottles	✓ [
2. Custody Seals Intact	\checkmark		2. Samples preserved pro	perly	✓ [
3. Temp criteria achieved	\checkmark		3. Sufficient volume/conta	iners recvd for analysis:	v [
4. Cooler temp verification	IR Gun		4. Condition of sample		<u>Intact</u>		
5. Cooler media	Ice (Bag)		5. Sample recvd within HT		✓ [
			6. Dates/Times/IDs on CC	C match Sample Label	✓ [
Trip Blank Information	Y or	N N/	7. VOCs have headspace				
1. Trip Blank present / cooler			 8. Bottles received for uns 	pecified tests		✓	
2. Trip Blank listed on COC			 9. Compositing instruction 	s clear			
	W or	е м	I/A 10. Voa Soil Kits/Jars rece	eived past 48hrs?			
			11. % Solids Jar received	?			
3. Type Of TB Received			✓ 12. Residual Chlorine Pre	sent?			
Misc. Information							
Number of Encores: 25-	Gram	5-Gram	Number of 5035 Field Kits:	Number of La	b Filtered Meta	als:	
Test Strip Lot #s:	pH 0-3	230315	pH 10-12 219813A				
Residual Chlorine Test Stri	p Lot #:			_			
Comments							
SM001 T		_					
Rev. Date 05/24/17 Techi	nician: STEPHEN	IP	Date: 12/9/2021 3:30:00 PM	Reviewer:	Da	ate:	

JD36272: Chain of Custody Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36297

Sampling Dates: 12/06/21 - 12/07/21

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 133

TNI TNI TNI TNI

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	
Section 4: Sample Results	
4.1: JD36297-1: TT-SB-31GW	20
4.2: JD36297-1A: TT-SB-31GW	30
4.3: JD36297-2: TT-SB-30GW	32
4.4: JD36297-2A: TT-SB-30GW	42
4.5: JD36297-3: TT-SB-27GW	44
4.6: JD36297-3A: TT-SB-27GW	54
4.7: JD36297-4: TT-SB-20GW	56
4.8: JD36297-4A: TT-SB-20GW	66
4.9: JD36297-5: TT-SB-22GW	68
4.10: JD36297-5A: TT-SB-22GW	78
4.11: JD36297-6: TT-SB-23GW	80
4.12: JD36297-6A: TT-SB-23GW	90
4.13: JD36297-7: TT-SB-12GW	92
4.14: JD36297-7A: TT-SB-12GW	102
4.15: JD36297-8: GW-DUP-01	104
4.16: JD36297-8A: GW-DUP-01	114
4.17: JD36297-9: TT-SB-18GW	116
4.18: JD36297-9A: TT-SB-18GW	125
Section 5: Misc. Forms	127
5.1: Chain of Custody	128
5.2: Chain of Custody (SGS Orlando, FL)	132

Sample Summary

Job No:

JD36297

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matı Code		Client Sample ID
This report co			as ND = No		ected. The followin L	ng applies:
JD36297-1	12/06/21	08:45 CB	12/07/21	AQ	Ground Water	TT-SB-31GW
JD36297-1A	12/06/21	08:45 CB	12/07/21	AQ	Ground Water	TT-SB-31GW
JD36297-2	12/06/21	10:37 CB	12/07/21	AQ	Ground Water	TT-SB-30GW
JD36297-2A	12/06/21	10:37 CB	12/07/21	AQ	Ground Water	TT-SB-30GW
JD36297-3	12/06/21	12:01 CB	12/07/21	AQ	Ground Water	TT-SB-27GW
JD36297-3A	12/06/21	12:01 CB	12/07/21	AQ	Ground Water	TT-SB-27GW
JD36297-4	12/06/21	13:20 CB	12/07/21	AQ	Ground Water	TT-SB-20GW
JD36297-4A	12/06/21	13:20 CB	12/07/21	AQ	Ground Water	TT-SB-20GW
JD36297-5	12/06/21	15:20 CB	12/07/21	AQ	Ground Water	TT-SB-22GW
JD36297-5A	12/06/21	15:20 CB	12/07/21	AQ	Ground Water	TT-SB-22GW
JD36297-6	12/07/21	08:32 CB	12/07/21	AQ	Ground Water	TT-SB-23GW
JD36297-6A	12/07/21	08:32 CB	12/07/21	AQ	Ground Water	TT-SB-23GW

JD36297

Job No:

TT-SB-18GW

Sample Summary (continued)

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

JD36297-9A 12/07/21 12:15 CB 12/07/21 AQ Ground Water

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JD36297-7	12/07/21	11:05 CB	12/07/21	AQ	Ground Water	TT-SB-12GW
JD36297-7A	12/07/21	11:05 CB	12/07/21	AQ	Ground Water	TT-SB-12GW
JD36297-8	12/07/21	12:00 CB	12/07/21	AQ	Ground Water	GW-DUP-01
JD36297-8A	12/07/21	12:00 CB	12/07/21	AQ	Ground Water	GW-DUP-01
JD36297-9	12/07/21	12:15 CB	12/07/21	AQ	Ground Water	TT-SB-18GW

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD36297

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 1/5/2022 1:06:57 PM

On 12/07/2021, 9 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.3 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36297 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: VL10097

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD36261-4MS, JD36261-4MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- Matrix Spike/Matrix Spike Duplicate Recovery(s) for Tetrachloroethene are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- JD36297-1 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound
 in blank spike is outside in house QC limits bias high.
- JD36297-3 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-6 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-3 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-6 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36261-4MS/MSD for 1,2-Dibromo-3-chloropropane: Outside in house control limits.
- JD36297-5 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-6 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- VL10097-BS for 1,2-Dibromo-3-chloropropane: High percent recovery and no associated positive reported in the QC batch.
- JD36297-1 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-4 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-2 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-5 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-7 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-9 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-4 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-3 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-1 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-9 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-8 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-8 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.

Wednesday, January 05, 2022

Page 1 of 6

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: VL10097

- JD36297-8 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD36297-7 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-5 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-4 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-2 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-9 for 2-Butanone (MEK): Associated CCV outside of control limits high, sample was ND.
- JD36297-7 for Methyl Acetate: Associated CCV outside of control limits high, sample was ND.
- JD36297-2 for 1,2-Dibromo-3-chloropropane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: AQ Batch ID: F:OP88921

- The data for EPA 537M BY ID meets quality control requirements.
- JD36297-2A: Analysis performed at SGS Orlando, FL.
- JD36297-9A: Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando,
 FL.
- JD36297-9A: Analysis performed at SGS Orlando, FL.
- JD36297-8A: Analysis performed at SGS Orlando, FL.
- JD36297-8A: Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- JD36297-6A: Analysis performed at SGS Orlando, FL.
- JD36297-1A: Analysis performed at SGS Orlando, FL.
- JD36297-7A: Analysis performed at SGS Orlando, FL.
- JD36297-6A: Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando,
- JD36297-3A: Analysis performed at SGS Orlando, FL.
- JD36297-3A: Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- JD36297-5A: Analysis performed at SGS Orlando, FL.
- JD36297-7A: Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- JD36297-4A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: AQ Batch ID: OP37019

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- OP37019-BSD Recovery(s) for 2,4-Dimethylphenol, 2-Chlorophenol, 2-Methylphenol are outside control limits.
- JD36297-4: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-1: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-8: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-7: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-2: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-6: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-9: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-3: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- JD36297-5: There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.
- OP37019-BS1 for Nitrobenzene: Outside of in house control limits.
- RPD of OP37019-BSD for Dibenzofuran: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Fluoranthene: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Hexachlorobenzene: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Phenanthrene: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Phenol: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Pyrene: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Anthracene: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for 2-Chlorophenol: Outside of in house control limits.
- RPD of OP37019-BSD for 4-Chlorophenyl phenyl ether: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Di-n-butyl phthalate: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for 2,4-Dimethylphenol: Outside of in house control limits.
- OP37019-BS1 for 2-Methylnaphthalene: Outside of in house control limits.
- OP37019-BS1 for 2-Methylphenol: Outside of in house control limits.
- OP37019-BS1 for 4-Chloro-3-methyl phenol: Outside of in house control limits.
- OP37019-BS1 for 4-Nitroaniline: Outside of in house control limits.
- OP37019-BS1 for Atrazine: Outside of in house control limits.
- OP37019-BS1 for Benzo(a)anthracene: Outside of in house control limits.
- OP37019-BS1 for Benzo(a)pyrene: Outside of in house control limits.
- OP37019-BS1 for bis(2-Chloroethyl)ether: Outside of in house control limits.
- OP37019-BS1 for Acetophenone: Outside of in house control limits.
- OP37019-BS1 for 2,4-Dichlorophenol: Outside of in house control limits.
- OP37019-BS1 for 2,2'-Oxybis(1-chloropropane): Outside of in house control limits.
- OP37019-BS1 for Isophorone: Outside of in house control limits.

Wednesday, January 05, 2022

MS Semi-volatiles By Method SW846 8270E

Matrix: AQ Batch ID: OP37019

- OP37019-BS1 for Naphthalene: Outside of in house control limits.
- RPD of OP37019-BSD for Chrysene: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for Fluorene: Outside of in house control limits.
- OP37019-BS1 for Fluoranthene: Outside of in house control limits.
- OP37019-BS1 for Dibenzofuran: Outside of in house control limits.
- OP37019-BS1 for Chrysene: Outside of in house control limits.
- RPD of OP37019-BSD for bis(2-Ethylhexyl)phthalate: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for 4-Bromophenyl phenyl ether: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Acenaphthylene: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for Carbazole: Outside of in house control limits.
- RPD of OP37019-BSD for Benzo(a)anthracene: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for Phenanthrene: Outside of in house control limits.
- RPD of OP37019-BSD for Butyl benzyl phthalate: Analytical precision exceeds in-house control limits.
- RPD of OP37019-BSD for Caprolactam: Analytical precision exceeds in-house control limits.
- OP37019-BS1 for Acenaphthylene is outside in house control limits.

Matrix: AQ Batch ID: OP37190

- The data for SW846 8270E meets quality control requirements.
- JD36297-6: Sample extracted outside the holding time. Confirmation run.
- JD36297-7: Sample extracted outside the holding time. Confirmation run.
- JD36297-9: Sample extracted outside the holding time. Confirmation run.
- JD36297-1: Sample extracted outside the holding time. Confirmation run.
- JD36297-3: Sample extracted outside the holding time. Confirmation run.
- JD36297-4: Sample extracted outside the holding time. Confirmation run.
- JD36297-2: Sample extracted outside the holding time. Confirmation run.
- JD36297-8: Sample extracted outside the holding time. Confirmation run.
- JD36297-5: Sample extracted outside the holding time. Confirmation run.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: AQ Batch ID: OP37019A

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- OP37019A-BS12: Recoveries outside of in house control limits due to incorrect spiking amount. Since BSD12 recoveries within control limits, data are qualified and reported.
- RPD of OP37019A-BSD12 for 1,4-Dioxane: Analytical precision exceeds in-house control limits.
- OP37019A-BS12 for 1,4-Dioxane: Outside of in house control limits.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: AQ Batch ID: OP37028

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- OP37028-BS1: Had TBA cleanup.
- OP37028-MB1: Had TBA cleanup.
- JD36297-6: Had TBA cleanup.
- OP37028-BSD: Had TBA cleanup.
- JD36297-8: Had TBA cleanup.
- JD36297-7: Had TBA cleanup.
- OP37028-BS1 for Endosulfan-II: Reported from 2nd signal. 1st signal used for confirmation.
- OP37028-BSD for Endosulfan-II: Reported from 2nd signal. 1st signal used for confirmation.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: AQ Batch ID: OP37029

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: AQ Batch ID: OP37027

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals Analysis By Method SW846 6010D

Matrix: AO Batch ID: MP30296

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36264-2MS, JD36264-2MSD, JD36264-2SDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Arsenic, Cadmium, Chromium, Copper, Iron, Potassium, Thallium are outside control limits for sample MP30296-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- JD36297-6 for Antimony: Elevated detection limit due to dilution required for high interfering element.
- JD36297-6 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36297-8 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36297-8 for Lead: Elevated detection limit due to dilution required for high interfering element.
- JD36297-7 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36297-7 for Lead: Elevated detection limit due to dilution required for high interfering element.

Metals Analysis By Method SW846 7470A

Matrix: AQ Batch ID: MP30309

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36261-2MS, JD36261-2MSD were used as the QC samples for metals.

Matrix: AQ Batch ID: MP30311

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36264-2MS, JD36264-2MSD were used as the QC samples for metals.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD36297

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/30/2021 1:09:33

On 12/07/2021, 9 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 0.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36297 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: AO Batch ID: OP88921

Sample(s) FA91414-1MS, FA91423-13DUP, FA91414-1MS were used as the QC samples indicated.

Matrix Spike Recovery(s) for Perfluorohexanoic acid, Perfluoropentanoic acid, Perfluorobutanesulfonic acid, Perfluorohexanesulfonic acid, Perfluorooctanesulfonic acid are outside control limits. Outside control limits due to high level in sample relative to spike amount.

RPD(s) for Duplicate for Perfluorohexanesulfonic acid, Perfluorooctanesulfonic acid are outside control limits for sample OP88921-DUP. Probable cause is due to sample non-homogeneity.

Sample(s) JD36297-3A, JD36297-6A, JD36297-7A, JD36297-8A, JD36297-9A have surrogates outside control limits.

OP88921-DUP for 13C2-PFTeDA: Outside control limits.

JD36297-3A for 13C8-FOSA: Outside control limits.

JD36297-3A: Dilution required due to matrix interference (ID recovery standard failure).

JD36297-6A for 13C8-FOSA: Outside control limits.

JD36297-6A: Dilution required due to matrix interference (ID recovery standard failure).

JD36297-7A for 13C8-FOSA: Outside control limits.

JD36297-7A: Dilution required due to matrix interference (ID recovery standard failure).

JD36297-8A for 13C8-FOSA: Outside control limits.

JD36297-8A: Dilution required due to matrix interference (ID recovery standard failure).

JD36297-9A for 13C8-FOSA: Outside control limits.

JD36297-9A: Dilution required due to matrix interference (ID recovery standard failure).

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:	
Ariel Hartney, Client Se	ervices (signature on file)

Summary of Hits Job Number: JD36297 Page 1 of 7

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY 12/06/21 thru 12/07/21**Project:**

Lab Sample ID Client Sample I Analyte	Qual	RL	MDL	Units	Method
rinary to	Quai		WIDL	- Cints	Withou
JD36297-1 TT-SB-31GW					
Acetone	7.1 J	10	3.1	ug/l	SW846 8260D
Acenaphthene ^a	0.26 J	1.0	0.20	ug/l	SW846 8270E
Benzo(a)anthracene ^a	0.47 J	1.0	0.21	ug/l	SW846 8270E
Benzo(a)pyrene ^a	1.1	1.0	0.22	ug/l	SW846 8270E
Benzo(b)fluoranthene a	0.61 J	1.0	0.21	ug/l	SW846 8270E
Benzo(g,h,i)perylene ^a	0.41 J	1.0	0.35	ug/l	SW846 8270E
Benzo(k)fluoranthene ^a	0.21 J	1.0	0.21	ug/l	SW846 8270E
Chrysene ^a	0.37 J	1.0	0.18	ug/l	SW846 8270E
Dibenzo(a,h)anthracene ^a	0.69 J	1.0	0.34	ug/l	SW846 8270E
Fluoranthene ^a	0.70 J	1.0	0.18	ug/l	SW846 8270E
Fluorene ^a	0.21 J	1.0	0.18	ug/l	SW846 8270E
Indeno(1,2,3-cd)pyrene ^a	1.1	1.0	0.34	ug/l	SW846 8270E
Phenanthrene ^a	0.63 J	1.0	0.18	ug/l	SW846 8270E
Pyrene ^a	0.70 J	1.0	0.23	ug/l	SW846 8270E
Aluminum	1280	200		ug/l	SW846 6010D
Arsenic	3.2	3.0		ug/l	SW846 6010D
Calcium	118000	5000		ug/l	SW846 6010D
Iron	1940	100		ug/l	SW846 6010D
Lead	12.1	3.0		ug/l	SW846 6010D
Magnesium	8100	5000		ug/l	SW846 6010D
Manganese	463	15		ug/l	SW846 6010D
Potassium	12000	10000		ug/l	SW846 6010D
Sodium	166000	10000		ug/l	SW846 6010D
JD36297-1A TT-SB-31GW					
Perfluorobutanoic acid ^b	16.5	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	5.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^b	11.2	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	3.6	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	13.5	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	2.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorodecanoic acid ^b	2.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid ^b	2.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanesulfonic acid ^b	1.2 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	28.5	1.9	0.93	ng/l	EPA 537M BY ID
JD36297-2 TT-SB-30GW					
Indeno(1,2,3-cd)pyrene ^a	0.73 J	1.0	0.34	ug/l	SW846 8270E
Aluminum	3950	200		ug/l	SW846 6010D
Arsenic	9.4	3.0		ug/l	SW846 6010D
				ug/l	SW846 6010D

Summary of Hits Job Number: JD36297 Page 2 of 7

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY $12/06/21\ thru\ 12/07/21$ **Project:**

admium	Lab Sample ID Client Sample ID					
155000 5000 16 15 15 10 16 15 10 16 16 16 16 16 16 16	Analyte	Qual	RL	MDL	Units	Method
opper 45.8 10 ug/1 SW846 6010D on 10100 100 ug/1 SW846 6010D ead 26.6 3.0 ug/1 SW846 6010D Lagnesium 52000 5000 ug/1 SW846 6010D Lagnesium 52000 5000 ug/1 SW846 6010D Lickel 15.1 10 ug/1 SW846 6010D Joassium 11500 10000 ug/1 SW846 6010D Jodium 494000 50000 ug/1 SW846 6010D Jodium 494000 50000 ug/1 SW846 6010D Jodium 53.7 20 ug/1 SW846 6010D Jodium 53.7 20 ug/1 SW846 6010D Jodium 53.7 20 ug/1 SW846 6010D Jodium 53.7 1.9 0.93 ng/1 EPA 537M BY ID erfluorobutancia caid b 10.6 1.9 0.93 ng/1 EPA 537M BY ID erfluorobevatancia caid b </td <td>Cadmium</td> <td></td> <td>3.0</td> <td></td> <td></td> <td>SW846 6010D</td>	Cadmium		3.0			SW846 6010D
opper 45.8 10 ug/l SW846 6010D on 10100 100 ug/l SW846 6010D card 26.6 3.0 ug/l SW846 6010D Lagnesium 52000 5000 ug/l SW846 6010D Lagnesium 52000 5000 ug/l SW846 6010D cickel 15.1 10 ug/l SW846 6010D olassium 11500 10000 ug/l SW846 6010D oddium 494000 50000 ug/l SW846 6010D obidum 494000 50000 ug/l SW846 6010D D36297-2A TT-SB-30GW TT-SB-30GW TT-SB-30GW TT-SB-30GW SW846 6010D erfluorobutanoic acid b 10.6 1.9 0.93 ng/l EPA 537M BY ID erfluorobertanoic acid b 3.9 1.9 0.93 ng/l EPA 537M BY ID erfluorobertanoic acid b 12.7 1.9 0.93 ng/l EPA 537M BY ID erfluorobertanoic acid b 10.J <td>Calcium</td> <td>155000</td> <td>5000</td> <td></td> <td>ug/l</td> <td>SW846 6010D</td>	Calcium	155000	5000		ug/l	SW846 6010D
ead 26.6 3.0 ug/l SW846 6010D lagnesium 52000 5000 ug/l SW846 6010D lagnesium 52000 5000 ug/l SW846 6010D lates in the state of the sta	Copper	45.8	10			SW846 6010D
Segressium Seg	Iron	10100	100		ug/l	SW846 6010D
Canganese 2770	Lead	26.6	3.0			SW846 6010D
ickel 15.1 10 ug/l SW846 6010D obtassium 11500 10000 ug/l SW846 6010D obtassium 494000 50000 ug/l SW846 6010D obtassium 494000 50000 ug/l SW846 6010D obtassium 53.7 20 ug/l SW846 6010D obtassium 53.7 20 ug/l SW846 6010D obtassium 53.7 20 ug/l SW846 6010D obtassium 11.0 obtassium 19900 obtassium 19900 obtassium 19900 obtassium 19000 obtassium ob	Magnesium	52000	5000		ug/l	SW846 6010D
otassium 11500 10000 ug/l SW846 6010D odium 494000 50000 ug/l SW846 6010D inc 53.7 20 ug/l SW846 6010D D36297-2A TT-SB-30GW TT-SB-30GW TT-SB-30GW erfluorobutanoic acid b 13.9 3.7 1.9 ng/l EPA 537M BY ID erfluoropentanoic acid b 10.6 1.9 0.93 ng/l EPA 537M BY ID erfluorobexanoic acid b 3.9 1.9 0.93 ng/l EPA 537M BY ID erfluorobutanesulfonic acid b 12.7 1.9 0.93 ng/l EPA 537M BY ID berfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID berfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID berfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID berfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID acid prin	Manganese				ug/l	SW846 6010D
Age	Nickel	15.1	10		ug/l	SW846 6010D
SW846 6010D SW846 6010D SW846 6010D SW846 6010D	Potassium	11500	10000		ug/l	SW846 6010D
SW846 6010D SW846 6010D SW846 6010D SW846 6010D	Sodium	494000	50000		ug/l	SW846 6010D
erfluorobutanoic acid b	Zinc	53.7	20		ug/l	SW846 6010D
erfluoropentanoic acid b	JD36297-2A TT-SB-30GW					
erfluoropentanoic acid b	Perfluorobutanoic acid ^b	13.9	3.7	1.9	ng/l	EPA 537M BY ID
erfluorohexanoic acid b 6.4 1.9 0.93 ng/l EPA 537M BY ID erfluoroheptanoic acid b 3.9 1.9 0.93 ng/l EPA 537M BY ID erfluorooctanoic acid b 12.7 1.9 0.93 ng/l EPA 537M BY ID erfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID erfluorobutanesulfonic acid b 1.0 J 1.9 0.93 ng/l EPA 537M BY ID D36297-3 TT-SB-27GW	Perfluoropentanoic acid ^b					
erfluoroheptanoic acid b	Perfluorohexanoic acid ^b					
erfluorooctanoic acid b	Perfluoroheptanoic acid ^b	3.9				EPA 537M BY ID
1.0 J 1.9 0.93 ng/l EPA 537M BY ID	Perfluorooctanoic acid ^b					
henanthrene a	Perfluorobutanesulfonic acid ^b					
Swade 6010D Swade 6010D	JD36297-3 TT-SB-27GW					
SW846 6010D SW846 6010D	Phenanthrene ^a	0.26 J	1.0	0.18	ug/l	SW846 8270E
Seric Seri	Aluminum	5230	200			SW846 6010D
Arium Ariu	Arsenic	8.7	3.0			SW846 6010D
259000 25000 ug/l SW846 6010D	Barium	422	200			SW846 6010D
11.7 10 ug/l SW846 6010D	Calcium	259000	25000		ug/l	SW846 6010D
22.6 10 ug/l SW846 6010D	Chromium	11.7	10		ug/l	SW846 6010D
10600 10	Copper	22.6	10			
Page Page	Iron	10600	100			SW846 6010D
Jagnesium 38100 5000 ug/l SW846 6010D Janganese 2150 15 ug/l SW846 6010D Jickel 21.0 10 ug/l SW846 6010D Jotassium 19900 10000 ug/l SW846 6010D Jodium 201000 50000 ug/l SW846 6010D Joseph Johnson 48.9 20 ug/l SW846 6010D Joseph Josep	Lead	73.5	3.0			SW846 6010D
Ianganese 2150 15 ug/l SW846 6010D ickel 21.0 10 ug/l SW846 6010D otassium 19900 10000 ug/l SW846 6010D odium 201000 50000 ug/l SW846 6010D inc 48.9 20 ug/l SW846 6010D D36297-3A TT-SB-27GW erfluorobutanoic acid b 11.4 3.7 1.9 ng/l EPA 537M BY ID erfluoropentanoic acid b 8.8 1.9 0.93 ng/l EPA 537M BY ID erfluorohexanoic acid b 7.6 1.9 0.93 ng/l EPA 537M BY ID	Magnesium	38100				SW846 6010D
21.0 10 ug/l SW846 6010D 01assium 19900 10000 ug/l SW846 6010D 01assium 201000 50000 ug/l SW846 6010D 01ac 201000 50000 ug/l SW846 6010D 02ac 20 ug/l SW846 02ac	Manganese	2150				
19900 10000 ug/l SW846 6010D sW846 6010D ug/l	Nickel					
201000 50000 ug/l SW846 6010D SW846 6010D ug/l ug/l ug/l SW846 6010D ug/l SW846 6010D ug/l	Potassium		10000			
inc 48.9 20 ug/l SW846 6010D D36297-3A TT-SB-27GW erfluorobutanoic acid b 11.4 3.7 1.9 ng/l EPA 537M BY ID erfluoropentanoic acid b 8.8 1.9 0.93 ng/l EPA 537M BY ID erfluorohexanoic acid b 7.6 1.9 0.93 ng/l EPA 537M BY ID	Sodium				ug/l	
erfluorobutanoic acid ^b 11.4 3.7 1.9 ng/l EPA 537M BY ID erfluoropentanoic acid ^b 8.8 1.9 0.93 ng/l EPA 537M BY ID erfluorohexanoic acid ^b 7.6 1.9 0.93 ng/l EPA 537M BY ID	Zinc					
erfluoropentanoic acid ^b 8.8 1.9 0.93 ng/l EPA 537M BY ID erfluorohexanoic acid ^b 7.6 1.9 0.93 ng/l EPA 537M BY ID	JD36297-3A TT-SB-27GW					
erfluoropentanoic acid ^b 8.8 1.9 0.93 ng/l EPA 537M BY ID erfluorohexanoic acid ^b 7.6 1.9 0.93 ng/l EPA 537M BY ID	Perfluorobutanoic acid ^b	11.4	3.7	1.9	nø/l	EPA 537M RY ID
erfluoroĥexanoic acid ^b 7.6 1.9 0.93 ng/l EPA 537M BY ID						
trinuoronepianote aciu u.u 1.5 0.93 iig/i EFA 35/M DI ID						
	i cimoronepunore acia	0.0	1.0	0.00	115/1	LIN WINI DI ID

Summary of Hits Job Number: JD36297 Page 3 of 7

Tetra Tech **Account:**

2nd Avenue and 33-39th Street, Brooklyn, NY $12/06/21\ thru\ 12/07/21$ **Project:**

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
		1.0	0.00		EDA COGNEDA ES
Perfluorooctanoic acid b	17.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid b	2.5	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid b	2.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanesulfonic acid b	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	29.6	1.9	0.93	ng/l	EPA 537M BY ID
JD36297-4 TT-SB-20GW					
Aluminum	25600	200		ug/l	SW846 6010D
Antimony	6.2	6.0		ug/l	SW846 6010D
Arsenic	25.2	3.0		ug/l	SW846 6010D
Barium	474	200		ug/l	SW846 6010D
Beryllium	2.2	1.0		ug/l	SW846 6010D
Cadmium	6.2	3.0		ug/l	SW846 6010D
Calcium	72600	5000		ug/l	SW846 6010D
Chromium	56.0	10		ug/l	SW846 6010D
Copper	93.0	10		ug/l	SW846 6010D
Iron	42500	100		ug/l	SW846 6010D
Lead	253	15		ug/l	SW846 6010D
Magnesium	25000	5000		ug/l	SW846 6010D
Manganese	4550	15		ug/l	SW846 6010D
Nickel	85.2	10		ug/l	SW846 6010D
Potassium	16700	10000		ug/l	SW846 6010D
Sodium	88100	10000		ug/l	SW846 6010D
Vanadium	77.9	50		ug/l	SW846 6010D
Zinc	416	20		ug/l ug/l	SW846 6010D
				-8	
JD36297-4A TT-SB-20GW					
Perfluorobutanoic acid ^b	3.7	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	1.7 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	12.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	2.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid ^b	1.0 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	8.9	1.9	0.93	ng/l	EPA 537M BY ID
JD36297-5 TT-SB-22GW					
Acetone	16.6	10	3.1	ug/l	SW846 8260D
Benzo(a)pyrene ^a	0.68 J	1.0	0.22	ug/l	SW846 8270E
2-Methylnaphthalene ^a	1.0	1.0	0.21	ug/l	SW846 8270E
Naphthalene ^a	1.1	1.0	0.24	ug/l	SW846 8270E
Aluminum	7540	200		ug/l	SW846 6010D
Arsenic	9.6	3.0		ug/l	SW846 6010D
Calcium	44100	5000		ug/l	SW846 6010D
		-		G	

Summary of Hits Job Number: JD36297 Page 4 of 7

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY $12/06/21\ thru\ 12/07/21$ **Project:**

Lab Sample ID Client Sample I					
Analyte	Qual	RL	MDL	Units	Method
Chromium	11.9	10		ug/l	SW846 6010D
Copper	17.7	10		ug/l	SW846 6010D
Iron	10000	100		ug/l	SW846 6010D
Lead	20.3	3.0		ug/l	SW846 6010D
Magnesium	5430	5000		ug/l	SW846 6010D
Manganese	297	15		ug/l	SW846 6010D
Nickel	11.2	10		ug/l	SW846 6010D
Sodium	16000	10000		ug/l	SW846 6010D
Zinc	56.8	20		ug/l	SW846 6010D
JD36297-5A TT-SB-22GW					
Perfluorobutanoic acid ^b	12.7	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	7.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^b	6.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	3.7	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	19.2	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	2.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorodecanoic acid ^b	2.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroundecanoic acid ^b	1.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorododecanoic acid ^b	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid b	15.4	1.9	0.93	ng/l	EPA 537M BY ID
JD36297-6 TT-SB-23GW					
Acetone	7.6 J	10	3.1	ug/l	SW846 8260D
Benzene	0.55	0.50	0.43	ug/l ug/l	SW846 8260D
1,4-Dioxane	0.55 0.0537 J	0.30	0.43 0.052	ug/1 ug/l	SW846 8270E BY SIM
Total TIC, Semi-Volatile	6.4 J	0.10	0.032	ug/1 ug/l	SAAC-40 OWARD DI SHAI
Aluminum	70900	200		ug/1 ug/l	SW846 6010D
Arsenic ^c	66.6	200 15		ug/1 ug/l	SW846 6010D
Arsenic ³ Barium	1390	200		ug/1 ug/l	SW846 6010D
Beryllium ^c	7.1	5.0		ug/1 ug/l	SW846 6010D
Calcium	318000	25000		ug/1 ug/l	SW846 6010D
Carcium Chromium	140	10		ug/1 ug/l	SW846 6010D
Cobalt	98.4	50			
	98.4 233	50 50		ug/l	SW846 6010D SW846 6010D
Copper ^c	376000			ug/l	
Iron Lead ^c	376000 258	500 15		ug/l	SW846 6010D
				ug/l	SW846 6010D
Magnesium	86600	5000		ug/l	SW846 6010D
Manganese ^c	10700	75 0.60		ug/l	SW846 6010D
Mercury Niekol	0.80	0.60		ug/l	SW846 7470A
Nickel	206	10		ug/l	SW846 6010D
Potassium	38500	10000		ug/l	SW846 6010D
Sodium	170000	10000		ug/l	SW846 6010D

Summary of Hits Job Number: JD36297 Page 5 of 7

Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY $12/06/21\ thru\ 12/07/21$ **Project:**

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Vanadium	209	50		ug/l	SW846 6010D
Zinc	501	20		ug/l	SW846 6010D
JD36297-6A TT-SB-23GW					
Perfluorobutanoic acid ^b	9.4	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	5.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid b	5.6	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	11.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	111	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid b	4.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanesulfonic acid ^b	2.2	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	3.6	1.9	0.93	ng/l	EPA 537M BY ID
JD36297-7 TT-SB-12GW					
Benzene	0.73	0.50	0.43	ug/l	SW846 8260D
Acenaphthene a	1.2	1.0	0.19	ug/l	SW846 8270E
Dibenzofuran ^a	0.39 J	5.1	0.22	ug/l	SW846 8270E
Fluoranthene ^a	0.23 J	1.0	0.17	ug/l	SW846 8270E
Fluorene ^a	0.18 J	1.0	0.17	ug/l	SW846 8270E
Naphthalene ^a	1.0	1.0	0.24	ug/l	SW846 8270E
Phenanthrene ^a	0.54 J	1.0	0.18	ug/l	SW846 8270E
1,4-Dioxane	0.0615 J	0.10	0.051	ug/l	SW846 8270E BY SIM
Total TIC, Semi-Volatile	74 J			ug/l	
Beryllium	2.0	1.0		ug/l	SW846 6010D
Calcium	210000	25000		ug/l	SW846 6010D
Iron	806	100		ug/l	SW846 6010D
Magnesium	276000	5000		ug/l	SW846 6010D
Manganese	27.6	15		ug/l	SW846 6010D
Potassium	189000	10000		ug/l	SW846 6010D
Sodium	3760000	500000		ug/l	SW846 6010D
Zinc	39.5	20		ug/l	SW846 6010D
JD36297-7A TT-SB-12GW					
Perfluorobutanoic acid ^b	5.4	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	1.7 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^b	2.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	4.3	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	26.6	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	0.96 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	11.6	1.9	0.93	ng/l	EPA 537M BY ID
EtFOSAA b	2.7 J	3.7	1.9	ng/l	EPA 537M BY ID

Summary of Hits Page 6 of 7

Job Number: JD36297 Account: **Tetra Tech**

2nd Avenue and 33-39th Street, Brooklyn, NY $12/06/21\ thru\ 12/07/21$ **Project:**

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36297-8 GW-DUP-01					
Benzene	0.74	0.50	0.43	ug/l	SW846 8260D
Carbon disulfide	0.46 J	2.0	0.46	ug/l	SW846 8260D
Total TIC, Volatile	9.2 J			ug/l	
Acenaphthene a	1.1	1.0	0.20	ug/l	SW846 8270E
Dibenzofuran ^a	0.36 J	5.2	0.23	ug/l	SW846 8270E
Naphthalene ^a	0.89 J	1.0	0.24	ug/l	SW846 8270E
Phenanthrene ^a	0.52 J	1.0	0.18	ug/l	SW846 8270E
Total TIC, Semi-Volatile	27 J			ug/l	
Beryllium	2.0	1.0		ug/l	SW846 6010D
Calcium	219000	25000		ug/l	SW846 6010D
Iron	275	100		ug/l	SW846 6010D
Magnesium	283000	5000		ug/l	SW846 6010D
Manganese	20.5	15		ug/l	SW846 6010D
Potassium	193000	10000		ug/l	SW846 6010D
Sodium	4010000	500000		ug/l	SW846 6010D
JD36297-8A GW-DUP-01					
Perfluorobutanoic acid ^b	4.6	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	1.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^b	2.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid b	3.7	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid b	26.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^b	1.0 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^b	12.0	1.9	0.93	ng/l	EPA 537M BY ID
EtFOSAA b	3.3 J	3.7	1.9	ng/l	EPA 537M BY ID
	0.00	0	1.0	8′ -	
JD36297-9 TT-SB-18GW					
Carbon disulfide	0.47 J	2.0	0.46	ug/l	SW846 8260D
JD36297-9A TT-SB-18GW					
Perfluorobutanoic acid ^b	7.5	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^b	2.2	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^b	2.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^b	4.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^b	33.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid b	2.4	1.9	0.93	ng/l	EPA 537M BY ID

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

Summary of Hits Page 7 of 7

Job Number: JD36297 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/06/21 thru 12/07/21

Lab Sample ID Client Sample ID Result/
Analyte Qual RL MDL Units Method

(b) Analysis performed at SGS Orlando, FL.

(c) Elevated detection limit due to dilution required for high interfering element.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Lab Sample ID:JD36297-1Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L335790.D 1 12/10/21 05:35 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	7.1	10	3.1	ug/l	J
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Lab Sample ID:JD36297-1Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m, p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	104%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	98%		80-1	20%		
2037-26-5	Toluene-D8	98%	80-120%				
460-00-4	4-Bromofluorobenzene	104%		82-1	14%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		1.57	36		ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Lab Sample ID:JD36297-1Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146514.D	1	12/12/21 16:31	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146662.D	1	12/18/21 08:33	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume
Run #1	970 ml	1.0 ml
Run #2	960 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.92	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.2	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.92	ug/l	
	3&4-Methylphenol	ND	2.1	0.91	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	0.99	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.1	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.95	ug/l	
83-32-9	Acenaphthene	0.26	1.0	0.20	ug/l	J
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.1	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.1	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.2	0.30	ug/l	
56-55-3	Benzo(a)anthracene	0.47	1.0	0.21	ug/l	J
50-32-8	Benzo(a)pyrene	1.1	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	0.61	1.0	0.21	ug/l	J
191-24-2	Benzo(g,h,i)perylene	0.41	1.0	0.35	ug/l	J
207-08-9	Benzo(k)fluoranthene	0.21	1.0	0.21	ug/l	J
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.24	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JD36297

Lab Sample ID:JD36297-1Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.67	ug/l	
218-01-9	Chrysene	0.37	1.0	0.18	ug/l	J
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	_
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.57	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.68	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.69	1.0	0.34	ug/l	J
132-64-9	Dibenzofuran	ND	5.2	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	0.70	1.0	0.18	ug/l	J
86-73-7	Fluorene	0.21	1.0	0.18	ug/l	J
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	1.1	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.23	ug/l	
85-01-8	Phenanthrene	0.63	1.0	0.18	ug/l	J
129-00-0	Pyrene	0.70	1.0	0.23	ug/l	J
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	

367-12-4 2-Fluorophenol 17% 29% 10-90%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: TT-SB-31GW

 Lab Sample ID:
 JD36297-1
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	13% 54% 52% 53% 29%	20% 92% 79% 81% 53%	10-101% 23-155% 25-141% 35-126% 15-139%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact System artifact Total TIC, Semi-Volatile		2.75 3.03	5.3 5 0	ug/l ug/l ug/l	J J

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Page 1 of 1

Client Sample ID: TT-SB-31GW

Lab Sample ID: JD36297-1 **Date Sampled:** 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105100.D 1 12/14/21 18:14 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume Run #1 970 ml 1.0 ml Run #2

CAS No. Compound RL**MDL** Units Result Q

123-91-1 1,4-Dioxane ND 0.10 0.052ug/l

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 80% 21-121% 321-60-8 2-Fluorobiphenyl **79**% 27-107% 1718-51-0 Terphenyl-d14 42% 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-31GW

 Lab Sample ID:
 JD36297-1
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8151A SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155596.D 1 12/16/21 05:32 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.41 0.082 0.082	0.081 0.051 0.016	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	75% 95%			00% 00%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-31GW

 Lab Sample ID:
 JD36297-1
 Date Sampled:
 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81140.D 1 12/13/21 21:33 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0080	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0080	0.0064	ug/l	
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l	
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l	
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l	
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l	
72-20-8	Endrin	ND	0.0080	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l	
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l	
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l	
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l	
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	87%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	84%		10-19	90%	
2051-24-3	Decachlorobiphenyl	36 %		10-1	56 %	
2051-24-3	Decachlorobiphenyl	45 %				

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-31GW

Lab Sample ID:JD36297-1Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475657.D 1 12/13/21 06:37 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 260 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.38	0.15	ug/l	
11104-28-2 11141-16-5	Aroclor 1221 Aroclor 1232	ND ND	0.38 0.38	$0.32 \\ 0.20$	ug/l ug/l	
53469-21-9	Aroclor 1242	ND	0.38	0.20	ug/l	
12672-29-6	Aroclor 1248	ND	0.38	0.097	ug/l	
11097-69-1	Aroclor 1254	ND	0.38	0.32	ug/l	
11096-82-5	Aroclor 1260	ND ND	0.38	0.12	ug/l	
11100-14-4 37324-23-5	Aroclor 1268 Aroclor 1262	ND ND	0.38 0.38	0.13 0.15	ug/l ug/l	
					8	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	73 %		10-1	74%	
877-09-8	Tetrachloro-m-xylene	74%		10-1	74%	
2051-24-3	Decachlorobiphenyl	40%			51%	
2051-24-3	Decachlorobiphenyl	35 %		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-31GW

Lab Sample ID: JD36297-1 **Date Sampled: 12/06/21** Matrix: Date Received: 12/07/21 AQ - Ground Water Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	1280	200	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/10/21	12/15/21 NI	0	SW846 3010A ⁴
Arsenic	3.2	3.0	ug/l	1	12/10/21	12/16/21 NI	SW846 6010D ³	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Calcium	118000	5000	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Iron	1940	100	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Lead	12.1	3.0	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Magnesium	8100	5000	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Manganese	463	15	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SE	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Potassium	12000	10000	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Sodium	166000	10000	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/10/21	12/15/21 NI	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573 (2) Instrument QC Batch: MA51610 (3) Instrument QC Batch: MA51617 (4) Prep QC Batch: MP30296 (5) Prep QC Batch: MP30309

JD36297

Report of Analysis

Client Sample ID: TT-SB-31GW

Lab Sample ID:JD36297-1ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82362.D 1 12/28/21 04:17 AFL 12/20/21 09:00 F:OP88921 F:S2Q1164

Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	16.5	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	5.4	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	11.2	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	3.6	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	13.5	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	2.4	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	2.1	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	2.8	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	1.2	1.9	0.93	ng/l	J
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	28.5	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
DEDEI IIOI	ROOCTANESULFONAMIDO	ACETIC	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
2001-00-0	Lu OJAA	1410	3.1	1.5	118/ 1	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-31GW

Lab Sample ID:JD36297-1ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	90%		35-135%
	13C5-PFPeA	84%		50-150 %
	13C5-PFHxA	81%		50-150 %
	13C4-PFHpA	83 %		50-150 %
	13C8-PFOA	88%		50-150 %
	13C9-PFNA	89 %		50-150 %
	13C6-PFDA	92%		50-150 %
	13C7-PFUnDA	94%		40-140%
	13C2-PFDoDA	84%		40-140%
	13C2-PFTeDA	79 %		30-130%
	13C3-PFBS	88%		50-150 %
	13C3-PFHxS	88%		50-150 %
	13C8-PFOS	93%		50-150 %
	13C8-FOSA	35 %		30-130%
	d3-MeFOSAA	109%		40-140%
	d5-EtFOSAA	114%		40-140%
	13C2-6:2FTS	95%		50-150 %
	13C2-8:2FTS	100%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335791.D 1 12/10/21 05:56 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7	Dibromofluoromethane	106%		80-	120%		
17060-07-0	1,2-Dichloroethane-D4	98%		80-	120 %		
2037-26-5	Toluene-D8	97%		80-	120 %		
460-00-4	4-Bromofluorobenzene	102%		82-	114%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est	. Conc.	Units	Q
	system artifact		1.56	86		ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Client Sample ID: TT-SB-30GW

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146515.D	1	12/12/21 16:56	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146663.D	1	12/18/21 08:58	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume	
Run #1	980 ml	1.0 ml	
Run #2	950 ml	1.0 ml	

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36297-2 **Date Sampled: 12/06/21** Matrix: AQ - Ground Water Date Received: 12/07/21

Method: SW846 8270E SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.73	1.0	0.34	ug/l	J
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	19%	26%	10-9	0%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-30GW

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	13%	18%	10-101%		
118-79-6	2,4,6-Tribromophenol	67%	76 %	23-155%		
4165-60-0	Nitrobenzene-d5	51%	68 %	25-141%		
321-60-8	2-Fluorobiphenyl	55 %	71%	35-126 %		
1718-51-0	Terphenyl-d14	34%	38 %	15-139%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile			0	ug/l	

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.3

⁽b) Sample extracted outside the holding time. Confirmation run.

Client Sample ID: TT-SB-30GW

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270E BY SIM SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105101.D 1 12/14/21 18:34 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume Run #1 980 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 0.10 0.051 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 80%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 81%
 27-107%

 1718-51-0
 Terphenyl-d14
 50%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-30GW

 Lab Sample ID:
 JD36297-2
 Date Sampled:
 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8151A SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155597.D 1 12/16/21 06:04 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.40 0.080 0.080	0.080 0.050 0.015	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	83% 95%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-30GW

 Lab Sample ID:
 JD36297-2
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8081B SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81141.D 1 12/13/21 21:51 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume

Run #1 245 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0082	0.0042	ug/l	
319-84-6	alpha-BHC	ND	0.0082	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0082	0.0065	ug/l	
319-86-8	delta-BHC	ND	0.0082	0.0054	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0082	0.0049	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0082	0.0040	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0082	0.0035	ug/l	
60-57-1	Dieldrin	ND	0.0082	0.0063	ug/l	
72-54-8	4,4'-DDD	ND	0.0082	0.0047	ug/l	
72-55-9	4,4'-DDE	ND	0.0082	0.0041	ug/l	
50-29-3	4,4'-DDT	ND	0.0082	0.0056	ug/l	
72-20-8	Endrin	ND	0.0082	0.0049	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0082	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0082	0.0055	ug/l	
53494-70-5	Endrin ketone	ND	0.0082	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.0082	0.0043	ug/l	
33213-65-9	Endosulfan-II	ND	0.0082	0.0040	ug/l	
76-44-8	Heptachlor	ND	0.0082	0.0037	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0082	0.0049	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0055	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	80%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	74%		10-19	90%	
2051-24-3	Decachlorobiphenyl	24%		10-13	56%	
2051-24-3	Decachlorobiphenyl	40%		10-156%		

ND = Not detected MDL = M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-30GW

Lab Sample ID:JD36297-2Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475662.D 1 12/13/21 08:03 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 240 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2	Aroclor 1016 Aroclor 1221	ND ND	0.42 0.42	0.16 0.35	ug/l ug/l	
11141-16-5 53469-21-9	Aroclor 1232 Aroclor 1242	ND ND	0.42 0.42	0.22 0.19	ug/l ug/l	
12672-29-6 11097-69-1	Aroclor 1248 Aroclor 1254	ND ND	0.42 0.42	0.10 0.34	ug/l ug/l	
11096-82-5 11100-14-4	Aroclor 1260 Aroclor 1268	ND ND	0.42 0.42	0.13 0.14	ug/l ug/l	
37324-23-5	Aroclor 1262	ND	0.42	0.16	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	73 %		10-1	74%	
877-09-8	Tetrachloro-m-xylene	68 %		10-1	74 %	
2051-24-3	Decachlorobiphenyl	40%		10-1	51%	
2051-24-3	Decachlorobiphenyl	35%		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36297-2 Date Sampled: 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21

Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	3950	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Arsenic	9.4	3.0	ug/l	1	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Beryllium	1.1	1.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cadmium	3.0	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Calcium	155000	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Copper	45.8	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Iron	10100	100	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Lead	26.6	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Magnesium	52000	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Manganese	2770	15	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	15.1	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Potassium	11500	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Sodium	494000	50000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Zinc	53.7	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573
(2) Instrument QC Batch: MA51610
(3) Instrument QC Batch: MA51617
(4) Prep QC Batch: MP30296
(5) Prep QC Batch: MP30309

Page 1 of 2

Client Sample ID: TT-SB-30GW

Lab Sample ID: JD36297-2A **Date Sampled:** 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** F:S2Q1164 Run #1 a 2Q82363.D 1 12/28/21 04:36 AFL 12/20/21 09:00 F:OP88921

Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	13.9	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	10.6	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	6.4	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	3.9	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	12.7	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	ND	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	1.0	1.9	0.93	ng/l	J
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
DEDEI IIOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA EtFOSAA	ND	3.7	1.9	ng/l	
2331-30-0	LUOSAA	ND	3.7	1.5	ng/1	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-30GW

Lab Sample ID:JD36297-2ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	83%		35-135%
	13C5-PFPeA	78 %		50-150 %
	13C5-PFHxA	74%		50-150 %
	13C4-PFHpA	78 %		50-150 %
	13C8-PFOA	82 %		50-150 %
	13C9-PFNA	83 %		50-150 %
	13C6-PFDA	93%		50-150 %
	13C7-PFUnDA	82 %		40-140%
	13C2-PFDoDA	64%		40-140%
	13C2-PFTeDA	51 %		30-130%
	13C3-PFBS	83%		50-150 %
	13C3-PFHxS	83%		50-150 %
	13C8-PFOS	85 %		50-150 %
	13C8-FOSA	33 %		30-130%
	d3-MeFOSAA	101%		40-140%
	d5-EtFOSAA	96%		40-140%
	13C2-6:2FTS	90%		50-150 %
	13C2-8:2FTS	95%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.4

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335792.D 1 12/10/21 06:17 JS n/a N/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDI	. Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	L	imits		
1868-53-7	Dibromofluoromethane	108%		80)-120 %		
17060-07-0	1,2-Dichloroethane-D4	101%		80)-120 %		
2037-26-5	Toluene-D8	97%		80)-120 %		
460-00-4	4-Bromofluorobenzene	100%		82	2-114%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	E	st. Conc.	Units	Q
	system artifact		1.57	62	2	ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Report of Analysis

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146516.D	1	12/12/21 17:22	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146664.D	1	12/18/21 09:23	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml
Run #2	970 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36297-3 **Date Sampled: 12/06/21** Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8270E SW846 3510C Percent Solids: n/a

Report of Analysis

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	0.26	1.0	0.18	ug/l	J
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	15%	34%	10-9	0%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-27GW

 Lab Sample ID:
 JD36297-3
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	11%	22%	10-101%		
118-79-6 4165-60-0	2,4,6-Tribromophenol Nitrobenzene-d5	54% 44%	87% 70%	23-155% 25-141%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	45 % 27 %	76 %	35-126% 15-139%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
	Total TIC, Semi-Volatile			0	ug/l	

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Client Sample ID: TT-SB-27GW

Initial Volume

Lab Sample ID: JD36297-3 **Date Sampled:** 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105102.D 1 12/14/21 18:55 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Final Volume Run #1 980 ml 1.0 ml Run #2

CAS No. Compound RL**MDL** Units Result Q

123-91-1 1,4-Dioxane ND 0.10 0.051 ug/l

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 66% 21-121% 321-60-8 2-Fluorobiphenyl 66% 27-107% 1718-51-0 Terphenyl-d14 41% 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

4.5

Client Sample ID: TT-SB-27GW

 Lab Sample ID:
 JD36297-3
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8151A SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155598.D 1 12/16/21 06:35 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 240 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7	2,4-D	ND	0.42	0.083	ug/l	
93-72-1	2,4,5-TP (Silvex)	ND	0.083	0.052	ug/l	
93-76-5	2,4,5-T	ND	0.083	0.016	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	2 Limits		
19719-28-9	2,4-DCAA	102%		10-20	00%	
19719-28-9	2,4-DCAA	106%		10-20	00%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8081B SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81142.D 1 12/13/21 22:10 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume

Run #1 255 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0078	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0078	0.0041	ug/l	
319-85-7	beta-BHC	ND	0.0078	0.0063	ug/l	
319-86-8	delta-BHC	ND	0.0078	0.0052	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0078	0.0047	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0078	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0078	0.0033	ug/l	
60-57-1	Dieldrin	ND	0.0078	0.0060	ug/l	
72-54-8	4,4'-DDD	ND	0.0078	0.0045	ug/l	
72-55-9	4,4'-DDE	ND	0.0078	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0078	0.0054	ug/l	
72-20-8	Endrin	ND	0.0078	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0078	0.0043	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0078	0.0053	ug/l	
53494-70-5	Endrin ketone	ND	0.0078	0.0049	ug/l	
959-98-8	Endosulfan-I	ND	0.0078	0.0041	ug/l	
33213-65-9	Endosulfan-II	ND	0.0078	0.0038	ug/l	
76-44-8	Heptachlor	ND	0.0078	0.0035	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0078	0.0047	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0053	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	91%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	79 %		10-19	90%	
2051-24-3	Decachlorobiphenyl	32%		10-13	56 %	
2051-24-3	Decachlorobiphenyl	41%		10-1	56 %	

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475663.D 1 12/13/21 08:20 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 260 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.38	0.15	ug/l	
11104-28-2	Aroclor 1221	ND	0.38	0.32	ug/l	
11141-16-5	Aroclor 1232	ND	0.38	0.20	ug/l	
53469-21-9	Aroclor 1242	ND	0.38	0.18	ug/l	
12672-29-6	Aroclor 1248	ND	0.38	0.097	ug/l	
11097-69-1	Aroclor 1254	ND	0.38	0.32	ug/l	
11096-82-5	Aroclor 1260	ND	0.38	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.38	0.13	ug/l	
37324-23-5	Aroclor 1262	ND	0.38	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	82%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	80%		10-1	74%	
2051-24-3	Decachlorobiphenyl	42%		10-1	51%	
2051-24-3	Decachlorobiphenyl	37 %		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36297-3 **Date Sampled:** 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21

Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	5230	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Arsenic	8.7	3.0	ug/l	1	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Barium	422	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Calcium	259000	25000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Chromium	11.7	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Copper	22.6	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Iron	10600	100	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Lead	73.5	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Magnesium	38100	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Manganese	2150	15	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	21.0	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Potassium	19900	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Sodium	201000	50000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Zinc	48.9	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573 (2) Instrument QC Batch: MA51610 (3) Instrument QC Batch: MA51617 (4) Prep QC Batch: MP30296 (5) Prep QC Batch: MP30309

Report of Analysis

Client Sample ID: TT-SB-27GW

Lab Sample ID:JD36297-3ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	2Q82364.D	1	12/28/21 04:55	AFL	12/20/21 09:00	F:OP88921	F:S2Q1164
Run #2 b	2Q82429.D	5	12/29/21 01:12	AFL	12/20/21 09:00	F:OP88921	F:S2Q1165

	Initial Volume	Final Volume	
Run #1	270 ml	1.0 ml	
Run #2	270 ml	1.0 ml	

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	11.4	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	8.8	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	7.6	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	6.0	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	17.4	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	2.5	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	2.1	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	1.1	1.9	0.93	ng/l	J
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	29.6	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND c	19	9.3	ng/l	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
33100-34-4	0.2 Physicionici sununate	ND	1.4	1.3	ng/1	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JD36297

Page 2 of 2

Client Sample ID: TT-SB-27GW

Lab Sample ID: JD36297-3A Date Sampled: 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	94%	81%	35-135%
	13C5-PFPeA	91%	79 %	50-150%
	13C5-PFHxA	90%	80 %	50-150%
	13C4-PFHpA	92%	80 %	50-150%
	13C8-PFOA	95 %	82 %	50-150%
	13C9-PFNA	93%	82 %	50-150%
	13C6-PFDA	99%	78 %	50-150%
	13C7-PFUnDA	87 %	71%	40-140%
	13C2-PFDoDA	73 %	61%	40-140%
	13C2-PFTeDA	63 %	50 %	30-130%
	13C3-PFBS	92%	80 %	50-150%
	13C3-PFHxS	95 %	78 %	50-150%
	13C8-PFOS	95 %	80 %	50-150%
	13C8-FOSA	29% d	34%	30-130%
	d3-MeFOSAA	110%	78 %	40-140%
	d5-EtFOSAA	97%	68%	40-140%
	13C2-6:2FTS	100%	82 %	50-150%
	13C2-8:2FTS	97%	67%	50-150%

- (a) Analysis performed at SGS Orlando, FL.
- (b) Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- (c) Result is from Run# 2
- (d) Outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.6

Lab Sample ID:JD36297-4Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335793.D 1 12/10/21 06:38 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36297-4Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
1868-53-7	Dibromofluoromethane	107%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4 101%		80-120%				
2037-26-5	Toluene-D8	95%					
460-00-4	4-Bromofluorobenzene	104%		82-1	14%		
CAS No.	Tentatively Identified Compo	R.T.	Est.	Conc.	Units	Q	
	system artifact		1.57	50		ug/l	J
	Total TIC, Volatile		0		ug/l		

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Lab Sample ID:JD36297-4Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146517.D	1	12/12/21 17:48	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146665.D	1	12/18/21 09:47	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml
Run #2	980 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36297-4
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.52	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.34	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.31	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.27	ug/l ug/l	
131-11-3 117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	_	
200-44-0 86-73-7	Fluoranciene Fluorene	ND ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.17	ug/l	
87-68-3	Hexachlorobutadiene	ND ND	1.0	0.50	ug/l ug/l	
77-47-4	Hexachlorocyclopentadiene	ND ND	1.0	2.8	_	
67-72-1	Hexachloroethane	ND ND	2.0		ug/l	
				0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND ND	1.0 2.0	0.34	ug/l	
78-59-1	Isophorone			0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene Nitral account	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	17%	38%	10-9	0%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-20GW

 Lab Sample ID:
 JD36297-4
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	13% 48% 50% 53% 24%	24% 92% 78% 83% 64%	10-101% 23-155% 25-141% 35-126% 15-139%	
CAS No.	Tentatively Identified Compo	04% R.T.	Est. Conc. Units 0 ug/l	s Q	

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Page 1 of 1

Client Sample ID: TT-SB-20GW

Lab Sample ID: JD36297-4 **Date Sampled:** 12/06/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 4M105103.D 1 12/14/21 19:15 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume Run #1 980 ml 1.0 ml Run #2

CAS No. Compound RL**MDL** Units Result Q

123-91-1 1,4-Dioxane ND 0.10 0.051 ug/l

CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 **78**% 21-121% 321-60-8 2-Fluorobiphenyl **79**% 27-107% 1718-51-0 Terphenyl-d14 33% 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blankN = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-20GW

Lab Sample ID:JD36297-4Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155599.D 1 12/16/21 07:08 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.40 0.080 0.080	0.080 0.050 0.015	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	94% 96%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-20GW

Lab Sample ID: JD36297-4 Date Sampled: 12/06/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: SW846 8081B SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81143.D 1 12/13/21 22:28 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL MDL Unit		Units	Q
309-00-2	Aldrin	ND	0.0082	0.0042	ug/l	
319-84-6	alpha-BHC	ND	0.0082	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0082	0.0065	ug/l	
319-86-8	delta-BHC	ND	0.0082	0.0054	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0082	0.0049	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0082	0.0040	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0082	0.0035	ug/l	
60-57-1	Dieldrin	ND	0.0082	0.0063	ug/l	
72-54-8	4,4'-DDD	ND	0.0082	0.0047	ug/l	
72-55-9	4,4'-DDE	ND	0.0082	0.0041	ug/l	
50-29-3	4,4'-DDT	ND	0.0082	0.0056	ug/l	
72-20-8	Endrin	ND	0.0082	0.0049	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0082	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0082	0.0055	ug/l	
53494-70-5	Endrin ketone	ND	0.0082	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.0082	0.0043	ug/l	
33213-65-9	Endosulfan-II	ND	0.0082	0.0040	ug/l	
76-44-8	Heptachlor	ND	0.0082	0.0037	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0082	0.0049	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0055	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	n# 2 Limits		
877-09-8	Tetrachloro-m-xylene	90%		10-19	00%	
877-09-8	Tetrachloro-m-xylene	81%		10-19	00%	
2051-24-3	Decachlorobiphenyl	22%		10-15	66%	
2051-24-3	Decachlorobiphenyl	30 %		10-15	66%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-20GW

Lab Sample ID:JD36297-4Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475664.D 1 12/13/21 08:38 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2	Aroclor 1016 Aroclor 1221	ND ND	0.41 0.41	0.16 0.34	ug/l ug/l	
11141-16-5 53469-21-9	Aroclor 1232 Aroclor 1242	ND ND	0.41 0.41	0.21 0.19	ug/l ug/l	
12672-29-6 11097-69-1	Aroclor 1248 Aroclor 1254	ND ND	0.41 0.41	0.10 0.34	ug/l ug/l	
11096-82-5 11100-14-4	Aroclor 1260 Aroclor 1268	ND ND	0.41 0.41	0.12 0.14	ug/l ug/l	
37324-23-5	Aroclor 1262	ND	0.41	0.16	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim		
877-09-8 877-09-8	Tetrachloro-m-xylene Tetrachloro-m-xylene	69% 66%		10-1	74% 74%	
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	26% 23%			51% 51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-20GW

Lab Sample ID: JD36297-4 **Date Sampled: 12/06/21** Matrix: Date Received: 12/07/21 AQ - Ground Water

Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	25600	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Antimony	6.2	6.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Arsenic	25.2	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Barium	474	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Beryllium	2.2	1.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cadmium	6.2	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Calcium	72600	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Chromium	56.0	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Copper	93.0	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Iron	42500	100	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Lead	253	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Magnesium	25000	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Manganese	4550	15	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.60	0.60	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	85.2	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Potassium	16700	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Sodium	88100	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Vanadium	77.9	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Zinc	416	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573 (2) Instrument QC Batch: MA51610 (3) Instrument QC Batch: MA51617 (4) Prep QC Batch: MP30296 (5) Prep QC Batch: MP30309

Client Sample ID: TT-SB-20GW

Lab Sample ID:JD36297-4ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 2Q82365.D 1 12/28/21 05:14 AFL 12/20/21 09:00 F:OP88921 F:S2Q1164

Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	3.7	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	ND	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	ND	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	1.7	1.9	0.93	ng/l	J
335-67-1	Perfluorooctanoic acid	12.9	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	2.8	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOR	ROALKYLSULFONIC ACIDS	8				
375-73-5	Perfluorobutanesulfonic acid	1.0	1.9	0.93	ng/l	J
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	8.9	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
EI HODOTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
		ND ND		1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-20GW

Lab Sample ID:JD36297-4ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	95%		35-135%
	13C5-PFPeA	90%		50-150 %
	13C5-PFHxA	89 %		50-150 %
	13C4-PFHpA	91%		50-150 %
	13C8-PFOA	97%		50-150 %
	13C9-PFNA	97%		50-150 %
	13C6-PFDA	104%		50-150 %
	13C7-PFUnDA	96%		40-140%
	13C2-PFDoDA	78 %		40-140%
	13C2-PFTeDA	49 %		30-130%
	13C3-PFBS	96%		50-150 %
	13C3-PFHxS	98%		50-150 %
	13C8-PFOS	95 %		50-150 %
	13C8-FOSA	40%		30-130%
	d3-MeFOSAA	110%		40-140%
	d5-EtFOSAA	111%		40-140%
	13C2-6:2FTS	104%		50-150 %
	13C2-8:2FTS	102%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

Lab Sample ID: JD36297-5 **Date Sampled:** 12/06/21 **Matrix:** AQ - Ground Water Date Received: 12/07/21 Method: SW846 8260D Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** VL10097 Run #1 L335794.D 1 12/10/21 06:59 JS n/a n/a

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	16.6	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDI	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m, p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
1868-53-7	Dibromofluoromethane	106%		80)- 120 %		
17060-07-0	1,2-Dichloroethane-D4	102%		80)-120 %		
2037-26-5	Toluene-D8	95%		80)-120 %		
460-00-4	4-Bromofluorobenzene	99%		82	2-114%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Es	st. Conc.	Units	Q
	system artifact		1.56	12	2	ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	P146522.D	1	12/12/21 19:56	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146666.D	1	12/18/21 10:12	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml
Run #2	970 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	0.68	1.0	0.22	ug/l	J
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.9

Report of Analysis

Client Sample ID: TT-SB-22GW

 Lab Sample ID:
 JD36297-5
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result RL M		MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	v -		2.0	0.27	ug/l	
131-11-3	v -		2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	1.0	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	1.1	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0 0.66		ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	16%	39 %	10-9	0%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

 Lab Sample ID:
 JD36297-5
 Date Sampled: 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	12% 47% 52% 50% 36%	27% 91% 75% 80% 79%	10-101% 23-155% 25-141% 35-126% 15-139%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	System artifact System artifact Total TIC, Semi-Volatile		2.75 3.03	22 20 0	ug/l ug/l ug/l	J J

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270E BY SIM SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105108.D 1 12/14/21 20:58 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume
Run #1 980 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 0.10 0.051 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 79%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 74%
 27-107%

 1718-51-0
 Terphenyl-d14
 53%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155614.D 1 12/16/21 15:38 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Run #1 270 ml Final Volume 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.37 0.074 0.074	0.074 0.047 0.014	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	73% 71%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

 Lab Sample ID:
 JD36297-5
 Date Sampled:
 12/06/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81144.D 1 12/13/21 22:46 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume

Run #1 245 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result RL		MDL	Units	Q
309-00-2	Aldrin	ND	0.0082	0.0042	ug/l	
319-84-6	alpha-BHC	ND	0.0082	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0082	0.0065	ug/l	
319-86-8	delta-BHC	ND	0.0082	0.0054	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0082	0.0049	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0082	0.0040	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0082	0.0035	ug/l	
60-57-1	Dieldrin	ND	0.0082	0.0063	ug/l	
72-54-8	4,4'-DDD	ND	0.0082	0.0047	ug/l	
72-55-9	4,4'-DDE	ND	0.0082	0.0041	ug/l	
50-29-3	4,4'-DDT	ND	0.0082	0.0056	ug/l	
72-20-8	Endrin	ND	0.0082	0.0049	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0082	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0082	0.0055	ug/l	
53494-70-5	Endrin ketone	ND	0.0082	0.0051	ug/l	
959-98-8	Endosulfan-I	ND	0.0082	0.0043	ug/l	
33213-65-9	Endosulfan-II	ND	0.0082	0.0040	ug/l	
76-44-8	Heptachlor	ND	0.0082	0.0037	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0082	0.0049	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0055	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	138%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	91%		10-19	90%	
2051-24-3	Decachlorobiphenyl	40%		10-13	56 %	
2051-24-3	Decachlorobiphenyl	36 %	10-156%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5Date Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475665.D 1 12/13/21 08:55 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.41	0.16	ug/l	
11104-28-2	Aroclor 1221	ND	0.41	0.34	ug/l	
11141-16-5	Aroclor 1232	ND	0.41	0.21	ug/l	
53469-21-9	Aroclor 1242	ND	0.41	0.19	ug/l	
12672-29-6	Aroclor 1248	ND	0.41	0.10	ug/l	
11097-69-1	Aroclor 1254	ND	0.41	0.34	ug/l	
11096-82-5	Aroclor 1260	ND	0.41	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.41	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.41	0.16	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	83%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	81%		10-1	74%	
2051-24-3	Decachlorobiphenyl	33%		10-1	51%	
2051-24-3	Decachlorobiphenyl	29%		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-22GW

Lab Sample ID: JD36297-5 **Date Sampled: 12/06/21** Matrix: Date Received: 12/07/21 AQ - Ground Water

Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed B	y Method	Prep Method
Aluminum	7540	200	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/10/21	12/15/21 NI	0	SW846 3010A ⁴
Arsenic	9.6	3.0	ug/l	1	12/10/21	12/16/21 NI	O SW846 6010D ³	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Calcium	44100	5000	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Chromium	11.9	10	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Copper	17.7	10	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Iron	10000	100	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Lead	20.3	3.0	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Magnesium	5430	5000	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Manganese	297	15	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SE	S SW846 7470A ¹	SW846 7470A ⁵
Nickel	11.2	10	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Potassium	< 10000	10000	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 N	O SW846 6010D ²	SW846 3010A ⁴
Sodium	16000	10000	ug/l	1	12/10/21	12/15/21 N	O SW846 6010D ²	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 N	O SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 N	O SW846 6010D ²	SW846 3010A ⁴
Zinc	56.8	20	ug/l	1	12/10/21	12/15/21 NI	O SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573 (2) Instrument QC Batch: MA51610 (3) Instrument QC Batch: MA51617 (4) Prep QC Batch: MP30296 (5) Prep QC Batch: MP30309

Page 1 of 2

Client Sample ID: TT-SB-22GW Lab Sample ID: JD36297-5A **Date Sampled:** 12/06/21 **Matrix:** AQ - Ground Water Date Received: 12/07/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 a 2Q82366.D 1 12/28/21 05:33 AFL 12/20/21 09:00 F:OP88921 F:S2Q1164 Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	12.7	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	7.4	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	6.1	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	3.7	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	19.2	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	2.8	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	2.8	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	1.9	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	1.1	1.9	0.93	ng/l	J
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	8				
375-73-5	Perfluorobutanesulfonic acid	ND	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	15.4	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFI IIOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
701 01 0	1105/1	ND	3.7	1.0	11 6/1	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
					o	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-22GW

Lab Sample ID:JD36297-5ADate Sampled:12/06/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	93%		35-135%
	13C5-PFPeA	89 %		50-150 %
	13C5-PFHxA	89 %		50-150 %
	13C4-PFHpA	90%		50-150 %
	13C8-PFOA	92%		50-150 %
	13C9-PFNA	88%		50-150 %
	13C6-PFDA	87 %		50-150 %
	13C7-PFUnDA	75 %		40-140%
	13C2-PFDoDA	59 %		40-140%
	13C2-PFTeDA	55 %		30-130%
	13C3-PFBS	91%		50-150 %
	13C3-PFHxS	94%		50-150 %
	13C8-PFOS	86%		50-150 %
	13C8-FOSA	52 %		30-130%
	d3-MeFOSAA	110%		40-140%
	d5-EtFOSAA	94%		40-140%
	13C2-6:2FTS	101%		50-150 %
	13C2-8:2FTS	92%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335795.D 1 12/10/21 07:20 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	7.6	10	3.1	ug/l	J
71-43-2	Benzene	0.55	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	107%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	100%			20%		
2037-26-5	Toluene-D8	97%		80-1	20%		
460-00-4	4-Bromofluorobenzene	102%		82-1	14%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		1.57	32		ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Page 1 of 3

Client Sample ID: TT-SB-23GW

Lab Sample ID: JD36297-6 Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: SW846 8270E SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146518.D	1	12/12/21 18:13	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146667.D	1	12/18/21 10:37	CS	12/17/21 13:20	OP37190	EP6759

	Initial Volume	Final Volume
Run #1	970 ml	1.0 ml
Run #2	950 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.92	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.2	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.92	ug/l	
	3&4-Methylphenol	ND	2.1	0.91	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	0.99	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.1	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.95	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.1	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.1	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.2	0.30	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.24	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.67	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.57	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.37	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.68	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.2	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.27	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.18	ug/l	
86-73-7	Fluorene	ND	1.0	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.10	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.1	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.23	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	17%	42%	10-9	0%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5	13% 62% 46%	30% 96% 75%	10-101% 23-155% 25-141%		
321-60-8 1718-51-0	2-Fluorobiphenyl Terphenyl-d14	52% 32%	82% 55%	35-126% 15-139%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
10544-50-0	Cyclic octaatomic sulfur Total TIC, Semi-Volatile		10.75	6.4 6.4	ug/l ug/l	JN J

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Terphenyl-d14

Page 1 of 1

Report of Analysis

Client Sample ID: TT-SB-23GW
Lab Sample ID: JD36297-6 Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21

Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105104.D 1 12/14/21 19:36 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

1718-51-0

Initial Volume Final Volume
Run #1 970 ml 1.0 ml
Run #2

CAS No. Compound RL**MDL** Units Result Q J 123-91-1 1,4-Dioxane 0.0537 0.10 0.052ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 69% 21-121% 321-60-8 2-Fluorobiphenyl 77% 27-107%

46%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

25-118%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155603.D 1 12/16/21 09:15 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.40 0.080 0.080	0.080 0.050 0.015	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	105% 128%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-23GW

Lab Sample ID: JD36297-6 **Date Sampled:** 12/07/21 **Matrix:** AQ - Ground Water Date Received: 12/07/21 Method: SW846 8081B SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 12/09/21 16:45 Run #1 a **OP37028** G6G2871 6G81190.D 1 12/15/21 01:37 CP

Run #2

Initial Volume Final Volume 2.0 ml

Run #1 220 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0091	0.0047	ug/l	
319-84-6	alpha-BHC	ND	0.0091	0.0047	ug/l	
319-85-7	beta-BHC	ND	0.0091	0.0073	ug/l	
319-86-8	delta-BHC	ND	0.0091	0.0060	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0091	0.0054	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0091	0.0045	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0091	0.0039	ug/l	
60-57-1	Dieldrin	ND	0.0091	0.0070	ug/l	
72-54-8	4,4'-DDD	ND	0.0091	0.0052	ug/l	
72-55-9	4,4'-DDE	ND	0.0091	0.0046	ug/l	
50-29-3	4,4'-DDT	ND	0.0091	0.0062	ug/l	
72-20-8	Endrin	ND	0.0091	0.0055	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0091	0.0050	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0091	0.0061	ug/l	
53494-70-5	Endrin ketone	ND	0.0091	0.0056	ug/l	
959-98-8	Endosulfan-I	ND	0.0091	0.0048	ug/l	
33213-65-9	Endosulfan-II	ND	0.0091	0.0044	ug/l	
76-44-8	Heptachlor	ND	0.0091	0.0041	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0091	0.0055	ug/l	
72-43-5	Methoxychlor	ND	0.018	0.0061	ug/l	
8001-35-2	Toxaphene	ND	0.23	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	41%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	36 %		10-19	90%	
2051-24-3	Decachlorobiphenyl	11%		10-13	56%	
2051-24-3	Decachlorobiphenyl	17%		10-13	56%	

(a) Had TBA cleanup.

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-23GW

 Lab Sample ID:
 JD36297-6
 Date Sampled:
 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8082A
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475666.D 1 12/13/21 09:12 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 220 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.45	0.18	ug/l	
11104-28-2	Aroclor 1221	ND	0.45	0.38	ug/l	
11141-16-5	Aroclor 1232	ND	0.45	0.24	ug/l	
53469-21-9	Aroclor 1242	ND	0.45	0.21	ug/l	
12672-29-6	Aroclor 1248	ND	0.45	0.11	ug/l	
11097-69-1	Aroclor 1254	ND	0.45	0.38	ug/l	
11096-82-5	Aroclor 1260	ND	0.45	0.14	ug/l	
11100-14-4	Aroclor 1268	ND	0.45	0.16	ug/l	
37324-23-5	Aroclor 1262	ND	0.45	0.18	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	38%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	41%		10-1	74%	
2051-24-3	Decachlorobiphenyl	13%		10-1	51%	
2051-24-3	Decachlorobiphenyl	12%		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-23GW

Lab Sample ID: JD36297-6 **Date Sampled:** 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	70900	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Antimony ^a	< 30	30	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Arsenic ^a	66.6	15	ug/l	5	12/10/21	12/17/21 ND	SW846 6010D ⁴	SW846 3010A ⁵
Barium	1390	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Beryllium ^a	7.1	5.0	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Cadmium ^a	< 15	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Calcium	318000	25000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Chromium	140	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Cobalt	98.4	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Copper ^a	233	50	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Iron	376000	500	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Lead a	258	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Magnesium	86600	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Manganese a	10700	75	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Mercury	0.80	0.60	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁶
Nickel	206	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Potassium	38500	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Selenium ^a	< 50	50	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Silver a	< 50	50	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Sodium	170000	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Thallium ^a	< 50	50	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁵
Vanadium	209	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵
Zinc	501	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁵

(1) Instrument QC Batch: MA51573 (2) Instrument QC Batch: MA51610 (3) Instrument QC Batch: MA51617 (4) Instrument QC Batch: MA51625 (5) Prep QC Batch: MP30296 (6) Prep QC Batch: MP30311

RL = Reporting Limit

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 2

Client Sample ID: TT-SB-23GW

Lab Sample ID: JD36297-6A Date Sampled: 12/07/21

Matrix: AQ - Ground Water Date Received: 12/07/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	2Q82367.D	1	12/28/21 05:52	AFL	12/20/21 09:00	F:OP88921	F:S2Q1164
Run #2 b	2Q82430.D	5	12/29/21 01:31	AFL	12/20/21 09:00	F:OP88921	F:S2Q1165

	Initial Volume	Final Volume
Run #1	270 ml	1.0 ml
Run #2	270 ml	1.0 ml

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	9.4	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	5.9	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	5.6	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	11.4	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	111	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	1.1	1.9	0.93	ng/l	J
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	4.1	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	2.2	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	3.6	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOR	ROOCTANESULFONAMIDE	2				
754-91-6	PFOSA	ND c	19	9.3	ng/l	
	ROOCTANESULFONAMIDO					
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
					-	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-23GW

Lab Sample ID:JD36297-6ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	83%	73%	35-135%
	13C5-PFPeA	79 %	73 %	50-150%
	13C5-PFHxA	78 %	72 %	50-150%
	13C4-PFHpA	79 %	74%	50-150%
	13C8-PFOA	83 %	76 %	50-150%
	13C9-PFNA	85 %	77%	50-150%
	13C6-PFDA	88%	73 %	50-150%
	13C7-PFUnDA	72 %	61%	40-140%
	13C2-PFDoDA	61%	52 %	40-140%
	13C2-PFTeDA	55 %	45 %	30-130%
	13C3-PFBS	83 %	74%	50-150%
	13C3-PFHxS	82 %	74%	50-150%
	13C8-PFOS	85 %	72 %	50-150%
	13C8-FOSA	27% d	38%	30-130%
	d3-MeFOSAA	79 %	65 %	40-140%
	d5-EtFOSAA	74%	55 %	40-140%
	13C2-6:2FTS	88%	78 %	50-150%
	13C2-8:2FTS	84%	60%	50-150%

- (a) Analysis performed at SGS Orlando, FL.
- (b) Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- (c) Result is from Run# 2
- (d) Outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335796.D 1 12/10/21 07:41 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	0.73	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits			
1868-53-7	Dibromofluoromethane	104%	80-120%		-120%		
17060-07-0	1,2-Dichloroethane-D4	100%	80-120%				
2037-26-5	Toluene-D8	97%	80-120%				
460-00-4	4-Bromofluorobenzene	100%		82	-114%		
CAS No.	Tentatively Identified Compounds		R.T.	Es	t. Conc.	Units	Q
	system artifact	vstem artifact		12		ug/l	J
	Total TIC, Volatile		1.57	0		ug/l	-
				9		- O	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Page 1 of 3

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** EP6750 Run #1 a P146519.D 1 12/12/21 18:38 KLS 12/10/21 10:28 OP37019 Run #2 b **OP37190** EP6759 P146668.D 1 12/18/21 11:02 CS 12/17/21 13:20

Initial Volume Final Volume
Run #1 980 ml 1.0 ml
Run #2 970 ml 1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	1.2	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-12GW

Lab Sample ID: JD36297-7 **Date Sampled: 12/07/21** Matrix: AQ - Ground Water Date Received: 12/07/21

Method: SW846 8270E SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	0.39	5.1	0.22	ug/l	J
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	0.23	1.0	0.17	ug/l	J
86-73-7	Fluorene	0.18	1.0	0.17	ug/l	J
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	1.0	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	0.54	1.0	0.18	ug/l	J
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

367-12-4 2-Fluorophenol **30**% 28% 10-90%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-12GW

 Lab Sample ID:
 JD36297-7
 Date Sampled: 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	21% 67% 52% 57%	19% 83% 68% 67%	10-101% 23-155% 25-141% 35-126%		
1718-51-0	Terphenyl-d14	45 %	49%	15-139%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
10544-50-0	Cyclic octaatomic sulfur Total TIC, Semi-Volatile		10.79	74 74	ug/l ug/l	JN J

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Page 1 of 1

Date Sampled: 12/07/21

Client Sample ID: TT-SB-12GW
Lab Sample ID: JD36297-7
Matrix: AQ - Ground Water

AQ - Ground Water Date Received: 12/07/21 SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105105.D 1 12/14/21 19:57 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Method:

Run #1 980 ml Final Volume
1.0 ml

Terphenyl-d14

Run #2

1718-51-0

CAS No. Compound RL**MDL** Units Result Q J 123-91-1 1,4-Dioxane 0.0615 0.10 0.051 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 81% 21-121% 321-60-8 2-Fluorobiphenyl 84% 27-107%

68%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

25-118%

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155604.D 1 12/16/21 09:47 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.41 0.082 0.082	0.081 0.051 0.016	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	107% 86%			00% 00%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8081B SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 6G81191.D 1 12/15/21 01:55 CP 12/09/21 16:45 OP37028 G6G2871

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0080	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0080	0.0064	ug/l	
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l	
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l	
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l	
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l	
72-20-8	Endrin	ND	0.0080	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l	
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l	
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l	
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l	
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	99%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	91%		10-19	90%	
2051-24-3	Decachlorobiphenyl	41%		10-13	56%	
2051-24-3	Decachlorobiphenyl	50 %		56 %		

(a) Had TBA cleanup.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-12GW

Lab Sample ID:JD36297-7Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 XX2475667.D 1 12/13/21 09:29 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.40	0.16	ug/l	
11104-28-2	Aroclor 1221	ND	0.40	0.34	ug/l	
11141-16-5	Aroclor 1232	ND	0.40	0.21	ug/l	
53469-21-9	Aroclor 1242	ND	0.40	0.18	ug/l	
12672-29-6	Aroclor 1248	ND	0.40	0.10	ug/l	
11097-69-1	Aroclor 1254	ND	0.40	0.33	ug/l	
11096-82-5	Aroclor 1260	ND	0.40	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.40	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.40	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	65%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	66%		10-1	74 %	
2051-24-3	Decachlorobiphenyl	38%		10-1	51%	
2051-24-3	Decachlorobiphenyl	35%		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-12GW

Lab Sample ID: JD36297-7 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	19/10/91	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
								_
Antimony	< 6.0	6.0	ug/l	1		12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Arsenic ^a	< 15	15	ug/l	5		12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Beryllium	2.0	1.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Calcium	210000	25000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Iron	806	100	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Lead a	< 15	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Magnesium	276000	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Manganese	27.6	15	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Potassium	189000	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Sodium	3760000	500000	ug/l	50	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Zinc	39.5	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573
(2) Instrument QC Batch: MA51610
(3) Instrument QC Batch: MA51617
(4) Prep QC Batch: MP30296
(5) Prep QC Batch: MP30311

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 2

Client Sample ID: TT-SB-12GW

Lab Sample ID: JD36297-7A Date Sampled: 12/07/21

Matrix: AQ - Ground Water Date Received: 12/07/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	2Q82368.D	1	12/28/21 06:11	AFL	12/20/21 09:00	F:OP88921	F:S2Q1164
Run #2 b	2Q82431.D	5	12/29/21 01:50	AFL	12/20/21 09:00	F:OP88921	F:S2Q1165

	Initial Volume	Final Volume	
Run #1	270 ml	1.0 ml	
Run #2	270 ml	1.0 ml	

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	5.4	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	1.7	1.9	0.93	ng/l	J
307-24-4	Perfluorohexanoic acid	2.9	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	4.3	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	26.6	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	0.96	1.9	0.93	ng/l	J
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	5				
375-73-5	Perfluorobutanesulfonic acid	ND	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	11.6	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFI IIOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND c	19	9.3	ng/l	
734-31-0	Trosa	ND	10	J.J	ng/1	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC AC	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	2.7	3.7	1.9	ng/l	J
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
					' 8' -	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-12GW
Lab Sample ID: JD36297-7A Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	85%	89%	35-135%
	13C5-PFPeA	77%	85 %	50-150%
	13C5-PFHxA	71%	82 %	50-150%
	13C4-PFHpA	73 %	84%	50-150%
	13C8-PFOA	77%	85 %	50-150%
	13C9-PFNA	81%	83%	50-150%
	13C6-PFDA	86%	88%	50-150%
	13C7-PFUnDA	89 %	83%	40-140%
	13C2-PFDoDA	73 %	69 %	40-140%
	13C2-PFTeDA	59 %	53 %	30-130%
	13C3-PFBS	83%	83%	50-150%
	13C3-PFHxS	80 %	85 %	50-150%
	13C8-PFOS	84%	83%	50-150%
	13C8-FOSA	23% d	31%	30-130%
	d3-MeFOSAA	82 %	103%	40-140%
	d5-EtFOSAA	93%	96%	40-140%
	13C2-6:2FTS	82 %	95%	50-150%
	13C2-8:2FTS	94%	78 %	50-150%

- (a) Analysis performed at SGS Orlando, FL.
- (b) Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- (c) Result is from Run# 2
- (d) Outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 L335797.D 1 12/10/21 08:02 JS n/a n/a VL10097

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	0.74	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	0.46	2.0	0.46	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits		
1868-53-7	Dibromofluoromethane	106%		80-	120%		
17060-07-0	1,2-Dichloroethane-D4	98%		80-	120 %		
2037-26-5	Toluene-D8	98%		80-	120 %		
460-00-4	4-Bromofluorobenzene	104%		82-	114%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est	. Conc.	Units	Q
	system artifact		1.57	9.8		ug/l	J
7446-09-5	Sulfur dioxide	· ·				ug/l	JN
	Total TIC, Volatile			9.2		ug/l	J

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected RL = Reporting Limit MDL = Method Detection Limit

MDL = Mediod Detection

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Page 1 of 3

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** EP6750 Run #1 a P146520.D 1 12/12/21 19:03 KLS 12/10/21 10:28 OP37019 Run #2 b **OP37190** EP6759 P146669.D 1 12/18/21 11:27 CS 12/17/21 13:20

Initial Volume Final Volume
Run #1 970 ml 1.0 ml
Run #2 970 ml 1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.2	0.85	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.2	0.92	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.2	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.2	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.2	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.92	ug/l	
	3&4-Methylphenol	ND	2.1	0.91	ug/l	
88-75-5	2-Nitrophenol	ND	5.2	0.99	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.1	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.2	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.2	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.2	0.95	ug/l	
83-32-9	Acenaphthene	1.1	1.0	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.1	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.1	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.2	0.30	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.42	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.2	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.24	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: GW-DUP-01

Lab Sample ID: JD36297-8 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21

Method: SW846 8270E SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.67	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.38	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.57	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.68	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	0.36	5.2	0.23	ug/l	J
84-74-2	Di-n-butyl phthalate	ND	2.1	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.18	ug/l	
86-73-7	Fluorene	ND	1.0	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.34	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.51	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.9	ug/l	
67-72-1	Hexachloroethane	ND	2.1	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.22	ug/l	
88-74-4	2-Nitroaniline	ND	5.2	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.2	0.40	ug/l	
100-01-6	4-Nitroaniline	ND	5.2	0.45	ug/l	
91-20-3	Naphthalene	0.89	1.0	0.24	ug/l	J
98-95-3	Nitrobenzene	ND	2.1	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.1	0.50	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.2	0.23	ug/l	
85-01-8	Phenanthrene	0.52	1.0	0.18	ug/l	J
129-00-0	Pyrene	ND	1.0	0.23	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	16%	24%	10-90	0%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	12% 53% 46% 48% 21%	17% 94% 44% 53% 71%	10-101% 23-155% 25-141% 35-126% 15-139%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
10544-50-0	Cyclic octaatomic sulfur Total TIC, Semi-Volatile		10.76	27 27	ug/l ug/l	JN J

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

⁽b) Sample extracted outside the holding time. Confirmation run.

Page 1 of 1

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270E BY SIM SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105106.D 1 12/14/21 20:17 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume Run #1 970 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 0.10 0.052 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 71%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 72%
 27-107%

 1718-51-0
 Terphenyl-d14
 30%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: GW-DUP-01

 Lab Sample ID:
 JD36297-8
 Date Sampled: 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8151A SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155605.D 1 12/16/21 10:20 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.40 0.080 0.080	0.080 0.050 0.015	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	n# 2 Limits		
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	121% 96%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8081BSW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 6G81192.D 1 12/15/21 02:13 CP 12/09/21 16:45 OP37028 G6G2871

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0080	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0080	0.0064	ug/l	
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l	
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l	
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l	
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l	
72-20-8	Endrin	ND	0.0080	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l	
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l	
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l	
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l	
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	79 %		10-19	90%	
2051-24-3	Decachlorobiphenyl	40%		10-15	56 %	
2051-24-3	Decachlorobiphenyl	55 %		66 %		

(a) Had TBA cleanup.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: GW-DUP-01

Lab Sample ID:JD36297-8Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475668.D 1 12/13/21 09:46 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.40	0.16	ug/l	
11104-28-2	Aroclor 1221	ND	0.40	0.34	ug/l	
11141-16-5	Aroclor 1232	ND	0.40	0.21	ug/l	
53469-21-9	Aroclor 1242	ND	0.40	0.18	ug/l	
12672-29-6	Aroclor 1248	ND	0.40	0.10	ug/l	
11097-69-1	Aroclor 1254	ND	0.40	0.33	ug/l	
11096-82-5	Aroclor 1260	ND	0.40	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.40	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.40	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	69%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	63%		10-1	74%	
2051-24-3	Decachlorobiphenyl	49%		10-1	51%	
2051-24-3	Decachlorobiphenyl	44%		10-1	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: GW-DUP-01

Lab Sample ID: JD36297-8 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	< 200	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Arsenic ^a	< 15	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Barium	< 200	200	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Beryllium	2.0	1.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Calcium	219000	25000	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Iron	275	100	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Lead ^a	< 15	15	ug/l	5	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Magnesium	283000	5000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Manganese	20.5	15	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/10/21	12/10/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Potassium	193000	10000	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Sodium	4010000	500000	ug/l	50	12/10/21	12/16/21 ND	SW846 6010D ³	SW846 3010A ⁴
Thallium	< 10	10	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/10/21	12/15/21 ND	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51573
(2) Instrument QC Batch: MA51610
(3) Instrument QC Batch: MA51617
(4) Prep QC Batch: MP30296
(5) Prep QC Batch: MP30311

(a) Elevated detection limit due to dilution required for high interfering element.

Page 1 of 2

Client Sample ID: GW-DUP-01
Lab Sample ID: JD36297-8A Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 a	2Q82369.D	1	12/28/21 06:30	AFL	12/20/21 09:00	F:OP88921	F:S2Q1164
Run #2 b	2Q82432.D	5	12/29/21 02:09	AFL	12/20/21 09:00	F:OP88921	F:S2Q1165

	Initial Volume	Final Volume	
Run #1	270 ml	1.0 ml	
Run #2	270 ml	1.0 ml	

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	4.6	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	1.9	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	2.9	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	3.7	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	26.8	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	1.0	1.9	0.93	ng/l	J
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOF	ROALKYLSULFONIC ACIDS	3				
375-73-5	Perfluorobutanesulfonic acid	ND	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	12.0	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND c	19	9.3	ng/l	
PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	TDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	3.3	3.7	1.9	ng/l	J
2001 00 0	LIC ON MI	0.0	0.1	1.0	118/1	J
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
					-	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: GW-DUP-01
Lab Sample ID: JD36297-8A Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	87%	86%	35-135%
	13C5-PFPeA	79 %	83%	50-150%
	13C5-PFHxA	72 %	79 %	50-150%
	13C4-PFHpA	73 %	81%	50-150%
	13C8-PFOA	78 %	82%	50-150%
	13C9-PFNA	81%	80 %	50-150%
	13C6-PFDA	83%	83%	50-150%
	13C7-PFUnDA	76 %	70 %	40-140%
	13C2-PFDoDA	61%	55 %	40-140%
	13C2-PFTeDA	56 %	49 %	30-130%
	13C3-PFBS	85 %	83%	50-150%
	13C3-PFHxS	81%	84%	50-150%
	13C8-PFOS	83%	73 %	50-150%
	13C8-FOSA	26% d	34%	30-130%
	d3-MeFOSAA	76 %	91%	40-140%
	d5-EtFOSAA	78 %	78 %	40-140%
	13C2-6:2FTS	82 %	91%	50-150%
	13C2-8:2FTS	93%	75 %	50-150%

- (a) Analysis performed at SGS Orlando, FL.
- (b) Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- (c) Result is from Run# 2
- (d) Outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 L335798.D 1 12/10/21 08:23 JS n/a n/a VL10097
Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	0.47	2.0	0.46	ug/l	J
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropan b	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-18GW

Lab Sample ID: JD36297-9 **Date Sampled:** 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8260D Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate ^a	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m,p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibromofluoromethane	106%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	98%		80-1	20%		
2037-26-5	Toluene-D8	97%		80-1	20 %		
460-00-4	4-Bromofluorobenzene	105%		82-1	14%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		1.56	79		ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Page 1 of 3

Client Sample ID: TT-SB-18GW

Lab Sample ID: JD36297-9 Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: SW846 8270E SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
	P146521.D	1	12/12/21 19:30	KLS	12/10/21 10:28	OP37019	EP6750
Run #2 b	P146670.D	1	12/18/21 11:51	CS	12/17/21 13:20	OP37190	EP6759

	T 4.4 1 T 7 T	71.177
	Initial Volume	Final Volume
Run #1	980 ml	1.0 ml
Run #2	960 ml	1.0 ml

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.35	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.10	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.23	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.30	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.43	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.27	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
367-12-4	2-Fluorophenol	13%	33%	10-9	0%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	10%	24%	10-101%		
118-79-6	2,4,6-Tribromophenol	47%	86%	23-155%		
4165-60-0	Nitrobenzene-d5	46%	67%	25-141%		
321-60-8	2-Fluorobiphenyl	48%	72 %	35-126%		
1718-51-0	Terphenyl-d14	22%	73%	15-139%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est. Conc.	Units	Q
	Total TIC, Semi-Volatile			0	ug/l	

⁽a) There are compounds in BS were outside in house QC limits. The results confirmed by reextraction outside the holding time.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

⁽b) Sample extracted outside the holding time. Confirmation run.

Page 1 of 1

Client Sample ID: TT-SB-18GW

Lab Sample ID: JD36297-9 Date Sampled: 12/07/21

Matrix: AQ - Ground Water Date Received: 12/07/21

Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 4M105107.D 1 12/14/21 20:37 KLS 12/10/21 10:28 OP37019A E4M4885

Run #2

Initial Volume Final Volume
Run #1 980 ml 1.0 ml
Run #2

CAS No. Compound RL**MDL** Units Result Q 123-91-1 1,4-Dioxane ND 0.10 0.051 ug/l CAS No. **Surrogate Recoveries** Run# 1 Run# 2 Limits 4165-60-0 Nitrobenzene-d5 21-121% 71% 321-60-8 2-Fluorobiphenyl 73% 27-107% 1718-51-0 Terphenyl-d14 33% 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155606.D 1 12/16/21 10:52 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 245 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.41 0.082 0.082	0.081 0.051 0.016	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	22% 20%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-18GW

 Lab Sample ID:
 JD36297-9
 Date Sampled:
 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81148.D 1 12/14/21 00:00 TL 12/09/21 16:45 OP37028 G6G2869

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0080	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0080	0.0064	ug/l	
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l	
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l	
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l	
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l	
72-20-8	Endrin	ND	0.0080	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l	
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l	
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l	
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l	
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	76%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	70 %		10-19	90%	
2051-24-3	Decachlorobiphenyl	37%		10-13	56%	
2051-24-3	Decachlorobiphenyl	53 %		10-1	56 %	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 1

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475673.D 1 12/13/21 11:13 TL 12/09/21 16:45 OP37029 GXX7681

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	t RL	MDL	Units	Q

12674-11-2	Aroclor 1016	ND	0.40	0.16	ug/l
11104-28-2	Aroclor 1221	ND	0.40	0.34	ug/l
11141-16-5	Aroclor 1232	ND	0.40	0.21	ug/l
53469-21-9	Aroclor 1242	ND	0.40	0.18	ug/l
12672-29-6	Aroclor 1248	ND	0.40	0.10	ug/l
11097-69-1	Aroclor 1254	ND	0.40	0.33	ug/l
11096-82-5	Aroclor 1260	ND	0.40	0.12	ug/l
11100-14-4	Aroclor 1268	ND	0.40	0.14	ug/l
37324-23-5	Aroclor 1262	ND	0.40	0.15	ug/l

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	66%		10-174%
877-09-8	Tetrachloro-m-xylene	65 %		10-174%
2051-24-3	Decachlorobiphenyl	50 %		10-151%
2051-24-3	Decachlorobiphenyl	44%		10-151%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-18GW

Lab Sample ID: JD36297-9A Date Sampled: 12/07/21

Matrix: AQ - Ground Water Date Received: 12/07/21

Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run	#1 a 2Q82372.D	1	12/28/21 07:27	AFL	12/20/21 09:00	F:OP88921	F:S2Q1164
Run	#2 b 2Q82433.D	5	12/29/21 02:28	AFL	12/20/21 09:00	F:OP88921	F:S2Q1165

	Initial Volume	Final Volume
Run #1	270 ml	1.0 ml
Run #2	270 ml	1.0 ml

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	7.5	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	2.2	1.9	0.93	ng/l	
307-24-4	Perfluorohexanoic acid	2.4	1.9	0.93	ng/l	
375-85-9	Perfluoroheptanoic acid	4.1	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	33.4	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	ND	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOR	ROALKYLSULFONIC ACIDS	5				
375-73-5	Perfluorobutanesulfonic acid	2.4	1.9	0.93	ng/l	
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	ND	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOR	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND c	19	9.3	ng/l	
DEDELLIOI	ROOCTANESULFONAMIDO	ACETIC AC	TIDE			
2355-31-9	MeFOSAA	ND	3.7	1.9	na/l	
2991-50-6	EtFOSAA	ND ND	3.7	1.9	ng/l	
291-3U-0	EU OSAA	שאו	3.7	1.9	ng/l	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-18GW

Lab Sample ID:JD36297-9ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	79 %	76 %	35-135%
	13C5-PFPeA	75 %	74 %	50-150%
	13C5-PFHxA	74 %	73 %	50-150%
	13C4-PFHpA	80 %	76 %	50-150%
	13C8-PFOA	84%	79 %	50-150%
	13C9-PFNA	88%	79 %	50-150%
	13C6-PFDA	97 %	79 %	50-150%
	13C7-PFUnDA	82 %	68 %	40-140%
	13C2-PFDoDA	71%	59 %	40-140%
	13C2-PFTeDA	60%	47%	30-130%
	13C3-PFBS	80 %	75 %	50-150%
	13C3-PFHxS	85 %	78 %	50-150%
	13C8-PFOS	86%	80 %	50-150%
	13C8-FOSA	23% d	37 %	30-130%
	d3-MeFOSAA	98%	79 %	40-140%
	d5-EtFOSAA	95 %	68 %	40-140%
	13C2-6:2FTS	92%	85 %	50-150%
	13C2-8:2FTS	94%	68 %	50-150%

- (a) Analysis performed at SGS Orlando, FL.
- (b) Dilution required due to matrix interference (ID recovery standard failure). Analysis performed at SGS Orlando, FL.
- (c) Result is from Run# 2
- (d) Outside control limits.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

M	fisc. Forms
Cı	ustody Documents and Other Forms
Ο.	istory Boermens and Other Torms
	cludes the following where applicable:
	Chain of Custody Chain of Custody (SGS Orlando, FL)

000		CH	AIN (OF CL	JSTO	DDY					نب	<u> </u>		CO.				Page	of	f <u>L</u>	
SGS	GW			rth Ameri							FED-EX	Tracking #	000	9 1				-	21-1		
EHSA-QAC-0023-04-FORM-Standard COC		TE	EL. 732-329	9-0200 FA	X: 732-	329-3499					SGS Que	ite#					SGS Job #	- [][[21-1	71	
Client / Reporting Information		Projec	t Informat	www.sgs.co	m/ehsu	sa					-		-X	J.	egues	ted An	alvsis			Т	Matrix Codes
Company Name:	Project Name:			EP 5						•			٥٥	Ë	1				$T \cap I$		W - Drinking Water
TETRA TECH Street Address	Street	tve 1	50	7]							-	3	7	7	ĺ		2				W - Ground Water WW - Water
6 CENTURY DR.				rmation (if diffe	erent from	Report to).				4.		-		Λ		Ź	·		s	W - Surface Water SO - Soil
PARSIPPANY NJ 07954	BrookWN	State N V	Company Na	ame							73	72	۱ ا	8 1	STD		_				SL- Sludge SED-Sediment
Project Optiact E-mail	Project #		Street Addre	iss							[3	PcB	0,1		15				OI - Oil LIQ - Other Liquid
Phone #	Client Purchase Order #	PETER	City	~ 7			Sta	ate		Zip	6	8270	, °	7	-	ال	γ	1			AIR - Air SOL - Other Solid WP - Wipe
(913) 630 - 404 Sampler(s) Name(s) Phone #											18260	82	8270	80	8151	MTA	CID				FB - Field Blank B-Equipment Blank
A-VAW	Project Manager		Attention:								%	AB	89	20	<u>=</u>	I	7				RB - Rinse Blank TB - Trip Blank
		Coll	lection	1 .	ľ			Number of	preserved E	Bottles				pН	Check ((Lab Us	e Only)		\pm	_	
SGS Sample # Field ID / Point of Collection	MEOH/DI Vial# Date	Time		sab (G) Source Chlorinated rmp (C) (Y/N)	Matrix	# of bottles	E C	S S	NONE DI Water	MEOH										- 1	AB USE ONLY
1 TT-58-31GW	12/06/			G	Gw	14	3	1	10	2 5	_	V					-	_	+		
2 TT- SB- 30GW	12/06/	,		Ġ	GW	14	3	1	10				-	-	-,	-	-	-	+		
3 TT-58-27GW	12/06/2	-	_	6	Gw	14	3	ī	10		V	V	- 1	7	<i>-</i> -			_			
4 IT-58-20GW	12/06/2	1 1320	CB	G	GW	14	3	١	lo		~	u	7	-	V		/ し				
5 TT- SB-22GW	12/06/	1 1520	CB (a	Gω	14	3	ı	10		~	~	\	-	<u> </u>	V	- -				
6 TT- SB-236W		10832		G	GH	14	3	1	10	Ш	~	V	7	با _	<u> </u>				$\perp \perp$	_	
7 75-5B-12GW 8 GW-840A	12/07/2	*****		G	GW	14	3	ι	10			~			/			_	\perp		
GAA DALOI	12107/21	1200		ق	GW	13	2	ı	10	\vdash		~			\leq	\prec		4		_	
9 TT-58-18GW	12/07/1	1 1215	CB (<u>ه</u>	GW	13	3	+	Va			_		-	~		_		+	+	
					-		+	++	++	\vdash									+	-	
		-					+	+	++								-+		++		
Turn Around Time (Bus	iness Days)							Delivera	ble		L							Commen	ts / Specia	l Instru	ctions
10 Business Days	Approved By (SGS PM): / Date:			Commercial "A						ategory A			DOD-C	SM5	u	y az	50 1	8082	PCB	L	WI
5 Business Days			_	Commercial "B NJ Reduced (L		,		H	MA MCP										(STZ	۱ (VE
3 Business Days*				ull Tier I (Lev					CT RCP						4 ×	(23	0 1	4013	7.5.2	_	
2 Business Days*			_	Commercial "C NJ DKQP				\vdash	State For												
Other All data available via Lablink Appr			700					ly; Comn	nercial "B"	= Results +		mary									
			y)m/ust/A	locumented I	Comm below ead	ercial "C" ch time s	= Results amples	+ QC S change	prsess	Partial Raw	data ling cou	rier deli	very.				http	://www.s	as com/en	/terms-	and-conditions
Relinquished by: Date / Time: 1	/2/ 1317 Received By:	mil	(V)	X			Relinquis 2	hed By	(X)	<i>/</i>			Ī	12/7		100	Receiped 2	ut.	Жcи	dr	
Relinquished by: Date / Time:	Received By:		7 4				Relinquis	hed By:						Date / Tim			Received	By:			
Relinquished by: Date / Time:	Received By:		******				Custody !	Seal #			Intact					Therm I			nice	Cooler T	mp. *°
3	[5									Ш	Not intact	<u>. l </u>	Absent			See Samp	le Receipt	Summary	3.1	کر ر	.4.2.6
																		2	.19	ເລັ	7,2.0

JD36297: Chain of Custody Page 1 of 4

JD36297

SGS Sample Receipt Summary

Job Number:	JD3629	7		Client:	TETRA TE	CH			Project:	2ND AVENUE	AND 33-	39T	H ST	REET	, BROOKL
Date / Time Received:	12/7/202	21 7:0	00:00 P	M	Delivery N	letho	d:	SGS	Airbill #	's:					
Cooler Temps (Raw Mea	sured)				Cooler 2: ((2.5); Cool			3.7); Cooler 4: (3.0); Cooler 5	5: (3.4); Coole	r 6: (2.6);	Cod	oler 7	: (2.1);	Cooler 8:
Cooler Temps (Cor	rected)				Cooler 2: ((1.1); Cool			2.3); Cooler 4: (1.6); Cooler 5	5: (2.0); Coole	r 6: (1.2);	Cod	oler 7	: (0.7);	Cooler 8:
Cooler Security	Υ ο	r N	_			Υ	or N	Sample Integrity	y - Docum	entation	_	Υ	or	N	
1. Custody Seals Present:	✓		3	. COC P	resent:	✓		1. Sample labels	present on t	bottles:		✓			
2. Custody Seals Intact:	✓		4. S	mpl Date	s/Time OK	\checkmark		Container label				✓			
Cooler Temperature		Υ¢	or N					3. Sample contain	ner label / C	OC agree:		✓			
1. Temp criteria achieved:		✓						Sample Integrit	ty - Condit	tion	_	Υ	or	N	
Cooler temp verification:			R Gun					Sample recvd v	within HT:			✓			
3. Cooler media:		Ice	e (Bag)					2. All containers a		or:		V			
4. No. Coolers:			10					3. Condition of sa	mple:				Intact		
Quality Control Preserv	<u>ation</u>	<u>Y</u>	or N	N/A	•			Sample Integrit	ty - Instruc	ctions .		Υ	or	N	N/A
1. Trip Blank present / cool	er:		✓					Analysis reque	ested is clea	ar:		V			
2. Trip Blank listed on COC	:		✓					2. Bottles receive	ed for unspe	ecified tests				✓	
3. Samples preserved prop	erly:	✓						Sufficient volui	me recvd fo	r analysis:		~			
4. VOCs headspace free:		✓						4. Compositing in	nstructions o	clear:					✓
								5. Filtering instru	ctions clear						\checkmark
Test Strip Lot #s:	pH 1-1	12: _	2	31619		p	oH 12+:	203117A	0	ther: (Specify)					
Comments															
SM089-03															
Rev. Date 12/7/17															

JD36297: Chain of Custody

Page 2 of 4

JD36297: Chain of Custody Page 3 of 4

5.1

Page 1 of 1

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

Above Changes Per: Jadon Schiller

Date/Time: 12/13/2021

Requested Date:	12/13/2021	Received Date:	12/7/2021
			i i
Account Name:	Tetra Tech	Due Date:	12/13/2021
Project Description:	2nd Avenue and 33-39th Street, Brooklyn, NY	Deliverable:	NYASPB
C/O Initiated By: JADONS	JADONS PM: JBS	TAT (Days):	7
Sample #: JD36297-ALL	77-ALL Change:		

Dept: 7

Please move project to TTNJP90692 and re-sub to ALSE.

JD36297: Chain of Custody Page 4 of 4

-	UUU			SGS Nor 2235 Ros TEL. 732-329-	ite 130,	Dayto	n, NJ 0	8810					FEDEX		0.0	Bottle Order Control #		1				
						.com/el		34991.	3400				SGS Qu	ote #		50S 300 JD36		D36297	97			
	Client / Reporting Information			Project		ation 1	21 (te	e inte	uch	lion			7-0-5			Requested Analysis			3			Matrix Codes
mpa	y Name:	Project Name:			1794																	
er A	idress	2nd Avenue a	nue and 33-39th Street, Brooklyn, NY		- 1	100	3		0.00					DW - Drinking Water GW - Ground Water								
		Sugar		1	and the second s		1	M			F	1.5	1 1		1 -30 -5	WW - Water ** SW - Surface Water						
ty	State Zip	City		State	Compar	Company Name			Billing Information (if different from Report to) Company Name					90		1			SO - Soil SL- Sludge SED-Sediment			
Jad	contact E-mail on schiller@sqs.com	Project #		1.	Street A	acress							DAY,					10				OI - Oil LIQ - Other Liquid AIR - Air
one #		Clent Purchase	Order #		City			State Zip		114		1 1		11/					SOL - Other Solid WP - Wipe			
cB	'si Name(s) Phor	e Project Manager			Attention	n.							21 ,LCMS+14DAY		Н	1						FB - Field Blank EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
5GS				Collection	Sampled		# of	Π,		o pres	ě	I W	LCID537NY21									-
npie A	Field ID / Point of Collection	MEOH/OI Vial #	Date	Time	by	Matrix	botties	豆	Z I	A S	DIWN	ã	-									LAB USE ONLY
1A	TT-SB-31GW		12/6/21	8:45:00 AM	СВ	AQ		Н		4	Ц	Ш	Х									
A	TT-SB-30GW		12/6/21	10:37:00 AM	СВ	AQ		Ш				Ш	Х									
Α	TT-SB-27GW		12/6/21	12:01:00 PM	CB	AQ		Ш					Х									
Α	TT-SB-20GW		12/6/21	1:20:00 PM	СВ	AQ							Х				10.	1				
A	TT-SB-22GW		12/6/21	3:20:00 PM	СВ	AQ						П	х				7					
A	TT-SB-23GW		12/7/21	8:32:00 AM	СВ	AQ						T	х				7					
Α	TT-SB-12GW		12/7/21	11:05:00 AM	СВ	AQ		Ħ	П			1	Х	-								10-
А	GW-DUP-01		12/7/21	12:00:00 PM	СВ	AQ		Ħ	Ħ			H	х			\neg			-	00.00	TA PW	100
PA	TT-SB-18GW		12/7/21	12:15:00 PM	СВ	AQ			I				Х				MIT	ALA	33E3	SIVII	PAL	
+								H	H		+	H				-						8W
		100						+	H	-		†				+	LAB	ELVI	RIFK	CAT	ION_	-
	Turnaround Time (Business days)						Data	Delive	rable	Informa	ation	ш				-	_	_	/ Special	_		1
Standard 10 Business Days Appeared by (SGS FM); / Dute: S Business Days (RUSH) 3 Business Days (RUSH) 2 Business Days RUSH 2 Business Days RUSH		Commercial "B" (Level 2) FULLT1 (Level 3+4) NJ Reduced				Level 2) NYASP Category B																
Ē	1 Business Day EMERGENCY Other 1/14/1900 ency & Rush T/A data available via Lablink Approx	al needed for RUS						dal "B"	= Res	ults + Qu ults + Q	C Sum	nary +	artial Rav					h	tp://www	w.sgs.	com/en/te	rms-and-conditions
mi	track Romer 12/	8/21	Sample Cust Received By: 1	ody must be do	umente	woled p	each tím	Reling 2			poss	ession	includin	g oou	D	/c./2	1500	Iteceiv 2	26	2	216	26:
	Ished by: Date / 1	Time:	Received By: 3 Received By:					Resing 4				0	Intact		D	ite / Time:	icable	Receiv 4	MBy: 0		1	

0.4 IE +4

jd36297 xfs Rev Date: 4/10/18

> JD36297: Chain of Custody Page 1 of 2

> > SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD36297	Client:	SGS NJ	Project: 2ND AVENU	JE AND 33-39TH	STREET, BROOKL
Date / Time Received: 12/9/2021 3:30:00	РМ	Delivery Method: FX	Airbill #'s: 5272 0636	6 9954	
Therm ID: IR 1;		Therm CF: 0.2;	# of Coole	rs: 1	
Cooler Temps (Raw Measured) °C: Co	oler 1: (0.2	2);			
Cooler Temps (Corrected) °C: Co	oler 1: (0.4	1);			
Cooler Information Y or	N	Sample Information		Y or N	_N/A_
1. Custody Seals Present		1. Sample labels prese	nt on bottles	✓	
2. Custody Seals Intact ✓		2. Samples preserved	properly	✓	
3. Temp criteria achieved ✓		3. Sufficient volume/co	ntainers recvd for analysis:	✓	
4. Cooler temp verification <u>IR Gun</u>		4. Condition of sample		<u>Intact</u>	
5. Cooler media <u>Ice (Bag</u>)	5. Sample recvd within	HT	v	
		6. Dates/Times/IDs on	COC match Sample Label	✓	
Trip Blank Information Y or	<u>N</u> _	N/A 7. VOCs have headspa	ace		V
Trip Blank present / cooler		▼ 8. Bottles received for the second of	unspecified tests		
2. Trip Blank listed on COC		9. Compositing instruct	ions clear		✓
Wo	r S	N/A 10. Voa Soil Kits/Jars r	eceived past 48hrs?		✓
		11. % Solids Jar receiv	ed?		~
3. Type Of TB Received		✓ 12. Residual Chlorine F	Present?		\checkmark
Misc. Information					
Number of Encores: 25-Gram	5-Gram	Number of 5035 Field Kits:	Number of La	ab Filtered Metals:	
Test Strip Lot #s: pH 0-3	23031	5 pH 10-12 219813A			
Residual Chlorine Test Strip Lot #:					
Comments					
SM001 Rev. Date 05/24/17 Technician: STEPHE	:NP	Date: 12/9/2021 3:30:00 PM	Reviewer:	Date:	

JD36297: Chain of Custody

Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36309

Sampling Date: 12/07/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 53

TNI TNI TROORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	9
Section 4: Sample Results	11
4.1: JD36309-1: TT-SB-13GW	12
4.2: JD36309-1A: TT-SB-13GW	22
4.3: JD36309-2: TT-SB-06GW	24
4.4: JD36309-2A: TT-SB-06GW	34
4.5: JD36309-3: TT-SB-02GW	36
4.6: JD36309-3A: TT-SB-02GW	46
Section 5: Misc. Forms	48
5.1: Chain of Custody	49
•	52

Sample Summary

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Job No: JD36309

Sample Number	Collected Date	Time By	Ma Received Co	atrix de Type	Client Sample ID
This report co		-	s ND = Not do	etected. The following a	pplies:
8					
JD36309-1	12/07/21	13:20 CB	12/07/21 AG	Ground Water	TT-SB-13GW
JD36309-1A	12/07/21	13:20 CB	12/07/21 AG	Ground Water	TT-SB-13GW
JD36309-2	12/07/21	14:20 CB	12/07/21 AC	Ground Water	TT-SB-06GW
JD36309-2A	12/07/21	14:20 CB	12/07/21 AG	Ground Water	TT-SB-06GW
JD36309-3	12/07/21	15:35 CB	12/07/21 AG	Ground Water	TT-SB-02GW
JD36309-3A	12/07/21	15:35 CB	12/07/21 AG	Ground Water	TT-SB-02GW

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD36309

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/29/2021 4:45:00 P

On 12/07/2021, 3 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 1.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36309 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method SW846 8260D

Matrix: AQ Batch ID: V2B8533

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD36383-2MS, JD36383-2MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD36309-3 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-2 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-2 for 2-Butanone (MEK): Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-1 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-1 for Acetone: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-3 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-1 for 2-Butanone (MEK): Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-3 for 2-Butanone (MEK): Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.
- JD36309-2 for Bromomethane: Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: AO Batch ID: F:OP88920

- The data for EPA 537M BY ID meets quality control requirements.
- JD36309-1A: Analysis performed at SGS Orlando, FL.
- JD36309-3A: Analysis performed at SGS Orlando, FL.
- JD36309-2A: Analysis performed at SGS Orlando, FL.

MS Semi-volatiles By Method SW846 8270E

Matrix: AQ Batch ID: OP37044

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36294-5MS, JD36294-5MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- JD36309-1 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 2,6-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for Hexachloroethane: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for Nitrobenzene: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for Hexachloroethane: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.
- OP37044-BS1 for Acenaphthylene: Outside of in house control limits, but within the marginal exceedance limits.
- JD36309-1 for 2,6-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2,4-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for Nitrobenzene: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2,6-Dinitrotoluene: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for Acetophenone: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 4,6-Dinitro-o-cresol: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2,3,4,6-Tetrachlorophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for Nitrobenzene: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for Hexachlorobutadiene: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for Hexachloroethane: Associated CCV outside of control limits high, sample was ND.
- JD36309-3 for 2,4-Dinitrophenol: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for Atrazine: Associated CCV outside of control limits high, sample was ND.
- JD36309-1 for N-Nitroso-di-n-propylamine: Associated CCV outside of control limits high, sample was ND.

Wednesday, December 29, 2021

MS Semi-volatiles By Method SW846 8270E

Matrix: AQ Batch ID: OP37044

- JD36309-3 for 2-Nitroaniline: Associated CCV outside of control limits high, sample was ND.
- JD36309-2 for 2-Nitrophenol: Associated CCV outside of control limits high, sample was ND.

MS Semi-volatiles By Method SW846 8270E BY SIM

Matrix: AQ Batch ID: OP37044A

- All samples were extracted within the recommended method holding time.
- Sample(s) JD36294-5MS, JD36294-5MSD were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8081B

Matrix: AQ Batch ID: OP37055

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36387-1MS, JD36387-1MSD, OP37055-MSMSD were used as the QC samples indicated.
- Matrix Spike Recovery(s) for 4,4'-DDD are outside control limits. Outside control limits due to high level in sample relative to spike amount.
- RPD(s) for MSD for Endrin aldehyde are outside control limits for sample OP37055-MSD. Analytical precision exceeds inhouse control limits.
- OP37055-BS1: Had TBA cleanup.
- OP37055-BSD: Had TBA cleanup.
- OP37055-MB1: Had TBA cleanup.

GC/LC Semi-volatiles By Method SW846 8082A

Matrix: AQ Batch ID: OP37056

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

GC/LC Semi-volatiles By Method SW846 8151A

Matrix: AO Batch ID: OP37027

- All samples were extracted within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Metals Analysis By Method SW846 6010D

Matrix: AQ Batch ID: MP30320

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36309-2MS, JD36309-2MSD, JD36309-2SDL were used as the QC samples for metals.
- Matrix Spike Recovery(s) for Sodium are outside control limits. Spike amount low relative to the sample amount. Refer to lab control or spike blank for recovery information.
- RPD(s) for Serial Dilution for Arsenic, Aluminum, Cadmium, Chromium, Lead, Nickel, Silver, Vanadium are outside control limits for sample MP30320-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP30320-SD1 for Zinc: Serial dilution indicates possible matrix interference.
- JD36309-2 for Arsenic: Elevated detection limit due to dilution required for high interfering element.
- JD36309-2 for Thallium: Elevated detection limit due to dilution required for high interfering element.

Wednesday, December 29, 2021

Page 3 of 4

Metals Analysis By Method SW846 7470A

Matrix: AQ Batch ID: MP30335

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD36305-2MS, JD36305-2MSD were used as the QC samples for metals.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: SGS Dayton, NJ Job No: JD36309

Site: TTNJP: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/29/2021 10:49:40

On 12/07/2021, 3 Sample(s), 0 Trip Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 0.4 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JD36309 was Assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages

MS Semi-volatiles By Method EPA 537M BY ID

Matrix: AQ Batch ID: OP88920

Sample(s) FA91009-21MS, FA91009-21MSD were used as the QC samples indicated.

Matrix Spike Recovery(s) for Perfluorotridecanoic acid are outside control limits. Probable cause is due to matrix interference. RPD(s) for MSD for Perfluorotridecanoic acid are outside control limits for sample OP88920-MSD. Probable cause is due to sample non-homogeneity.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives exceptas noted. Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria. SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety.

Narrative prepared by:
Ariel Hartney, Client Services (signature on file)

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

12/07/21 **Collected:**

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36309-1 TT-SB-13GW					
Benzo(a)anthracene	0.76 J	1.0	0.21	ug/l	SW846 8270E
Benzo(a)pyrene	0.65 J	1.0	0.22	ug/l	SW846 8270E
Benzo(b)fluoranthene	0.90 J	1.0	0.21	ug/l	SW846 8270E
Benzo(g,h,i)perylene	0.46 J	1.0	0.35	ug/l	SW846 8270E
Benzo(k)fluoranthene	0.38 J	1.0	0.21	ug/l	SW846 8270E
Chrysene	0.64 J	1.0	0.18	ug/l	SW846 8270E
Fluoranthene	1.5	1.0	0.17	ug/l	SW846 8270E
Indeno(1,2,3-cd)pyrene	0.57 J	1.0	0.34	ug/l	SW846 8270E
Phenanthrene	0.65 J	1.0	0.18	ug/l	SW846 8270E
Pyrene	1.5	1.0	0.22	ug/l	SW846 8270E
1,4-Dioxane	0.0784 J	0.10	0.051	ug/l	SW846 8270E BY SIM
Aluminum	437	200		ug/l	SW846 6010D
Arsenic	3.1	3.0		ug/l	SW846 6010D
Calcium	107000	5000		ug/l	SW846 6010D
Iron	868	100		ug/l	SW846 6010D
Lead	135	3.0		ug/l	SW846 6010D
Magnesium	27000	5000		ug/l	SW846 6010D
Manganese	96.4	15		ug/l	SW846 6010D
Potassium	13000	10000		ug/l	SW846 6010D
Sodium	107000	10000		ug/l	SW846 6010D
Zinc	100	20		ug/l	SW846 6010D
JD36309-1A TT-SB-13GW					
Perfluorobutanoic acid ^a	2.9 J	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^a	1.6 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^a	1.7 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^a	4.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^a	23.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid a	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^a	2.7	1.9	0.93	ng/l	EPA 537M BY ID
JD36309-2 TT-SB-06GW					
Aluminum	596	200		ug/l	SW846 6010D
Arsenic b	30.1	15		ug/l	SW846 6010D
Barium	577	200		ug/l	SW846 6010D
Calcium	229000	25000		ug/l	SW846 6010D
Iron	20200	100		ug/l	SW846 6010D
IIVII		3.0		ug/l	SW846 6010D
Lead	6.2				
Lead	58800	5000		ug/l	SW846 6010D
				ug/l ug/l	SW846 6010D SW846 6010D

Summary of Hits Job Number: JD36309

Job Number: JD36309 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/07/21

Lab Sample ID Client Sample I Analyte	D Result/ Qual	RL	MDL	Units	Method
Sodium	308000	50000		ug/l	SW846 6010D
JD36309-2A TT-SB-06GW					
Perfluorobutanoic acid ^a	10.4	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^a	4.1	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid ^a	3.4	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^a	3.2	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid a	28.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^a	1.5 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid ^a	1.6 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^a	2.3	1.9	0.93	ng/l	EPA 537M BY ID
JD36309-3 TT-SB-02GW					
1,4-Dioxane	0.117	0.11	0.053	ug/l	SW846 8270E BY SIM
Aluminum	1920	200		ug/l	SW846 6010D
Arsenic	6.3	3.0		ug/l	SW846 6010D
Calcium	170000	5000		ug/l	SW846 6010D
Iron	5970	100		ug/l	SW846 6010D
Lead	11.9	3.0		ug/l	SW846 6010D
Magnesium	31900	5000		ug/l	SW846 6010D
Manganese	2210	15		ug/l	SW846 6010D
Potassium	14900	10000		ug/l	SW846 6010D
Sodium	118000	10000		ug/l	SW846 6010D
Zinc	60.5	20		ug/l	SW846 6010D
JD36309-3A TT-SB-02GW					
Perfluorobutanoic acid ^a	6.4	3.7	1.9	ng/l	EPA 537M BY ID
Perfluoropentanoic acid ^a	1.8 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanoic acid a	1.8 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluoroheptanoic acid ^a	2.9	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanoic acid ^a	61.8	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorononanoic acid ^a	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorobutanesulfonic acid ^a	1.2 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorohexanesulfonic acid ^a	1.1 J	1.9	0.93	ng/l	EPA 537M BY ID
Perfluorooctanesulfonic acid ^a	2.7	1.9	0.93	ng/l	EPA 537M BY ID

⁽a) Analysis performed at SGS Orlando, FL.

⁽b) Elevated detection limit due to dilution required for high interfering element.

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2B187938.D 1 12/11/21 06:55 JS n/a n/a V2B8533

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m, p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	101%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	92%		80-1	20%		
2037-26-5	Toluene-D8	94%		80-1	20%		
460-00-4	4-Bromofluorobenzene	103%		82-1	14%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		3.68	76		ug/l	J
	Total TIC, Volatile			0		ug/l	

(a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176989.D 1 12/13/21 12:28 KLS 12/10/21 10:25 OP37044 EM7608

Run #2

Initial Volume Final Volume Run #1 980 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.1	0.84	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.91	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l	
51-28-5	2,4-Dinitrophenol ^a	ND	5.1	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol a	ND	5.1	1.3	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.91	ug/l	
	3&4-Methylphenol	ND	2.0	0.90	ug/l	
88-75-5	2-Nitrophenol ^a	ND	5.1	0.98	ug/l	
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.1	1.4	ug/l	
108-95-2	Phenol	ND	2.0	0.40	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	5.1	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.94	ug/l	
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l	
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l	
98-86-2	Acetophenone ^a	ND	2.0	0.21	ug/l	
120-12-7	Anthracene	ND	1.0	0.22	ug/l	
1912-24-9	Atrazine ^a	ND	2.0	0.46	ug/l	
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l	
56-55-3	Benzo(a)anthracene	0.76	1.0	0.21	ug/l	J
50-32-8	Benzo(a)pyrene	0.65	1.0	0.22	ug/l	J
205-99-2	Benzo(b)fluoranthene	0.90	1.0	0.21	ug/l	J
191-24-2	Benzo(g,h,i)perylene	0.46	1.0	0.35	ug/l	J
207-08-9	Benzo(k)fluoranthene	0.38	1.0	0.21	ug/l	J
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.47	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l	
106-47-8	4-Chloroaniline	ND	5.1	0.35	ug/l	
86-74-8	Carbazole	ND	1.0	0.23	ug/l	

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 Lab Sample ID:
 JD36309-1
 Date Sampled: 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	0.64	1.0	0.18	ug/l	J
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene ^a	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene ^a	ND	1.0	0.49	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.52	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.67	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.34	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.51	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.27	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	1.5	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene ^a	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane ^a	ND	2.0	0.40	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.57	1.0	0.34	ug/l	J
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline ^a	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.45	ug/l	
91-20-3	Naphthalene	ND	1.0	0.24	ug/l	
98-95-3	Nitrobenzene ^a	ND	2.0	0.66	ug/l	
621-64-7	N-Nitroso-di-n-propylamine a	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.23	ug/l	
85-01-8	Phenanthrene	0.65	1.0	0.18	ug/l	J
129-00-0	Pyrene	1.5	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.38	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	

367-12-4 2-Fluorophenol 22% 10-90%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-13GW

 Lab Sample ID:
 JD36309-1
 Date Sampled: 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received: 12/07/21

 Method:
 SW846 8270E SW846 3510C
 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2 118-79-6 4165-60-0 321-60-8 1718-51-0	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14	18% 92% 73% 63% 44%		10-101% 23-155% 25-141% 35-126% 15-139%		
CAS No.	Tentatively Identified Compo		R.T.	Est. Conc.	Units	Q
	system artifact system artifact Total TIC, Semi-Volatile		2.82 3.09	11 10 0	ug/l ug/l ug/l	J J

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-13GW

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270E BY SIM SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105185.D 1 12/16/21 20:05 KLS 12/10/21 10:25 OP37044A E4M4888

Run #2

Initial Volume Final Volume
Run #1 980 ml 1.0 ml
Run #2

CAS No. Compound Result RL MDL Units

123-91-1 1,4-Dioxane 0.0784 0.10 0.051 ug/l J

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 68%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 65%
 27-107%

 1718-51-0
 Terphenyl-d14
 47%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Q

Page 1 of 1

Client Sample ID: TT-SB-13GW

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155608.D 1 12/16/21 11:56 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume Run #1 255 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.39 0.078 0.078	0.078 0.049 0.015	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	94% 89%			00% 00%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Page 1 of 1

Client Sample ID: TT-SB-13GW

 Lab Sample ID:
 JD36309-1
 Date Sampled:
 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81170.D 1 12/14/21 08:03 CP 12/10/21 16:40 OP37055 G6G2870

Run #2

Initial Volume Final Volume Run #1 240 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0083	0.0043	ug/l	
319-84-6	alpha-BHC	ND	0.0083	0.0043	ug/l	
319-85-7	beta-BHC	ND	0.0083	0.0067	ug/l	
319-86-8	delta-BHC	ND	0.0083	0.0055	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0083	0.0050	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0083	0.0041	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0083	0.0035	ug/l	
60-57-1	Dieldrin	ND	0.0083	0.0064	ug/l	
72-54-8	4,4'-DDD	ND	0.0083	0.0048	ug/l	
72-55-9	4,4'-DDE	ND	0.0083	0.0042	ug/l	
50-29-3	4,4'-DDT	ND	0.0083	0.0057	ug/l	
72-20-8	Endrin	ND	0.0083	0.0050	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0083	0.0045	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0083	0.0056	ug/l	
53494-70-5	Endrin ketone	ND	0.0083	0.0052	ug/l	
959-98-8	Endosulfan-I	ND	0.0083	0.0044	ug/l	
33213-65-9	Endosulfan-II	ND	0.0083	0.0041	ug/l	
76-44-8	Heptachlor	ND	0.0083	0.0037	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0083	0.0050	ug/l	
72-43-5	Methoxychlor	ND	0.017	0.0056	ug/l	
8001-35-2	Toxaphene	ND	0.21	0.14	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	75 %		10-19	90%	
877-09-8	Tetrachloro-m-xylene	69 %		10-19	90%	
2051-24-3	Decachlorobiphenyl	44%		10-13	56%	
2051-24-3	Decachlorobiphenyl	44%		10-13	56%	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-13GW

Lab Sample ID:JD36309-1Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8082ASW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
R	un #1	XX2475785.D	1	12/14/21 22:34	TL	12/10/21 16:40	OP37056	GXX7683
_								

Run #2

Initial Volume Final Volume Run #1 240 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11092-89-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	ND ND ND ND ND ND	0.42 0.42 0.42 0.42 0.42	0.16 0.35 0.22 0.19 0.10	ug/l ug/l ug/l ug/l ug/l ug/l	
11096-82-5 11100-14-4 37324-23-5 CAS No.	Aroclor 1260 Aroclor 1268 Aroclor 1262 Surrogate Recoveries	ND ND ND Run# 1	0.42 0.42 0.42 Run# 2	0.13 0.14 0.16	ug/l ug/l ug/l	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	70% 68% 44% 38%		10-1 10-1 10-1 10-1	74% 51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: TT-SB-13GW

Lab Sample ID: JD36309-1 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	437	200	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Antimony	< 6.0	6.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Arsenic	3.1	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Barium	< 200	200	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Beryllium	< 1.0	1.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Cadmium	< 3.0	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Calcium	107000	5000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Chromium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Cobalt	< 50	50	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Copper	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Iron	868	100	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Lead	135	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Magnesium	27000	5000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Manganese	96.4	15	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Mercury	< 0.20	0.20	ug/l	1	12/13/21	12/13/21 SB	SW846 7470A ¹	SW846 7470A ⁴
Nickel	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Potassium	13000	10000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Selenium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Silver	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Sodium	107000	10000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Thallium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Vanadium	< 50	50	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Zinc	100	20	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA51583
(2) Instrument QC Batch: MA51617
(3) Prep QC Batch: MP30320
(4) Prep QC Batch: MP30335

4.2

Report of Analysis

Client Sample ID: TT-SB-13GW

Lab Sample ID: JD36309-1A **Date Sampled:** 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: EPA 537M BY ID IN HOUSE Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Analytical Batch Analyzed** By **Prep Date Prep Batch** F:S3Q715 Run #1 a 3Q51153.D 1 12/23/21 23:32 AFL 12/20/21 09:00 F:OP88920

Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml

Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	2.9	3.7	1.9	ng/l	J
2706-90-3	Perfluoropentanoic acid	1.6	1.9	0.93	ng/l	J
307-24-4	Perfluorohexanoic acid	1.7	1.9	0.93	ng/l	J
375-85-9	Perfluoroheptanoic acid	4.9	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	23.9	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	ND	1.9	0.93	ng/l	
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	1.1	1.9	0.93	ng/l	J
355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	2.7	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
DEDELI IIOI	ROOCTANESULFONAMIDO	ACETIC AC	TIDG			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
₩331-30-0	LU OSAA	ND	3.7	1.3	ng/1	
FLUOROT	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	

ND = Not detected

RL = Reporting Limit E = Indicates value exceeds calibration range

MDL = Method Detection Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.2

Report of Analysis

Client Sample ID: TT-SB-13GW

Lab Sample ID:JD36309-1ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	100%		35-135%
	13C5-PFPeA	98%		50-150 %
	13C5-PFHxA	97%		50-150 %
	13C4-PFHpA	99%		50-150 %
	13C8-PFOA	103%		50-150 %
	13C9-PFNA	101%		50-150 %
	13C6-PFDA	97%		50-150 %
	13C7-PFUnDA	88%		40-140%
	13C2-PFDoDA	83%		40-140%
	13C2-PFTeDA	84%		30-130%
	13C3-PFBS	97%		50-150 %
	13C3-PFHxS	97%		50-150 %
	13C8-PFOS	95 %		50-150 %
	13C8-FOSA	91%		30-130%
	d3-MeFOSAA	99%		40-140%
	d5-EtFOSAA	96%		40-140%
	13C2-6:2FTS	99%		50-150 %
	13C2-8:2FTS	94%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID:JD36309-2Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B187939.D 1 12/11/21 07:24 JS n/a n/a V2B8533

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-06GW

Lab Sample ID:JD36309-2Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m, p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its		
1868-53-7	Dibromofluoromethane	102%		80-1	20%		
17060-07-0	1,2-Dichloroethane-D4	91%		80-1	20%		
2037-26-5	Toluene-D8	94%		80-1	20%		
460-00-4	4-Bromofluorobenzene	105%		82-1	14%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Est.	Conc.	Units	Q
	system artifact		3.68	81		ug/l	J
	Total TIC, Volatile			0		ug/l	

(a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-06GW

Lab Sample ID:JD36309-2Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176990.D 1 12/13/21 12:57 KLS 12/10/21 10:25 OP37044 EM7608

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l	
51-28-5	2,4-Dinitrophenol ^a	ND	5.3	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	5.3	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l	
	3&4-Methylphenol	ND	2.1	0.93	ug/l	
88-75-5	2-Nitrophenol ^a	ND	5.3	1.0	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l	
108-95-2	Phenol	ND	2.1	0.41	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	5.3	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l	
98-86-2	Acetophenone ^a	ND	2.1	0.22	ug/l	
120-12-7	Anthracene	ND	1.1	0.22	ug/l	
1912-24-9	Atrazine ^a	ND	2.1	0.47	ug/l	
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l	
86-74-8	Carbazole	ND	1.1	0.24	ug/l	

ND = Not detected MDL

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Lab Sample ID: JD36309-2 **Date Sampled:** 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Method: SW846 8270E SW846 3510C 2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.68	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene ^a	ND	1.1	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene a	ND	1.1	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l	
123-91-1	1,4-Dioxane	ND	1.1	0.69	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l	
87-68-3	Hexachlorobutadiene ^a	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l	
67-72-1	Hexachloroethane ^a	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l	
88-74-4	2-Nitroaniline ^a	ND	5.3	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l	
91-20-3	Naphthalene	ND	1.1	0.24	ug/l	
98-95-3	Nitrobenzene ^a	ND	2.1	0.68	ug/l	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	2.1	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l	
129-00-0	Pyrene	ND	1.1	0.23	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	37%		10-9	0%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.3

Report of Analysis

Client Sample ID: TT-SB-06GW Lab Sample ID: JD36309-2

Lab Sample ID:JD36309-2Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits			
4165-62-2 118-79-6 4165-60-0 321-60-8	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	26% 106% 72% 64%		10-101% 23-155% 25-141% 35-126%		
1718-51-0	Terphenyl-d14	65%		15-139%		
CAS No.	Tentatively Identified Compo	R.T.	Est. Conc.	Units	Q	
	system artifact/aldol-condensate Total TIC, Semi-Volatile	3.23	5.5 0	ug/l ug/l	J	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

SGS

Client Sample ID: TT-SB-06GW

Lab Sample ID:JD36309-2Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270E BY SIM SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105186.D 1 12/16/21 20:26 KLS 12/10/21 10:25 OP37044A E4M4888

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane ND 0.11 0.053 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 71%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 68%
 27-107%

 1718-51-0
 Terphenyl-d14
 78%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-06GW

Lab Sample ID: JD36309-2 Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: SW846 8151A SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155609.D 1 12/16/21 12:28 CP 12/10/21 20:45 OP37027 GOA5503

Run #2

Initial Volume Final Volume

Run #1 240 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1 93-76-5	2,4-D 2,4,5-TP (Silvex) 2,4,5-T	ND ND ND	0.42 0.083 0.083	0.083 0.052 0.016	ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		ts	
19719-28-9 19719-28-9	2,4-DCAA 2,4-DCAA	97% 100%		10-20 10-20		

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-06GW

 Lab Sample ID:
 JD36309-2
 Date Sampled:
 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81171.D 1 12/14/21 08:22 CP 12/10/21 16:40 OP37055 G6G2870

Run #2

Initial Volume Final Volume

Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL MDL		Units	Q	
309-00-2	Aldrin	ND	0.0080	ug/l			
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l		
319-85-7	beta-BHC	ND	0.0080				
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l		
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l		
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l		
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l		
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l		
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l		
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l		
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l		
72-20-8	Endrin	ND	0.0080	0.0048	ug/l		
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l		
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l		
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l		
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l		
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l		
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l		
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l		
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l		
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	ts			
877-09-8	Tetrachloro-m-xylene	81%		10-19	90%		
877-09-8	Tetrachloro-m-xylene	74%		10-19	90%		
2051-24-3	Decachlorobiphenyl	24%		10-13	56 %		
2051-24-3	Decachlorobiphenyl	25%		56%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TT-SB-06GW

 Lab Sample ID:
 JD36309-2
 Date Sampled:
 12/07/21

 Matrix:
 AQ - Ground Water
 Date Received:
 12/07/21

 Method:
 SW846 8082A
 SW846 3510C
 Percent Solids:
 n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 XX2475786.D 1 12/14/21 22:52 TL 12/10/21 16:40 OP37056 GXX7683

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.40	0.16	ug/l	
11104-28-2	Aroclor 1221	ND	0.40	0.34	ug/l	
11141-16-5	Aroclor 1232	ND	0.40	0.21	ug/l	
53469-21-9	Aroclor 1242	ND	0.40	0.18	ug/l	
12672-29-6	Aroclor 1248	ND	0.40	0.10	ug/l	
11097-69-1	Aroclor 1254	ND	0.40	0.33	ug/l	
11096-82-5	Aroclor 1260	ND	0.40	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.40	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.40	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	72 %		10-17	74%	
877-09-8	Tetrachloro-m-xylene	73 %		10-17	74%	
2051-24-3	Decachlorobiphenyl	28%		10-1	51%	
2051-24-3	Decachlorobiphenyl	24%		10-13	51%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Lab Sample ID: JD36309-2 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	596	200	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Antimony	< 6.0	6.0	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Arsenic ^a	30.1	15	ug/l	5	12/13/21	12/16/21 NE	SW846 6010D ³	SW846 3010A ⁴
Barium	577	200	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Beryllium	< 1.0	1.0	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Cadmium	< 3.0	3.0	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Calcium	229000	25000	ug/l	5	12/13/21	12/16/21 NE	SW846 6010D ³	SW846 3010A ⁴
Chromium	< 10	10	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Cobalt	< 50	50	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Copper	< 10	10	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Iron	20200	100	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Lead	6.2	3.0	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Magnesium	58800	5000	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Manganese	6880	15	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Mercury	< 0.20	0.20	ug/l	1	12/13/21	12/13/21 SB	SW846 7470A ¹	SW846 7470A ⁵
Nickel	< 10	10	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Potassium	19600	10000	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Selenium	< 10	10	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Silver	< 10	10	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Sodium	308000	50000	ug/l	5	12/13/21	12/16/21 NE	SW846 6010D ³	SW846 3010A ⁴
Thallium ^a	< 50	50	ug/l	5	12/13/21	12/16/21 NE	SW846 6010D ³	SW846 3010A ⁴
Vanadium	< 50	50	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴
Zinc	< 20	20	ug/l	1	12/13/21	12/16/21 NE	SW846 6010D ²	SW846 3010A ⁴

(1) Instrument QC Batch: MA51583
(2) Instrument QC Batch: MA51610
(3) Instrument QC Batch: MA51617
(4) Prep QC Batch: MP30320
(5) Prep QC Batch: MP30335

(a) Elevated detection limit due to dilution required for high interfering element.

4.3

Lab Sample ID:JD36309-2ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51154.D 1 12/23/21 23:48 AFL 12/20/21 09:00 F:OP88920 F:S3Q715

Run #2

Initial Volume Final Volume Run #1 270 ml 1.0 ml

Run #2

PFAS List

	CAS No.	Compound	Result	RL	MDL	Units	Q
	PERFLUOR	ROALKYLCARBOXYLIC AC	CIDS				
	375-22-4	Perfluorobutanoic acid	10.4	3.7	1.9	ng/l	
	2706-90-3	Perfluoropentanoic acid	4.1	1.9	0.93	ng/l	
	307-24-4	Perfluorohexanoic acid	3.4	1.9	0.93	ng/l	
	375-85-9	Perfluoroheptanoic acid	3.2	1.9	0.93	ng/l	
	335-67-1	Perfluorooctanoic acid	28.8	1.9	0.93	ng/l	
	375-95-1	Perfluorononanoic acid	1.5	1.9	0.93	ng/l	J
	335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
	2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
	307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
	72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
	376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
	PERFLUOR	ROALKYLSULFONIC ACIDS	8				
	375-73-5	Perfluorobutanesulfonic acid	1.6	1.9	0.93	ng/l	J
	355-46-4	Perfluorohexanesulfonic acid	ND	1.9	0.93	ng/l	
	375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
	1763-23-1	Perfluorooctanesulfonic acid	2.3	1.9	0.93	ng/l	
	335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
	PERFLIIOR	ROOCTANESULFONAMIDE	S				
	754-91-6	PFOSA	ND	3.7	1.9	ng/l	
	PERFLUOR	ROOCTANESULFONAMIDO	ACETIC AC	ZOL			
	2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
	2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
	~001 00 U	Lu Ooili i	110	0.7	1.0	g/ 1	
	FLUOROTI	ELOMER SULFONATES					
	27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4 8:2 Fluorotelomer sulfonate			ND	7.4	1.9	ng/l	
						-	

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

4.4

Client Sample ID: TT-SB-06GW

Lab Sample ID:JD36309-2ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	88%		35-135%
	13C5-PFPeA	85 %		50-150 %
	13C5-PFHxA	83 %		50-150 %
	13C4-PFHpA	84%		50-150 %
	13C8-PFOA	91%		50-150 %
	13C9-PFNA	91%		50-150 %
	13C6-PFDA	87 %		50-150 %
	13C7-PFUnDA	79 %		40-140%
	13C2-PFDoDA	76 %		40-140%
	13C2-PFTeDA	69 %		30-130%
	13C3-PFBS	86%		50-150 %
	13C3-PFHxS	87 %		50-150 %
	13C8-PFOS	85 %		50-150 %
	13C8-FOSA	59 %		30-130%
	d3-MeFOSAA	100%		40-140%
	d5-EtFOSAA	95 %		40-140%
	13C2-6:2FTS	95 %		50-150 %
	13C2-8:2FTS	90%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.5

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 2B187940.D 1 12/11/21 07:53 JS n/a n/a V2B8533

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone a	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^a	ND	10	6.9	ug/l	
75-15-0	Carbon disulfide	ND	2.0	0.46	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	2.0	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8260DPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q	
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l		
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l		
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l		
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l		
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	1.9	ug/l		
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l		
100-42-5	Styrene	ND	1.0	0.49	ug/l		
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l		
127-18-4	Tetrachloroethene	ND	1.0	0.90	ug/l		
108-88-3	Toluene	ND	1.0	0.53	ug/l		
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l		
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l		
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l		
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l		
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l		
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l		
75-01-4	Vinyl chloride	ND	1.0	0.79	ug/l		
	m, p-Xylene	ND	1.0	0.78	ug/l		
95-47-6	o-Xylene	ND	1.0	0.59	ug/l		
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Liı	nits		
1868-53-7	Dibromofluoromethane	102%		80-	-120%		
17060-07-0	1,2-Dichloroethane-D4	93%		80	-120%		
2037-26-5	Toluene-D8	94%		80	-120%		
460-00-4	4-Bromofluorobenzene	104%		82	-114%		
CAS No.	Tentatively Identified Compo	ounds	R.T.	Es	t. Conc.	Units	Q
	system artifact		3.68	12	0	ug/l	J
	Total TIC, Volatile			0		ug/l	

⁽a) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

4.5

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M176991.D 1 12/13/21 13:27 KLS 12/10/21 10:25 OP37044 EM7608

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.3	0.86	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.3	0.94	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.1	1.3	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.3	2.6	ug/l	
51-28-5	2,4-Dinitrophenol ^a	ND	5.3	1.6	ug/l	
534-52-1	4,6-Dinitro-o-cresol ^a	ND	5.3	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.1	0.93	ug/l	
	3&4-Methylphenol	ND	2.1	0.93	ug/l	
88-75-5	2-Nitrophenol ^a	ND	5.3	1.0	ug/l	
100-02-7	4-Nitrophenol	ND	11	1.2	ug/l	
87-86-5	Pentachlorophenol	ND	4.2	1.5	ug/l	
108-95-2	Phenol	ND	2.1	0.41	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol ^a	ND	5.3	1.5	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.3	1.4	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.3	0.97	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.20	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.14	ug/l	
98-86-2	Acetophenone ^a	ND	2.1	0.22	ug/l	
120-12-7	Anthracene	ND	1.1	0.22	ug/l	
1912-24-9	Atrazine ^a	ND	2.1	0.47	ug/l	
100-52-7	Benzaldehyde	ND	5.3	0.30	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.21	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.1	0.22	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.22	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.36	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.22	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.1	0.43	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.1	0.48	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.22	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.1	0.25	ug/l	
106-47-8	4-Chloroaniline	ND	5.3	0.36	ug/l	
86-74-8	Carbazole	ND	1.1	0.24	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.5

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID: JD36309-3 **Date Sampled: 12/07/21** Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8270E SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.1	0.68	ug/l	
218-01-9	Chrysene	ND	1.1	0.19	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.1	0.29	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.1	0.26	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.1	0.42	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.1	0.39	ug/l	
121-14-2	2,4-Dinitrotoluene ^a	ND	1.1	0.58	ug/l	
606-20-2	2,6-Dinitrotoluene a	ND	1.1	0.50	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.1	0.53	ug/l	
123-91-1	1,4-Dioxane	ND	1.1	0.69	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.35	ug/l	
132-64-9	Dibenzofuran	ND	5.3	0.23	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.1	0.52	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.1	0.25	ug/l	
84-66-2	Diethyl phthalate	ND	2.1	0.28	ug/l	
131-11-3	Dimethyl phthalate	ND	2.1	0.23	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.1	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.18	ug/l	
86-73-7	Fluorene	ND	1.1	0.18	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.34	ug/l	
87-68-3	Hexachlorobutadiene ^a	ND	1.1	0.52	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	2.9	ug/l	
67-72-1	Hexachloroethane ^a	ND	2.1	0.41	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.35	ug/l	
78-59-1	Isophorone	ND	2.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.22	ug/l	
88-74-4	2-Nitroaniline ^a	ND	5.3	0.29	ug/l	
99-09-2	3-Nitroaniline	ND	5.3	0.41	ug/l	
100-01-6	4-Nitroaniline	ND	5.3	0.46	ug/l	
91-20-3	Naphthalene	ND	1.1	0.24	ug/l	
98-95-3	Nitrobenzene ^a	ND	2.1	0.68	ug/l	
621-64-7	N-Nitroso-di-n-propylamine ^a	ND	2.1	0.51	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.3	0.23	ug/l	
85-01-8	Phenanthrene	ND	1.1	0.18	ug/l	
129-00-0	Pyrene	ND	1.1	0.23	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.1	0.39	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
367-12-4	2-Fluorophenol	38%	10-90%		0%	

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8270ESW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
4165-62-2	Phenol-d5	26%		10-101%		
118-79-6	2,4,6-Tribromophenol	108%		23-155%		
4165-60-0	Nitrobenzene-d5	74 %		25-141 %		
321-60-8	2-Fluorobiphenyl	64%		35-126%		
1718-51-0	Terphenyl-d14	65 %		15-139%		
CAS No.	Tentatively Identified Compounds		R.T.	Est. Conc.	Units	Q
	system artifact/aldol-conde	nsation	3.23	5.1	ug/l	J
	Total TIC, Semi-Volatile			0	ug/l	

(a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID: JD36309-3 Date Sampled: 12/07/21
Matrix: AQ - Ground Water Date Received: 12/07/21
Method: SW846 8270E BY SIM SW846 3510C Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 4M105187.D 1 12/16/21 20:47 KLS 12/10/21 10:25 OP37044A E4M4888

Run #2

Initial Volume Final Volume Run #1 950 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

123-91-1 1,4-Dioxane 0.117 0.11 0.053 ug/l

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

 4165-60-0
 Nitrobenzene-d5
 70%
 21-121%

 321-60-8
 2-Fluorobiphenyl
 69%
 27-107%

 1718-51-0
 Terphenyl-d14
 77%
 25-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8151A SW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 OA155610.D 1 12/16/21 13:33 CP 12/10/21 20:45 OP37027 GOA5503

Report of Analysis

Run #2

Initial Volume Final Volume Run #1 260 ml 2.0 ml

Run #2

Herbicide List

CAS No.	Compound	Result	RL	MDL	Units	Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	0.38 0.077	0.077 0.048	ug/l ug/l	
93-76-5	2,4,5-T	ND	0.077	0.015	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
19719-28-9	2,4-DCAA	120%		10-2	00%	
19719-28-9	2,4-DCAA	133%		10-2	00%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.5

4.5

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3Date Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:SW846 8081BSW846 3510CPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 6G81172.D 1 12/14/21 09:44 CP 12/10/21 16:40 OP37055 G6G2870

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
309-00-2	Aldrin	ND	0.0080	0.0041	ug/l	
319-84-6	alpha-BHC	ND	0.0080	0.0042	ug/l	
319-85-7	beta-BHC	ND	0.0080	0.0064	ug/l	
319-86-8	delta-BHC	ND	0.0080	0.0053	ug/l	
58-89-9	gamma-BHC (Lindane)	ND	0.0080	0.0048	ug/l	
5103-71-9	alpha-Chlordane	ND	0.0080	0.0039	ug/l	
5103-74-2	gamma-Chlordane	ND	0.0080	0.0034	ug/l	
60-57-1	Dieldrin	ND	0.0080	0.0061	ug/l	
72-54-8	4,4'-DDD	ND	0.0080	0.0046	ug/l	
72-55-9	4,4'-DDE	ND	0.0080	0.0040	ug/l	
50-29-3	4,4'-DDT	ND	0.0080	0.0055	ug/l	
72-20-8	Endrin	ND	0.0080	0.0048	ug/l	
1031-07-8	Endosulfan sulfate	ND	0.0080	0.0044	ug/l	
7421-93-4	Endrin aldehyde	ND	0.0080	0.0054	ug/l	
53494-70-5	Endrin ketone	ND	0.0080	0.0050	ug/l	
959-98-8	Endosulfan-I	ND	0.0080	0.0042	ug/l	
33213-65-9	Endosulfan-II	ND	0.0080	0.0039	ug/l	
76-44-8	Heptachlor	ND	0.0080	0.0036	ug/l	
1024-57-3	Heptachlor epoxide	ND	0.0080	0.0048	ug/l	
72-43-5	Methoxychlor	ND	0.016	0.0054	ug/l	
8001-35-2	Toxaphene	ND	0.20	0.13	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	89%		10-19	90%	
877-09-8	Tetrachloro-m-xylene	80%		10-19	90%	
2051-24-3	Decachlorobiphenyl	40%		10-13	56 %	
2051-24-3	Decachlorobiphenyl	40%	10-156%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

4.5

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID: JD36309-3 **Date Sampled:** 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21 Method: SW846 8082A SW846 3510C Percent Solids: n/a

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By OP37056 GXX7683 Run #1 XX2475787.D 1 12/14/21 23:09 TL 12/10/21 16:40

Run #2

Initial Volume Final Volume Run #1 250 ml 2.0 ml

Run #2

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	0.40	0.16	ug/l	
11104-28-2	Aroclor 1221	ND	0.40	0.34	ug/l	
11141-16-5	Aroclor 1232	ND	0.40	0.21	ug/l	
53469-21-9	Aroclor 1242	ND	0.40	0.18	ug/l	
12672-29-6	Aroclor 1248	ND	0.40	0.10	ug/l	
11097-69-1	Aroclor 1254	ND	0.40	0.33	ug/l	
11096-82-5	Aroclor 1260	ND	0.40	0.12	ug/l	
11100-14-4	Aroclor 1268	ND	0.40	0.14	ug/l	
37324-23-5	Aroclor 1262	ND	0.40	0.15	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		its	
877-09-8	Tetrachloro-m-xylene	80%		10-1	74%	
877-09-8	Tetrachloro-m-xylene	78 %		10-1	74%	
2051-24-3	Decachlorobiphenyl	40%		10-1	51%	
2051-24-3	Decachlorobiphenyl	37%	10-151%			

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-02GW

Lab Sample ID: JD36309-3 Date Sampled: 12/07/21 Matrix: AQ - Ground Water Date Received: 12/07/21

Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Aluminum	1920	200	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Antimony	< 6.0	6.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Arsenic	6.3	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Barium	< 200	200	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Beryllium	< 1.0	1.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Cadmium	< 3.0	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Calcium	170000	5000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Chromium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Cobalt	< 50	50	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Copper	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Iron	5970	100	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Lead	11.9	3.0	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Magnesium	31900	5000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Manganese	2210	15	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Mercury	< 0.20	0.20	ug/l	1	12/13/21	12/13/21 SB	SW846 7470A ¹	SW846 7470A ⁴
Nickel	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Potassium	14900	10000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Selenium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Silver	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Sodium	118000	10000	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Thallium	< 10	10	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Vanadium	< 50	50	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³
Zinc	60.5	20	ug/l	1	12/13/21	12/16/21 ND	SW846 6010D ²	SW846 3010A ³

(1) Instrument QC Batch: MA51583
(2) Instrument QC Batch: MA51617
(3) Prep QC Batch: MP30320
(4) Prep QC Batch: MP30335

JD36309

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 a 3Q51155.D 1 12/24/21 00:05 AFL 12/20/21 09:00 F:OP88920 F:S3Q715

Run #2

Initial Volume Final Volume
Run #1 270 ml 1.0 ml
Run #2

PFAS List

CAS No.	Compound	Result	RL	MDL	Units	Q
PERFLUOI	ROALKYLCARBOXYLIC AC	CIDS				
375-22-4	Perfluorobutanoic acid	6.4	3.7	1.9	ng/l	
2706-90-3	Perfluoropentanoic acid	1.8	1.9	0.93	ng/l	J
307-24-4	Perfluorohexanoic acid	1.8	1.9	0.93	ng/l	J
375-85-9	Perfluoroheptanoic acid	2.9	1.9	0.93	ng/l	
335-67-1	Perfluorooctanoic acid	61.8	1.9	0.93	ng/l	
375-95-1	Perfluorononanoic acid	1.1	1.9	0.93	ng/l	J
335-76-2	Perfluorodecanoic acid	ND	1.9	0.93	ng/l	
2058-94-8	Perfluoroundecanoic acid	ND	1.9	0.93	ng/l	
307-55-1	Perfluorododecanoic acid	ND	1.9	0.93	ng/l	
72629-94-8	Perfluorotridecanoic acid	ND	1.9	0.93	ng/l	
376-06-7	Perfluorotetradecanoic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROALKYLSULFONIC ACIDS	S				
375-73-5	Perfluorobutanesulfonic acid	1.2	1.9	0.93	ng/l	J
355-46-4	Perfluorohexanesulfonic acid	1.1	1.9	0.93	ng/l	J
375-92-8	Perfluoroheptanesulfonic acid	ND	1.9	0.93	ng/l	
1763-23-1	Perfluorooctanesulfonic acid	2.7	1.9	0.93	ng/l	
335-77-3	Perfluorodecanesulfonic acid	ND	1.9	0.93	ng/l	
PERFLUOI	ROOCTANESULFONAMIDE	S				
754-91-6	PFOSA	ND	3.7	1.9	ng/l	
PERFLUOI	ROOCTANESULFONAMIDO	ACETIC A	CIDS			
2355-31-9	MeFOSAA	ND	3.7	1.9	ng/l	
2991-50-6	EtFOSAA	ND	3.7	1.9	ng/l	
FLUOROTI	ELOMER SULFONATES					
27619-97-2	6:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
39108-34-4	8:2 Fluorotelomer sulfonate	ND	7.4	1.9	ng/l	
33100 01 1	S L. AUTORIONIUM DANIUM			1.0		

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Client Sample ID: TT-SB-02GW

Lab Sample ID:JD36309-3ADate Sampled:12/07/21Matrix:AQ - Ground WaterDate Received:12/07/21Method:EPA 537M BY ID IN HOUSEPercent Solids:n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

PFAS List

CAS No.	ID Standard Recoveries	Run# 1	Run# 2	Limits
	13C4-PFBA	86%		35-135%
	13C5-PFPeA	82 %		50-150 %
	13C5-PFHxA	80 %		50-150 %
	13C4-PFHpA	83%		50-150 %
	13C8-PFOA	87 %		50-150 %
	13C9-PFNA	89 %		50-150 %
	13C6-PFDA	87 %		50-150 %
	13C7-PFUnDA	75 %		40-140%
	13C2-PFDoDA	59 %		40-140%
	13C2-PFTeDA	36 %		30-130%
	13C3-PFBS	83%		50-150 %
	13C3-PFHxS	84%		50-150 %
	13C8-PFOS	81%		50-150 %
	13C8-FOSA	36 %		30-130%
	d3-MeFOSAA	101%		40-140%
	d5-EtFOSAA	89 %		40-140%
	13C2-6:2FTS	92%		50-150 %
	13C2-8:2FTS	91%		50-150 %

(a) Analysis performed at SGS Orlando, FL.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.6

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

N	Aisc. Forms
C	ustody Documents and Other Forms
In	cludes the following where applicable:
•	Chain of Custody
•	Chain of Custody (SGS Orlando, FL)

000	(C)	1	CH/	ΔIN	OF	CU	IST	DDY	•													Pag	ge 🚽	L of ∫	_
363	0.00		TE	SGS N 2235 L. 732-3	Route 1	130, D	ayton, N	1J 0881	0	80					FED-EX	Tracking #						der Contro	2/21	-24	
EHSA-QAC-0023-04-FORM-Standard COC					www.		m/ehsu								300 40			-			000 300		103	6309	
Client / Reporting Information	Project Name		Projec	t Inform	ation				_						-		ゞ	<u> </u>	Reques	ted Ar	alysis	_			Matrix Codes
TETRA TECH	Street	2~	Ave	1	33	ep (jt.				_				Ter +20	Tectro	1,4 Dw/	7887			121				DW - Drinking Water GW - Ground Water WW - Water
Street Address CENTURY Da. City State Zip				Billing In	formation	n (if diffe	rent from	Report t	0)						۲_ ا	12		~			1				SW - Surface Water SO - Soil
PASSIPPANY N 67954 Project Contest BOB CANTAGANO ROBERT. CANTA Phone (913) 630 - 4005	BROO	KWH	H1	Company											٦-	1	χ. (A)	Pe	57)		37				SL- Sludge SED-Sediment OI - Oil
BOB CANTAGALO ROBEY CANTA	Project #	ETRATECI	1.001	Street Ad	dress										0	18 8270	0178				8				LIQ - Other Liquid AIR - Air SOL - Other Solid
Phone # (913) 630 - 4045 Sampler(s) Name(s) Phone # Phone #	Client Purchas	se Order #		City						State	,		Zi	р	V8260	20	.78	P8082	18181	MAR	0				WP - Wipe FB - Field Blank
A VAM / CHRIS BEERS	Project Manag	ger		Attention:											>	₹	9				_				EB-Equipment Blank RB - Rinse Blank TB - Trip Blank
			Coll	ection		<u> </u>	1		-	Nur	mber o	preserv	ed Bottl		-			pH	Check	(Lab Us	e Only)	Г			
SGS Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by	Grab (G) Comp (C)	Source Chlorinated (Y/N)	Matrix	# of bottle	s 후	NaOH	HNO	H ₂ SO ₄	DI Wate	ENCORE											LAB USE ONLY
1 11-58-13GW	0	12/07/21	1320		G		GN	14	3		١	10	\perp	П	/	/	/		1	//	/				E87
7 TT-58-066W	¢	12/07/4			G		67	14	3	╄	1	30	1	11	V	~	~	_	~	V	~				V990
3 TT-58-02 GW	0	12/02/2	1 1536	CB	G		GW	119	.3	4	ı	b	+	++	1	V	- U		-	-	سا		\vdash		SUB
				-		_	-	-	+-	+	Н	+	+	+	+-	-					-	-	\vdash	-	+
									L	L	П		1	Ш	1										
							-		+	┿-	H	+	-	++	+	-	_					-	_		
				-			-		+	+	H	+	+	++	-							-	\vdash		
							-	1	+	┢	H	\top	+	Ħ	+-	-	_					+-			1
										T			T	П											
Turn Around Time (Bu	siness Days)									De	liver											Comr	nents /	Special Ir	nstructions
10 Business Days	Approved By (S	GS PM): / Date:			•		" (Level							egory A egory B			DOD-0	SM5		lis -	d Acs	(C. 14-C)	icnt_	BB-Z1	3
5 Business Days 3 Business Days					•	duced (L er I (Lev	,					MA M								Lah	el Vu	lic	•.on_		
2 Business Days*				=	•	errial "C					\exists	State							02	50	ml	,	Ex	bothes	4x
1 Business Day*					NJ DK				D			EDD F							,-					- 5 /	
	proval needed f	or 1-3 Business					Comn	nercial "C	" = Re	suits +	QC S	Summar	y + Pa	rtial Rav							htt	tp://ww	w.sgs.	com/en/te	rms-and-conditions
Relinquished by: Date lyTim	7/2/ 174		he Min	y must b	e docun	nented	below ea	ich time		oles ch nquishe		poss	essio	n, incli	iding cou	rier del	very.	Date / Tir	ne:		Receive	d By:			
Relinquished by: Date / Tim	e:	Received By:	104/18	1	_				Reli	nquishe	nd By:							Date / Ti	ne:		Receiver	d By:			
Relinquished by: Date / Tim	e:	Received By:				٠,			Cust	tody Se	al#		_		Intact Not intac	, 1	Absent			Therm	ID: ple Recei	int Summ	On Ice	3.2.0	oler Temp. *C
																								J. 517 .	

JD36309: Chain of Custody

Page 1 of 3

SGS Sample Receipt Summary

Job Number: J	D36309		Client:	TETRA TE	СН			Project: 2ND AVENUE A	ND 33-39	TH STREE	T, BROOKL
Date / Time Received: 12	2/7/2021	5:48:00 P	М	Delivery N	lethod	d:		Airbill #'s:			
Cooler Temps (Raw Meas Cooler Temps (Corre	,		, ,	•	•						
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media:	Y or ✓	3 4. S	. COC P	resent: es/Time OK	Y	or N	Sample labels pr Container labelir	ng complete: er label / COC agree: / - Condition ithin HT:	Y V V Y		
4. No. Coolers: Quality Control Preserval 1. Trip Blank present / cooler 2. Trip Blank listed on COC: 3. Samples preserved proper 4. VOCs headspace free:	r: [3 Y or N	N/A	i.			3. Condition of sam Sample Integrity 1. Analysis reques 2. Bottles received	nple: / - Instructions sted is clear: d for unspecified tests he recvd for analysis: structions clear:	Y	Intact	N/A
Test Strip Lot #s:	pH 1-12	:2	31619		р	H 12+:	203117A	Other: (Specify)			
Comments SM089-03 Rev. Date 12/7/17											

JD36309: Chain of Custody

Page 2 of 3

5.1

Page 1 of 1

Requested Date:	12/13/2021	Received Date:	12/7/2021
Account Name:	Tetra Tech	Due Date:	12/13/2021
Project Description:	2nd Avenue and 33-39th Street, Brooklyn, NY	NY Deliverable:	NYASPB
C/O Initiated By: JADONS	: JADONS PM: JBS	TAT (Days):	7
Sample #: JD36309-ALL	mple #: JD36309-ALL Change:		

Change: Please move project to TTNJP90692 and re-sub to ALSE.

TAT

Dept:

Above Changes Per: Jadon Schiller

JD36309: Chain of Custody

Page 3 of 3

Date/Time: 12/13/2021

To Client: This Change Order is confirmation of the revisions, previously discussed with the Client Service Representative.

	CCC			CHAII SGS Nor					Υ										Page	1 of 1		
	UUU			2235 Roi	rte 130,	Dayto	n, NJ 08	B10					FED-E	K Tracking #				Bottle Orde	er Control #			
				TEL. 732-329-		FAX: 7		199/34	ВО				SGS O	# efou				SGS Job#	٠.	JD36309		
	Client / Reporting Information			Project			THE STATE OF THE S		Tec							Reques	sted Ar	alysis			Matrix Codes	
ompa	y Name:	Project Name:											77									
			and 33-39th St	reet, Brooklyn,	NY									1 1						1 1	DW - Drinking Wete GW - Ground Water	
eet A	ődress	Street						-				_	-	1 1					0.0	-	WW - Water SW - Surface Water	
ity	State	Zip City		State		information y Name	on (if differ	ent from	Repo	rt 10)	-	-	1			1			- 1		SO - Soil SL- Sludge	
																					SED-Sediment	
	ontact E-mail on schiller@sqs.com	Project #			Street A	ddress							1 .	1 1						1.1	LIQ - Other Liquid AIR - Air	
one i		Client Purchase	Order ff		City			Stat			Ztp	_	LCMS+14DAY	1 1						1 1	SOL - Other Solid	
		Total advanta	. Graci ii		0.0			Cito			2.0		15									WP - Wipe FB - Field Blank
	(s) Name(s)	Phone Project Manage	H		Attention				_					1 1						1 1	EB-Equipment Blan RB - Rinse Blank	
CB			-							_			3	1 1					- 1	1 1	TB - Trip Blank	
				Collection				Nu	now of	preserv T:	red Bott	w W	LCID537NY21							1 1		
SGS mple #	Field ID / Point of Collection	MECH/OI Viai #	Date	Time	Sampled by	Matrix	# of	고 등	S S	NONE MAN IC	EOH I	8	8								LAB USE ONLY	
1A	TT-SB-13GW		12/7/21	1:20:00 PM		AQ	-	ı z	1 I	Z	12	-	X	-			-	-	-	+	LAB USE ONLY	
2A	TT-SB-06GW		12/7/21	2:20:00 PM	_	-		+	+	Н	+	+	-	-	_			-	-	+	-	
3A	TT-SB-02GW					AQ		+	-	H	+	+	Х	-	-				_	-	_	
A	TT-SB-02GW		12/7/21	3:35:00 PM	СВ	AQ		\perp		Ш	\perp	_	X									
								\perp						- 1					-			
						1 3																
								П	T													
				-				\Box	T	П	П											
								+	+	1	Ħ							\neg			10	
								+	+	+	+				_	ILAI	IAI	ACCE	SSME	PIT	100	
				-				+	+	H	+	-		-		14.41	IIAE	- COLA	JIVIO	"	1100	
							-	+	+	H	+	+		-			-	-			_	
-								+	+	Н	+	-	_				_			-	TIAN	
4								Ш	1	Ш	Ш	1	_			LA			CATI		4/11	
_	Turnaround Time (, Business days)	Approved By (SG	S DMV / Date:				Data [lat "A" (Le				NYASP	Caba					Com	nents / S	pecial Instri	uctions		
[Standard 10 Business Days	7,777.00	21.00. 5000				lai B" (Le				NYASP											
	5 Business Days RUSH	_					Level 3+4				State F											
	3 Business Days RUSH 2 Business Days RUSH	-				IJ Reduc					EDD F			- 1								
	1 Business Day EMERGENCY	-				Commerc	Commercia	al "A" = F			Other	NYAS	SPB	-								
Ì	Other 1/14/1900						Commercia	d *B* ≃ F	Results	+ QC	Summ	ary		- 1								
Eme	gency & Rush T/A data available via Lablink		0	ody must be do	umanta		Commercia								a dallara			http:	//www.sg	s.com/en/te	erms-and-conditions	
14/3	stated by: 121	Date / Time: 19:00	Received By:	, most od 001		- Delow		Relinquis			J-350	-aron,	TOTUG	my courier	Date / T	the:	15%	porteived t	10/	201	1/1.	
14	draw man	12/8/21	1					2	_			_			151	15	- 1	2	SKO	XX	gen.	
Reling	alshed by:	Date / Time:	Received By:				/	tellnquis	hed By	c					Date / T	ime:		Received E	y: /		A-	
Relied	lished by:	Date / Yime:	Received By:					Dualody.	Seat #			0	Intact Not intac	Pre	eserved where	applicable			On I		ooler Temp, 'C	

jd36309 xls Rev Date: 4/10/18

JD36309: Chain of Custody

Page 1 of 2

SGS Orlando, FL

SGS Sample Receipt Summary

Job Number: JD36309	Client:	SGS NJ	Project: 2ND AVENU	JE AND 33-39TH	STREET, BROOKL
Date / Time Received: 12/9/2021 3:30:00	PM	Delivery Method: FX	Airbill #'s: 5272 0636	9954	
Therm ID: IR 1;		Therm CF: 0.2;	# of Cooler	rs: 1	
Cooler Temps (Raw Measured) °C:	ooler 1: (0.2	2);			
Cooler Temps (Corrected) °C:	ooler 1: (0.4	1);			
Cooler Information Y	or N	Sample Information		Y or N	_N/A_
1. Custody Seals Present		1. Sample labels preser	nt on bottles	v	
2. Custody Seals Intact ✓		2. Samples preserved p	properly	\checkmark	
3. Temp criteria achieved ✓		3. Sufficient volume/cor	ntainers recvd for analysis:	v	
4. Cooler temp verification IR Gur	1	4. Condition of sample		<u>Intact</u>	
5. Cooler media <u>Ice (Ba</u>	ig)	5. Sample recvd within	HT	✓	
		6. Dates/Times/IDs on	COC match Sample Label	✓	
Trip Blank Information Y o	or N	N/A 7. VOCs have headspa	ice		✓
1. Trip Blank present / cooler		✓ 8. Bottles received for u	unspecified tests		
2. Trip Blank listed on COC		9. Compositing instruction	ions clear		✓
w	or S	N/A 10. Voa Soil Kits/Jars re	eceived past 48hrs?		✓
		11. % Solids Jar receive	ed?		✓
3. Type Of TB Received		12. Residual Chlorine F	Present?		\checkmark
Misc. Information					
Number of Encores: 25-Gram	5-Gram	Number of 5035 Field Kits:	Number of La	ab Filtered Metals:	
Test Strip Lot #s: pH 0-3	23031	5 pH 10-12 219813A			
Residual Chlorine Test Strip Lot #:					
Comments					
SM001 Rev. Date 05/24/17 Technician: STEPI	HENP	Date: 12/9/2021 3:30:00 PM	Reviewer:	Date:	

JD36309: Chain of Custody

Page 2 of 2

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 **Automated Report**

Technical Report for

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

SGS Job Number: JD36521

Sampling Date: 12/08/21

Report to:

Tetra Tech

Robert.Cantagallo@tetratech.com

ATTN: Bob Cantagallo

Total number of pages in report: 62

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Jadon Schiller 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Summary of Hits	6
Section 4: Sample Results	24
4.1: JD36521-1: TT-SB-33SV	25
4.2: JD36521-2: TT-SB-32SV	28
4.3: JD36521-3: TT-SB-25SV	30
4.4: JD36521-4: TT-SB-24SV	32
4.5: JD36521-5: TT-SB-39SV	35
4.6: JD36521-6: TT-SB-37SV	38
4.7: JD36521-7: TT-SB-A	40
4.8: JD36521-8: TT-SB-19SV	42
4.9: JD36521-9: TT-SB-14SV	44
4.10: JD36521-10: TT-SB-16SV	46
4.11: JD36521-11: TT-SB-36SV	48
4.12: JD36521-12: TT-SB-02SV	50
4.13: JD36521-13: TT-SB-17SV	52
4.14: JD36521-14: TT-SB-21SV	
Section 5: Misc. Forms	56
5.1: Chain of Custody	57
5.2: Summa Canister and Flow Controller Log	61

Sample Summary

Job No:

JD36521

Tetra Tech
2nd Avenue and 33-39th Street, Brooklyn, NY

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co Organics ND		llts reported as = Not detecte			cted. The following ap L	plies:
JD36521-1	12/08/21	14:50 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-33SV
JD36521-2	12/08/21	14:53 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-32SV
JD36521-3	12/08/21	14:57 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-25SV
JD36521-4	12/08/21	15:00 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-24SV
JD36521-5	12/08/21	15:52 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-39SV
JD36521-6	12/08/21	15:56 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-37SV
JD36521-7	12/08/21	16:26 AV	12/09/21	AIR	Ambient Air Comp.	TT-SB-A
JD36521-8	12/08/21	16:29 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-19SV
JD36521-9	12/08/21	16:32 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-14SV
JD36521-10	12/08/21	16:49 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-16SV
JD36521-11	12/08/21	16:56 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-36SV
JD36521-12	12/08/21	17:00 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-02SV

Sample Summary (continued)

Tetra Tech

2nd Avenue and 33-39th Street, Brooklyn, NY

Job No: JD36521

Sample	Collected			Matr	ix	Client
Number	Date	Time By	Received	Code	Type	Sample ID
JD36521-13	12/08/21	17:39 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-17SV
JD36521-14	12/08/21	17:46 AV	12/09/21	AIR	Soil Vapor Comp.	TT-SB-21SV

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Tetra Tech Job No JD36521

Site: 2nd Avenue and 33-39th Street, Brooklyn, NY Report Date 12/17/2021 12:24:50 P

On 12/09/2021, 14 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. A SGS North America Inc. Job Number of JD36521 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

MS Volatiles By Method TO-15

Matrix: AIR Batch ID: V5W1936

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD36496-1DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for 1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, 2,2,4-Trimethylpentane, 4-Ethyltoluene, Benzene, Cyclohexane, Heptane, m,p-Xylene, Methyl Tert Butyl Ether, o-Xylene, Toluene, Xylenes (total) are outside control limits for sample JD36496-1DUP.

Matrix: AIR Batch ID: V5W1937

- All samples were analyzed within the recommended method holding time.
- Sample(s) JD36521-12DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for 2-Hexanone, Hexane are outside control limits for sample JD36521-12DUP.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

Friday, December 17, 2021

Summary of Hits Job Number: JD36521 Page 1 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36521-1 TT-SB-33SV					
(0 D	22 =		0.44	_	mo 4*
Acetone (2-Propanone)	20.7	0.20	0.11	ppbv	TO-15
Benzene	1.6	0.20	0.012	ppbv	TO-15
Carbon disulfide	25.7	0.20	0.024	ppbv	TO-15
Chloromethane	0.15 J	0.20	0.015	ppbv	TO-15
Cyclohexane	108	2.0	0.22	ppbv	TO-15
Dichlorodifluoromethane	0.20	0.20	0.017	ppbv	TO-15
Ethanol	2.0	0.50	0.22	ppbv	TO-15
4-Ethyltoluene	4.2	0.20	0.030	ppbv	TO-15
Heptane	103	2.0	0.18	ppbv	TO-15
Hexane	21.8	0.20	0.011	ppbv	TO-15
Isopropyl Alcohol	0.48	0.20	0.065	ppbv	TO-15
Methylene chloride	0.21	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	4.4	0.20	0.042	ppbv	TO-15
Propylene	34.1	0.50	0.016	ppbv	TO-15
1,2,4-Trimethylbenzene	2.2	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	3.3	0.20	0.034	ppbv	TO-15
Tertiary Butyl Alcohol	0.91	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.41	0.040	0.031	ppbv	TO-15
Toluene	13.7	0.20	0.014	ppbv	TO-15
m,p-Xylene	21.0	0.20	0.034	ppbv	TO-15
o-Xylene	10.4	0.20	0.017	ppbv	TO-15
Xylenes (total)	31.4	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	49.2	0.48	0.26	ug/m3	TO-15
Benzene	5.1	0.64	0.038	ug/m3	TO-15
Carbon disulfide	80.0	0.62	0.075	ug/m3	TO-15
Chloromethane	0.31 J	0.41	0.031	ug/m3	TO-15
Cyclohexane	372	6.9	0.76	ug/m3	TO-15
Dichlorodifluoromethane	0.99	0.99	0.084	ug/m3	TO-15
Ethanol	3.8	0.94	0.41	ug/m3	TO-15
4-Ethyltoluene	21	0.98	0.15	ug/m3	TO-15
Heptane	422	8.2	0.74	ug/m3	TO-15
Hexane	76.8	0.70	0.039	ug/m3	TO-15
Isopropyl Alcohol	1.2	0.49	0.16	ug/m3	TO-15
Methylene chloride	0.73	0.69	0.052	ug/m3	TO-15
Methyl ethyl ketone	13	0.59	0.032	ug/m3	TO-15 TO-15
		0.39	0.12		TO-15 TO-15
Propylene 1,2,4-Trimethylbenzene	58.6 11	0.86	0.027	ug/m3 ug/m3	TO-15
	16		0.16		TO-15
1,3,5-Trimethylbenzene		0.98		ug/m3	
Tertiary Butyl Alcohol	2.8	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	2.8	0.27	0.21	ug/m3	TO-15
Toluene	51.6	0.75	0.053	ug/m3	TO-15
m,p-Xylene	91.2	0.87	0.15	ug/m3	TO-15
o-Xylene	45.2	0.87	0.074	ug/m3	TO-15

Summary of Hits Job Number: JD36521 Page 2 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID		RL	MDI	Ilmita	Mathad
Analyte	Qual	KL	MDL	Units	Method
Xylenes (total)	136	0.87	0.074	ug/m3	TO-15
JD36521-2 TT-SB-32SV					
Acetone (2-Propanone)	5.2	0.20	0.11	ppbv	TO-15
Benzene	0.39	0.20	0.012	ppbv	TO-15
Carbon disulfide	1.9	0.20	0.024	ppbv	TO-15
Chloroethane	0.66	0.20	0.048	ppbv	TO-15
Chloroform	2.0	0.20	0.020	ppbv	TO-15
Chloromethane	0.59	0.20	0.015	ppbv	TO-15
Carbon tetrachloride	0.24	0.040	0.024	ppbv	TO-15
Cyclohexane	0.39	0.20	0.024	ppbv	TO-15
1,1-Dichloroethane	0.28	0.20	0.022	ppbv	TO-15
Dichlorodifluoromethane	0.29	0.20	0.012	ppbv	TO-15
o-Dichlorobenzene	0.14	0.040	0.022	ppbv	TO-15
Ethanol	1.6	0.50	0.022	ppbv	TO-15
Ethylbenzene	0.27	0.20	0.22	ppbv	TO-15
Ethyl Acetate	1.2	0.20	0.013	ppbv ppbv	TO-15
4-Ethyltoluene	0.55	0.20	0.030	ppbv	TO-15
•	0.33 0.19 J	0.20	0.030	ppbv ppbv	TO-15
Heptane Hexane	0.19 J	0.20	0.018		TO-15
	0.36	0.20	0.011	ppbv ppbv	TO-15
Isopropyl Alcohol	0.25	0.20			
Methylene chloride	2.3	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	9.9		0.042	ppbv	TO-15
Propylene		0.50	0.016	ppbv	TO-15
Styrene	0.21	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	3.9	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.53	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	0.15 J	0.20	0.034	ppbv	TO-15
2,2,4-Trimethylpentane	0.14 J	0.20	0.022	ppbv	TO-15
Tertiary Butyl Alcohol	1.2	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.78	0.040	0.031	ppbv	TO-15
Tetrahydrofuran	0.12 J	0.20	0.050	ppbv	TO-15
Toluene	0.90	0.20	0.014	ppbv	TO-15
Trichloroethylene	0.13	0.040	0.019	ppbv	TO-15
Trichlorofluoromethane	0.17	0.10	0.028	ppbv	TO-15
m,p-Xylene	1.1	0.20	0.034	ppbv	TO-15
o-Xylene	0.50	0.20	0.017	ppbv	TO-15
Xylenes (total)	1.6	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	12	0.48	0.26	ug/m3	TO-15
Benzene	1.2	0.64	0.038	ug/m3	TO-15
Carbon disulfide	5.9	0.62	0.075	ug/m3	TO-15
Chloroethane	1.7	0.53	0.13	ug/m3	TO-15
Chloroform	9.8	0.98	0.098	ug/m3	TO-15
Chloromethane	1.2	0.41	0.031	ug/m3	TO-15
				-	

Summary of Hits Job Number: JD36521 Page 3 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Combon totacobloside	1 5	0.95	0.15	/0	TO 15
Carbon tetrachloride	1.5	0.25	0.15	ug/m3	TO-15
Cyclohexane	1.3	0.69	0.076	ug/m3	TO-15
1,1-Dichloroethane	1.1	0.81	0.049	ug/m3	TO-15
Dichlorodifluoromethane	1.4	0.99	0.084	ug/m3	TO-15
o-Dichlorobenzene	0.84	0.24	0.13	ug/m3	TO-15
Ethanol	3.0	0.94	0.41	ug/m3	TO-15
Ethylbenzene	1.2	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	4.3	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	2.7	0.98	0.15	ug/m3	TO-15
Heptane	0.78 J	0.82	0.074	ug/m3	TO-15
Hexane	1.1	0.70	0.039	ug/m3	TO-15
Isopropyl Alcohol	0.88	0.49	0.16	ug/m3	TO-15
Methylene chloride	0.87	0.69	0.052	ug/m3	TO-15
Methyl ethyl ketone	6.8	0.59	0.12	ug/m3	TO-15
Propylene	17	0.86	0.027	ug/m3	TO-15
Styrene	0.89	0.85	0.081	ug/m3	TO-15
1,1,1-Trichloroethane	21	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	2.6	0.98	0.16	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.74 J	0.98	0.17	ug/m3	TO-15
2,2,4-Trimethylpentane	0.65 J	0.93	0.10	ug/m3	TO-15
Tertiary Butyl Alcohol	3.6	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	5.3	0.27	0.21	ug/m3	TO-15
Tetrahydrofuran	0.35 J	0.59	0.15	ug/m3	TO-15
Toluene	3.4	0.75	0.053	ug/m3	TO-15
Trichloroethylene	0.70	0.21	0.10	ug/m3	TO-15
Trichlorofluoromethane	0.96	0.56	0.16	ug/m3	TO-15
m,p-Xylene	4.8	0.87	0.15	ug/m3	TO-15
o-Xylene	2.2	0.87	0.074	ug/m3	TO-15
Xylenes (total)	6.9	0.87	0.074	ug/m3	TO-15
JD36521-3 TT-SB-25SV					
Acetone (2-Propanone)	23.9	0.20	0.11	ppbv	TO-15
Benzene	0.22	0.20	0.012	ppbv	TO-15
Carbon disulfide	0.51	0.20	0.012	ppbv	TO-15
Chloroform	0.10 J	0.20	0.024	ppbv	TO-15
Cyclohexane	2.3	0.20	0.020	ppbv	TO-15
Dichlorodifluoromethane	0.32	0.20	0.022	ppbv	TO-15
Ethanol	11.5	0.20	0.017	ppbv ppbv	TO-15 TO-15
Ethylbenzene	0.14 J	0.30	0.22	ppbv ppbv	TO-15 TO-15
Ethyl Acetate	0.14 J 2.3	0.20	0.013	ppbv ppbv	TO-15
4-Ethyltoluene	0.20	0.20	0.038	ppbv ppbv	TO-15
· ·	0.20	0.20	0.030 0.018	ppbv ppbv	TO-15
Heptane Hexane	0.42	0.20			TO-15
			0.011	ppbv	TO-15 TO-15
2-Hexanone	1.9	0.20	0.036	ppbv	10-15

Summary of Hits Job Number: JD36521

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID		DI	MDI	TI 1/	M.A. I
Analyte	Qual	RL	MDL	Units	Method
Isopropyl Alcohol	2.6	0.20	0.065	ppbv	TO-15
Methylene chloride	0.23	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	23.8	0.20	0.042	ppbv	TO-15
Methyl Tert Butyl Ether	0.76	0.20	0.019	ppbv	TO-15
Propylene	6.3	0.50	0.016	ppbv	TO-15
Styrene	0.14 J	0.20	0.019	ppbv	TO-15
1,2,4-Trimethylbenzene	0.19 J	0.20	0.033	ppbv	TO-15
2,2,4-Trimethylpentane	0.14 J	0.20	0.022	ppbv	TO-15
Tertiary Butyl Alcohol	0.92	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	1.2	0.040	0.031	ppbv	TO-15
Toluene	0.46	0.20	0.014	ppbv	TO-15
Trichloroethylene	2.2	0.040	0.019	ppbv	TO-15
Trichlorofluoromethane	0.18	0.10	0.028	ppbv	TO-15
m,p-Xylene	0.43	0.20	0.034	ppbv	TO-15
o-Xylene	0.21	0.20	0.017	ppbv	TO-15
Xylenes (total)	0.63	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	56.8	0.48	0.26	ug/m3	TO-15
Benzene	0.70	0.64	0.038	ug/m3	TO-15
Carbon disulfide	1.6	0.62	0.075	ug/m3	TO-15
Chloroform	0.49 J	0.98	0.098	ug/m3	TO-15
Cyclohexane	7.9	0.69	0.076	ug/m3	TO-15
Dichlorodifluoromethane	1.6	0.99	0.084	ug/m3	TO-15
Ethanol	21.7	0.94	0.41	ug/m3	TO-15
Ethylbenzene	0.61 J	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	8.3	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	0.98	0.98	0.15	ug/m3	TO-15
Heptane	1.7	0.82	0.074	ug/m3	TO-15
Hexane	1.6	0.70	0.039	ug/m3	TO-15
2-Hexanone	7.8	0.82	0.15	ug/m3	TO-15
Isopropyl Alcohol	6.4	0.49	0.16	ug/m3	TO-15
Methylene chloride	0.80	0.69	0.052	ug/m3	TO-15
Methyl ethyl ketone	70.2	0.59	0.12	ug/m3	TO-15
Methyl Tert Butyl Ether	2.7	0.72	0.069	ug/m3	TO-15
Propylene	11	0.86	0.027	ug/m3	TO-15
Styrene	0.60 J	0.85	0.081	ug/m3	TO-15
1,2,4-Trimethylbenzene	0.93 J	0.98	0.16	ug/m3	TO-15
2,2,4-Trimethylpentane	0.65 J	0.93	0.10	ug/m3	TO-15
Tertiary Butyl Alcohol	2.8	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	8.1	0.27	0.21	ug/m3	TO-15
Toluene	1.7	0.75	0.053	ug/m3	TO-15
Trichloroethylene	12	0.21	0.10	ug/m3	TO-15
Trichlorofluoromethane	1.0	0.56	0.16	ug/m3	TO-15
m,p-Xylene	1.9	0.87	0.15	ug/m3	TO-15
o-Xylene	0.91	0.87	0.074	ug/m3	TO-15
Xylenes (total)	2.7	0.87	0.074	ug/m3	TO-15
,	• •		U.U. 1	-6110	

Summary of Hits
Job Number: JD36521

Page 5 of 18

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD36521-4 TT-SB-24SV					
Acetone (2-Propanone)	31.9	0.20	0.11	ppbv	TO-15
Benzene	0.97	0.20	0.012	ppbv	TO-15
Carbon disulfide	131	2.0	0.24	ppbv	TO-15
Chloromethane	0.20	0.20	0.015	ppbv	TO-15
Cyclohexane	16.4	0.20	0.022	ppbv	TO-15
Dichlorodifluoromethane	0.39	0.20	0.017	ppbv	TO-15
trans-1,2-Dichloroethylene	0.16 J	0.20	0.0073	ppbv	TO-15
cis-1,2-Dichloroethylene	1.5	0.040	0.012	ppbv	TO-15
Ethanol	5.6	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.23	0.20	0.015	ppbv	TO-15
Ethyl Acetate	2.9	0.20	0.038	ppbv	TO-15
4-Ethyltoluene	0.43	0.20	0.030	ppbv	TO-15
Freon 114	0.16	0.10	0.019	ppbv	TO-15
Heptane	1.2	0.20	0.018	ppbv	TO-15
Hexane	1.5	0.20	0.011	ppbv	TO-15
2-Hexanone	3.3	0.20	0.036	ppbv	TO-15
Isopropyl Alcohol	0.50	0.20	0.065	ppbv	TO-15
Methylene chloride	0.65	0.20	0.005	ppbv	TO-15
Methyl ethyl ketone	31.5	0.20	0.013	ppbv	TO-15
Styrene Styrene	0.13 J	0.20	0.012	ppbv	TO-15
1,2,4-Trimethylbenzene	0.13 3	0.20	0.013	ppbv ppbv	TO-15
2,2,4-Trimethylpentane	16.2	0.20	0.033	ppbv	TO-15
Tertiary Butyl Alcohol	1.4	0.20	0.022	ppbv	TO-15
Tetrachloroethylene	0.69	0.20	0.014	ppbv	TO-15
Toluene	0.73	0.040	0.031		TO-15 TO-15
Trichlorofluoromethane	0.73	0.20	0.014	ppbv ppbv	TO-15 TO-15
	0.11	0.10	0.028		TO-15 TO-15
Vinyl chloride	0.54			ppbv	
m,p-Xylene		0.20	0.034	ppbv	TO-15
o-Xylene Vylones (total)	0.40 1.3	0.20	0.017	ppbv ppbv	TO-15
Xylenes (total)	75.8	0.20	0.017		TO-15 TO-15
Acetone (2-Propanone)		0.48	0.26	ug/m3	
Benzene	3.1	0.64	0.038	ug/m3	TO-15
Carbon disulfide	408	6.2	0.75	ug/m3	TO-15
Chloromethane	0.41	0.41	0.031	ug/m3	TO-15
Cyclohexane	56.5	0.69	0.076	ug/m3	TO-15
Dichlorodifluoromethane	1.9	0.99	0.084	ug/m3	TO-15
trans-1,2-Dichloroethylene	0.63 J	0.79	0.029	ug/m3	TO-15
cis-1,2-Dichloroethylene	5.9	0.16	0.048	ug/m3	TO-15
Ethanol	11	0.94	0.41	ug/m3	TO-15
Ethylbenzene	1.0	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	10	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	2.1	0.98	0.15	ug/m3	TO-15

Summary of Hits
Job Number: JD36521

Page 6 of 18

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID					
Analyte	Qual	RL	MDL	Units	Method
Freon 114	1.1	0.70	0.13	ug/m3	TO-15
Heptane	4.9	0.70	0.13	ug/m3 ug/m3	TO-15
Hexane	5.3	0.70	0.074	ug/m3 ug/m3	TO-15
2-Hexanone	13	0.70	0.039	ug/m3 ug/m3	TO-15
Isopropyl Alcohol	1.2	0.62	0.15	ug/m3 ug/m3	TO-15 TO-15
Methylene chloride	2.3	0.49	0.10	ug/m3 ug/m3	TO-15
Methyl ethyl ketone	92.9	0.59	0.032	ug/m3 ug/m3	TO-15
Styrene Styrene	0.55 J	0.35	0.12	ug/m3 ug/m3	TO-15
1,2,4-Trimethylbenzene	1.6 75.7	0.98	0.16	ug/m3	TO-15
2,2,4-Trimethylpentane		0.93	0.10	ug/m3	TO-15
Tertiary Butyl Alcohol	4.2	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	4.7	0.27	0.21	ug/m3	TO-15
Toluene	2.8	0.75	0.053	ug/m3	TO-15
Trichlorofluoromethane	0.62	0.56	0.16	ug/m3	TO-15
Vinyl chloride	0.87	0.10	0.056	ug/m3	TO-15
m,p-Xylene	4.1	0.87	0.15	ug/m3	TO-15
o-Xylene	1.7	0.87	0.074	ug/m3	TO-15
Xylenes (total)	5.6	0.87	0.074	ug/m3	TO-15
JD36521-5 TT-SB-39SV					
Acetone (2-Propanone)	36.2	0.16	0.090	ppbv	TO-15
Benzene	14.2	0.16	0.0095	ppbv	TO-15
Carbon disulfide	153	8.0	0.94	ppbv	TO-15
Chloromethane	0.13 J	0.16	0.012	ppbv	TO-15
Cyclohexane	39.0	8.0	0.88	ppbv	TO-15
1,1-Dichloroethylene	1.0	0.032	0.013	ppbv	TO-15
Dichlorodifluoromethane	0.35	0.16	0.013	ppbv	TO-15
trans-1,2-Dichloroethylene	1.8	0.16	0.0058	ppbv	TO-15
cis-1,2-Dichloroethylene	1.2	0.032	0.0094	ppbv	TO-15
Ethanol	3.7	0.40	0.0054	ppbv	TO-15
Ethylbenzene	0.66	0.16	0.012	ppbv	TO-15
Ethyl Acetate	4.2	0.16	0.030	ppbv	TO-15
Heptane	29.4	0.16	0.014	ppbv	TO-15
Hexane	58.5	8.0	0.42	ppbv	TO-15
Isopropyl Alcohol	0.56	0.16	0.052	ppbv	TO-15
Methylene chloride	0.31	0.16	0.032	ppbv	TO-15
Methyl ethyl ketone	27.7	0.16	0.012	ppbv	TO-15
Styrene Styrene	0.10 J	0.16	0.034	ppbv ppbv	TO-15
1,2,4-Trimethylbenzene	0.10 3	0.16	0.013		TO-15
3	0.25 0.093 J	0.16	0.026	ppbv	TO-15
1,3,5-Trimethylbenzene 2,2,4-Trimethylpentane	0.093 J 12.5	0.16	0.027	ppbv	TO-15 TO-15
Tertiary Butyl Alcohol	1.0			ppbv ppbv	TO-15 TO-15
		0.16	0.011	ppbv	
Tetrachloroethylene Tolyana	0.74	0.032	0.025	ppbv	TO-15
Toluene	3.0	0.16	0.012	ppbv	TO-15

Summary of Hits Job Number: JD36521 Page 7 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	D 1//				
Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Thaifte	Quai	KL	MIDE	Cints	Withou
Trichlorofluoromethane	0.081	0.080	0.022	ppbv	TO-15
Vinyl chloride	37.3	0.032	0.018	ppbv	TO-15
m,p-Xylene	1.5	0.16	0.027	ppbv	TO-15
Xylenes (total)	1.5	0.16	0.014	ppbv	TO-15
Acetone (2-Propanone)	86.0	0.38	0.21	ug/m3	TO-15
Benzene	45.4	0.51	0.030	ug/m3	TO-15
Carbon disulfide	476	25	2.9	ug/m3	TO-15
Chloromethane	0.27 J	0.33	0.025	ug/m3	TO-15
Cyclohexane	134	28	3.0	ug/m3	TO-15
1,1-Dichloroethylene	4.0	0.13	0.052	ug/m3	TO-15
Dichlorodifluoromethane	1.7	0.79	0.064	ug/m3	TO-15
rans-1,2-Dichloroethylene	7.1	0.63	0.023	ug/m3	TO-15
cis-1,2-Dichloroethylene	4.8	0.13	0.037	ug/m3	TO-15
Ethanol	7.0	0.75	0.32	ug/m3	TO-15
Ethylbenzene	2.9	0.69	0.052	ug/m3	TO-15
Ethyl Acetate	15	0.58	0.002	ug/m3	TO-15
Ieptane	120	0.66	0.11	ug/m3	TO-15
Teptane Texane	206	28	1.5	ug/m3	TO-15
sopropyl Alcohol	1.4	0.39	0.13	ug/m3 ug/m3	TO-15
Aethylene chloride	1.1	0.56	0.13	ug/m3 ug/m3	TO-15 TO-15
Aethyl ethyl ketone	81.7	0.30	0.042	ug/m3 ug/m3	TO-15 TO-15
tyrene	0.43 J	0.47	0.10	ug/m3 ug/m3	TO-15 TO-15
,2,4-Trimethylbenzene	1.2	0.08	0.004	ug/m3 ug/m3	TO-15 TO-15
,2,4-111methylbenzene ,3,5-Trimethylbenzene	0.46 J	0.79	0.13	ug/m3 ug/m3	TO-15 TO-15
,3,4-Trimethylpentane	58.4	0.75	0.13 0.079	ug/m3 ug/m3	TO-15 TO-15
	3.0	0.73	0.079		TO-15 TO-15
Certiary Butyl Alcohol	5.0	0.49		ug/m3	TO-15 TO-15
Tetrachloroethylene	5.0 11		0.17	ug/m3	
Coluene Crichlera (lucromathens		0.60	0.045	ug/m3	TO-15
Trichlorofluoromethane	0.46	0.45	0.12	ug/m3	TO-15
/inyl chloride	95.3	0.082	0.046	ug/m3	TO-15
n,p-Xylene	6.5	0.69	0.12	ug/m3	TO-15
Kylenes (total)	6.5	0.69	0.061	ug/m3	TO-15
D36521-6 TT-SB-37SV					
Acetone (2-Propanone)	5.0	0.20	0.11	ppbv	TO-15
Benzene	1.3	0.20	0.11	ppbv	TO-15
Carbon disulfide	0.78	0.20	0.012	ppbv	TO-15 TO-15
Chloroform	0.16 J	0.20	0.024	ppbv ppbv	TO-15 TO-15
,4-Dioxane	0.10 3	0.20	0.020	ppbv ppbv	TO-15 TO-15
Dichlorodifluoromethane	0.42	0.20	0.032	ppbv ppbv	TO-15 TO-15
Ethanol	2.6	0.20	0.017	ppbv ppbv	TO-15 TO-15
Ethylbenzene	0.30	0.30	0.22	ppbv ppbv	TO-15 TO-15
	5.5				
Ethyl Acetate		0.20	0.038	ppbv	TO-15 TO-15
4-Ethyltoluene	0.56	0.20	0.030	ppbv	10-19

Summary of Hits Job Number: JD36521 Page 8 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID		DI	MDI	TT\$4	M-41 J
Analyte	Qual	RL	MDL	Units	Method
Freon 113	0.60	0.10	0.017	ppbv	TO-15
Heptane	0.30	0.20	0.018	ppbv	TO-15
Hexachlorobutadiene	0.15	0.090	0.046	ppbv	TO-15
Hexane	0.46	0.20	0.011	ppbv	TO-15
Isopropyl Alcohol	0.60	0.20	0.065	ppbv	TO-15
Methylene chloride	0.39	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	5.4	0.20	0.042	ppbv	TO-15
Styrene	0.17 J	0.20	0.019	ppbv	TO-15
1,2,4-Trichlorobenzene	0.13	0.10	0.089	ppbv	TO-15
1,2,4-Trimethylbenzene	0.47	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	0.16 J	0.20	0.034	ppbv	TO-15
2,2,4-Trimethylpentane	0.12 J	0.20	0.022	ppbv	TO-15
Tertiary Butyl Alcohol	1.1	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	1.6	0.040	0.031	ppbv	TO-15
Tetrahydrofuran	4.7	0.20	0.050	ppbv	TO-15
Toluene	1.3	0.20	0.014	ppbv	TO-15
Trichloroethylene	0.27	0.20	0.014	ppbv	TO-15
Trichlorofluoromethane	3.5	0.10	0.013	ppbv	TO-15
m,p-Xylene	1.2	0.10	0.026	ppbv	TO-15
o-Xylene	0.43	0.20	0.034	ppbv	TO-15
Xylenes (total)	1.6	0.20	0.017	ppbv ppbv	TO-15 TO-15
Acetone (2-Propanone)	12	0.20	0.017	ug/m3	TO-15 TO-15
Benzene	4.2	0.48	0.20	ug/m3	TO-15 TO-15
Carbon disulfide	2.4	0.62	0.035	ug/m3	TO-15
Chloroform	0.78 J	0.02	0.073	ug/m3	TO-15 TO-15
1,4-Dioxane	0.86	0.38	0.098	ug/m3	TO-15
Dichlorodifluoromethane	2.1	0.72	0.19	ug/m3 ug/m3	TO-15 TO-15
Ethanol	4.9	0.99	0.064	•	TO-15 TO-15
				ug/m3	
Ethyl A actor	1.3 20	0.87	0.065	ug/m3	TO-15 TO-15
Ethyl Acetate	2.8	0.72	0.14	ug/m3	
4-Ethyltoluene	4.6	0.98	0.15	ug/m3	TO-15 TO-15
Freon 113		0.77	0.13	ug/m3	
Heptane	1.2	0.82	0.074	ug/m3	TO-15
Hexachlorobutadiene	1.6	0.96	0.49	ug/m3	TO-15
Hexane	1.6	0.70	0.039	ug/m3	TO-15
Isopropyl Alcohol	1.5	0.49	0.16	ug/m3	TO-15
Methylene chloride	1.4	0.69	0.052	ug/m3	TO-15
Methyl ethyl ketone	16	0.59	0.12	ug/m3	TO-15
Styrene	0.72 J	0.85	0.081	ug/m3	TO-15
1,2,4-Trichlorobenzene	0.97	0.74	0.66	ug/m3	TO-15
1,2,4-Trimethylbenzene	2.3	0.98	0.16	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.79 J	0.98	0.17	ug/m3	TO-15
2,2,4-Trimethylpentane	0.56 J	0.93	0.10	ug/m3	TO-15
Tertiary Butyl Alcohol	3.3	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	11	0.27	0.21	ug/m3	TO-15

Summary of Hits
Job Number: JD36521

Page 9 of 18

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Commis ID Client Commis ID	Dogwl+/				
Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Tetrahydrofuran	14	0.59	0.15	ug/m3	TO-15
Toluene	4.9	0.75	0.053	ug/m3	TO-15
Trichloroethylene	1.5	0.21	0.10	ug/m3	TO-15
Trichlorofluoromethane	20	0.56	0.16	ug/m3	TO-15
m,p-Xylene	5.2	0.87	0.15	ug/m3	TO-15
o-Xylene	1.9	0.87	0.074	ug/m3	TO-15
Xylenes (total)	6.9	0.87	0.074	ug/m3	TO-15
JD36521-7 TT-SB-A					
Acetone (2-Propanone)	1.8	0.16	0.090	ppbv	TO-15
Benzene	0.24	0.16	0.0095	ppbv	TO-15
Chloromethane	0.42	0.16	0.012	ppbv	TO-15
Cyclohexane	0.079 J	0.16	0.018	ppbv	TO-15
Dichlorodifluoromethane	0.36	0.16	0.013	ppbv	TO-15
Ethanol	5.9	0.40	0.17	ppbv	TO-15
Ethyl Acetate	18.1	0.16	0.030	ppbv	TO-15
Hexane	0.14 J	0.16	0.0085	ppbv	TO-15
Isopropyl Alcohol	0.89	0.16	0.052	ppbv	TO-15
Methylene chloride	0.24	0.16	0.012	ppbv	TO-15
Methyl ethyl ketone	0.14 J	0.16	0.034	ppbv	TO-15
2,2,4-Trimethylpentane	0.093 J	0.16	0.017	ppbv	TO-15
Tetrachloroethylene	0.053	0.032	0.025	ppbv	TO-15
Гoluene	0.40	0.16	0.012	ppbv	TO-15
Frichlorofluoromethane	0.20	0.080	0.022	ppbv	TO-15
m,p-Xylene	0.21	0.16	0.027	ppbv	TO-15
Xylenes (total)	0.21	0.16	0.014	ppbv	TO-15
Acetone (2-Propanone)	4.3	0.38	0.21	ug/m3	TO-15
Benzene	0.77	0.51	0.030	ug/m3	TO-15
Chloromethane	0.87	0.33	0.025	ug/m3	TO-15
Cyclohexane	0.27 J	0.55	0.062	ug/m3	TO-15
Dichlorodifluoromethane	1.8	0.79	0.064	ug/m3	TO-15
Ethanol	11	0.75	0.32	ug/m3	TO-15
Ethyl Acetate	65.1	0.58	0.11	ug/m3	TO-15
Hexane	0.49 J	0.56	0.030	ug/m3	TO-15
Isopropyl Alcohol	2.2	0.39	0.13	ug/m3	TO-15
Methylene chloride	0.83	0.56	0.042	ug/m3	TO-15
Methyl ethyl ketone	0.41 J	0.47	0.10	ug/m3	TO-15
2,2,4-Trimethylpentane	0.43 J	0.75	0.079	ug/m3	TO-15
Tetrachloroethylene	0.36	0.22	0.17	ug/m3	TO-15
Toluene	1.5	0.60	0.045	ug/m3	TO-15
Trichlorofluoromethane	1.1	0.45	0.12	ug/m3	TO-15
m,p-Xylene	0.91	0.69	0.12	ug/m3	TO-15
Xylenes (total)	0.91	0.69	0.061	ug/m3	TO-15

Summary of Hits Job Number: JD36521 Page 10 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID		DI	MDI	TImita	Mothod
Analyte	Qual	RL	MDL	Units	Method
JD36521-8 TT-SB-19SV					
A(0 D	10.7	0.00	0.11		TO 15
Acetone (2-Propanone)	16.7	0.20	0.11	ppbv	TO-15
Carbon disulfide	0.11 J	0.20	0.024	ppbv	TO-15
Dichlorodifluoromethane	0.24	0.20	0.017	ppbv	TO-15
Ethanol	4.1	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.12 J	0.20	0.015	ppbv	TO-15
Ethyl Acetate	1.1	0.20	0.038	ppbv	TO-15
4-Ethyltoluene	0.29	0.20	0.030	ppbv	TO-15
Freon 113	0.038 J	0.10	0.017	ppbv	TO-15
Heptane	0.50	0.20	0.018	ppbv	TO-15
Hexane	0.27	0.20	0.011	ppbv	TO-15
2-Hexanone	4.7	0.20	0.036	ppbv	TO-15
Isopropyl Alcohol	0.32	0.20	0.065	ppbv	TO-15
Methylene chloride	0.15 J	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	36.4	0.20	0.042	ppbv	TO-15
Propylene	5.9	0.50	0.016	ppbv	TO-15
Styrene	0.18 J	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	0.89	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.26	0.20	0.033	ppbv	TO-15
Tertiary Butyl Alcohol	0.94	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.30	0.040	0.031	ppbv	TO-15
Toluene	0.40	0.20	0.014	ppbv	TO-15
Trichlorofluoromethane	0.11	0.10	0.028	ppbv	TO-15
m,p-Xylene	0.50	0.20	0.034	ppbv	TO-15
o-Xylene	0.20	0.20	0.017	ppbv	TO-15
Xylenes (total)	0.70	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	39.7	0.48	0.26	ug/m3	TO-15
Carbon disulfide	0.34 J	0.62	0.075	ug/m3	TO-15
Dichlorodifluoromethane	1.2	0.99	0.084	ug/m3	TO-15
Ethanol	7.7	0.94	0.41	ug/m3	TO-15
Ethylbenzene	0.52 J	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	4.0	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	1.4	0.98	0.15	ug/m3	TO-15
Freon 113	0.29 J	0.77	0.13	ug/m3	TO-15
Heptane	2.0	0.82	0.074	ug/m3	TO-15
Hexane	0.95	0.70	0.039	ug/m3	TO-15
2-Hexanone	19	0.82	0.15	ug/m3	TO-15
Isopropyl Alcohol	0.79	0.49	0.16	ug/m3	TO-15
Methylene chloride	0.52 J	0.69	0.052	ug/m3	TO-15
Methyl ethyl ketone	107	0.59	0.12	ug/m3	TO-15
Propylene	10	0.86	0.027	ug/m3	TO-15
Styrene	0.77 J	0.85	0.027	ug/m3	TO-15
1,1,1-Trichloroethane	4.9	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	1.3	0.98	0.16	ug/m3	TO-15
1, 2, 4 11 micury inclizent	1.0	0.00	0.10	ug/mo	10-13

Summary of Hits Job Number: JD36521 Page 11 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID					
Analyte	Qual	RL	MDL	Units	Method
Tertiary Butyl Alcohol	2.8	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	2.0	0.27	0.21	ug/m3	TO-15
Toluene	1.5	0.75	0.053	ug/m3	TO-15
Trichlorofluoromethane	0.62	0.56	0.16	ug/m3	TO-15
m,p-Xylene	2.2	0.87	0.15	ug/m3	TO-15
o-Xylene	0.87	0.87	0.074	ug/m3	TO-15
Xylenes (total)	3.0	0.87	0.074	ug/m3	TO-15
JD36521-9 TT-SB-14SV				· ·	
A (0 P)	90.0	0.00	0.11		TO 11
Acetone (2-Propanone)	20.0	0.20	0.11	ppbv	TO-15
Benzene	0.73	0.20	0.012	ppbv	TO-15
Chloroform	0.18 J	0.20	0.020	ppbv	TO-15
1,1-Dichloroethane	0.15 J	0.20	0.012	ppbv	TO-15
1,4-Dioxane	0.30	0.20	0.052	ppbv	TO-15
Dichlorodifluoromethane	0.25	0.20	0.017	ppbv	TO-15
Ethanol	6.2	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.32	0.20	0.015	ppbv	TO-15
Ethyl Acetate	1.1	0.20	0.038	ppbv	TO-15
4-Ethyltoluene	0.52	0.20	0.030	ppbv	TO-15
Heptane	0.87	0.20	0.018	ppbv	TO-15
Hexane	0.71	0.20	0.011	ppbv	TO-15
Isopropyl Alcohol	1.1	0.20	0.065	ppbv	TO-15
Methyl ethyl ketone	40.2	0.20	0.042	ppbv	TO-15
Propylene	9.6	0.50	0.016	ppbv	TO-15
Styrene	0.14 J	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	0.24	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.43	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	0.13 J	0.20	0.034	ppbv	TO-15
2,2,4-Trimethylpentane	0.23	0.20	0.022	ppbv	TO-15
Tertiary Butyl Alcohol	2.9	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.85	0.040	0.031	ppbv	TO-15
Toluene	0.89	0.20	0.014	ppbv	TO-15
Trichlorofluoromethane	0.097 J	0.10	0.028	ppbv	TO-15
m,p-Xylene	1.1	0.20	0.034	ppbv	TO-15
o-Xylene	0.47	0.20	0.017	ppbv	TO-15
Xylenes (total)	1.6	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	47.5	0.48	0.26	ug/m3	TO-15
Benzene	2.3	0.64	0.038	ug/m3	TO-15
Chloroform	0.88 J	0.98	0.098	ug/m3	TO-15
1,1-Dichloroethane	0.61 J	0.81	0.049	ug/m3	TO-15
1,4-Dioxane	1.1	0.72	0.19	ug/m3	TO-15
Dichlorodifluoromethane	1.2	0.99	0.084	ug/m3	TO-15
Ethanol	12	0.94	0.41	ug/m3	TO-15
Ethylbenzene	1.4	0.87	0.065	ug/m3	TO-15
	_,,	0.0.	0.000	-6, mo	

Summary of Hits Job Number: JD36521 Page 12 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Ethyl Acetate	4.0	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	2.6	0.72	0.14	ug/m3	TO-15
Heptane	3.6	0.82	0.074	ug/m3	TO-15
Hexane	2.5	0.70	0.039	ug/m3	TO-15
Isopropyl Alcohol	2.7	0.49	0.16	ug/m3	TO-15
Methyl ethyl ketone	119	0.59	0.12	ug/m3	TO-15
Propylene	16	0.86	0.027	ug/m3	TO-15
Styrene	0.60 J	0.85	0.081	ug/m3	TO-15
1,1,1-Trichloroethane	1.3	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	2.1	0.98	0.16	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.64 J	0.98	0.17	ug/m3	TO-15
2,2,4-Trimethylpentane	1.1	0.93	0.10	ug/m3	TO-15
Tertiary Butyl Alcohol	8.8	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	5.8	0.27	0.21	ug/m3	TO-15
Toluene	3.4	0.75	0.053	ug/m3	TO-15
Trichlorofluoromethane	0.55 J	0.56	0.16	ug/m3	TO-15
m,p-Xylene	4.8	0.87	0.15	ug/m3	TO-15
o-Xylene	2.0	0.87	0.074	ug/m3	TO-15
Xylenes (total)	6.9	0.87	0.074	ug/m3	TO-15
JD36521-10 TT-SB-16SV					
Acetone (2-Propanone)	17.5	0.20	0.11	ppbv	TO-15
Benzene	1.0	0.20	0.012	ppbv	TO-15
Carbon disulfide	5.5	0.20	0.024	ppbv	TO-15
Chloroform	0.35	0.20	0.020	ppbv	TO-15
Chloromethane	0.096 J	0.20	0.015	ppbv	TO-15
Cyclohexane	0.55	0.20	0.022	ppbv	TO-15
Dichlorodifluoromethane	0.32	0.20	0.017	ppbv	TO-15
Ethanol	4.1	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.22	0.20	0.015	ppbv	TO-15
Ethyl Acetate	1.2	0.20	0.038	ppbv	TO-15
4-Ethyltoluene	0.34	0.20	0.030	ppbv	TO-15
Heptane	0.89	0.20	0.018	ppbv	TO-15
Hexane	1.2	0.20	0.011	ppbv	TO-15
2-Hexanone	5.5	0.20	0.036	ppbv	TO-15
Isopropyl Alcohol	0.38	0.20	0.065	ppbv	TO-15
Methyl ethyl ketone	41.1	0.20	0.042	ppbv	TO-15
Propylene	15.8	0.50	0.016	ppbv	TO-15
Styrene	0.22	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	0.63	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.27	0.20	0.033	ppbv	TO-15
2,2,4-Trimethylpentane	0.31	0.20	0.022	ppbv	TO-15
Tertiary Butyl Alcohol	1.5	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.85	0.040	0.031	ppbv	TO-15

Summary of Hits Job Number: JD36521 Page 13 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Cample ID Client Commit ID	Dogult/				
Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
inary tt	Quai	KL .	MIDE	Omts	MICHIOU
Toluene	1.3	0.20	0.014	ppbv	TO-15
Trichloroethylene	0.19	0.040	0.019	ppbv	TO-15
Trichlorofluoromethane	0.24	0.10	0.028	ppbv	TO-15
m,p-Xylene	0.76	0.20	0.034	ppbv	TO-15
o-Xylene	0.31	0.20	0.017	ppbv	TO-15
Xylenes (total)	1.1	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	41.6	0.48	0.26	ug/m3	TO-15
Benzene	3.2	0.64	0.038	ug/m3	TO-15
Carbon disulfide	17	0.62	0.075	ug/m3	TO-15
Chloroform	1.7	0.98	0.098	ug/m3	TO-15
Chloromethane	0.20 J	0.41	0.031	ug/m3	TO-15
Cyclohexane	1.9	0.69	0.076	ug/m3	TO-15
Dichlorodifluoromethane	1.6	0.99	0.084	ug/m3	TO-15
Ethanol	7.7	0.94	0.41	ug/m3	TO-15
Ethylbenzene	0.96	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	4.3	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	1.7	0.98	0.15	ug/m3	TO-15
Heptane	3.6	0.82	0.074	ug/m3	TO-15
Hexane	4.2	0.70	0.039	ug/m3	TO-15
2-Hexanone	22	0.82	0.15	ug/m3	TO-15
sopropyl Alcohol	0.93	0.49	0.16	ug/m3	TO-15
Methyl ethyl ketone	121	0.59	0.12	ug/m3	TO-15
Propylene	27.1	0.86	0.027	ug/m3	TO-15
Styrene	0.94	0.85	0.021	ug/m3	TO-15
,1,1-Trichloroethane	3.4	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	1.3	0.98	0.16	ug/m3	TO-15
2,2,4-Trimethylpentane	1.4	0.93	0.10	ug/m3 ug/m3	TO-15
Fertiary Butyl Alcohol	4.5	0.61	0.10	ug/m3 ug/m3	TO-15
Tetrachloroethylene	5.8	0.01	0.042	ug/m3 ug/m3	TO-15
Toluene	4.9	0.27	0.21	ug/m3 ug/m3	TO-15 TO-15
Toluene Frichloroethylene	1.0	0.73	0.033	ug/m3 ug/m3	TO-15 TO-15
Frichlorofluoromethane	1.3	0.56	0.16	ug/m3 ug/m3	TO-15
n,p-Xylene	3.3	0.87	0.15	ug/m3 ug/m3	TO-15
o-Xylene	1.3	0.87	0.13	ug/m3 ug/m3	TO-15
Xylenes (total)	4.8	0.87	0.074	ug/m3 ug/m3	TO-15
	2.0	0.07	0.071	mB, 1110	-0 10
JD36521-11 TT-SB-36SV					
Acetone (2-Propanone)	11.0	0.20	0.11	ppbv	TO-15
Benzene	0.59	0.20	0.012	ppbv	TO-15
Carbon disulfide	0.51	0.20	0.024	ppbv	TO-15
Chloroform	0.40	0.20	0.020	ppbv	TO-15
Cyclohexane	0.16 J	0.20	0.022	ppbv	TO-15
1,1-Dichloroethane	0.98	0.20	0.012	ppbv	TO-15
Dichlorodifluoromethane	0.27	0.20	0.017	ppbv	TO-15

Summary of Hits Job Number: JD36521 Page 14 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Ethanol	2.8	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.20	0.30	0.22	ppbv	TO-15
Ethyl Acetate	1.4	0.20	0.013	ppbv	TO-15
	0.47	0.20	0.030		TO-15 TO-15
4-Ethyltoluene	0.47	0.20		ppbv	TO-15 TO-15
Heptane	0.38	0.20	0.018	ppbv	
Hexane	3.3		0.011	ppbv	TO-15
2-Hexanone		0.20	0.036	ppbv	TO-15
Isopropyl Alcohol	0.35	0.20	0.065	ppbv	TO-15
Methyl ethyl ketone	24.4	0.20	0.042	ppbv	TO-15
Styrene	0.13 J	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	0.57	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.54	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	0.21	0.20	0.034	ppbv	TO-15
Tertiary Butyl Alcohol	0.94	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.28	0.040	0.031	ppbv	TO-15
Toluene	0.55	0.20	0.014	ppbv	TO-15
Trichlorofluoromethane	0.20	0.10	0.028	ppbv	TO-15
m,p-Xylene	0.71	0.20	0.034	ppbv	TO-15
o-Xylene	0.32	0.20	0.017	ppbv	TO-15
Xylenes (total)	1.0	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	26.1	0.48	0.26	ug/m3	TO-15
Benzene	1.9	0.64	0.038	ug/m3	TO-15
Carbon disulfide	1.6	0.62	0.075	ug/m3	TO-15
Chloroform	2.0	0.98	0.098	ug/m3	TO-15
Cyclohexane	0.55 J	0.69	0.076	ug/m3	TO-15
1,1-Dichloroethane	4.0	0.81	0.049	ug/m3	TO-15
Dichlorodifluoromethane	1.3	0.99	0.084	ug/m3	TO-15
Ethanol	5.3	0.94	0.41	ug/m3	TO-15
Ethylbenzene	0.87	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	5.0	0.72	0.003	ug/m3	TO-15
4-Ethyltoluene	2.3	0.72	0.14	ug/m3 ug/m3	TO-15
Heptane	1.6	0.82	0.13	ug/m3 ug/m3	TO-15
Hexane	1.4	0.82	0.074	ug/m3	TO-15
2-Hexanone	13	0.70	0.039	ug/m3 ug/m3	TO-15 TO-15
z-riexanone Isopropyl Alcohol	0.86	0.82	0.15 0.16	U	TO-15 TO-15
				ug/m3	
Methyl ethyl ketone	72.0	0.59	0.12	ug/m3	TO-15
Styrene	0.55 J	0.85	0.081	ug/m3	TO-15
1,1,1-Trichloroethane	3.1	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	2.7	0.98	0.16	ug/m3	TO-15
1,3,5-Trimethylbenzene	1.0	0.98	0.17	ug/m3	TO-15
Tertiary Butyl Alcohol	2.8	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	1.9	0.27	0.21	ug/m3	TO-15
Toluene	2.1	0.75	0.053	ug/m3	TO-15
Trichlorofluoromethane	1.1	0.56	0.16	ug/m3	TO-15
m,p-Xylene	3.1	0.87	0.15	ug/m3	TO-15

Summary of Hits Job Number: JD36521 Page 15 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Analyte	Quai	KL	MDL	Units	Method
o-Xylene	1.4	0.87	0.074	ug/m3	TO-15
Xylenes (total)	4.3	0.87	0.074	ug/m3	TO-15
JD36521-12 TT-SB-02SV				· ·	
11 22 323					
Acetone (2-Propanone)	1.6	0.20	0.11	ppbv	TO-15
Benzene	2.4	0.20	0.012	ppbv	TO-15
Carbon disulfide	0.12 J	0.20	0.024	ppbv	TO-15
Chloroform	0.26	0.20	0.020	ppbv	TO-15
Cyclohexane	0.11 J	0.20	0.022	ppbv	TO-15
Dichlorodifluoromethane	0.19 J	0.20	0.017	ppbv	TO-15
Ethanol	1.2	0.50	0.22	ppbv	TO-15
Ethylbenzene	0.19 J	0.20	0.015	ppbv	TO-15
Ethyl Acetate	1.1	0.20	0.038	ppbv	TO-15
4-Ethyltoluene	0.44	0.20	0.030	ppbv	TO-15
Heptane	0.12 J	0.20	0.018	ppbv	TO-15
Hexane	0.28	0.20	0.011	ppbv	TO-15
2-Hexanone	0.47	0.20	0.036	ppbv	TO-15
Isopropyl Alcohol	0.19 J	0.20	0.065	ppbv	TO-15
Methylene chloride	0.20	0.20	0.015	ppbv	TO-15
Methyl ethyl ketone	1.7	0.20	0.042	ppbv	TO-15
Styrene	0.20	0.20	0.019	ppbv	TO-15
1,1,1-Trichloroethane	0.21	0.10	0.033	ppbv	TO-15
1,2,4-Trimethylbenzene	0.40	0.20	0.033	ppbv	TO-15
1,3,5-Trimethylbenzene	0.11 J	0.20	0.034	ppbv	TO-15
Tertiary Butyl Alcohol	0.24	0.20	0.014	ppbv	TO-15
Tetrachloroethylene	0.43	0.040	0.011	ppbv	TO-15
Toluene	0.53	0.20	0.031	ppbv	TO-15
m,p-Xylene	0.67	0.20	0.014	ppbv	TO-15
o-Xylene	0.27	0.20	0.034	ppbv	TO-15
Xylenes (total)	0.94	0.20	0.017	ppbv	TO-15
Acetone (2-Propanone)	3.8	0.20	0.017	ug/m3	TO-15 TO-15
Benzene	7.7	0.48	0.20	ug/m3 ug/m3	TO-15 TO-15
Carbon disulfide	0.37 J	0.62	0.038	ug/m3 ug/m3	TO-15 TO-15
Chloroform	1.3	0.02	0.075	ug/m3 ug/m3	TO-15 TO-15
			0.098		TO-15
Cyclohexane Diablaradifluoromethana	0.38 J	0.69		ug/m3	
Dichlorodifluoromethane	0.94 J	0.99	0.084	ug/m3	TO-15
Etharles	2.3	0.94	0.41	ug/m3	TO-15
Ethylbenzene	0.83 J	0.87	0.065	ug/m3	TO-15
Ethyl Acetate	4.0	0.72	0.14	ug/m3	TO-15
4-Ethyltoluene	2.2	0.98	0.15	ug/m3	TO-15
Heptane	0.49 J	0.82	0.074	ug/m3	TO-15
Hexane	0.99	0.70	0.039	ug/m3	TO-15
2-Hexanone	1.9	0.82	0.15	ug/m3	TO-15
Isopropyl Alcohol	0.47 J	0.49	0.16	ug/m3	TO-15

Summary of Hits
Job Number: JD36521

Page 16 of 18

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/08/21

Methyl ethyl ketone 5.0 0.59 0.12 ug/m3 TO-15 Styrene 0.85 0.85 0.081 ug/m3 TO-15 1,1,1-Trichloroethane 1.1 0.55 0.18 ug/m3 TO-15 1,2,4-Trimethylbenzene 2.0 0.98 0.16 ug/m3 TO-15 1,3,5-Trimethylbenzene 0.54 J 0.98 0.17 ug/m3 TO-15 Tertiary Butyl Alcohol 0.73 0.61 0.042 ug/m3 TO-15 Tetrachloroethylene 2.9 0.27 0.21 ug/m3 TO-15 Toluene 2.0 0.75 0.053 ug/m3 TO-15 m,p-Xylene 2.9 0.87 0.15 ug/m3 TO-15 o-Xylene 1.2 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15						
Methylen chloride Methyl ethyl ketone 5.0 0.69 0.69 0.69 0.052 0.73 1.1. Trichloroethane 1.1 0.55 0.18 0.81 1.2.4 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 1.3.5 Trimethylbenzene 0.54 0.57 0.61 0.042 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.053 0.053 0.075 0.053 0.073 0.015 0.053 0.075 0.053 0.073 0.015 0.053 0.074 0.076 0.074 0.074 0.074 0.076 0.074 0.074 0.076 0.074 0.076 0.074 0.076 0.074 0.076 0.074 0.076 0.074 0.077 0.074 0.074 0.074 0.076 0.074 0.074 0.076 0.074 0.076 0.074 0.076 0.077 0.074 0.074 0.074 0.076 0.074 0.076 0.074 0.076 0.077 0.074 0.074 0.076 0.077 0.074 0.074 0.074 0.075 0.074 0.074 0.074 0.076 0.074 0.074 0.074 0.07						
Methyl ethyl ketone 5.0 0.59 0.12 ug/m3 TO-15 Styrene 0.85 0.85 0.85 0.081 ug/m3 TO-15 1.1.1Trichloroethane 1.1 0.55 0.18 ug/m3 TO-15 1.2.4-Trimethylbenzene 0.54 J 0.98 0.16 ug/m3 TO-15 1.3.5-Trimethylbenzene 0.54 J 0.98 0.17 ug/m3 TO-15 Tertachybenzene 2.9 0.27 0.21 ug/m3 TO-15 Tertachloroethylene 2.9 0.27 0.21 ug/m3 TO-15 Toluene 2.0 0.75 0.053 ug/m3 TO-15 m.p-Xylene 2.9 0.87 0.15 ug/m3 TO-15 w.Ylene 2.9 0.87 0.074 ug/m3 TO-15 Sylene 2.9 0.87 0.074 ug/m3 TO-15 Sylene 2.0 0.87 0.074 ug/m3 TO-15 Sepaze 0.20 0.011	Analyte	Qual	RL	MDL	Units	Method
Methyl ethyl ketone 5.0 0.59 0.12 ug/m3 TO-15 Styrene 0.85 0.85 0.85 0.081 ug/m3 TO-15 1.1.1Trichloroethane 1.1 0.55 0.18 ug/m3 TO-15 1.2.4-Trimethylbenzene 0.54 J 0.98 0.16 ug/m3 TO-15 1.3.5-Trimethylbenzene 0.54 J 0.98 0.17 ug/m3 TO-15 Tertachybenzene 2.9 0.27 0.21 ug/m3 TO-15 Tertachloroethylene 2.9 0.27 0.21 ug/m3 TO-15 Toluene 2.0 0.75 0.053 ug/m3 TO-15 m.p-Xylene 2.9 0.87 0.15 ug/m3 TO-15 w.Ylene 2.9 0.87 0.074 ug/m3 TO-15 Sylene 2.9 0.87 0.074 ug/m3 TO-15 Sylene 2.0 0.87 0.074 ug/m3 TO-15 Sepaze 0.20 0.011	Methylene chloride	0.69	0.69	0.052	ug/m3	TO-15
Styrene	•	5.0			•	
1,1,1-Trichloroethane						
1,2,4-Trimethylbenzene						
1,3,5-Trimethylbenzene						
Tertiary Butyl Alcohol 0.73 0.61 0.042 ug/m3 TO-15 Tetrachloroethylene 2.9 0.27 0.21 ug/m3 TO-15 Toluene 2.0 0.75 0.053 ug/m3 TO-15 m,p-Xylene 2.9 0.87 0.15 ug/m3 TO-15 o-Xylene 1.2 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 JD36521-13 TT-SB-17SV Acetone (2-Propanone) 2.0 0.20 0.11 ppbv TO-15 Benzene 0.94 0.20 0.012 ppbv TO-15 Carbon disulfide 1.3 0.20 0.024 ppbv TO-15 Chloroform 5.0 0.20 0.20 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Heyane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.012 ppbv TO-15 Styrene 0.27 0.20 0.042 ppbv TO-15 I,1,1-Trichloroethane 1.5 3 0.10 0.033 ppbv TO-15 Styrene 0.27 0.20 0.015 ppbv TO-15 I,1,1-Trichloroethane 1.30 0.20 0.015 ppbv TO-15 I,1,1-Trichloroethane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 I,1,1-Trichloroethane 0.27 0.20 0.015 ppbv TO-15 I,1,1-Trichloroethane 0.27 0.20 0.015 ppbv TO-15 I,1,1-Trichloroethane 0.37 0.20 0.042 ppbv TO-15 I,1,1-Trichloroethane 0.48 0.20 0.011 ppbv TO-15 I,1,1-Trichloroethane 0.53 0.00 0.065 ppbv TO-15 I,1,1-Trichloroethane 0.75 0.040 0.033 ppbv TO-15 I,1,1-Trichloroethane 0.75 0.040 0.033 ppbv TO-15 I,1,1-Trichloroethane 0.75 0.040 0.031 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.014 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.017 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.017 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.017 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.017 ppbv TO-15 Intertahydrofuran 0.26 0.20 0.017 ppbv TO-15 Intertah	· ·					
Tetrachloroethylene						
Toluene						
m,p-Xylene	· ·					
o-Xylene Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.074 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.002 ug/m3 TO-15 Xylenes (total) 4.1 0.87 0.002 ug/m3 TO-15 Xylenes (total) 4.1 0.20 0.012 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.1 0.20 0.014 ppbv TO-15 Xylenes (total) 4.2 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.014 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.3 0.20 0.017 ppbv TO-15 Xylenes (total) 4.8 0.48 0.26 0.007 ppbv TO-15 Xylenes (total) 4.8 0.48 0.26 0.007 ppbv TO-15 Xylenes (total) 4.8 0.48 0.26 0.007 ppbv TO-15 Xylenes (total) 4.8 0.28 0.007 ppbv TO-15 Xylenes (total) 4.8 0.28 0.007 ppbv TO-15 Xylenes (total) 4.8 0.28 0.007 ppbv						
Actionary Acti						
Acetone (2-Propanone) 2.0 0.20 0.11 ppbv TO-15						
Acetone (2-Propanone) 2.0 0.20 0.11 ppbv TO-15 Benzene 0.94 0.20 0.012 ppbv TO-15 Carbon disulfide 1.3 0.20 0.024 ppbv TO-15 Chloroform 5.0 0.20 0.020 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 Cyclohexane 1.6 0.20 0.012 ppbv TO-15 TO-15 To-15					-B0	
Benzene 0.94 0.20 0.012 ppbv TO-15 Carbon disulfide 1.3 0.20 0.024 ppbv TO-15 Chloroform 5.0 0.20 0.020 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.018 ppbv TO-15 Heytane 0.23 0.20 0.018 ppbv TO-15 Heytane 0.48 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.065 ppbv TO-15 Hexane 0.46 0.20 0.065 ppbv	JD36521-13 TT-SB-17SV					
Benzene 0.94 0.20 0.012 ppbv TO-15 Carbon disulfide 1.3 0.20 0.024 ppbv TO-15 Chloroform 5.0 0.20 0.020 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.018 ppbv TO-15 Heytane 0.23 0.20 0.018 ppbv TO-15 Heytane 0.48 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.065 ppbv TO-15 Hexane 0.46 0.20 0.065 ppbv	Acetone (2-Propanone)	2.0	0.20	0.11	ppby	TO-15
Carbon disulfide 1.3 0.20 0.024 ppbv TO-15 Chloroform 5.0 0.20 0.020 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.018 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.065 ppbv TO-15 Ibexane 0.48 0.20 0.065 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042	<u>-</u>					
Chloroform 5.0 0.20 0.020 ppbv TO-15 Cyclohexane 0.60 0.20 0.022 ppbv TO-15 1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Heptane 0.48 0.20 0.011 ppbv TO-15 Heytane 0.48 0.20 0.065 ppbv TO-15 Heytane 0.48 0.20 0.065 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.062 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042						
Cyclohexane 0.60 0.20 0.022 ppbv TO-15 1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.018 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Heyane 0.48 0.20 0.011 ppbv TO-15 Heyane 0.48 0.20 0.065 ppbv TO-15 Heyane 0.29 0.20 0.016 ppbv TO-						
1,1-Dichloroethane 1.6 0.20 0.012 ppbv TO-15 Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.011 ppbv TO-15 Heyane 0.48 0.20 0.011 ppbv TO-15 Heyane 0.48 0.20 0.065 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Stopropyl Alcohol 0.46 0.20 0.016 ppbv TO-15 Styrene 0.27 0.20 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019						
Dichlorodifluoromethane 0.25 0.20 0.017 ppbv TO-15 Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichlorofloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20						
Ethanol 2.1 0.50 0.22 ppbv TO-15 Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylpentane 0.12 J 0.20 0.034 ppbv TO-15 Tertary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrahydrofuran 0.26 0.						
Ethylbenzene 0.33 0.20 0.015 ppbv TO-15 4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylpentane 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
4-Ethyltoluene 0.53 0.20 0.030 ppbv TO-15 Heptane 0.23 0.20 0.018 ppbv TO-15 Hexane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylpentane 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Toluene 1.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Heptane						
Hexane 0.48 0.20 0.011 ppbv TO-15 Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15 Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene<	· ·					
Isopropyl Alcohol 0.46 0.20 0.065 ppbv TO-15	-					
Methyl ethyl ketone 2.9 0.20 0.042 ppbv TO-15 Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.034 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tetracy Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 Xylenes (total)						
Propylene 3.0 0.50 0.016 ppbv TO-15 Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.034 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Styrene 0.27 0.20 0.019 ppbv TO-15 1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.034 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 0.43 0.20 0.017 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5<						
1,1,1-Trichloroethane 5.3 0.10 0.033 ppbv TO-15 1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
1,2,4-Trimethylbenzene 0.45 0.20 0.033 ppbv TO-15 1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
1,3,5-Trimethylbenzene 0.12 J 0.20 0.034 ppbv TO-15 2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
2,2,4-Trimethylpentane 0.37 0.20 0.022 ppbv TO-15 Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Tertiary Butyl Alcohol 0.70 0.20 0.014 ppbv TO-15 Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Tetrachloroethylene 0.75 0.040 0.031 ppbv TO-15 Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Tetrahydrofuran 0.26 0.20 0.050 ppbv TO-15 Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Toluene 1.4 0.20 0.014 ppbv TO-15 Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Trichlorofluoromethane 0.16 0.10 0.028 ppbv TO-15 m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
m,p-Xylene 1.1 0.20 0.034 ppbv TO-15 o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
o-Xylene 0.43 0.20 0.017 ppbv TO-15 Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Xylenes (total) 1.5 0.20 0.017 ppbv TO-15 Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
Acetone (2-Propanone) 4.8 0.48 0.26 ug/m3 TO-15						
вепzene 3.0 0.64 0.038 ug/m3 TO-15						
	Benzene	3.0	U.64	0.038	ug/m3	10-15

Summary of Hits
Job Number: JD36521

Page 17 of 18

Job Number: JD36521 Account: Tetra Tech

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Collected: 12/08/21

Lab Sample ID Client Sample II		Dī	MDI	TT	M.41 1
Analyte	Qual	RL	MDL	Units	Method
Carbon disulfide	4.0	0.62	0.075	ug/m3	TO-15
Chloroform	24	0.98	0.098	ug/m3	TO-15
Cyclohexane	2.1	0.69	0.076	ug/m3	TO-15
,1-Dichloroethane	6.5	0.81	0.049	ug/m3	TO-15
Dichlorodifluoromethane	1.2	0.99	0.084	ug/m3	TO-15
Ethanol	4.0	0.94	0.41	ug/m3	TO-15
Ethylbenzene	1.4	0.87	0.065	ug/m3	TO-15
4-Ethyltoluene	2.6	0.98	0.15	ug/m3	TO-15
Heptane	0.94	0.82	0.074	ug/m3	TO-15
Hexane	1.7	0.70	0.039	ug/m3	TO-15
Isopropyl Alcohol	1.1	0.49	0.16	ug/m3	TO-15
Methyl ethyl ketone	8.6	0.59	0.12	ug/m3	TO-15
Propylene	5.2	0.86	0.027	ug/m3	TO-15
Styrene	1.1	0.85	0.081	ug/m3	TO-15
1,1,1-Trichloroethane	29	0.55	0.18	ug/m3	TO-15
1,2,4-Trimethylbenzene	2.2	0.98	0.16	ug/m3	TO-15
1,3,5-Trimethylbenzene	0.59 J	0.98	0.17	ug/m3	TO-15
2,2,4-Trimethylpentane	1.7	0.93	0.10	ug/m3	TO-15
Fertiary Butyl Alcohol	2.1	0.61	0.042	ug/m3	TO-15
Tetrachloroethylene	5.1	0.27	0.21	ug/m3 ug/m3	TO-15
Tetrahydrofuran	0.77	0.59	0.15	ug/m3 ug/m3	TO-15
Coluene	5.3	0.75	0.053	ug/m3 ug/m3	TO-15
Crichlorofluoromethane	0.90	0.75	0.033	ug/m3 ug/m3	TO-15
n,p-Xylene	4.8	0.30	0.15	ug/m3 ug/m3	TO-15
-Xylene	1.9	0.87	0.13	ug/m3 ug/m3	TO-15
Xylenes (total)	6.5	0.87	0.074	ug/m3 ug/m3	TO-15
cylenes (total)	0.5	0.07	0.074	ug/III3	10-13
JD36521-14 TT-SB-21SV					
Acetone (2-Propanone)	5.2	0.36	0.20	ppbv	TO-15
Benzene	0.90	0.36	0.021	ppbv	TO-15
Chloromethane	0.36	0.36	0.027	ppbv	TO-15
Cyclohexane	3.1	0.36	0.039	ppbv	TO-15
Dichlorodifluoromethane	0.31 J	0.36	0.030	ppbv	TO-15
Ethanol	7.6	0.90	0.39	ppbv	TO-15
Ethylbenzene	0.096 J	0.36	0.027	ppbv	TO-15
Ethyl Acetate	8.3	0.36	0.067	ppbv	TO-15
Heptane	0.85	0.36	0.031	ppbv	TO-15
i i c pianc	2.2	0.36	0.019	ppbv	TO-15
			0.12	ppbv	TO-15
Hexane	0.74	0.36			
Hexane sopropyl Alcohol	0.74 1.0	0.36 0.36		ppbv	TO-15
Hexane Isopropyl Alcohol Methyl ethyl ketone	1.0	0.36	0.075	ppbv ppbv	TO-15 TO-15
Hexane Isopropyl Alcohol Methyl ethyl ketone Toluene	1.0 0.62	0.36 0.36	0.075 0.026	ppbv	TO-15
Hexane Isopropyl Alcohol Methyl ethyl ketone	1.0	0.36	0.075		

Summary of Hits Job Number: JD36521 Page 18 of 18

Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Lab Sample ID Client Sample ID	Result/				
Analyte	Qual	RL	MDL	Units	Method
Acetone (2-Propanone)	12	0.86	0.48	ug/m3	TO-15
Benzene	2.9	1.2	0.067	ug/m3	TO-15
Chloromethane	0.74	0.74	0.056	ug/m3	TO-15
Cyclohexane	11	1.2	0.13	ug/m3	TO-15
Dichlorodifluoromethane	1.5 J	1.8	0.15	ug/m3	TO-15
Ethanol	14	1.7	0.73	ug/m3	TO-15
Ethylbenzene	0.42 J	1.6	0.12	ug/m3	TO-15
Ethyl Acetate	30	1.3	0.24	ug/m3	TO-15
Heptane	3.5	1.5	0.13	ug/m3	TO-15
Hexane	7.8	1.3	0.067	ug/m3	TO-15
Isopropyl Alcohol	1.8	0.88	0.29	ug/m3	TO-15
Methyl ethyl ketone	2.9	1.1	0.22	ug/m3	TO-15
Toluene	2.3	1.4	0.098	ug/m3	TO-15
Trichlorofluoromethane	1.1	1.0	0.28	ug/m3	TO-15
m,p-Xylene	1.3 J	1.6	0.26	ug/m3	TO-15
Xylenes (total)	1.3 J	1.6	0.13	ug/m3	TO-15

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 4

Page 1 of 3

Client Sample ID: TT-SB-33SV

Lab Sample ID: JD36521-1 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1363 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	5W46819.D	1	12/14/21 22:21	DFT	n/a	n/a	V5W1936
Run #2	5W46840.D	1	12/15/21 17:26	DFT	n/a	n/a	V5W1937

	Initial Volume	
Run #1	400 ml	
Run #2	40.0 ml	

VOA TO15 List

67-64-1	CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
106-99-0	67-64-1	58.08	Acetone (2-Propanone)	20.7	0.20	0.11	ppbv	49.2	0.48	0.26	ug/m3
71-43-2 78.11 Benzene 1.6 0.20 0.012 ppbv 5.1 0.64 0.038 ug/m3 75-27-4 163.8 Bromodichloromethane ND 0.10 0.027 ppbv ND 0.41 0.38 ug/m3 75-25-2 252.8 Bromoform ND 0.040 0.037 ppbv ND 0.41 0.38 ug/m3 74-83-9 94.94 Bromoethene ND 0.20 0.022 ppbv ND 0.48 0.085 ug/m3 593-60-2 106.9 Bromoethene ND 0.20 0.022 ppbv ND 0.87 0.096 ug/m3 100-44-7 126 Benzyl Chloride ND 0.20 0.024 ppbv ND 0.62 0.075 ug/m3 75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv ND 0.92 0.12 ug/m3 75-00-3 64.52 Chlorothane ND 0.20	106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046		ND	0.44	0.10	
75-27-4 163.8 Bromodichloromethane ND 0.10 0.027 ppbv ND 0.67 0.18 ug/m3 75-25-2 252.8 Bromoform ND 0.040 0.037 ppbv ND 0.41 0.38 ug/m3 75-25-2 252.8 Bromoform ND 0.20 0.022 ppbv ND 0.78 0.085 ug/m3 593-60-2 106.9 Bromoethene ND 0.20 0.022 ppbv ND 0.87 0.096 ug/m3 100-44-7 126 Benzyl Chloride ND 0.20 0.024 ppbv ND 1.0 0.29 ug/m3 108-90-7 112.6 Chlorobenzene ND 0.20 0.026 ppbv ND 0.53 0.13 ug/m3 75-0-3 64.52 Chlorobenzene ND 0.20 0.020 ppbv ND 0.53 0.13 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20	71-43-2	78.11	Benzene	1.6	0.20	0.012	ppbv	5.1	0.64	0.038	
74-83-9 94.94 Bromomethane ND 0.20 0.022 ppbv ND 0.78 0.085 ug/m3 593-60-2 106.9 Bromoethene ND 0.20 0.022 ppbv ND 0.87 0.096 ug/m3 100-44-7 126 Benzyl Chloride ND 0.20 0.057 ppbv ND 1.0 0.29 ug/m3 75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv ND 0.62 0.075 ug/m3 75-00-3 64.52 Chloroethane ND 0.20 0.026 ppbv ND 0.92 0.12 ug/m3 75-00-3 64.52 Chloroform ND 0.20 0.048 ppbv ND 0.53 0.13 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20 0.020 ppbv ND 0.63 0.13 ug/m3 107-05-1 76.53 3-Chloroprome ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.	75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv	ND	0.67	0.18	
593-60-2 106.9 Bromoethene ND 0.20 0.022 ppbv ND 0.87 0.096 ug/m3 100-44-7 126 Benzyl Chloride ND 0.20 0.057 ppbv ND 1.0 0.29 ug/m3 75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv ND 0.62 0.075 ug/m3 108-90-7 112.6 Chlorobenzene ND 0.20 0.026 ppbv ND 0.92 0.12 ug/m3 67-66-3 119.4 Chloroform ND 0.20 0.048 ppbv ND 0.98 0.998 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20 0.015 ppbv ND 0.63 0.13 ug/m3 95-49-8 126.6 2-Chlorotoluene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 10-82-7 84.16 Cyclohexane 108 2.0	75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv	ND	0.41	0.38	ug/m3
593-60-2 106.9 Bromoethene ND 0.20 0.022 ppbv ND 0.87 0.096 ug/m3 100-44-7 126 Benzyl Chloride ND 0.20 0.057 ppbv ND 1.0 0.29 ug/m3 75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv ND 0.62 0.075 ug/m3 75-90-3 64.52 Chlorobenzene ND 0.20 0.026 ppbv ND 0.53 0.13 ug/m3 67-66-3 119.4 Chloroform ND 0.20 0.020 ppbv ND 0.98 0.098 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20 0.015 ppbv ND 0.41 0.031 ug/m3 95-49-8 126.6 2-Chlorotoluene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 110-82-7 84.16 Cyclohexane 108 2.0	74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv	ND	0.78	0.085	ug/m3
75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv 80.0 0.62 0.075 ug/m3 108-90-7 112.6 Chloroethane ND 0.20 0.026 ppbv ND 0.92 0.12 ug/m3 75-00-3 64.52 Chloroethane ND 0.20 0.048 ppbv ND 0.53 0.13 ug/m3 67-66-3 119.4 Chloromethane 0.15 0.20 0.020 ppbv ND 0.98 0.098 ug/m3 74-87-3 50.49 Chloroptopene ND 0.20 0.015 ppbv J 0.31 0.41 0.031 ug/m3 107-05-1 76.53 3-Chloroptopene ND 0.20 0.025 ppbv ND 0.63 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.25 0.15 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81	593-60-2	106.9	Bromoethene	ND	0.20			ND	0.87	0.096	ug/m3
75-15-0 76.14 Carbon disulfide 25.7 0.20 0.024 ppbv 80.0 0.62 0.075 ug/m3 108-90-7 112.6 Chloroethane ND 0.20 0.026 ppbv ND 0.92 0.12 ug/m3 75-00-3 64.52 Chloroethane ND 0.20 0.048 ppbv ND 0.53 0.13 ug/m3 67-66-3 119.4 Chloromethane 0.15 0.20 0.020 ppbv ND 0.98 0.098 ug/m3 74-87-3 50.49 Chloroptopene ND 0.20 0.015 ppbv J 0.31 0.41 0.031 ug/m3 107-05-1 76.53 3-Chloroptopene ND 0.20 0.025 ppbv ND 0.63 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.25 0.15 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81	100-44-7	126	Benzyl Chloride	ND	0.20	0.057	ppbv	ND	1.0	0.29	ug/m3
75-00-3 64.52 Chloroethane ND 0.20 0.048 ppbv ND 0.53 0.13 ug/m3 67-66-3 119.4 Chloroform ND 0.20 0.020 ppbv ND 0.98 0.098 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20 0.015 ppbv J 0.31 0.41 0.031 ug/m3 107-05-1 76.53 3-Chloropropene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.25 0.15 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.22 ppbv ND 0.81 0.049 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.77 0.14 ug/m3 <td< td=""><td>75-15-0</td><td>76.14</td><td>Carbon disulfide</td><td>25.7</td><td>0.20</td><td>0.024</td><td>ppbv</td><td>80.0</td><td>0.62</td><td>0.075</td><td>ug/m3</td></td<>	75-15-0	76.14	Carbon disulfide	25.7	0.20	0.024	ppbv	80.0	0.62	0.075	ug/m3
67-66-3 119.4 Chloroform ND 0.20 0.020 ppbv ND 0.98 0.098 ug/m3 74-87-3 50.49 Chloromethane 0.15 0.20 0.015 ppbv J 0.31 0.41 0.031 ug/m3 107-05-1 76.53 3-Chloropropene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 95-49-8 126.6 2-Chlorotoluene ND 0.20 0.025 ppbv ND 1.0 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.81 0.049 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dichloroethane	108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv	ND	0.92	0.12	ug/m3
74-87-3 50.49 Chloromethane 0.15 0.20 0.015 ppbv J 0.31 0.41 0.031 ug/m3 107-05-1 76.53 3-Chloropropene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 95-49-8 126.6 2-Chlorotoluene ND 0.20 0.025 ppbv ND 1.0 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.25 0.15 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dichloroethane ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 78-87-5 113 1,2-Dichloroethane	75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv	ND	0.53	0.13	ug/m3
107-05-1 76.53 3-Chloropropene ND 0.20 0.040 ppbv ND 0.63 0.13 ug/m3 95-49-8 126.6 2-Chlorotoluene ND 0.20 0.025 ppbv ND 1.0 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv 372 a 6.9 0.76 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81 0.049 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dibloromoethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloropropane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloroethylene ND 0.20 0.019 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane ND	67-66-3	119.4	Chloroform	ND	0.20	0.020	ppbv	ND	0.98	0.098	ug/m3
95-49-8 126.6 2-Chlorotoluene ND 0.20 0.025 ppbv ND 1.0 0.13 ug/m3 56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv ND 0.81 0.049 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 75-35-4 96.94 1,2-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane	74-87-3	50.49	Chloromethane	0.15	0.20	0.015	ppbv J	0.31	0.41	0.031	ug/m3
56-23-5 153.8 Carbon tetrachloride ND 0.040 0.024 ppbv ND 0.25 0.15 ug/m3 110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv 372 a 6.9 0.76 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81 0.049 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dibromoethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloroethylene ND 0.20 0.019 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane	107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv	ND	0.63	0.13	ug/m3
110-82-7 84.16 Cyclohexane 108 a 2.0 0.22 ppbv 372 a 6.9 0.76 ug/m3 75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81 0.049 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dichloroethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.16 0.048 ug/m3	95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv	ND	1.0	0.13	ug/m3
75-34-3 98.96 1,1-Dichloroethane ND 0.20 0.012 ppbv ND 0.81 0.049 ug/m3 75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dichloroethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloroethane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethyl	56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv	ND	0.25	0.15	
75-35-4 96.94 1,1-Dichloroethylene ND 0.040 0.017 ppbv ND 0.16 0.067 ug/m3 106-93-4 187.9 1,2-Dibromoethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv ND 0.85 0.28 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-59-2 96.94 trans-1,2-Dichloroe	110-82-7	84.16	Cyclohexane	108 a	2.0	0.22	ppbv	372 a	6.9	0.76	ug/m3
106-93-4 187.9 1,2-Dibromoethane (EDB) ND 0.10 0.018 ppbv ND 0.77 0.14 ug/m3 107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv ND 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.16 0.048 ug/m3 156-59-2 96.94	75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012	ppbv	ND	0.81	0.049	ug/m3
107-06-2 98.96 1,2-Dichloroethane ND 0.20 0.021 ppbv ND 0.81 0.085 ug/m3 78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,	75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv	ND	0.16	0.067	ug/m3
78-87-5 113 1,2-Dichloropropane ND 0.20 0.019 ppbv ND 0.92 0.088 ug/m3 123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10			ND	0.77	0.14	ug/m3
123-91-1 88.12 1,4-Dioxane ND 0.20 0.052 ppbv ND 0.72 0.19 ug/m3 75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 10061-01-5 111 cis-1,2-Dichloroethylene ND 0.20 0.020 ppbv ND 0.16 0.048 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv	ND	0.81	0.085	ug/m3
75-71-8 120.9 Dichlorodifluoromethane 0.20 0.20 0.017 ppbv 0.99 0.99 0.084 ug/m3 124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv	ND	0.92	0.088	ug/m3
124-48-1 208.3 Dibromochloromethane ND 0.10 0.033 ppbv ND 0.85 0.28 ug/m3 156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv	ND	0.72	0.19	ug/m3
156-60-5 96.94 trans-1,2-Dichloroethylene ND 0.20 0.0073 ppbv ND 0.79 0.029 ug/m3 156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.010 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	75-71-8	120.9	Dichlorodifluoromethane	0.20	0.20	0.017	ppbv	0.99	0.99	0.084	ug/m3
156-59-2 96.94 cis-1,2-Dichloroethylene ND 0.040 0.012 ppbv ND 0.16 0.048 ug/m3 10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv	ND	0.85	0.28	ug/m3
10061-01-5 111 cis-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3 541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv	ND	0.79	0.029	ug/m3
541-73-1 147 m-Dichlorobenzene ND 0.10 0.019 ppbv ND 0.60 0.11 ug/m3 95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040			ND	0.16	0.048	ug/m3
95-50-1 147 o-Dichlorobenzene ND 0.040 0.022 ppbv ND 0.24 0.13 ug/m3	10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3
	541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019	ppbv	ND	0.60	0.11	ug/m3
106-46-7 147 n-Dichlorohenzene ND 0.10 0.018 nnhv ND 0.60 0.11 ug/m ³	95-50-1	147	o-Dichlorobenzene	ND	0.040			ND	0.24	0.13	ug/m3
	106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018	ppbv	ND	0.60	0.11	ug/m3
10061-02-6 111 trans-1,3-Dichloropropene ND 0.20 0.020 ppbv ND 0.91 0.091 ug/m3	10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

Client Sample ID: TT-SB-33SV

Lab Sample ID: JD36521-1 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1363 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	2.0	0.50	0.22	ppbv	3.8	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	0.015	ppbv	ND	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	0.038		ND	0.72	0.14	ug/m3
622-96-8	120.19		4.2	0.20	0.030		21	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017		ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	103 a	2.0	0.18	ppbv	422 a	8.2	0.74	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090			ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	21.8	0.20	0.011		76.8	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.036		ND	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.48	0.20	0.065		1.2	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.21	0.20	0.015		0.73	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	4.4	0.20	0.042		13	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036		ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	34.1	0.50	0.016		58.6	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	ND	0.20	0.019	ppbv	ND	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.033	ppbv	ND	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	2.2	0.20	0.033	ppbv	11	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	3.3	0.20	0.034	ppbv	16	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.022	ppbv	ND	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.91	0.20	0.014	ppbv	2.8	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.41	0.040	0.031		2.8	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv	ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	13.7	0.20	0.014		51.6	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv	ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.10	0.028		ND	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040			ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	21.0	0.20	0.034		91.2	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	10.4	0.20	0.017		45.2	0.87	0.074	U
1330-20-7	106.2	Xylenes (total)	31.4	0.20	0.017	ppbv	136	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 112% 105% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-33SV

Lab Sample ID: JD36521-1 Date Sampled: 12/08/21
Matrix: AIR - Soil Vapor Comp. Summa ID: A1363 Date Received: 12/09/21
Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

4.2

Client Sample ID: TT-SB-32SV

Lab Sample ID: JD36521-2 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1112 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46820.D 1 12/14/21 23:16 DFT n/a n/a V5W1936

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	5.2	0.20	0.11	ppbv	12	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv	ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.39	0.20	0.012	ppbv	1.2	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv	ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv	ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv	ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022	ppbv	ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	1.9	0.20	0.024	ppbv	5.9	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv	ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	0.66	0.20	0.048	ppbv	1.7	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	2.0	0.20	0.020		9.8	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	0.59	0.20	0.015	ppbv	1.2	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv	ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.24	0.040	0.024		1.5	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	0.39	0.20	0.022	ppbv	1.3	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	0.28	0.20	0.012	ppbv	1.1	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019		ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv	ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.29	0.20	0.017		1.4	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033		ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073		ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012		ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020		ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	0.14	0.040	0.022		0.84	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3

ND = Not detected MDL = M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

4.2

Client Sample ID: TT-SB-32SV

Lab Sample ID: JD36521-2 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1112 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	1.6	0.50	0.22	ppbv		3.0	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.27	0.20	0.015			1.2	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.2	0.20	0.038	ppbv		4.3	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.55	0.20	0.030			2.7	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017			ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019			ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.19	0.20	0.018	ppbv	J	0.78	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046			ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.32	0.20	0.011	ppbv		1.1	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.036	ppbv		ND	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.36	0.20	0.065	ppbv		0.88	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.25	0.20	0.015	ppbv		0.87	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.3	0.20	0.042	ppbv		6.8	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036	ppbv		ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv		ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv		ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	9.9	0.50	0.016	ppbv		17	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.21	0.20	0.019	ppbv		0.89	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	3.9	0.10	0.033	ppbv		21	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv		ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv		ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv		ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.53	0.20	0.033	ppbv		2.6	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.15	0.20	0.034	ppbv	J	0.74	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.14	0.20	0.022	ppbv	J	0.65	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.2	0.20	0.014	ppbv		3.6	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.78	0.040	0.031	ppbv		5.3	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.12	0.20	0.050	ppbv	J	0.35	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.90	0.20	0.014	ppbv		3.4	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	0.13	0.040	0.019	ppbv		0.70	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.17	0.10	0.028	ppbv		0.96	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv		ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034			ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	1.1	0.20	0.034			4.8	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.50	0.20	0.017			2.2	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	1.6	0.20	0.017			6.9	0.87	0.074	ug/m3
											-

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 96% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-25SV

Lab Sample ID: JD36521-3 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: M139 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46821.D 1 12/15/21 00:11 DFT n/a n/a V5W1936

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	23.9	0.20	0.11	ppbv		56.8	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv		ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.22	0.20	0.012	ppbv		0.70	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv		ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022	ppbv		ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057	ppbv		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	0.51	0.20	0.024	ppbv		1.6	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv		ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.10	0.20	0.020	ppbv	J	0.49	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv		ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv		ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	2.3	0.20	0.022	ppbv		7.9	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012	ppbv		ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv		ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052			ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.32	0.20	0.017			1.6	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033			ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073			ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012			ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10		ppbv		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022			ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018			ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-25SV

Lab Sample ID: JD36521-3 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: M139 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	11.5	0.50	0.22	ppbv		21.7	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.14	0.20	0.015	ppbv	J	0.61	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	2.3	0.20	0.038	ppbv		8.3	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.20	0.20	0.030	ppbv		0.98	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017	ppbv		ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv		ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.42	0.20	0.018	ppbv		1.7	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046	ppbv		ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.46	0.20	0.011	ppbv		1.6	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	1.9	0.20	0.036	ppbv		7.8	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	2.6	0.20	0.065	ppbv		6.4	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.23	0.20	0.015			0.80	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	23.8	0.20	0.042	ppbv		70.2	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036			ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	0.76	0.20	0.019			2.7	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033			ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	6.3	0.50	0.016			11	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.14	0.20	0.019	ppbv	J	0.60	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.033	ppbv		ND	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027			ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv		ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv		ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.19	0.20	0.033	ppbv	J	0.93	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.034	ppbv		ND	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.14	0.20	0.022	ppbv	J	0.65	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.92	0.20	0.014			2.8	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.2	0.040	0.031			8.1	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv		ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.46	0.20	0.014			1.7	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	2.2	0.040				12	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.18	0.10	0.028	ppbv		1.0	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv		ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034			ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.43	0.20	0.034			1.9	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.21	0.20	0.017			0.91	0.87		ug/m3
1330-20-7	106.2	Xylenes (total)	0.63	0.20	0.017	ppbv		2.7	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 95% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 3

Client Sample ID: TT-SB-24SV

Lab Sample ID: JD36521-4 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1325 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	5W46822.D	1	12/15/21 01:07	DFT	n/a	n/a	V5W1936
Run #2	5W46841.D	1	12/15/21 18:14	DFT	n/a	n/a	V5W1937

	Initial Volume	
Run #1	400 ml	
Run #2	40.0 ml	

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	31.9	0.20	0.11	ppbv	75.8	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv	ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.97	0.20	0.012	ppbv	3.1	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv	ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv	ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv	ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022	ppbv	ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057	ppbv	ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	131 ^a	2.0	0.24	ppbv	408 a	6.2	0.75	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv	ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv	ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.020		ND	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	0.20	0.20	0.015		0.41	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv	ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	16.4	0.20	0.022		56.5	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012	ppbv	ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019		ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052		ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.39	0.20	0.017		1.9	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033		ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	0.16	0.20	0.0073		0.63	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	1.5	0.040	0.012		5.9	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020		ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022		ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

4.4

Client Sample ID: TT-SB-24SV

Lab Sample ID: JD36521-4 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1325 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	5.6	0.50	0.22	ppbv	11	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.23	0.20	0.015		1.0	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	2.9	0.20	0.038		10	0.72	0.14	ug/m3
622-96-8	120.19		0.43	0.20		ppbv	2.1	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10		ppbv	ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	0.16	0.10		ppbv	1.1	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	1.2	0.20		ppbv	4.9	0.82	0.074	
87-68-3	260.8	Hexachlorobutadiene	ND	0.090			ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	1.5	0.20		ppbv	5.3	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	3.3	0.20		ppbv	13	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.50	0.20		ppbv	1.2	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.65	0.20		ppbv	2.3	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	31.5	0.20		ppbv	92.9	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20		ppbv	ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20		ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	ND	0.50		ppbv	ND	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.13	0.20	0.019	ppbv J	0.55	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.033	ppbv	ND	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.33	0.20	0.033	ppbv	1.6	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.034	ppbv	ND	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	16.2	0.20	0.022	ppbv	75.7	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.4	0.20	0.014	ppbv	4.2	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.69	0.040	0.031	ppbv	4.7	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv	ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.73	0.20		ppbv	2.8	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv	ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.11	0.10		ppbv	0.62	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	0.34	0.040			0.87	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20		ppbv	ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.94	0.20		ppbv	4.1	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.40	0.20		ppbv	1.7	0.87	0.074	U
1330-20-7	106.2	Xylenes (total)	1.3	0.20	0.017	ppbv	5.6	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 100% 95% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: TT-SB-24SV

Lab Sample ID: JD36521-4 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1325 Date Received: 12/09/21 Percent Solids: n/a

Method: TO-15
Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4.4

4.5

Client Sample ID: TT-SB-39SV

Lab Sample ID: JD36521-5 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A743 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 5W46823.D 1 12/15/21 02:03 DFT n/a n/a V5W1936 Run #2 12/15/21 19:02 DFT V5W1937 5W46842.D 1 n/a n/a

Initial Volume
Run #1 500 ml
Run #2 10.0 ml

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	36.2	0.16	0.090	ppbv	86.0	0.38	0.21	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.16	0.037		ND	0.35	0.082	ug/m3
71-43-2	78.11	Benzene	14.2	0.16	0.0095		45.4	0.51	0.030	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.080	0.021	ppbv	ND	0.54	0.14	ug/m3
75-25-2	252.8	Bromoform	ND	0.032	0.030	ppbv	ND	0.33	0.31	ug/m3
74-83-9	94.94	Bromomethane	ND	0.16	0.018	ppbv	ND	0.62	0.070	ug/m3
593-60-2	106.9	Bromoethene	ND	0.16	0.018	ppbv	ND	0.70	0.079	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.16	0.045	ppbv	ND	0.82	0.23	ug/m3
75-15-0	76.14	Carbon disulfide	153 a	8.0	0.94	ppbv	476 a	25	2.9	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.16	0.021	ppbv	ND	0.74	0.097	ug/m3
75-00-3	64.52	Chloroethane	ND	0.16	0.039	ppbv	ND	0.42	0.10	ug/m3
67-66-3	119.4	Chloroform	ND	0.16	0.016	ppbv	ND	0.78	0.078	ug/m3
74-87-3	50.49	Chloromethane	0.13	0.16	0.012	ppbv J	0.27	0.33	0.025	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.16	0.032	ppbv	ND	0.50	0.10	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.16	0.020	ppbv	ND	0.83	0.10	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.032	0.019	ppbv	ND	0.20	0.12	ug/m3
110-82-7	84.16	Cyclohexane	39.0 a	8.0	0.88	ppbv	134 ^a	28	3.0	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.16	0.0093		ND	0.65	0.038	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	1.0	0.032	0.013		4.0	0.13	0.052	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.080	0.014		ND	0.61	0.11	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.16	0.017	ppbv	ND	0.65	0.069	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.16	0.015	ppbv	ND	0.74	0.069	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.16	0.042	ppbv	ND	0.58	0.15	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.35	0.16	0.013	ppbv	1.7	0.79	0.064	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.080	0.027	ppbv	ND	0.68	0.23	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	1.8	0.16	0.0058		7.1	0.63	0.023	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	1.2	0.032	0.0094		4.8	0.13	0.037	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.16	0.016		ND	0.73	0.073	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.080	0.015		ND	0.48	0.090	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.032	0.017		ND	0.19	0.10	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.080	0.014		ND	0.48		ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.16	0.016	ppbv	ND	0.73	0.073	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 3

4.5

Client Sample ID: TT-SB-39SV

Lab Sample ID: JD36521-5 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A743 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	3.7	0.40	0.17	ppbv	7.0	0.75	0.32	ug/m3
100-41-4	106.2	Ethylbenzene	0.66	0.16	0.012		2.9	0.69	0.052	ug/m3
141-78-6	88	Ethyl Acetate	4.2	0.16	0.030		15	0.58	0.11	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.16	0.024	ppbv	ND	0.79	0.12	ug/m3
76-13-1	187.4	Freon 113	ND	0.080			ND	0.61	0.11	ug/m3
76-14-2	170.9	Freon 114	ND	0.080	0.015	ppbv	ND	0.56	0.10	ug/m3
142-82-5	100.2	Heptane	29.4	0.16	0.014	ppbv	120	0.66	0.057	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.072	0.036	ppbv	ND	0.77	0.38	ug/m3
110-54-3	86.18	Hexane	58.5 a	8.0	0.42	ppbv	206 a	28	1.5	ug/m3
591-78-6	100	2-Hexanone	ND	0.16	0.029	ppbv	ND	0.65	0.12	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.56	0.16	0.052		1.4	0.39	0.13	ug/m3
75-09-2	84.94	Methylene chloride	0.31	0.16	0.012		1.1	0.56	0.042	ug/m3
78-93-3	72.11	Methyl ethyl ketone	27.7	0.16	0.034	ppbv	81.7	0.47	0.10	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.16	0.029	ppbv	ND	0.66	0.12	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.16	0.015	ppbv	ND	0.58	0.054	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.16		ppbv	ND	0.66	0.11	ug/m3
115-07-1	42	Propylene	ND	0.40	0.013	ppbv	ND	0.69	0.022	ug/m3
100-42-5	104.1	Styrene	0.10	0.16	0.015	ppbv J	0.43	0.68	0.064	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.080	0.027	ppbv	ND	0.44	0.15	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.080	0.022	ppbv	ND	0.55	0.15	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.080	0.024	ppbv	ND	0.44	0.13	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.080	0.071	ppbv	ND	0.59	0.53	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.25	0.16	0.026	ppbv	1.2	0.79	0.13	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.093	0.16	0.027	ppbv J	0.46	0.79	0.13	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	12.5	0.16	0.017	ppbv	58.4	0.75	0.079	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.0	0.16	0.011	ppbv	3.0	0.49	0.033	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.74	0.032	0.025	ppbv	5.0	0.22	0.17	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.16	0.040	ppbv	ND	0.47	0.12	ug/m3
108-88-3	92.14	Toluene	3.0	0.16	0.012	ppbv	11	0.60	0.045	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.032	0.015	ppbv	ND	0.17	0.081	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.081	0.080	0.022	ppbv	0.46	0.45	0.12	ug/m3
75-01-4	62.5	Vinyl chloride	37.3	0.032	0.018	ppbv	95.3	0.082	0.046	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.16	0.027	ppbv	ND	0.56	0.095	ug/m3
	106.2	m,p-Xylene	1.5	0.16	0.027	ppbv	6.5	0.69	0.12	ug/m3
95-47-6	106.2	o-Xylene	ND	0.16	0.014	ppbv	ND	0.69	0.061	ug/m3
1330-20-7	106.2	Xylenes (total)	1.5	0.16	0.014	ppbv	6.5	0.69	0.061	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 99% 91% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

4.5

Client Sample ID: TT-SB-39SV

Lab Sample ID: JD36521-5 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A743 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

4.6

Client Sample ID: TT-SB-37SV

Lab Sample ID: JD36521-6 Date Sampled: 12/08/21
Matrix: AIR - Soil Vapor Comp. Summa ID: M011 Date Received: 12/09/21
Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46824.D 1 12/15/21 02:58 DFT n/a n/a V5W1936

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units (Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	5.0	0.20	0.11	ppbv		12	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv		ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	1.3	0.20	0.012	ppbv		4.2	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv		ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022	ppbv		ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057	ppbv		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	0.78	0.20	0.024	ppbv		2.4	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv		ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.16	0.20	0.020	ppbv J		0.78	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv		ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv		ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.022	ppbv		ND	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012	ppbv		ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv		ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	0.24	0.20	0.052	ppbv		0.86	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.42	0.20	0.017	ppbv		2.1	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv		ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv		ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012			ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019			ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022	ppbv		ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018	ppbv		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3

ND = Not detected MDL = M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

4.6

Client Sample ID: TT-SB-37SV

Lab Sample ID: JD36521-6 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: M011 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	2.6	0.50	0.22	ppbv	4.9	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.30	0.20	0.015	ppbv	1.3	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	5.5	0.20	0.038		20	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.56	0.20	0.030	ppbv	2.8	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	0.60	0.10	0.017		4.6	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.30	0.20	0.018	ppbv	1.2	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	0.15	0.090	0.046		1.6	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.46	0.20	0.011	ppbv	1.6	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.60	0.20		ppbv	1.5	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.39	0.20	0.015	ppbv	1.4	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	5.4	0.20	0.042	ppbv	16	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	ND	0.50	0.016	ppbv	ND	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.17	0.20	0.019	ppbv J	0.72	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.033	ppbv	ND	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	0.13	0.10	0.089	ppbv	0.97	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.47	0.20	0.033	ppbv	2.3	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.16	0.20	0.034	ppbv J	0.79	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.12	0.20	0.022	ppbv J	0.56	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.1	0.20	0.014	ppbv	3.3	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.6	0.040	0.031		11	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	4.7	0.20	0.050	ppbv	14	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	1.3	0.20	0.014	ppbv	4.9	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	0.27	0.040	0.019	ppbv	1.5	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	3.5	0.10	0.028	ppbv	20	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv	ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	1.2	0.20	0.034	ppbv	5.2	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.43	0.20	0.017		1.9	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	1.6	0.20	0.017	ppbv	6.9	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 94% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-A

Lab Sample ID: JD36521-7 **Date Sampled: 12/08/21** Matrix: AIR - Ambient Air Comp. Summa ID: M163 Date Received: 12/09/21 Percent Solids: n/a

Method: TO-15

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

File ID DF **Prep Date Prep Batch Analytical Batch** Analyzed By V5W1936 Run #1 5W46825.D 1 12/15/21 03:55 DFT n/a n/a

Run #2

Initial Volume

Run #1 500 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	1.8	0.16	0.090	ppbv	4.3	0.38	0.21	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.16	0.037		ND	0.35	0.082	ug/m3
71-43-2	78.11	Benzene	0.24	0.16	0.0095		0.77	0.51	0.030	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.080	0.021		ND	0.54	0.14	ug/m3
75-25-2	252.8	Bromoform	ND	0.032	0.030	ppbv	ND	0.33	0.31	ug/m3
74-83-9	94.94	Bromomethane	ND	0.16	0.018		ND	0.62	0.070	ug/m3
593-60-2	106.9	Bromoethene	ND	0.16	0.018		ND	0.70	0.079	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.16	0.045	ppbv	ND	0.82	0.23	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.16	0.019	ppbv	ND	0.50	0.059	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.16	0.021	ppbv	ND	0.74	0.097	ug/m3
75-00-3	64.52	Chloroethane	ND	0.16	0.039	ppbv	ND	0.42	0.10	ug/m3
67-66-3	119.4	Chloroform	ND	0.16	0.016	ppbv	ND	0.78	0.078	ug/m3
74-87-3	50.49	Chloromethane	0.42	0.16	0.012	ppbv	0.87	0.33	0.025	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.16	0.032	ppbv	ND	0.50	0.10	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.16	0.020	ppbv	ND	0.83	0.10	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.032	0.019	ppbv	ND	0.20	0.12	ug/m3
110-82-7	84.16	Cyclohexane	0.079	0.16	0.018	ppbv J	0.27	0.55	0.062	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.16	0.0093	ppbv	ND	0.65	0.038	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.032	0.013	ppbv	ND	0.13	0.052	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.080	0.014	ppbv	ND	0.61	0.11	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.16	0.017	ppbv	ND	0.65	0.069	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.16	0.015	ppbv	ND	0.74	0.069	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.16	0.042		ND	0.58	0.15	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.36	0.16	0.013	ppbv	1.8	0.79	0.064	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.080	0.027	ppbv	ND	0.68	0.23	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.16	0.0058		ND	0.63	0.023	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.032	0.0094	ppbv	ND	0.13	0.037	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.16	0.016	ppbv	ND	0.73	0.073	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.080	0.015	ppbv	ND	0.48	0.090	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.032	0.017	ppbv	ND	0.19	0.10	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.080	0.014	ppbv	ND	0.48	0.084	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.16	0.016	ppbv	ND	0.73	0.073	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-A

Lab Sample ID: JD36521-7 Date Sampled: 12/08/21 Matrix: AIR - Ambient Air Comp. Summa ID: M163 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	5.9	0.40	0.17	ppbv		11	0.75	0.32	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.16	0.012			ND	0.69	0.052	ug/m3
141-78-6	88	Ethyl Acetate	18.1	0.16	0.030			65.1	0.58	0.11	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.16	0.024			ND	0.79	0.12	ug/m3
76-13-1	187.4	Freon 113	ND	0.080	0.014	ppbv		ND	0.61	0.11	ug/m3
76-14-2	170.9	Freon 114	ND	0.080	0.015	ppbv		ND	0.56	0.10	ug/m3
142-82-5	100.2	Heptane	ND	0.16	0.014	ppbv		ND	0.66	0.057	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.072	0.036	ppbv		ND	0.77	0.38	ug/m3
110-54-3	86.18	Hexane	0.14	0.16	0.0085	ppbv	J	0.49	0.56	0.030	ug/m3
591-78-6	100	2-Hexanone	ND	0.16	0.029	ppbv		ND	0.65	0.12	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.89	0.16	0.052	ppbv		2.2	0.39	0.13	ug/m3
75-09-2	84.94	Methylene chloride	0.24	0.16	0.012			0.83	0.56	0.042	ug/m3
78-93-3	72.11	Methyl ethyl ketone	0.14	0.16	0.034	ppbv	J	0.41	0.47	0.10	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.16	0.029	ppbv		ND	0.66	0.12	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.16	0.015	ppbv		ND	0.58	0.054	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.16	0.026			ND	0.66	0.11	ug/m3
115-07-1	42	Propylene	ND	0.40	0.013			ND	0.69	0.022	ug/m3
100-42-5	104.1	Styrene	ND	0.16	0.015			ND	0.68	0.064	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.080	0.027			ND	0.44	0.15	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.080	0.022	ppbv		ND	0.55	0.15	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.080	0.024	ppbv		ND	0.44	0.13	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.080	0.071	ppbv		ND	0.59	0.53	ug/m3
95-63-6		1,2,4-Trimethylbenzene	ND	0.16	0.026			ND	0.79	0.13	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.16	0.027			ND	0.79	0.13	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.093	0.16	0.017	ppbv	J	0.43	0.75	0.079	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.16	0.011			ND	0.49	0.033	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.053	0.032	0.025	ppbv		0.36	0.22	0.17	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.16	0.040			ND	0.47	0.12	ug/m3
108-88-3	92.14	Toluene	0.40	0.16	0.012			1.5	0.60	0.045	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.032	0.015			ND	0.17	0.081	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.20	0.080	0.022	ppbv		1.1	0.45	0.12	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.032	0.018	ppbv		ND	0.082	0.046	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.16	0.027			ND	0.56	0.095	ug/m3
	106.2	m,p-Xylene	0.21	0.16	0.027	ppbv		0.91	0.69	0.12	ug/m3
95-47-6	106.2	o-Xylene	ND	0.16	0.014	ppbv		ND	0.69	0.061	ug/m3
1330-20-7	106.2	Xylenes (total)	0.21	0.16	0.014	ppbv		0.91	0.69	0.061	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 95% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4.8

Client Sample ID: TT-SB-19SV

Lab Sample ID: JD36521-8 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1364 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46826.D 1 12/15/21 04:50 DFT n/a n/a V5W1936

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	16.7	0.20	0.11	ppbv		39.7	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046			ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	ND	0.20	0.012			ND	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037			ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022			ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022			ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057			ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	0.11	0.20	0.024		J	0.34	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048			ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.020	ppbv		ND	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv		ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv		ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.022	ppbv		ND	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012			ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019			ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv		ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.24	0.20	0.017			1.2	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033			ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073			ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012			ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020			ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019	ppbv		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022			ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018			ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

4.8

Client Sample ID: TT-SB-19SV

Lab Sample ID: JD36521-8 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1364 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	4.1	0.50	0.22	ppbv		7.7	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.12	0.20	0.015	ppbv	J	0.52	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.1	0.20	0.038			4.0	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.29	0.20	0.030			1.4	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	0.038	0.10	0.017		J	0.29	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019			ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.50	0.20	0.018			2.0	0.82	0.074	
87-68-3	260.8	Hexachlorobutadiene	ND	0.090				ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.27	0.20	0.011			0.95	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	4.7	0.20	0.036			19	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.32	0.20	0.065			0.79	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.15	0.20	0.015	ppbv	J	0.52	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	36.4	0.20	0.042	ppbv		107	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036			ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv		ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv		ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	5.9	0.50	0.016			10	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.18	0.20	0.019	ppbv	J	0.77	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.89	0.10	0.033	ppbv		4.9	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv		ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv		ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv		ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.26	0.20	0.033	ppbv		1.3	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.034	ppbv		ND	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.022	ppbv		ND	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.94	0.20	0.014	ppbv		2.8	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.30	0.040	0.031	ppbv		2.0	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv		ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.40	0.20	0.014	ppbv		1.5	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040				ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.11	0.10	0.028	ppbv		0.62	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040				ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034	ppbv		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.50	0.20	0.034			2.2	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.20	0.20	0.017			0.87	0.87	0.074	
1330-20-7	106.2	Xylenes (total)	0.70	0.20	0.017	ppbv		3.0	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 95% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-14SV

Lab Sample ID: JD36521-9 **Date Sampled: 12/08/21** AIR - Soil Vapor Comp. Summa ID: A1361 Matrix: Date Received: 12/09/21 Percent Solids: n/a

Method: TO-15

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

> **Prep Date Analytical Batch Prep Batch**

File ID DF **Analyzed** By V5W1936 Run #1 5W46827.D 1 12/15/21 05:45 DFT n/a n/a

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	20.0	0.20	0.11	ppbv		47.5	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv		ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.73	0.20	0.012	ppbv		2.3	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037	ppbv		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv		ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022			ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057			ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.024			ND	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026	ppbv		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv		ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.18	0.20	0.020	ppbv	J	0.88	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv		ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv		ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv		ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.022	ppbv		ND	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	0.15	0.20	0.012	ppbv	J	0.61	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv		ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019			ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	0.30	0.20	0.052	ppbv		1.1	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.25	0.20	0.017	ppbv		1.2	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv		ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073			ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012			ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019	ppbv		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022			ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018			ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv		ND	0.91	0.091	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-14SV

Lab Sample ID: JD36521-9 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1361 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	6.2	0.50	0.22	ppbv	12	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.32	0.20	0.015	ppbv	1.4	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.1	0.20	0.038	ppbv	4.0	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.52	0.20	0.030	ppbv	2.6	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017	ppbv	ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.87	0.20	0.018	ppbv	3.6	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046	ppbv	ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.71	0.20	0.011	ppbv	2.5	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	1.1	0.20	0.065	ppbv	2.7	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.015	ppbv	ND	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	40.2	0.20	0.042	ppbv	119	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	9.6	0.50	0.016	ppbv	16	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.14	0.20	0.019	ppbv J	0.60	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.24	0.10	0.033	ppbv	1.3	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.43	0.20	0.033	ppbv	2.1	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.13	0.20	0.034	ppbv J	0.64	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.23	0.20	0.022	ppbv	1.1	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	2.9	0.20	0.014	ppbv	8.8	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.85	0.040	0.031	ppbv	5.8	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv	ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.89	0.20	0.014		3.4	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv	ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.097	0.10	0.028	ppbv J	0.55	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022		ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	1.1	0.20	0.034		4.8	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.47	0.20	0.017		2.0	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	1.6	0.20	0.017		6.9	0.87		ug/m3
		• •								0

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 113% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-16SV

Lab Sample ID: JD36521-10 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1359 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46829.D 1 12/15/21 07:33 DFT n/a n/a V5W1936

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	17.5	0.20	0.11	ppbv	41.6	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv	ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	1.0	0.20	0.012	ppbv	3.2	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027	ppbv	ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022	ppbv	ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022		ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	5.5	0.20	0.024	ppbv	17	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv	ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.35	0.20	0.020	ppbv	1.7	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	0.096	0.20	0.015	ppbv J	0.20	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv	ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv	ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024		ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	0.55	0.20	0.022		1.9	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012	ppbv	ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv	ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv	ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv	ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv	ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.32	0.20	0.017	ppbv	1.6	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv	ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv	ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012	ppbv	ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019		ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022		ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020		ND	0.91	0.091	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-16SV

Lab Sample ID: JD36521-10 Date Sampled: 12/08/21

Matrix: AIR - Soil Vapor Comp. Summa ID: A1359 Date Received: 12/09/21

Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	4.1	0.50	0.22	ppbv	7.7	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.22	0.20	0.015	ppbv	0.96	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.2	0.20	0.038	ppbv	4.3	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.34	0.20	0.030		1.7	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017		ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.89	0.20	0.018	ppbv	3.6	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046		ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	1.2	0.20	0.011		4.2	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	5.5	0.20	0.036	ppbv	22	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.38	0.20	0.065		0.93	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.015		ND	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	41.1	0.20	0.042	ppbv	121	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033		ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	15.8	0.50		ppbv	27.1	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.22	0.20	0.019		0.94	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.63	0.10	0.033	ppbv	3.4	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.27	0.20	0.033	ppbv	1.3	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.034	ppbv	ND	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.31	0.20	0.022	ppbv	1.4	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	1.5	0.20	0.014	ppbv	4.5	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.85	0.040	0.031	ppbv	5.8	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv	ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	1.3	0.20	0.014	ppbv	4.9	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	0.19	0.040	0.019	ppbv	1.0	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.24	0.10	0.028	ppbv	1.3	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv	ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.76	0.20	0.034		3.3	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.31	0.20	0.017		1.3	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	1.1	0.20	0.017	ppbv	4.8	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 95% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-36SV

Lab Sample ID: JD36521-11 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1358 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46843.D 1 12/15/21 19:56 DFT n/a n/a V5W1937

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	11.0	0.20	0.11	ppbv	26.1	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv	ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.59	0.20	0.012	ppbv	1.9	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022		ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022		ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	0.51	0.20	0.024	ppbv	1.6	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv	ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.40	0.20	0.020	ppbv	2.0	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv	ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv	ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025	ppbv	ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv	ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	0.16	0.20	0.022	ppbv J	0.55	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	0.98	0.20	0.012	ppbv	4.0	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017	ppbv	ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv	ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv	ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv	ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv	ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.27	0.20	0.017	ppbv	1.3	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv	ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv	ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012	ppbv	ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019	ppbv	ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022	ppbv	ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-36SV

Lab Sample ID: JD36521-11 **Date Sampled: 12/08/21** AIR - Soil Vapor Comp. Summa ID: A1358 Matrix: Date Received: 12/09/21 Percent Solids: n/a

Method: TO-15

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	2.8	0.50	0.22	ppbv	5.3	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.20	0.20	0.015	ppbv	0.87	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.4	0.20	0.038	ppbv	5.0	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.47	0.20	0.030		2.3	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017		ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.38	0.20	0.018	ppbv	1.6	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046		ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.40	0.20	0.011		1.4	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	3.3	0.20	0.036	ppbv	13	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.35	0.20	0.065		0.86	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.015	ppbv	ND	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	24.4	0.20	0.042	ppbv	72.0	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	ND	0.50	0.016	ppbv	ND	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.13	0.20	0.019	ppbv J	0.55	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.57	0.10	0.033	ppbv	3.1	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030	ppbv	ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.54	0.20	0.033	ppbv	2.7	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.21	0.20	0.034	ppbv	1.0	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.022	ppbv	ND	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.94	0.20	0.014	ppbv	2.8	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.28	0.040	0.031	ppbv	1.9	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv	ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.55	0.20	0.014		2.1	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv	ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.20	0.10	0.028	ppbv	1.1	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv	ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034	ppbv	ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.71	0.20	0.034		3.1	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.32	0.20	0.017		1.4	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	1.0	0.20	0.017	ppbv	4.3	0.87	0.074	ug/m3

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 97% 65-128%

ND = Not detectedMDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-02SV

Lab Sample ID: JD36521-12 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1365 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46844.D 1 12/15/21 20:50 DFT n/a n/a V5W1937

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	1.6	0.20	0.11	ppbv		3.8	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv		ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	2.4	0.20	0.012	ppbv		7.7	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027			ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037			ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022			ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022			ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057			ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	0.12	0.20	0.024		J	0.37	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026			ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048			ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	0.26	0.20	0.020	ppbv		1.3	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015			ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040			ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025			ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024			ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	0.11	0.20	0.022		J	0.38	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.012			ND	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017			ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018			ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv		ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv		ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv		ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.19	0.20	0.017	ppbv	J	0.94	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033			ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv		ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012			ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020			ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019			ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022			ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018			ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020			ND	0.91	0.091	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TT-SB-02SV

Lab Sample ID: JD36521-12 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1365 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Method: TO-15
Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	1.2	0.50	0.22	ppbv		2.3	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.19	0.20	0.015		J	0.83	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	1.1	0.20	0.038			4.0	0.72	0.14	ug/m3
622-96-8	120.19	4-Ethyltoluene	0.44	0.20	0.030			2.2	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017			ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019			ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.12	0.20	0.018		J	0.49	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046			ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.28	0.20	0.011			0.99	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	0.47	0.20	0.036			1.9	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.19	0.20	0.065		J	0.47	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	0.20	0.20	0.015	ppbv		0.69	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	1.7	0.20	0.042	ppbv		5.0	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036			ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019			ND	0.72	0.069	ug/m3
80-62-6	100.12	· ·	ND	0.20	0.033			ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	ND	0.50	0.016			ND	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.20	0.20	0.019			0.85	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	0.21	0.10	0.033	ppbv		1.1	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027			ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030			ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089			ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.40	0.20	0.033			2.0	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.11	0.20	0.034	ppbv	J	0.54	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.022			ND	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.24	0.20	0.014			0.73	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.43	0.040	0.031	ppbv		2.9	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.050	ppbv		ND	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	0.53	0.20	0.014	ppbv		2.0	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv		ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.10	0.028	ppbv		ND	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022	ppbv		ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034			ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	0.67	0.20	0.034	ppbv		2.9	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.27	0.20	0.017			1.2	0.87	0.074	ug/m3
1330-20-7	106.2	Xylenes (total)	0.94	0.20	0.017	ppbv		4.1	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 97% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-17SV

Lab Sample ID: JD36521-13 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1362 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46846.D 1 12/15/21 22:40 DFT n/a n/a V5W1937

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	2.0	0.20	0.11	ppbv	4.8	0.48	0.26	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.046	ppbv	ND	0.44	0.10	ug/m3
71-43-2	78.11	Benzene	0.94	0.20	0.012	ppbv	3.0	0.64	0.038	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.027		ND	0.67	0.18	ug/m3
75-25-2	252.8	Bromoform	ND	0.040	0.037		ND	0.41	0.38	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.022		ND	0.78	0.085	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.022		ND	0.87	0.096	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.057		ND	1.0	0.29	ug/m3
75-15-0	76.14	Carbon disulfide	1.3	0.20	0.024	ppbv	4.0	0.62	0.075	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.026		ND	0.92	0.12	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.048	ppbv	ND	0.53	0.13	ug/m3
67-66-3	119.4	Chloroform	5.0	0.20	0.020	ppbv	24	0.98	0.098	ug/m3
74-87-3	50.49	Chloromethane	ND	0.20	0.015	ppbv	ND	0.41	0.031	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.040	ppbv	ND	0.63	0.13	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.025		ND	1.0	0.13	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.024	ppbv	ND	0.25	0.15	ug/m3
110-82-7	84.16	Cyclohexane	0.60	0.20	0.022	ppbv	2.1	0.69	0.076	ug/m3
75-34-3	98.96	1,1-Dichloroethane	1.6	0.20	0.012	ppbv	6.5	0.81	0.049	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.017		ND	0.16	0.067	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.018	ppbv	ND	0.77	0.14	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.021	ppbv	ND	0.81	0.085	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.019	ppbv	ND	0.92	0.088	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.052	ppbv	ND	0.72	0.19	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.25	0.20	0.017	ppbv	1.2	0.99	0.084	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.033	ppbv	ND	0.85	0.28	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.0073	3 ppbv	ND	0.79	0.029	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.012	ppbv	ND	0.16	0.048	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.019	ppbv	ND	0.60	0.11	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.022		ND	0.24	0.13	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.018		ND	0.60	0.11	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.020	ppbv	ND	0.91	0.091	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TT-SB-17SV Lab Sample ID: JD36521-13

Lab Sample ID: JD36521-13 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1362 Date Received: 12/09/21 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	2.1	0.50	0.22	ppbv	4.0	0.94	0.41	ug/m3
100-41-4	106.2	Ethylbenzene	0.33	0.20	0.015		1.4	0.87	0.065	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	0.038		ND	0.72	0.14	ug/m3
622-96-8	120.19		0.53	0.20	0.030		2.6	0.98	0.15	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.017		ND	0.77	0.13	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.019	ppbv	ND	0.70	0.13	ug/m3
142-82-5	100.2	Heptane	0.23	0.20	0.018		0.94	0.82	0.074	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.046		ND	0.96	0.49	ug/m3
110-54-3	86.18	Hexane	0.48	0.20	0.011		1.7	0.70	0.039	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.036	ppbv	ND	0.82	0.15	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.46	0.20	0.065	ppbv	1.1	0.49	0.16	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	0.015		ND	0.69	0.052	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.9	0.20	0.042	ppbv	8.6	0.59	0.12	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.036		ND	0.82	0.15	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.019	ppbv	ND	0.72	0.069	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.033	ppbv	ND	0.82	0.14	ug/m3
115-07-1	42	Propylene	3.0	0.50	0.016		5.2	0.86	0.027	ug/m3
100-42-5	104.1	Styrene	0.27	0.20	0.019	ppbv	1.1	0.85	0.081	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	5.3	0.10	0.033	ppbv	29	0.55	0.18	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.027	ppbv	ND	0.69	0.19	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.030		ND	0.55	0.16	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.089	ppbv	ND	0.74	0.66	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.45	0.20	0.033	ppbv	2.2	0.98	0.16	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	0.12	0.20	0.034	ppbv J	0.59	0.98	0.17	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.37	0.20	0.022		1.7	0.93	0.10	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.70	0.20	0.014		2.1	0.61	0.042	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.75	0.040	0.031	ppbv	5.1	0.27	0.21	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.26	0.20	0.050		0.77	0.59	0.15	ug/m3
108-88-3	92.14	Toluene	1.4	0.20	0.014		5.3	0.75	0.053	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019		ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.16	0.10	0.028		0.90	0.56	0.16	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.022		ND	0.10	0.056	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.034		ND	0.70	0.12	ug/m3
	106.2	m,p-Xylene	1.1	0.20	0.034		4.8	0.87	0.15	ug/m3
95-47-6	106.2	o-Xylene	0.43	0.20	0.017		1.9	0.87		ug/m3
1330-20-7	106.2	Xylenes (total)	1.5	0.20	0.017	ppbv	6.5	0.87	0.074	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 91% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 2

Client Sample ID: TT-SB-21SV

Lab Sample ID: JD36521-14 Date Sampled: 12/08/21 Matrix: AIR - Soil Vapor Comp. Summa ID: A1357 Date Received: 12/09/21 Method: TO-15 Percent Solids: n/a

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 5W46847.D 3.58 12/15/21 23:42 DFT n/a n/a V5W1937

Run #2

Initial Volume

Run #1 800 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	5.2	0.36	0.20	ppbv	12	0.86	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.36	0.083	ppbv	ND	0.80	0.18	ug/m3
71-43-2	78.11	Benzene	0.90	0.36	0.021	ppbv	2.9	1.2	0.067	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.18	0.048	ppbv	ND	1.2	0.32	ug/m3
75-25-2	252.8	Bromoform	ND	0.072	0.067		ND	0.74	0.69	ug/m3
74-83-9	94.94	Bromomethane	ND	0.36	0.039	ppbv	ND	1.4	0.15	ug/m3
593-60-2	106.9	Bromoethene	ND	0.36	0.039		ND	1.6	0.17	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.36	0.10	ppbv	ND	1.9	0.52	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.36	0.042	ppbv	ND	1.1	0.13	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.36	0.047	ppbv	ND	1.7	0.22	ug/m3
75-00-3	64.52	Chloroethane	ND	0.36	0.087	ppbv	ND	0.95	0.23	ug/m3
67-66-3	119.4	Chloroform	ND	0.36	0.036	ppbv	ND	1.8	0.18	ug/m3
74-87-3	50.49	Chloromethane	0.36	0.36	0.027	ppbv	0.74	0.74	0.056	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.36	0.071	ppbv	ND	1.1	0.22	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.36	0.045	ppbv	ND	1.9	0.23	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.072	0.042	ppbv	ND	0.45	0.26	ug/m3
110-82-7	84.16	Cyclohexane	3.1	0.36	0.039	ppbv	11	1.2	0.13	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.36	0.021	ppbv	ND	1.5	0.085	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.072	0.030	ppbv	ND	0.29	0.12	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.18	0.032	ppbv	ND	1.4	0.25	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.36	0.037	ppbv	ND	1.5	0.15	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.36	0.034	ppbv	ND	1.7	0.16	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.36	0.093	ppbv	ND	1.3	0.34	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.31	0.36	0.030	ppbv J	1.5	1.8	0.15	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.18	0.060	ppbv	ND	1.5	0.51	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.36	0.013	ppbv	ND	1.4	0.052	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.072	0.021		ND	0.29	0.083	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.36	0.035	ppbv	ND	1.6	0.16	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.18	0.034		ND	1.1	0.20	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.072	0.039		ND	0.43	0.23	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.18	0.031		ND	1.1	0.19	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.36	0.035	ppbv	ND	1.6	0.16	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: TT-SB-21SV

Lab Sample ID: JD36521-14 **Date Sampled: 12/08/21** AIR - Soil Vapor Comp. Summa ID: A1357 Matrix: Date Received: 12/09/21 Percent Solids: n/a

Method: TO-15

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	7.6	0.90	0.39	ppbv	14	1.7	0.73	ug/m3
100-41-4	106.2	Ethylbenzene	0.096	0.36	0.027	ppbv J	0.42	1.6	0.12	ug/m3
141-78-6	88	Ethyl Acetate	8.3	0.36	0.067	ppbv	30	1.3	0.24	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.36	0.053		ND	1.8	0.26	ug/m3
76-13-1	187.4	Freon 113	ND	0.18	0.031		ND	1.4	0.24	ug/m3
76-14-2	170.9	Freon 114	ND	0.18	0.034	ppbv	ND	1.3	0.24	ug/m3
142-82-5	100.2	Heptane	0.85	0.36	0.031	ppbv	3.5	1.5	0.13	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.16	0.082		ND	1.7	0.87	ug/m3
110-54-3	86.18	Hexane	2.2	0.36	0.019		7.8	1.3	0.067	ug/m3
591-78-6	100	2-Hexanone	ND	0.36	0.065	ppbv	ND	1.5	0.27	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.74	0.36	0.12	ppbv	1.8	0.88	0.29	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.36	0.026	ppbv	ND	1.3	0.090	ug/m3
78-93-3	72.11	Methyl ethyl ketone	1.0	0.36	0.075	ppbv	2.9	1.1	0.22	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.36	0.064	ppbv	ND	1.5	0.26	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.36	0.034	ppbv	ND	1.3	0.12	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.36	0.058	ppbv	ND	1.5	0.24	ug/m3
115-07-1	42	Propylene	ND	0.90		ppbv	ND	1.5	0.048	ug/m3
100-42-5	104.1	Styrene	ND	0.36	0.034		ND	1.5	0.14	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.18	0.059	ppbv	ND	0.98	0.32	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.18	0.049	ppbv	ND	1.2	0.34	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.18	0.054	ppbv	ND	0.98	0.29	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.18	0.16	ppbv	ND	1.3	1.2	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	ND	0.36	0.059	ppbv	ND	1.8	0.29	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.36	0.060	ppbv	ND	1.8	0.29	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.36	0.039	ppbv	ND	1.7	0.18	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.36	0.025	ppbv	ND	1.1	0.076	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.072	0.055		ND	0.49	0.37	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.36	0.090	ppbv	ND	1.1	0.27	ug/m3
108-88-3	92.14	Toluene	0.62	0.36	0.026	ppbv	2.3	1.4	0.098	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.072	0.034	ppbv	ND	0.39	0.18	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.20	0.18	0.050	ppbv	1.1	1.0	0.28	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.072	0.040	ppbv	ND	0.18	0.10	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.36	0.061	ppbv	ND	1.3	0.21	ug/m3
	106.2	m,p-Xylene	0.30	0.36	0.061		1.3	1.6	0.26	ug/m3
95-47-6	106.2	o-Xylene	ND	0.36	0.030		ND	1.6	0.13	ug/m3
1330-20-7	106.2	Xylenes (total)	0.30	0.36	0.030	ppbv J	1.3	1.6	0.13	ug/m3

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene **95**% 65-128%

ND = Not detectedMDL = Method Detection Limit

RL = **Reporting Limit**

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

Dayton, NJ

Section 5

Custody Documents and Other Forms	Custody Documents and Other Forms Includes the following where applicable:	Misc. Forms
Custody Documents and Other Forms		
	Includes the following where applicable:	Custody Documents and Other Forms
	Includes the following where applicable:	
	includes the following where applicable:	
Chain of Custody		Summa Canister and Flow Controller Log

Ċ.	<u> </u>		\	
-	3	Ŀ	k	

CCC	AIR CHA	IN OF CUST	ΓODY	PAGE <u>↓</u> OF <u>2</u>					
DOO AIL	SGS	forth America Inc Dayton		FED-EX Tracking #	Bottle Orde	Bottle Order Control #			
		oute 130, Dayton, NJ 08810 29-0200 FAX 732-329-3		SGS Quote #	SGS Job#	3652	1		
Client Reporting Attornation		www.sgs.com/ehsusa Project information		Weather P	arameters		ested Analysis		
Company Name	Project Name:		PD (,	Temperature (Fahrenheit)					
Address	Street	AVE 7 5	-)~	Start:	Maximum:				
City (State Zip	City	· · · · · · · · · · · · · · · · · · ·	State	Stop	Minimum:				
1 ADSIDDAMY N) 07954	BROOKEN	J .	ÑΫ	Atmoshpheric Pressure (Inches					
BOB CANTAGALLO ROBERT. CANTAGALLO P	Project #		1	Start:	Maximum:				
Phone # (973) 630 - 404	Client Purchase Order #			Stop:	Minimum:	>			
Sampler(s) Name(s)	I			Other weather comment:		─ ─ ≯			
A. VALU 9 CHELS BEFOR Air Type Sampling Equipm	ent Info	Start Sampling Inform	nation	Stop Samp	ling Information				
Lab									
Sample Soil Vap (SV) Canister Canister Size	Flow Controller	Time Canister (24hr Pressure	Temp Sampler	Time (24hr	Pressure Temp	Sampler 2			
# Field ID / Point of Collection Ambient (A) Serial # 6L or 1L	Serial # Date	clock) ("Hg)	(F) Init.	Date clock)	("Hg) (F)	Init.			
TT- SB-33SV SV A1363 6L.	FC5 12/08/		136 4	1408/21 1450	-3 43	AV.	FCE		
	12/08/2	0730 -30	36 AV	12/08/2 1453	-5 43	AV	FC7		
3 TT-SB-25SV SV M139 6L.	FC 707 12 108 12	4 0747 -28	36 AV	12/08/71 1457	-4 43	AV			
4 TT-58-24SV SV A1325 6L.	Fc 928 1408/2	1 0753 -28	36 AV	12/08/21 1500	-4 43	AV			
5 TT-58-395V 5V A743 6L.	MCOSS MOBIL	1 1844 -30	38 A√	1408/4 1552	-3 40	AV V			
6 TT-SB-375V SV MON 6L.	ME 269 12/08/2	4 0852 -29	38 AV	12/08/21 1556	-4 40	AV	C10		
TT-58-A A MI63 6L.	PC 828 12/8/2	1 0757 -30	37 AV	1408/2 1626	~4e 40	AV V	3		
8 TT-58-195V SV A1364 6L.	FC421 12/8/21	0804 -30	27 AV	12/08/21 16029	-4 40	AV			
9 TT- 58-145V SV A1361 6L.	FC 610 12/8/21	0827 -30	37 AV	11/08/21 1632	-4 40	Av V			
10 Tt-58-165V 5V A1359 6L.	Mr. 232 12/08/1	10820 -28	37 AV	12/08/21 1649	-4 40	AV			
Turnaround Time (Business days)		Data Deliverable Information	tion		Comments / Remarks		A CHILD SEED OF THE		
Standard - 15 Days 10 Day Approved By:	All NJDEP	TO-15 is mandatory Ful	IT1						
5 Day 3 Day	Comm B Reduced T2						-		
2 Day Date:	Full T1								
1 Day Other	Other: DKQP repor	ting		Sample inventory is veri	fied upon receipt in th	ne Laboratory			
Sample Custorly must be docum Relinquished by Latforgory Date Tigle: Receive By:	ented below each time sam	ples change possession,	including courier	delivery.	Received By		AC.		
1 1/09/21 12201 (1)		2/10/2	- 17:33	12/9/2/	2 Hemit	+ feste			
Relification by: Date Time: Received By: 3		Relineushed By:	.	Date Time:	Received By:				
Relinquished by: Date Time: Received By:		Custody Seal #							

Form:SM088-03D (revised 2-12-18)

http://www.sgs.com/en/terms-and-conditions

JD36521: Chain of Custody Page 1 of 4

AGIR CHAIN OF CUSTODY SGS North America fire - Dayton 2238 Rocke 133, Dayton, NJ 0861 00 TEL 7328 No. 133, Dayton, NJ 086		, a 19		
Superior State Superior S	SGS			F <u>Z</u>
Company Name TETRA TECH Address 6 CENTURY De. City Project Name: City Project Name: City Project Contact PANY City Project Contact PANY City Project Contact PANY City Project Contact PANY City Project Contact PANY City Project Contact PANY City Project Contact PANY City Project Contact PANY City City Project Contact PANY City City Project Contact PANY City City City Project Contact PANY City City City City City City City City		2235 Route 130, Dayton, NJ 08810 TEL. 732-329-0200 FAX 732-329-3499	SGS Quote # SGS Job #	36521
Address CENTURY De	Client / Reporting Information		Weather Parameters	Requested Analysis
Address Addr		Project Name: 2ND 1 22RD		-
City State Stop Minimum: Stop Stop Minimum: Stop Minimum: Stop Minimum: State Maximum: Sta			Start: Maximum:	
State Project Contact Project Contact Project Contact Project Contact Project State Project Stat			Stop Minimum:	
Sample Field ID / Point of Collection Sol	(State Zip	City State	,	1 1 1 1 1 1
Sample Field ID / Point of Collection Field ID / Point of Collection Sorial #	ARSIDPANY NJ 07954	BROOKWN NY		13
Sampler(s) Name(s) Sampler(s) Name(s) Start Sampling Sampler(s) Name(s) Start Sampling Sampler	Contact E-mail	IO O TRANS THE C. A	Start: Maximum:	1 1 1 1
Sampler(s) Name(s) Sampler(s) Name(s) Start Sampling Sampler(s) Name(s) Start Sampling Sampler	Fax#	Client Purchase Order #	Stop: Minimum:	171
Air Type Sampling Equipment Info Start Sampling Information Stop Sampling Info	13) 630 - 4043			<u> </u>
Air Type Sampling Equipment Info Start Sampling Information Stop Sampling Info	ir(s) Name(s)		Other weather comment:	ا ا املا
Lab Sample Field ID / Point of Collection Field ID / Point of Collection Sol Vap (SV)			Stop Sampling Information	- - -
Sample S	Air Type Sampin	ng Equipment into Start Sampling Information	Stop Sampling Information	10 0 F
Sample Field ID / Point of Collection Sol Vap (Str) Canister Canister Size Controller Caller Ca	Index (0)	Flow Time Canister Interior	Time Canister Interior	
11 TT-SB-368V SV A1356 6L. MC 189 12/08/12 0835 -30 37 AV 12/08/12 1656 -4 40 AV 12/08/12 1700 -5 40 AV 12/08/12 1700 -5 40 AV 13 TT-SB-17 SV SV A1362 6L. FC 1 1402/12 08/13 -30 37 AV 12/08/12 1739 -4 40 AV V	e Soil Vap (SV) Canister C			er >
12 TT-5B-02SV SV A1366 6 - M(254 12/08/2 0910 -30 57 AV 12/08/2 1700 -5 40 AV 13 TT-5B-17SV SV A1362 6 - FC(5) 12/08/3 -30 37 AV 12/08/2 1739 -4 40 AV	Field ID / Point of Collection Ambient (A) Serial #			
13 TT-58-17 SV SV 41362 66 PC 13 1402/21 08/3 -30 37 AV 0/08/21 1739 -4 40 AV	1 1 2 0 2 3 7 7 7 7 7			
		The contract of the contract o		44
14 TT-56-21SV SV 41357 61 · FG91 101018 0738 -30 30 AV 12/08/21 1746 - 6 40 AV V	TT-58-175V 5V 41362	W	0108/21 1739 -4 40 Av	Fel
	TT-58-215V SV 41357	61 - FC917 12/02/8 0738 -30 30 AV	12/08/21 1746 - 6 40 AV	
).			
Tumaround Time (Business days) Data Deliverable Information Comments / Remarks	Turnaround Time (Business days)			190 Sept. 700 Sept. 700
Standard -15 Days Standard -15 Days			[ANSTER C (A 1353 /FC917) DOGS	INIT APPEAR
10 Day Approved By:	- · · · · · · · · · · · · · · · · · · ·		D &c Aring Donostrial	. ''
SDBY CommB TO BE ACTIND PROPERTY.			10 Be Melling Laplo-104	·
200y Dono: FULTY FOURTY FOUNTY FOURTY FOUND FOUNTY FOUNTY FOURTY FOURTY FOURTY FOUNTY			FC179 - READS HE HIGHER I	THAN ACTUAL
1 Day Other:				
Other SAGP reporting Sample inventory is verified upon receipt in the Laboratory				oratory
Sample Custody yous be documented below each time samples change possession, including courier delivery. Relinculational by Usolatoly: Date Firms:				
Relingthrough the gland 12.00 12				Prive
Relifequind by: Date Time: Received by: Date Time: Received by: Date Time: Received by:		Adlinguished By:		- A
3 / 4	3	4	4	7
Relinquished by: Date Time: Received By: Custody Seal #	ned by: Date Time: Received By:	Custody Seel #		
[5]	5	- variable of the second of th	- /	

Form:SM088-03D (revised 2-12-18)

JD36521: Chain of Custody Page 2 of 4

http://www.sgs.com/en/terms-and-conditions

		7		RS RS					DATE &		DATE & TIME:					
A MARKET BY	FORM	2 ml Are & 300 OL.	1 36521	ADDITIONAL CONTROLLERS FC730								RY				
	RETURN	PROJECT:	JOB # 30	PDITIONAL OF						Patel	-	CES IN DELIVE				
	MENT F	٦	الر	₹	1 1				RECEIVED BY: A	() cemit	RECEIVED BY: 4	# OF BOXES OR PIECES IN DELIVERY				
	EQUIP			(0)						17:33 2		# 				
	MPLING	ch		CANISTERS					AD N	181	NAT .	No 80 197 N				
S	AIR SA	1	#10	NAL SUMMA					ISHED BY:	(5>	ISHED BY:	Y SEAL #'S:	io		12/18	
S	enados procesos de la composição de la c	O LENT.	CONTR	AEDITIO IST A		and allows	 40.000	And the second	REL		RELINOU 3	CUSTOD	NO	SM086-03	Pub date: 3/	
SES	AIR SAMPLING EQUIPMENT RETURN FORM	CLIENT: Tetra Tech	CONTROL#	ADDITIONAL SUMMA CANISTERS 15 A 1360		Market III			REUNOUSHED BY:		REL NOUISHED BY:	CUSTODY SEAL#'S:	NO ES:	SM086-03	Pub date: 3/12/18	

JD36521: Chain of Custody Page 3 of 4

SGS Sample Receipt Summary

Job Number:	JD36521	Client	: TETRA TECH	Project: 2ND AVENUE AI	ND 33-39TH STREET, BROOKL
Date / Time Received:	12/9/2021 5	:33:00 PM	Delivery Method:	Airbill #'s:	
Cooler Temps (Raw Mea	,				
Cooler Security	Y or N	_	Y or N	Sample Integrity - Documentation	Y or N
1. Custody Seals Present:	V	_		1. Sample labels present on bottles.	
2. Custody Seals Intact:	✓	4. Smpl Dat	tes/Time OK 🗸 🗆	Container labeling complete:	lefoon
Cooler Temperature	<u>Y</u>	or N		3. Sample container label / COC agree:	
1. Temp criteria achieved:				Sample Integrity - Condition	Y or N
2. Cooler temp verification:		N/A	=	Sample recvd within HT:	
3. Cooler media:		N/A	_	All containers accounted for:	
4. No. Coolers:		N/A	_	3. Condition of sample:	Intact
Quality Control Preserv		or N N/	<u>A</u>	Sample Integrity - Instructions	Y or N N/A
1. Trip Blank present / cool	er:			Analysis requested is clear:	
2. Trip Blank listed on COC):			2. Bottles received for unspecified tests	
3. Samples preserved prop	erly:			3. Sufficient volume recvd for analysis:	
4. VOCs headspace free:				4. Compositing instructions clear:	
				5. Filtering instructions clear:	
Test Strip Lot #s:	pH 1-12:	231619	pH 12+:	:Other: (Specify)	
Comments					
SM089-03 Rev. Date 12/7/17					

JD36521: Chain of Custody

Page 4 of 4

Summa Canister and Flow Controller Log Job Number: JD36521

TTNJP Tetra Tech Account:

2nd Avenue and 33-39th Street, Brooklyn, NY **Project:**

Received: 12/09/21

CTIMANA	CA	NITOTI	ZDC										
SUMMA Shippin		111511	LKS				Receiving						
Summa ID	L	Vac " Hg	Date Out	By	SCC Batch	SCC FileID	Sample Number	Date In	By	Vac " Hg	Pres psig	Final psig	Dil Fact
											1 . 8	1 . 8	
A1363	6	29.4	12/03/21	MJ		5W46399.D		12/14/21	DFT	1			1
A1112	6	29.4	12/03/21	MJ	CP11433	6W23222.D	JD36521-2	12/14/21	DFT	3			1
M139	6	29.4	12/03/21	MJ	CP11424	5W46322.D	JD36521-3	12/14/21	DFT	5			1
A1325	6	29.4	12/03/21	MJ	CP11406	2W55993.D	JD36521-4	12/14/21	DFT	4			1
A743	6	29.4	12/03/21	MJ	CP11399	2W55956.D	JD36521-5	12/13/21	SG	1			1
M011	6	29.4	12/03/21	MJ	CP11417	5W46171.D	JD36521-6	12/14/21	DFT	2			1
M163	6	29.4	12/07/21	MJ	CP11433	6W23222.D	JD36521-7	12/13/21	SG	1.5			1
A1364	6	29.4	12/03/21	MJ	CP11430	5W46399.D	JD36521-8	12/14/21	DFT	2			1
A1361	6	29.4	12/03/21	MJ	CP11430	5W46399.D	JD36521-9	12/14/21	DFT	2.5			1
A1359	6	29.4	12/03/21	MJ	CP11430	5W46399.D	JD36521-10	12/14/21	DFT	1			1
A1358	6	29.4	12/03/21	MJ	CP11428	5W46401.D	JD36521-11	12/14/21	DFT	0			1
A1365	6	29.4	12/03/21	MJ	CP11422	25W46318.D	JD36521-12	12/14/21	DFT	3			1
A1362	6	29.4	12/03/21	MJ	CP11430	5W46399.D	JD36521-13	12/14/21	DFT	0			1
A1357	6	29.4	12/03/21	MJ	CP11428	35W46401.D	JD36521-14	12/14/21	DFT	21		1	3.58

Shipping	Ş				Receivin	g			
low	Date		cc/	Time	Date		cc/	Flow	
rtl ID	Out	By	min	hrs.	In	By	min	RPD	Equipment Type
179	12/03/21	MJ	10.9	8	12/20/21	MJ	11.4	4.5	Flow Controller
421	12/03/21	MJ	10.8	8	12/20/21	MJ	10.9	0.9	Flow Controller
91	12/03/21	MJ	10.7	8	12/20/21	MJ	13	19.4	Flow Controller
610	12/03/21	MJ	10.9	8	12/20/21	MJ	0	200*	Flow Controller
707	12/03/21	MJ	10.9	8	12/20/21	MJ	11.3	3.6	Flow Controller
C 713	12/03/21	MJ	10.9	8	12/20/21	MJ	12.3	12.1	Flow Controller
730	12/03/21	MJ	10.7	8	12/20/21	MJ	11.1	3.7	Flow Controller
828	12/07/21	MJ	10.9	8	12/14/21	SG	10.2	6.6	Flow Controller
917	12/03/21	MJ	10.9	8	12/20/21	MJ	11.8	7.9	Flow Controller
928	12/03/21	MJ	10.9	8	12/20/21	MJ	11.4	4.5	Flow Controller
C 055	12/03/21	MJ	10.8	8	12/20/21	MJ	12.9	17.7	Flow Controller
C189	12/03/21	MJ	10.7	8	12/20/21	MJ	12.4	14.7	Flow Controller
232	12/03/21	MJ	10.9	8	12/20/21	MJ	11.4	4.5	Flow Controller
254	12/03/21	MJ	10.8	8	12/20/21	MJ	10.9	0.9	Flow Controller
C 269	12/03/21	MJ	10.8	8	12/20/21	MJ	0	200*	Flow Controller

^{*} Flow controller RPD > 20%

SGS Bottle Order(s):

JS-12121-242

JS-12721-27

Page 2 of 2

Summa Canister and Flow Controller Log Job Number: JD36521

TTNJP Tetra Tech Account:

Project: 2nd Avenue and 33-39th Street, Brooklyn, NY

Received: 12/09/21

FLOW (CONTRO	LLERS	/ OTH	ER					
Shippin	g				Receivii	ng			
Flow	Date		cc/	Time	Date		cc/	Flow	
Crtl ID	Out	By	min	hrs.	In	By	min	RPD	Equipment Type

Prep Date	Room Temp(F)	Bar Pres "Hg
12/03/21	70	29.92
12/07/21	70	29.92