SITE ASSESSMENT PLAN

GSOE I, LLC Commercial Lease – OCS-A 0482

Prepared With Technical Assistance from:

Stantec Consulting Services Inc. 6110 Frost Place Laurel, MD 20707

Submitted: June 2019

This page left intentionally blank.

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	Authorized Representative and Designated Operator	9
	1.2	Certified Verification Agent Waiver Request	
	1.3	Best Management Practices	9
2.0	CON	FORMANCE WITH THE MID-ATLANTIC EA/FONSI AND THE	
	CON	IMERCIAL LEASE	10
3.0	PRO	JECT DESCRIPTION AND OBJECTIVES	10
	3.1	Project Description	10
	3.2	Site Location	13
	3.3	Schedule	
4.0	DEP	LOYMENT / INSTALLATION	13
	4.1	Overview of Installation and Deployment Activities	13
	4.2	Vessels	14
	4.3	Protected Species Avoidance	
	4.4	Marine Trash and Debris Awareness and Elimination	
	4.5	Oil Spill Response Plan	
	4.6	Health and Safety	15
5.0	OPE	RATIONS AND MAINTENANCE	15
	5.1	Data Collection and Operations	15
	5.2	Maintenance Activities	15
	5.3	Reporting	
	5.4	Potential Faults or Failures	16
6.0	DEC	OMMISSIONING	16
	6.1	Overview of Decommissioning Activities	
	6.2	Site Clearance Survey	16
	6.3	Reporting	16
7.0	AFFI	ECTED ENVIRONMENT, POTENTIAL IMPACTS, AND MITIGATION	
-		SURES	17
	7.1	Geologic Conditions	
	7.2	Biological Resources	
		7.2.1 Benthic and Fisheries Resources	
		7.2.2 Marine Mammals and Sea Turtles	
		7.2.3 Avian and Bat Resources	
	7.3	Physical Resources	
		7.3.1 Water and Air Quality	
		7.3.2 Socioeconomic Resources	
		7.3.3 Archeological Resources	
8.0	REF	ERENCES	41

TABLES

Table 1-1. Buoy Specification Comparison	4
Table 1-2. SAP Requirements Pursuant to 30 CFR § 585.105(a), 606(a), 610(a) and (b), and 611(a) and	
(b)	4
Table 1-3. Permit Matrix	7
Table 1-4. Best Management Practices	9
Table 4-1. Vessels to be Used for Met Buoy Installation	4
Table 7-2. Seafloor and Sub-Seafloor Hazards	9
Table 7-3: List of species and life stages for which EFH is designated in the vicinity of the Lease Area. 2	4
Table 7-4. Marine Mammals and Sea Turtles with Geographic Ranges that Include the Project Area2	9
Table 7-5. GSOE I Met Buoy Air Emissions Summary 3	6

FIGURES

Figure 1-1: Met Buoy Location	2
Figure 1-2: Survey Area Bathymetry and Tracklines	
Figure 3-1. AXYS FLiDAR 6M [™] Meteorological Buoy	
Figure 3-2. Mooring Arrangement Met Buoy	
Figure 7-1. Benthic Habitats in Project Area	
Figure 7-2: Physical Benthic Habitat Features of the Delaware Lease Area	

APPENDICES

Appendix A	Lease Stipulation Table
Appendix B	Met Buoy Equipment Specifications (CONFIDENTIAL)
Appendix C	Fugro Revised Shallow Hazards Assessment
Appendix D	Air Emission Calculations
Appendix E	Goodwin & Associates Marine Archeological Report (CONFIDENTIAL)
Appendix F	Protected Species Incident Report Template

ACRONYMS AND ABBREVIATIONS

	Adami's II's has M's and some Consistent
AHMS APE	Atlantic Highly Migratory Species Area of Potential Effect
ATE	
	AXYS Technology, Inc.
BMPs	Best Management Practices
BOEM	Bureau of Ocean Energy Management
BP	before present / years ago
BSEE	Bureau of Safety and Environmental Enforcement
CFR	Code of Federal Regulations
CVA	Certified Verification Agent
DMA	dynamic management area
DNREC	Delaware Department of Natural Resources and Environmental Control
EA	Environmental Assessment
EFH	essential fish habitat
EIS	Environmental Impact Statement
EPA	Environmental Protection Agency
ESA	Endangered Species Act
FLiDAR	Floating light detection and ranging
FONSI	Finding of No Significant Impact
GHG	greenhouse gases
GPS	Global Positioning System
GSOE I	Garden State Offshore Energy I, LLC
HAPC	Habitat Areas of Particular Concern
HAPs	hazardous air pollutants
HSE	Health, Safety, and Environment
LiDAR	light detection and ranging
LNM	Local Notice to Mariners
MAB	Mid-Atlantic Bight
MDCF	meteorological data collection facility
MLLW	mean lower low water
Met Buoy	AXYS NOMAD Environmental Monitoring Buoy
NEPA	National Environmental Policy Act
NESHAPs	National Emission Standards for Hazardous Air Pollutants
NHPA	National Historic Preservation Act
NMFS	National Marine Fisheries Service
NOAA	National Oceanic and Atmospheric Administration
NOMAD	Navy Oceanographic Meteorological Automatic Device
NOx	Nitrogen Oxides
NRHP	National Register of Historic Places
NTL	Notice to Lessees
OCS	Outer Continental Shelf
OTR	Ozone Transportation Region
PATON	private aids to navigation
PM	particulate matter
	•

PSD	Prevention of Significant Deterioration
SAP	Site Assessment Plan
SAV	submerged aquatic vegetation
SHPO	State Historic Preservation Office
SIP	State Implementation Plan
Skipjack	Skipjack Offshore Energy, LLC
SMA	seasonal management areas
SOC	Standard Operating Conditions
UDP	Unanticipated Discoveries Plan
USACE	United States Army Corps of Engineers
USCG	Unites States Coast Guard
USC	United States Code
VHF	very high frequency
VOCs	Volatile organic compounds
WEA	Wind Energy Area
W-386	United States Navy Warning Area 386

1.0 INTRODUCTION

GSOE I, LLC (GSOE I) has prepared this Site Assessment Plan (SAP) in support of the installation and operation of a stand-alone offshore meteorological data collection system referred to as the AXYS Floating Light Detection and Ranging 6M buoy (FLiDAR 6M [Met Buoy]) to be located within the area of *Commercial Lease of Submerged Lands for Renewable Energy Development on the Outer Continental Shelf* # OCS-A 0482 (Lease).

The Met Buoy will be deployed at or about 74° 45' 55.68" W, 38° 40' 50.93" N (installation location) within the OCS Official Protraction Diagram Salisbury, NJ 18-05 Lease Block 6375 aliquot A located in Lease Area OCS-A 0482 (Lease Area). Figure 1-1 illustrates the location of the Met Buoy within the Lease Area. The data collected by the Met Buoy will be used to determine energy production estimates and design inputs for a wind energy project within the Lease Area. The Met Buoy will be installed, operated, and decommissioned by a vendor under contract to Skipjack Offshore Energy, LLC.

A SAP was prepared by the previous lease owner, Bluewater Wind Delaware, LLC (Bluewater), and submitted to BOEM in 2013 and revised in 2014. BOEM started the review process, but Bluewater withdrew the SAP prior to BOEM approval. Initially, Bluewater proposed a single meteorological tower (Met Tower), also referred to as a meteorological data collection facility (MDCF), at the location shown in Figure 1-1, but later revised the SAP to include two Met Buoys, both to be deployed, approximately 0.5 miles from the original Met Tower site. The two Bluewater buoys, one to measure surface conditions and one FLiDAR buoy, were to be deployed sequentially – the measurement buoy first and the FLiDAR buoy at an unspecified time after. GSOE I is proposing to locate its Met Buoy at the same location as that proposed for the Bluewater Met Buoys as shown in Figure 1-1.

Bluewater conducted geophysical and geotechnical (G&G) surveys in a 1 nautical mile by 1 nautical mile (1.8 kilometer by 1.8 kilometer) area (Survey Area) within the Lease from 2009 through 2011 to support submittal of the SAP. This Survey Area, which is shown in Figure 1-2, includes both the proposed Met Tower location (in Lease Block 6325) and the proposed Met Buoys location (in Lease Block 6375). Because the GSOE I Met Buoy is proposed in the same location as the Bluewater Met Buoys, and the Bluewater Met Tower location is only 0.5 miles away from the buoys site, much of the site-specific survey data collected and presented in the Bluewater SAPs, original and revised, is relevant to this project and has been incorporated into this SAP. Similarly, other data in the Bluewater SAPs describe site conditions at or in the vicinity of the GSOE I Met Buoy. This information has been included where applicable and/or updated where necessary.

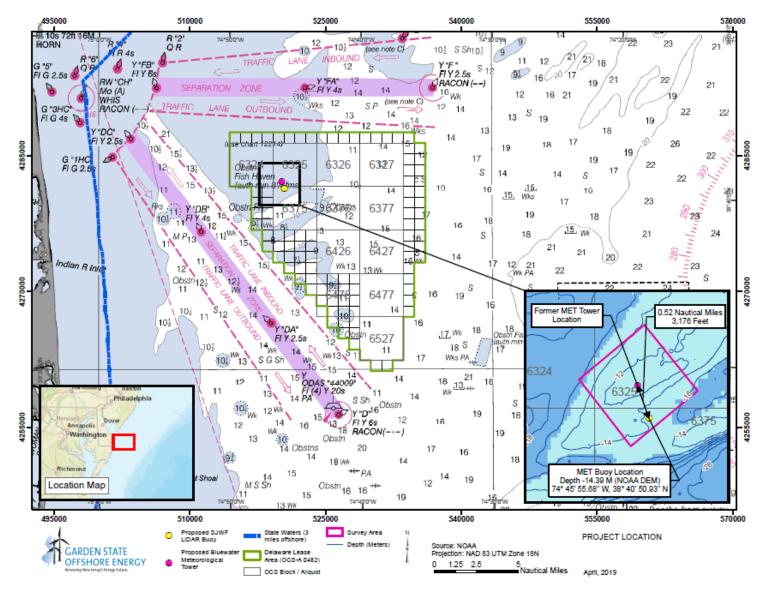


Figure 1-1. Met Buoy Location

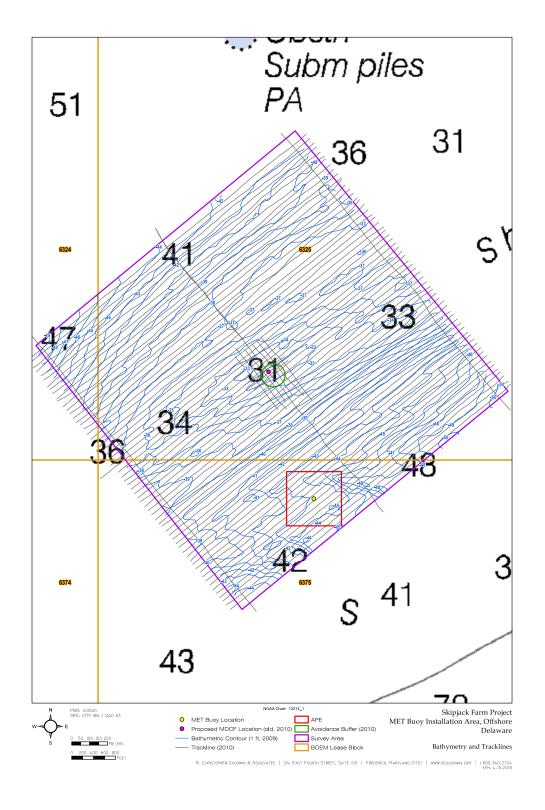


Figure 1-2. Survey Area: Bathymetry and Tracklines

A comparison was completed between the previously proposed Bluewater Met Buoys and the proposed GSOE I Met Buoy to ensure that the potential impacts did not differ significantly. In summary, the proposed GSOE I Met Buoy is expected to have a smaller impact since Bluewater proposed two met buoys and GSOE I is planning to deploy only one Met Buoy. Table 1-1 describes the basic specifications of the Buoys for comparison.

Specification	Bluewater Wind	GSOE I
Number of Buoys	2 Buoys, deployed sequentially at same location	1 Buoy
Type of Buoy	Guardian Surface Buoy (deployed first), AXYS Wind Sentinel Buoy (to be deployed after the Guardian buoy, timing unspecified)	AXYS Wind Sentinel Buoy
Mooring Type	3- to 5-ton concrete block anchor and chain	5-ton anchor and chain

Table 1-1. Buoy Specification Comparison

he Commercial Wind Lease Issuance and Site Assessment Activities on the Atlantic Outer Continental Shelf Offshore New Jersey, Delaware, Maryland, and Virginia Final Environmental Assessment (Mid-Atlantic EA, 2012) prepared in accordance with the National Environmental Policy Act (NEPA; 42 USC § 4321 et seq.), analyzed the reasonably foreseeable consequences associated with issuing commercial leases within Wind Energy Areas (WEAs), which include the Lease Area (Figure 1-1), as well as site assessment activities including the installation of meteorological towers and Met Buoys. The actions proposed within this SAP are within the limits of the activities described in the Mid-Atlantic EA, and no further environmental assessment pursuant to NEPA is necessary.

This SAP has been prepared in accordance with 30 CFR §§ 585.606, 610, and 611 (see Table 1-2), as well as the Guidelines for Information Requirements for a Renewable Energy SAP issued by BOEM on February 24, 2016. Prior to installation of the Met Buoy, GSOE I will obtain all required permits and approvals from various jurisdictional agencies as identified in Table 1-3. GSOE I will provide copies of the final agency authorizations to BOEM prior to the initiation of SAP activities. All installation, operation, and decommissioning activities will be conducted in compliance with any additional requirements stipulated in the final permits to be issued by other regulatory agencies.

This SAP has also been prepared in accordance with, and as required by, Addendum C, Section 2.1.2 of the Lease. Table 1-2 presents a summary of compliance with SAP Requirements pursuant to 30 CFR § 585.105(a), 606(a), 610(a) and (b), and 611(a) and (b) in Appendix A.

Table 1-2. SAP Requirements Purs	uant to 30 CER § 585,105(a), 606(a)	610(a) and (b), and 611(a) and (b)
Table 1-2. OAL Requirements I uis		

Requirement	Compliance Statement			
585.105(a)				
Design your projects and conduct all activities in a manner that ensures safety and will not cause undue harm or damage to <u>natural resources</u> , including their physical, atmospheric, and biological components to the extent practicable; and take measures to prevent unauthorized discharge of pollutants including marine trash and debris into the offshore environment.	GSOE I will comply with this requirement, as evidenced in this SAP.			
§ 585.606(a) Your SAP must demonstrate that you have planned and are prepared to conduct the proposed site assessment activities in a manner that conforms to your responsibilities listed in § 585.105(a) and:				
 Conforms to all applicable laws, regulations, and lease provisions of your commercial lease 	GSOE I will comply with this requirement. See Table 1-2, Table 1-3, and Appendix A.			

	Requirement	Compliance Statement		
2)	Is safe	GSOE I will comply with this requirement. Specifically, see Section 4.6.		
3)	Does not unreasonably interfere with other uses of the OCS, including national security or defense	GSOE I will comply with this requirement. See Appendix A for specific activities to ensure compliance.		
4)	Does not cause undue harm or damage to natural resources; life; property; the marine, coastal, or human environment; or historical or archeological resources	See Section 7 for an analysis of site characteristics and for avoidance and mitigation measures		
5)	Uses best available and safest technology	GSOE I will comply with this requirement. See Section 3.1 and Appendix B for a description and technical specifications on the selected Met Buoy.		
6)	Uses best management practices	GSOE I will comply with this requirement. Best management practices are described in Table 1-4.		
7)	Uses properly trained personnel	GSOE I will comply with this requirement.		
§ 58	35.610(a) For all activities you propose to conduct	under your SAP, you must provide the following information:		
	site assessment or technology testing concept	Aileen Kenney, Head of Development & Permitting 56 Exchange Terrace, Suite 300 Providence, RI 02903 Phone: 401-468-0607 Meteorological, metocean, and biological data collection		
		one stand-alone environmental monitoring buoy.		
Des	ignation of operator, if applicable	Skipjack Offshore Energy, LLC		
Cor	nmercial lease stipulations and compliance	See Appendix A		
A lo	cation plat	See Figure 1-1		
	neral structural and project design, fabrication, installation information	See Sections 3 and 4		
Dep	loyment activities	See Section 4		
Your proposed measures for avoiding, minimizing, reducing, eliminating, and monitoring environmental impacts		This SAP has been prepared in accordance with the Mid- Atlantic EA and stipulations in Commercial Lease OCS-A 0482. Specific efforts to avoid, minimize, reduce, eliminate, or monitor environmental impacts can be found in Section 7		
CV	A nomination, if required	Not applicable; See Section 1.2		
Ref	erence information	See Section 8		
Dec	commissioning and site clearance procedures	See Section 6		
Air	quality information	See Section 7.3.1		
A listing of all Federal, State, and local authorizations or approvals required to conduct site assessment activities on your lease		See Table 1-3		
A list of agencies and persons with whom you have communicated, or with whom you will communicate, regarding potential impacts associated with your proposed activities		See Table 1-3		
Fina	ancial assurance information	To be provided prior to installation activities.		
§58	5.610(b)			
Geo	otechnical			
(i) A description of all relevant seabed and engineering data and information to allow for the design of the foundation for that facility		See Section 7.1		

Requirement	Compliance Statement
Shallow Hazards	
(i) Shallow faults:	See Section 7.1.1
(ii) Gas seeps or shallow gas;	See Section 7.1.1
(iii) Slump blocks or slump sediments;	See Section 7.1.1
(iv) Hydrates; or	See Section 7.1.1
(v) Ice scour of seabed sediments.	See Section 7.1.1
Archeological Resources	
(i) A description of the results and data from the archeological survey;	See Section 7.3.3, EA 4.1.3.1
 (ii) A description of the historic and prehistoric archeological resources, as required by the National Historic Preservation Act (NHPA) of 1966, as amended. 	See Section 7.3.3, EA 4.1.3.1
Geological Survey	
(i) Seismic activity at your proposed site;	See Section 7.1.1
(ii) Fault zones;	See Section 7.1.1
(iii) The possibility and effects of seabed subsidence; and	See Section 7.1.1
(iv) The extent and geometry of faulting attenuation effects of geologic conditions near your site.	See Section 7.1.1
Biological	
(i) Live bottoms	See Section 7.2.1, EA 4.1.2
(ii) Hard bottoms	See Section 7.2.1, EA 4.1.2
(iii) Topographic features; and	See Section 7.2.1
(iv) Surveys of other marine resources such as fish populations (including migratory populations), marine mammals, sea turtles, and sea birds.	See Sections 7.2.1, 7.2.2, 7.2.3, EA 4.1.2
§ 585.611(a) and (b) Requirements	
Hazard information	See Section 7.1.1
Water quality	See Section 7.3.1, EA 4.1.1.2
Biological resources	
(i) Benthic communities	See Section 7.2.1, EA 4.1.2.2
(ii) Marine mammals	See Section 7.2.2, EA 4.1.2.3
(iii) Sea turtles	See Section 7.2.2, EA 4.1.2.4
(iv) Coastal and marine birds	See Section 7.2.3, EA 4.1.2.5
(v) Fish and shellfish	See Section 7.2.1, EA 4.1.2.7
(vi) plankton and seagrasses, and	See Section 7.2.1, EA 4.1.2.2
(vii) plant life	See Section 7.2.1, EA 4.1.2.2
Threatened or endangered species	See Sections 7.2.1, 7.2.2 and 7.2.3, EA 4.1.2
Sensitive biological resources or habitats	See Section 7.2
Archeological resources	See Section 7.3.3, EA 4.1.3.1
Social and economic resources	See Section 7.3.2, EA 4.1.3.2
Coastal and marine uses	See Section 7.3.2, EA 4.1.3.5, 4.1.3.6
Consistency Certification	See Table 1-3 Permit Matrix
Other Resources, conditions, and activities	N/A

Table 1-3. Permit Matrix

Permitting Agency	Applicable Permit or Approval	Statutory Basis	Regulations	Applicant Requirements
	Endangered Species Act Section 7 Consultation	16 USC 1536	50 CFR 402	No action required. These consultations were completed as part of the Mid- Atlantic EA.
National Oceanic and Atmospheric Administration, National Marine	Magnuson-Stevens Fishery Conservation and Management Act Section 305(b) Consultation	16 USC 1801	50 CFR 600	No action required. These consultations were as part of the Mid-Atlantic EA.
Fisheries Service	Incidental Take Authorization	Marine Mammal Protection Act	16 USC §§ 1361 <i>et seq.</i>	No action required. As detailed in Section 7.2.2 installation, operation and decommissioning of the Met Buoy will not result in the harassment of marine mammals protected under the MMPA.
U.S. Army Corps of Engineers (USACE)	Nationwide Permit No. 5 – Scientific Measuring Devices	Clean Water Act 33 USC 1342	33 CFR 320 et seq.	GSOE I will file letter to USACE documenting conformance to Nationwide Permit No. 5 conditions.
BOEM	National Historic Preservation Act Section 106 Consultation	National Historic Preservation Act 16 USC 470	36 CFR Part 60, Part 800	On April 26, 2012, BOEM made a Finding of No Historic Properties Affected for the issuance of a commercial offshore wind lease off Delaware and the subsequent approval of site assessment activities on the leasehold. In the finding, BOEM established a Programmatic Agreement with its consulting parties to continue Section 106 consultations throughout BOEM's approval processes, including the approval of any subsequent SAP(s).
	Abandoned Shipwreck Act/Consultation and Determination	Abandoned Shipwreck Act 43 USC 2101 et seq.		Appendix E includes a marine cultural resources report; that assessment along with this SAP indicates Met Buoy deployment will have no impact on submerged pre- or post-contact period archeological properties or archeologically sensitive paleosols.
United States Environmental Protection Agency (EPA)	Outer Continental Shelf Air Permit ¹	Clean Air Act 42 U.S.C. 762	40 CFR 55, 60;	Appendix D includes detailed air emission calculations and assumptions to be included in the OCS permit application
United States Coast Guard (USCG)	Approval for Private Aids to Navigation	14 USC 81	33 CFR Part 66	GSOE I (or designated representative) will file Private Aids to Navigation (PATON) applications prior to Met Buoy

¹ The proposed Met Buoy is powered by a rechargeable battery pack, that can be charged by an onboard wind turbine and/or, solar panels with an optional back-up engine generator. When powered by the wind turbine and/or solar panels, there is no potential to emit pollutants and the Met Buoy would not qualify as an OCS source under 40 CFR § 55.2. GSOE I will apply for an OCS air permit to have the option to use the back-up generator to charge the rechargeable battery pack for the MET Buoy. GSOE I may deploy the Met Buoy. once the SAP is approved, without the back-up generator option before an OCS air permit is issued.

Permitting Agency	Applicable Permit or Approval	Statutory Basis	Regulations	Applicant Requirements
				deployment.
Responsible State Agency	Coastal Zone Consistency Determination	16 USC 1451	15 CFR 930	No action required. These consultations were completed as part of the Mid- Atlantic EA.

1.1 Authorized Representative and Designated Operator

GSOE I designates Skipjack Offshore Energy, LLC (Skipjack) as the Operator for the Met Buoy. The authorized representative for GSOE I and Skipjack is Aileen Kenney, her contact information is:

Aileen Kenney Head of Development & Permitting 401-648-0607 akenney@dwwind.com 56 Exchange Terrace, Suite 300 Providence, RI 02903

1.2 Certified Verification Agent Waiver Request

Pursuant to 30 CFR § 585.610(a)(9), BOEM may require a Certified Verification Agent (CVA) to certify that the Met Buoy is designed to withstand the environmental and functional load conditions for the intended life of the Met Buoy at the Installation Area. GSOE I requests a waiver of the CVA requirement per 30 CFR § 585.705(c) because the Met Buoy is a commercially available technology that has been deployed in similar conditions. The engineering team, which includes a Professional Engineer, will review and accept the design. The engineering team will also inspect the equipment prior to installation, witness the installation, and prepare an installation report. This report will include a description of the equipment and the installation, including final coordinates of the installation site, the results of all commissioning tests, the plans and schedule for upcoming inspections and maintenance, and any noted problems or issues to be addressed.

1.3 Best Management Practices

Best management practices (BMPs) are described in Sections 1.3, 4.2.4, and 7.0. GSOE I will use many of the BMPs identified in the *Establishment of an OCS Alternative Energy and Alternate Use Program*, Record of Decision, December 2007. See Table 1-4 for a summary of these BMPs (numbering in Table 1-4 corresponds to the format of the noted Record of Decision).

Best Management Practice	Location in SAP Document
7. Avoid known sensitive seafloor habitats	Section 7.1.2
8. Avoid anchoring on sensitive seafloor habitats	Section 7.1.2
9. Minimize seafloor disturbance during installation of the equipment	Sections 7.1.2
11. Routine inspection of the facilities to monitor scouring and ensure structural integrity	Section 5.2
12. Avoid the use of explosives that may impact fish or benthic organisms	No explosives will be used for activities proposed in the SAP.
15, 16, 18, and 22 related to minimizing/avoiding vessel impacts to marine mammals and sea turtles	Section 4.3
19. Use existing data to identify important, sensitive, and unique marine habitats in the vicinity of the project and design the deployment to avoid adverse impacts to these habitats	Section 7
20. Minimize construction activities in areas containing anadromous fish during migration periods	Section 7.2.1
21. Minimize seafloor disturbance during installation of the buoy	Section 7.1
26. Minimize perching opportunities	Section 7.2.3
29. Comply with USCG lighting and marking requirements while using lighting technology that minimizes impacts to avian species	Section 4.1, 7.2.3

Table 1-4. Best Management Practices

Table 1-4. Best Management Practices

Best Management Practice	Location in SAP Document
37. Avoid impacts to the commercial fishing industry by marking the buoy(s) with USCG- approved marking and lighting to ensure safe vessel operation	Section 4.1
39. Avoid hard-bottom habitats, including seagrass communities and kelp beds	Section 7.1.2
54. Prepare an oil spill response plan	Prior to commencing installation of the Met Buoy, GSOE I will submit an Oil Spill Response Plan for review and approval to the Oil Spill Response Division of the Bureau of Safety and Environmental Enforcement. The plan will demonstrate compliance with 30 CFR 254.22(a), 254.23(a) and 254.23(g)(1).

2.0 CONFORMANCE WITH THE MID-ATLANTIC EA/FONSI AND THE COMMERCIAL LEASE

On January 20, 2012, BOEM issued a Finding of No Significant Impact (FONSI) based on the Mid-Atlantic EA (BOEM 2012). The Mid-Atlantic EA analyzed the reasonably foreseeable consequences associated with issuing commercial leases within Wind Energy Areas (WEAs), which include the Lease Area (Figure 1-1), as well as site assessment activities including the installation of meteorological towers and monitoring buoys. The Met Buoy and associated equipment proposed is consistent with the equipment that has been analyzed in the Mid-Atlantic EA. BOEM identified several mitigation measures or Standard Operation Conditions (SOCs) in the Mid-Atlantic EA for buoy installation, operation, and decommissioning. The SOCs were developed by BOEM in consultation with other Federal and State agencies to minimize the potential environmental risks to or conflicts with individual environmental and socioeconomic resources upon issuance of a commercial lease for site assessment and characterization activities. BOEM has issued stipulations for GSOE I's lease-specific site characterization activities and site assessment activities in the Lease Area based upon these SOCs. Appendix A and Section 7 of this SAP demonstrate how GSOE I will conform to the stipulations outlined in the Commercial Lease documents.

3.0 PROJECT DESCRIPTION AND OBJECTIVES

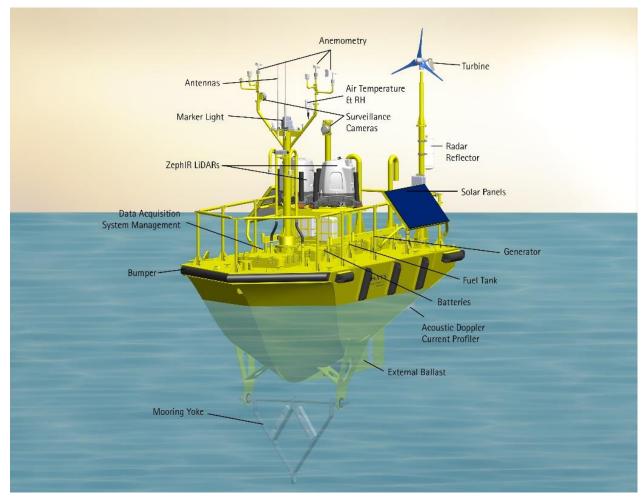
3.1 **Project Description**

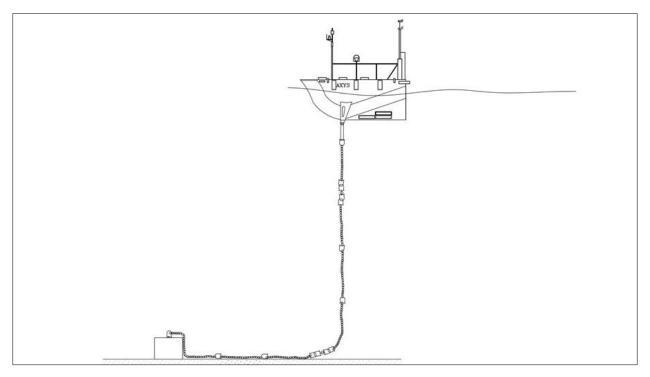
The Met Buoy will be deployed for the purpose of collecting wind resource, metocean, and biological data to support development of offshore wind energy within the Lease Area. The meteorological data will be used to model energy production estimates.

GSOE I has selected a state-of-the-art Met Buoy that incorporates the best available technology. Design drawings of the technology proposed are provided in Appendix B. The Met Buoy will consist of instrumentation systems and supporting systems atop an instrumentation panel platform (Figure 3-1). The floating platform consists of the AXYS Navy Oceanographic Meteorological Automated Device (NOMAD) hull, mooring chain, and clump weight anchor (Figure 3-2). The NOMAD hull consists of marine grade aluminum and measures 19.7 feet (6 meters) in length by 10.2 feet (3.1 meters) in width. The vertical profile of the Met Buoy including instrumentation will be approximately 13.8 feet (4.2 meters) from the sea surface to the top of the hull mast. The submerged portion of the hull will measure approximately 11.5 feet (3.5 meters) below the sea surface from the water line to the bottom of the mooring yoke. The outer hull is finished with a marine grade epoxy and polyurethane yellow paint and bumpers.

The hull has also been designed with consideration for avian species. Landing areas have been minimized, and anti-perching devices will be installed.

The Met Buoy will be moored to the seabed by a 5-ton clump weight anchor representing a 27-square foot (2.5-square meter) contact area with the bottom. The anchor and buoy are connected via 250 feet (76.2 meters) of 1.25-inch (3.2-centimeter) mooring chain providing a chain to water depth scope of 5:1. The maximum total footprint of the proposed buoy including impacts from anchor chain sweep during operations is approximately 142,870 square feet (3.3 acres, 13,273 square meters). Anodes will be installed on the mooring yoke and hull for corrosion protection.




Figure 3-1. AXYS FLiDAR 6M™ Meteorological Buoy

A single or dual light detection and ranging (LiDAR) instrumentation package will be installed atop the hull. The LiDAR unit is a wind profiling device capable of remotely collecting wind data at heights up to 656 feet (200 meters) above the platform level. Each LiDAR unit is approximately 3.3 feet (1 meter) in height. In addition to the LiDAR package, the Met Buoy instrumentation package consists of the following sensors:

- a wave sensor for measuring wave height, direction, and period;
- acoustic doppler current profiler for measuring current speed and direction;
- wind anemometer for measuring surface wind speed and direction;
- a sensor for measuring air temperature and relative humidity;
- barometric pressure sensor or measuring ambient air pressure; and
- an avian and bat monitor sensor.

Supporting systems for navigational aids, power supply, position tracking, and remote monitoring and data acquisition will also be installed atop the hull, including the following components:

- navigation aids such as lights, radar reflectors, and broadcasting devices;
- rechargeable batteries, powered by onboard wind turbines, solar panels, and a backup generator;
- global positioning system (GPS) and motion sensor for recording and transmitting Met Buoy position; and
- onboard computers, antennas, and cameras for system monitoring and data acquisition, processing, and transmission.

Figure 3-2. Mooring Arrangement Met Buoy

As described in the Mid-Atlantic EA (BOEM 2012), the project site is seasonally subject to periodic hurricanes and other extreme weather events. The proposed 5-ton anchor and a 250-foot long chain (scope

of approximately 5 times the water depth at the GSOE I buoy location) have been designed to withstand these expected weather and oceanographic conditions.

3.2 Site Location

The Met Buoy will be deployed at or about 74° 45' 55.68" W, 38° 40' 50.93" N (installation location) within the OCS Official Protraction Diagram Salisbury, NJ 18-05 Lease Block 6375 aliquot A located in the Lease Area (see Figure 1-1). The Lease Area rests between the incoming and outgoing shipping routes for Delaware Bay and is made up of 11 whole OCS blocks and 16 partial blocks. The proposed Met Buoy site is located approximately 14 nautical miles (25.9 kilometers) offshore of Rehoboth Beach, Delaware at a water depth of approximately 43.5 feet (13.2 meters). The entire Lease Area is approximately 96,430 acres; (39,024 hectares) (BOEM 2012).

3.3 Schedule

GSOE I is proposing to deploy the Met Buoy in early 2019. The operational life of the Met Buoy is anticipated to be 6 years. A minimum deployment of one-year is planned, with extensions of 4 months up to 1 year or more possible. The Met Buoy will be decommissioned at the end of its operational life as described in Section 6.

4.0 DEPLOYMENT / INSTALLATION

Installation of the Met Buoy is planned over a one to four day installation period, barring weather delays, and will be staged from the Port of Wilmington, Delaware, or comparable existing port in the mid-Atlantic.

4.1 Overview of Installation and Deployment Activities

As part of the mobilization process, GSOE I will notify mariners and other users of the area by submitting a request to the USCG for publication of a Local Notice to Mariners (LNM) prior to the start of the in-water work. This notice will include the contact names for the installation vessels, channels of communication, and the duration of the work. Copies of all USCG communications will be provided to BOEM as required. Additionally, in accordance with standard maritime practices, the vessel captain(s) will broadcast via very high frequency (VHF) radio on Marine Channel 16 notification to mariners of their position and limited mobility during installation activities and submit an application to the USCG for a private aid to navigation (PATON) for the Met Buoy (see Table 1-3).

The installation process will be completed in two stages. The first stage will consist of installation of the clump weight anchor and mooring chain. The second stage will consist of connection of the hull to the mooring chain.

Upon commencement of the work, the installation vessel will position itself near the clump weight anchor deployment location. A marker float and rope will be attached to the free end of the mooring chain section that is connected to the clump weight and released into the water. This section of the mooring chain will then be released into the water. The installation vessel will adjust its position as necessary prior to deploying the clump weight. Upon reaching the desired location, the clump weight will be lifted via an A-frame or crane from the installation vessel into the water and lowered to the desired location. GSOE I may elect to utilize a Remotely Operated Vehicle to observe the underwater installation.

The Met Buoy installation will occur either by towing the hull to the site or by deploying from the deck of the installation vessel. The installation vessel and/or support tug will retrieve the marker float connected to the previously deployed anchored mooring chain. The anchored section of the mooring chain will be

connected via shackle to the section connected to the mooring yoke on the hull of the Met Buoy. The completed mooring will then be released into the water. Post installation checks will be completed, including visual checks of the mooring behavior and buoy movement.

4.2 Vessels

A qualified marine contractor will be employed to transport and deploy the Met Buoy under the management and direction of the buoy manufacturer. The marine contractor is expected to use the vessel types described in Table 4-1. Specific vessels will be identified prior to installation.

Vessel Type	Approximate Dimensions	Lifting Capacity	Remarks
Work Vessel	120' x 30'	30 tons	Flat-topped barge or comparable work vessel with sufficient deck space to store and secure clump weight, mooring chain, hull, and all miscellaneous monitoring equipment to be installed on the Met Buoy. May use anchors or dynamic positioning for station keeping.
Handling Tug	49' x 15'	24	Ocean-going tug for moving the work barge, anchor handling, and installation support.
Crew Boat	TBD	N/A	30-person crew boat to bring personnel to the work vessel twice per day as needed.

Table 4-1. Vessels to be Used for Met Buoy Installation

The installation vessel will utilize a two- to four-point anchor or dynamic positioning system to hold position during installation activities. Vessel anchors will consist of up to four 4-ton anchors, each covering an area up to 10 feet by 10 feet (3 meters by 3 meters) to a depth of up to 12 feet (3.7 meters). The anchor radius for a typical installation vessel will be up to approximately 2,000 feet (600 meters).

4.3 Protected Species Avoidance

All marine mammals are federally protected by the Marine Mammal Protection Act of 1972 (as amended through 2015), and most large whales and sea turtles, as well as any federally listed species of fish in the region are further protected under the Endangered Species Act (ESA).

Lease stipulation 4.1.1 specifies that all vessels conducting activities in support of this SAP submittal comply with the vessel-strike avoidance measures specified in stipulations 4.1.1.1 through 4.1.1.7, except under extraordinary circumstances when the safety of the vessel or crew is in doubt or the safety of life at sea is in question. These measures, as specified in the Commercial Lease Addendum C, are presented in Appendix A.

During all phases of SAP activities, GSOE I will also ensure that sightings of any injured or dead protected species (e.g., marine mammals, sea turtles, or sturgeon) are reported to BOEM, National Marine Fisheries Service (NMFS), and the NMFS Northeast Regional Stranding Hotline within 24 hours of sighting. If necessary, GSOE I will file an Incident Report, an example of which is included as Appendix F.

4.4 Marine Trash and Debris Awareness and Elimination

GSOE I will ensure that all employees and contractors are briefed on marine trash and debris awareness elimination, as required in Addendum C, Section 4.1.2 of the Lease and as described in the Bureau of Safety and Environmental Enforcement (BSEE) NTL No. 2015-G03 which has superseded NTL 2012-G01.

4.5 Oil Spill Response Plan

The Met Buoy will carry approximately 225 gallons of diesel to provide fuel for the backup generator. Prior to deploying the Met Buoy, GSOE I will submit an Oil Spill Response Plan for review and approval to the Oil Spill Response Division of the BSEE. The plan will demonstrate compliance with 30 CFR 254.22(a), 254.23(a), and 254.23(g)(1).

4.6 Health and Safety

GSOE I will implement a project-specific Health and Safety Plan to protect the health and safety of all personnel involved in the deployment, operation and maintenance, and decommissioning of the Met Buoy system. The plan will also address incident response and reporting requirements in the event of an accident.

Prior to the installation of the Met Buoy, all personnel will attend a Health, Safety, and the Environment (HSE) and installation plan briefing. In addition to HSE, the briefing will also establish responsibilities of each person, define the chains of command, discuss communication procedures, and provide an overview of planned installation activities and emergency procedures. New personnel will be briefed as they join the work in progress. Additional topics for the briefing include protected species avoidance, marine trash and debris awareness, and oil spill response procedures.

5.0 OPERATIONS AND MAINTENANCE

5.1 Data Collection and Operations

The Met Buoy will remain moored in position and transmit data autonomously via a satellite telecommunications link. The Met Buoy operator, AXYS Technologies, has developed a system (WatchCircle) to monitor buoy position. The WatchCircle uses buoy coordinates from the onboard GPS receiver to determine whether the buoy is within a predefined area. If the buoy were to drift out of its WatchCircle, a satellite transmitter is activated, and location messages are transmitted, enabling the tracking of the buoy until recovered. Use of the satellite transmitter enables a redundant position message to be received even if other telemetry systems are not available. The WatchCircle for the proposed system (also identified as the drift radius) is 50-55 meters.

Operating status, including buoy power supply and GPS position, will be monitored remotely by a shore side base. Data packets including 10-minute average min/max/mean speed and direction will be downloaded daily for analysis. Routine operations will be limited to checking system status and data validation, troubleshooting, and remote resets if necessary.

5.2 Maintenance Activities

Planned maintenance will be conducted semi-annually, consisting of at-sea and/or onshore inspections. Work at sea will be completed by vessels comparable or smaller to the installation vessel. Planned maintenance activities will include replacement of consumables, service of sensors, data retrieval, and an annual visual inspection of the mooring system to ensure integrity of the configuration and equipment and to assess scour. Additional detail regarding the maintenance schedule is provided below:

• An at sea inspection of the buoy will be completed at the 6-month mark. A second inspection will be completed at 1 year, including a visual inspection of the mooring system, if the campaign is extended beyond 12 months. If the Met Buoy campaign is not extended beyond 12 months the buoy will be recovered with no 1-year inspection.

- If the Met Buoy campaign is extended beyond 16 months, the buoy will be recovered, and an onshore inspection will be completed.
- Emergency maintenance may be conducted, as needed.

5.3 Reporting

A copy of the maintenance and inspection report will be provided to BOEM with Semi-Annual Progress Reports required by the Commercial Lease (Stipulation No. 2.2.1) or upon request.

5.4 Potential Faults or Failures

The Met Buoy will be remotely monitored for the duration of operations. Unplanned maintenance activities may be required in the event of a power supply failure, hull leak, buoy drift outside designated area, mooring component failure, or other such event. If any of these problems are suspected, a technical service crew will be promptly dispatched to investigate and repair the issue. The Met Buoy is capable of operating at full capacity without renewable power or backup generator supply to the batteries for up to one week.

6.0 DECOMMISSIONING

BOEM requires decommissioning of facilities described in the SAP in accordance with § 585.901. GSOE I will submit a decommissioning application to BOEM as required by § 585.902(b) prior to decommissioning of the Met Buoy. Following BOEM approval of the decommissioning application, GSOE I will notify BOEM at least 60 days prior to vessel deployment.

6.1 Overview of Decommissioning Activities

Upon completion of SAP activities, the Met Buoy will be decommissioned. The decommissioning process will be similar to the installation process but in reverse. Similar types and numbers of vessels used for the installation of the Met Buoy will be used for decommissioning. The work vessel will position itself on-site to detach the hull from the mooring chain and attach float markers to the loose ends of the mooring chain. The Met Buoy and mooring chain will either be recovered to the vessels deck or towed off site. The clump weight will be connected to the crane or A-frame of the work vessel and recovered to the vessels deck.

6.2 Site Clearance Survey

Following decommissioning, GSOE I will conduct a photographic or video bottom survey to provide objective evidence to BOEM that the area has been cleared as required in § 585.902(a)(2). The operation of the Met Buoy is not expected to result in any trash or bottom debris.

6.3 Reporting

As specified in the Commercial Lease, Addendum C (see Appendix A), GSOE I will submit a final progress report to BOEM at the conclusion of the activities covered by the SAP or at the conclusion of the site assessment term, whichever comes first. GSOE I will notify BOEM of decommissioning activities in accordance with § 585.900-913. The notification and reporting process involves the following requirements:

• Prior to decommissioning, GSOE I will submit a decommissioning application to BOEM in accordance with § 585.902 and § 585.905. GSOE I will notify BOEM six months prior to decommissioning to allow BOEM sufficient time to respond.

- Once BOEM approves the decommissioning application, a decommissioning notice must be submitted to BOEM at least 60 days before commencing decommissioning activities.
- If an archaeological resource is discovered while conducting decommissioning activities, bottomdisturbing activities within 1,000 feet of the discovery will be halted. The discovery will be reported to BOEM within 72 hours. BOEM will inform GSOE I on how to proceed. The discovery will be kept confidential outside of required BOEM notifications.
- GSOE I will provide BOEM with documentation of any coordination efforts made with other agencies regarding decommissioning activities.
- GSOE I will submit a decommissioning report to the BOEM within 60 days of completion of the decommissioning activities.

7.0 AFFECTED ENVIRONMENT, POTENTIAL IMPACTS, AND MITIGATION MEASURES

In February 2012, BOEM issued a FONSI based on the final Mid-Atlantic EA (BOEM 2012). The Mid-Atlantic EA analyzed the reasonably foreseeable consequences associated with issuing commercial leases in the four identified WEAs, which included an evaluation of the Lease Area (see Figure 1-1), as well as site characterization activities (geophysical, geotechnical, and certain biological surveys) and site assessment activities which included the installation of meteorological towers and Met Buoys. In addition, the Commercial Lease includes specific requirements for collecting data and avoiding and/or minimizing impacts to biological, historical, and cultural resources as well as other activities, such as other social, economic, and marine uses that may occur in the Lease Area.

A detailed understanding of the biological resources, archaeological resources, and geophysical and geotechnical conditions has been developed through site surveys and analyses that were conducted between 2006 and 2011 within a 1 nautical mile by 1 nautical mile (1.8 kilometer by 1.8 kilometer) survey area that encompasses the proposed installation location for the Buoy (see Figure 1-1). These study results are included as Appendices C through E of this SAP and are summarized in the following sections.

While these site surveys and analyses were originally conducted to support the installation of a fixedplatform meteorological tower within the Lease Area, they were conducted per BOEM requirements under agency-approved survey protocols. The proposed Met Buoy installation location is within the previously surveyed area (see Figure 1-2), and the existing analyses have been used or updated, as appropriate, in this SAP.

Area of Potential Effect

An area 1,000 ft by 1,000 feet (305 m by 305 m) centered on the buoy location and measuring approximately 22.9 ac (9.3 ha) has been conservatively assessed as the Project's Area of Potential Effect (APE) for all activities including installation, operations, and decommissioning (Figure 1-2), with a vertical extent of 12 ft (3.7 m). The vertical APE accounts for potential seabed impacts during anchoring activities to support installation and decommissioning procedures. This APE is based on the project description and installation/decommissioning details provided in Sections 3 through 6 above, and as summarized below:

• The Met Buoy will be moored to the seabed by a 5-ton anchor representing a 27-square foot (2.5-square meter) contact area with the bottom. The anchor and buoy are connected via 250 feet (76.2 meters) of 1.25-inch (3.2-centimeter) mooring chain providing a chain to water depth scope of 5:1. The maximum total footprint of the proposed buoy including impacts from anchor chain sweep during operations is approx. 142,870 square feet (3.3 acres, 13,273 square meters).

• The installation vessel will utilize a two to four-point anchor or dynamic positioning system to hold position during installation activities. Vessel anchors will consist of up to four 4-ton anchors, each covering an area up to 10 ft by 10 ft (3 m by 3 m) to a depth of up to 12 ft (3.7 m). The anchor radius for the installation vessel will be up to approximately 175 ft (53.3 m). Vessels used for decommissioning will be similar to those used for installation.

While bottom disturbing activity associated with the Met Buoy will be limited to the mooring, anchor sweep, and vessel anchoring areas, the larger APE was evaluated to provide maximum flexibility for vessel anchoring during deployment, maintenance and decommissioning.

7.1 Geologic Conditions

Affected Environment

The proposed Met Buoy site is located approximately 14 nautical miles (25.9 kilometers) offshore of Rehoboth Beach, Delaware at a water depth of approximately 43.5 feet (13.2 meters) mean lower low water (MLLW) in the Delaware Shelf Valley of the Mid-Atlantic Bight (MAB). The information on geologic conditions associated with the proposed installation location is based on data from several field surveys and reports from a 1.0 nautical mile by 1.0 nautical mile (1.8 kilometer by 1.8 kilometer) survey area (Figure 1-2) that encompasses the installation location of the proposed Met Buoy.

Geophysical and geotechnical studies were conducted between 2006 and 2010 in the Survey Area. A geotechnical hazards assessment (Fugro 2010b) based on this survey data is included as Appendix C. Although the Fugro report was prepared specifically to discuss a Met tower, the data collected and presented in the report describes the overall Survey Area, including the proposed Met Buoy location, and therefore, is also relevant to this submission. Information from the report specific to the Met Buoy site and vicinity are discussed below and summarized in Table 7-1.

Collected data indicated that surface sediments in the survey area were comprised primarily of medium to fine sand (Fugro 2010b). Three scales of bedforms were observed in the acquired geophysical data that were inferred to reflect bottom current flows of different duration, intensity, and direction. The proposed buoy anchor location is situated on the southeast flank of a northeast-southwest-trending ridge. This sand ridge is the largest of the three bedforms present in the survey area. Two types of smaller bedforms were found superimposed on the ridge and adjacent swales. Dunes approximately 4 feet (1.2 meters) in height were mapped on the southeastern flank of the larger ridge, and smaller ripples were mapped throughout the area (Fugro 2010b).

A seismic reflection investigation conducted in 2009 and 2010 mapped nine seismic units underlying the Survey Area to a depth of 460 feet (140.2 meters) below the seafloor (Fugro 2010b). The seismic reflection data, along with sub-bottom profiler (CHIRP) data collected during the same survey, were used to map the subsurface stratigraphy. The upper four of the seismic reflection units correlated well to sediment stratigraphy defined in the boring log from boring B-102, drilled in 2007 at the originally proposed meteorological tower site to a depth of 167 feet (50.9 meters) below the mudline. Subsurface sediments were interpreted to be comprised of alternating layers of unconsolidated sand and clay sediments.

Magnetometer data collected in the Survey Area in 2009 and in 2010 (Fugro 2010b) indicated no anomalies at the buoy location or in the vicinity that would interfere with buoy installation or decommissioning.

A scour study conducted for the Survey Area (Fugro 2010a) concluded that sediments in the area are frequently suspended and that long-term sediment transport and scour due to wave and current flow

should be expected. Using estimated peak current speeds of about 3ft/s at the anchor location with average speeds of 1ft/s, AXYS has proposed a 5-ton anchor for the Met Buoy. This anchor type and size are appropriate for anticipated conditions at the site and AXYS is confident that the anchor will hold its position and the mooring integrity will be maintained. Any potential scour around the low profile (1 foot/ 330mm high) anchor will be minimal and localized. Evidence of scour at the anchor location will be assessed during regular maintenance; however, it is not anticipated to be a problem for the Met Buoy or mooring system given the relatively short-term deployment and limited size of the anchor.

Table 7-1 summarizes additional hazard information at the location of the proposed Met Buoy from the Fugro report (Fugro 2010b, Appendix C).

Hazard	Definition	Identified and Description
Seafloor		
Scarp	An exposed face of soil above the head of a landslide	None present
Channels	The deepest portion of a body of water through which the main volume or current of water flows	None present
Ridges	A relatively narrow elevation which is prominent on account of steep angle at which it rises	Sand ridges described with typical relief of 15- 25 feet, 0.5 to 1.5 Nm wide and 5-15 Nm long with gradient 0.45 degrees (0.8 percent) at location of Met Buoy
Bedforms	Features that develop due to the movement of sediment by the interaction of flowing water; critical angle and forces required for movement are dependent upon many factors	Dunes approximately 4 feet (1.2 meters) in height were mapped on the southeastern flank of the larger ridge in the vicinity of the Met Buoy location, and smaller ripples were mapped throughout the survey area
Exposed Rocky Area	Surface expression of bedrock outcropping on seafloor	Bedrock surface not resolved within project depth of interest
Boulders	Glacial erratics (boulders) greater than 12 inches in diameter (USCS); outcropping coarse till/drift or lag deposit	None present
Buried Boulders	Glacial erratics (boulders) greater than 12 inches in diameter (USCS); subsurface coarse till/drift or lag deposits	None detected
Pock Marks / Depressions	Craters in the seabed caused by fluids (gas and liquids) erupting /streaming through the seabed sediments	None present
Seabed Scars / Ice Scour / Drag Marks	Incisions or cuts into the seafloor may be associated with glacial advances/retreats or bottom fishing activity	None present
Buried Channels	Former fluvial drainage pathways during sea level low stands, usually only deepest portion of the waterway in-filled and preserved; Mark ancestral patterns of glacier meltwater runoff	None present
Submarine Canyons	Steep-sided valley cut into the seafloor of the continental slope, sometimes extending well onto the continental shelf	None present
River Channel	Outline of a path of relatively shallow and narrow body of fluid	N/A
Exposed Hardbottom Surfaces	Any semi-lithified to solid rock strata exposed at the seafloor; in this area, may include bedrock or a nearly continuous pavement of fragmented rock or boulders	None present
Shallow Gas	Subsurface concentration of material in gaseous form that has accumulated by the process of decomposition of carbon- based materials (former living organisms)	Inferred observations by geophysical signature in shallow subsurface; no geophysical anomalies suggesting presence of natural gas in the Met Buoy project area.

Table 7-1. Seafloor and Sub-Seafloor Hazards

Hazard	Definition	Identified and Description
Gas Hydrates	Subsurface gas deposits that were formed at or near the seafloor in association with hydrocarbon seeps	None present
Gas/Fluid Expulsion Features	Upward movement of gas/fluid via low resistance pathways through sediments onto the seafloor; may be related to other hazards diapirs, faults, shallow water flows)	None present
Diapiric Structure Expressions	The extrusion of more mobile and ductily deformable material forced onto the seafloor from pressure below	None present
Karst Areas	Landscape formed from the dissolution of soluble rocks	N/A
Faults, Faulting Expression, Fault Activity	Physiographic feature (surface expression) related to a fracture, fault, or fracture zone along which there has been displacement of the sides relative to one another	None present
Slumping, Sliding Seafloor Features	Large-scale structures that result from the downslope movement of sediments due to instability and gravity. In the submarine environment these structures are often found in slope environments along coastal margins	None present
Steep/Unstable Seafloor Slopes	Large-scale feature/stretch of ground forming a natural or artificial incline, with a slope that approaches the angle of repose (maximum angle at which the material remains stable)	None present
Scour/Erosion Features	Erosion of material due to water flow. Often associated with erosion adjacent to larger natural and man-made structures	None present
Sensitive Benthic Habitats (chemosynthetic communities, SAV)	Shallow water habitats of submerged aquatic vegetation (SAV) including macroalgae and sea grasses	None present

Potential Impacts and Proposed Mitigation Measures

Based on the results of the aforementioned studies and the results of the Mid-Atlantic EA, the site conditions are suitable for the installation of the Met Buoy and associated mooring equipment. No notable hazards have been identified which will preclude installation at this location.

Due to possibility of scour around the Met Buoy anchors, evidence of scour at the anchor locations will be investigated during regular maintenance, if required. It is not anticipated to be a problem for the Met Buoy or mooring system. Additional maintenance surveys will be conducted, as needed, following major storm events to monitor for movement of the anchors, sediment deposition, and/or scour around the anchors.

7.2 Biological Resources

7.2.1 Benthic and Fisheries Resources

Affected Environment

During information gathering for the Bluewater Wind Delaware SAP, Bluewater and Tetra Tech (2013) concluded the area for deployment of the meteorological buoy was predominantly medium to fine grain sand and "does not support any seagrasses, hardbottom, livebottom, or any other unique habitat feature."

GSOE I assessed benthic habitat conditions at the proposed Met Buoy site using the Marine Cadastre Viewer (NOAA and BOEM 2013) and the MARCO Mid-Atlantic Ocean Data Portal, including data from The Nature Conservancy's Benthic Habitat Model (Greene et al. 2010) This data on benthic habitat distribution, including sensitive areas (e.g., protected areas, sanctuaries, current and past fisheries sites, archaeological resources that could act as habitat, and general formations of sub-sea banks, canyons, and rocky outcrops) is described below and shown in Figure 7-1.

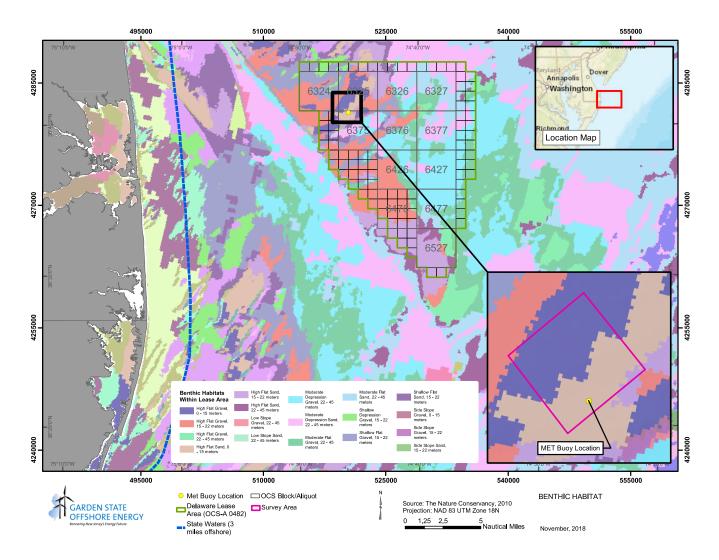


Figure 7-1. Benthic Habitats in Project Area

The Nature Conservancy's Northwest Atlantic Marine Ecoregional Assessment (Greene et. al. 2010) maps benthic habitats based on ecological marine units representing a combination of the depth, sediment grain size analysis and seabed forms. As shown in Figure 7-1, benthic habitat at the Met Buoy location is characterized as High Flat Sand (0-15m depth).

Grain size results from sediment samples taken in the vicinity of the proposed Met Buoy installation location (Fugro 2010b, Figure 20C) indicate surficial sediments were visually classified as medium to fine sand. This type of sandy substrate provides habitat for a diversity of benthic invertebrates and likely dominated by nematode worms, polychaete worms (Phylum: Annelida), and to a lesser extent, mollusks and small crustaceans. (BOEM 2012).

BOEM defines sensitive benthic habitat as "areas where information suggests the presence of exposed hard bottoms of high, moderate, or low relief; hard bottoms covered by thin, ephemeral sand layers; seagrass patches; algal beds; anthozoan species" (BOEM 2013, 2014). Guida et. al. (2017) mapped physical habitat

features in the Delaware Lease Area, including at the Met Buoy location. The results, as shown in Figure 7-2, do not indicate the presence of hardbottom, corals, or other sensitive habitats at the Met Buoy location.

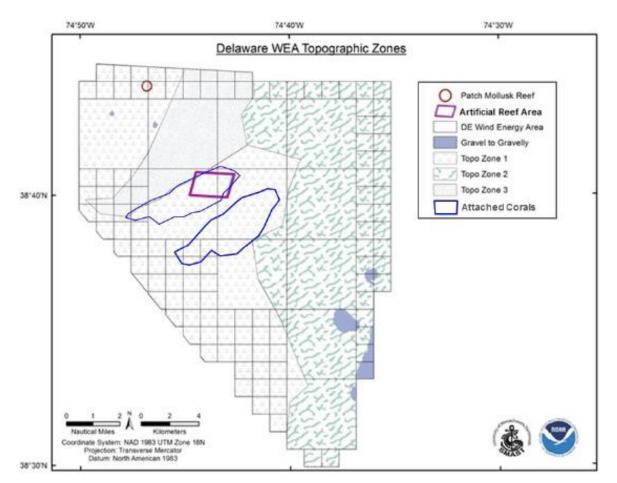


Figure 7-2. Physical Benthic Habitat Features of the Delaware Lease Area (Source: Guida et.al. (2017)

Many habitat and oceanic factors affect the abundance and distribution of fish within the waters of the MAB, such as temperature, salinity, pH, physical habitat, and currents (Helfman et al. 2009). The influence of these factors on fish abundance and distribution varies on multiple spatial and temporal scales. The fish of the Lease Area can be classified primarily as temperate species, but also include subtropical-tropical and highly migratory species (Helfman et al. 2009) that occur over vast geographic areas as they follow seasonal temperature isotherms (Olney and Bilkovic 1998). Unlike pelagic and migratory species, demersal fish have a close affinity to the benthic zone and rely on habitat complexity (e.g., hardbottom, reef) for foraging and shelter. Pelagic fish can be broadly categorized into horizontal and vertical distributions in the water column, with the highest number and diversity occurring where the habitat is most diverse (Helfman et al. 2009; Moyle and Cech 1996; Parin 1984). Given the homogeneity of the sandy, benthic habitat at the Met Buoy installation location, a high density or diversity of finfish at this proposed location is unlikely, and those that are found here are likely to be transient.

The Magnuson-Stevens Fishery Conservation and Management Act of 1976, as amended through 1996 (Magnuson-Stevens Act; Public Law 94-265), is the primary law governing marine fisheries management in Federal waters. NMFS administers the law and works with regional fishery management councils to identify, map, and describe essential fish habitat (EFH) for managed species. The Magnuson-Stevens Act

includes a mandate to protect EFH and requires Federal agencies to consult with NMFS on activities that may adversely affect EFH. The Magnuson-Stevens Act defines an adverse effect as any impact that reduces quality and/or quantity of EFH and may include direct (e.g., contamination or physical disruption) and indirect (e.g., loss of prey or reduction in species) effects. Any action that could adversely affect EFH must work with NMFS to identify steps for conserving the habitat and reducing impact of that action.

The installation location is contained within a 10 minute by 10 minute EFH block bounded by coordinates 38° 50.0 N, 74° 40.0 W, 38° 40.0 N, 75° 50.0 W. EFH at this location includes the species listed in Table 7-3. Based on the limited and temporary impacts from the Met Buoy installation to the homogeneous and plentiful marine habitat in the area, it is unlikely to have adverse impacts to EFH for the species listed.

Common Name	Species	EFH Prese	EFH Presence by Life Stage Found in vicinity of Lease Area			
		Eggs	Larvae	Juveniles	Adults	
bluefish	Pomatomus saltatrix	Х	х	х	Х	
Atlantic butterfish	Peprilus triacanthus	Х	Х	Х	Х	
spiny dogfish	Squalus acanthias			Х	Х	
summer flounder	Paralichthys dentatus		Х	Х	Х	
scup	Stenotomus chrysops			Х	Х	
black sea bass	Centropristis striata		Х	Х		
Atlantic mackerel	Scomber scombrus				Х	
Atlantic surfclam	Spisula solidissima			Х	Х	
albacore tuna	Thunnus alalonga			Х		
sand tiger shark	Carcharias Taurus		X (neonate)	х	Х	
Atlantic angel shark	Squatina dumeril	Х	Х	Х	Х	
Atlantic sharpnose shark	Rhizoprionodon terraenovae				Х	
dusky shark	Carcharhinus obscurus		X (neonate)	Х		
sandbar shark	Carcharhinus plumbeus		X (neonate)	х	Х	
shortfin mako shark	Isurus oxyrinchus	Х	Х	Х	Х	
skipjack tuna	Katsuwonus pelamis				Х	
tiger shark	Galeocerdo cuvier			х		
smoothhound shark	Mustelus mustelus	Х	Х	Х	Х	
bluefin tuna	Thunnus thynnus			Х	Х	
yellowfin tuna	Thunnus albacares			х		
thresher shark	Alopias vulpinus	Х	х	х	Х	
Northern shortfin squid	Illex illecebrosus			х		
longfin inshore squid Doryteuthis pealeii				Х	Х	

Table 7-1. List of species and life stages for which EFH is designated in the vicinity of the Lease Area.

In addition to EFH designations, NMFS also designates aquatic habitats for Atlantic Highly Migratory Species (AHMS) and Habitat Areas of Particular Concern (HAPC). HAPCs are established to help prioritize conservation areas and mapped subsets of EFH that provide important ecological functions or are vulnerable to degradation. There are no HAPCs near the proposed Met Buoy installation area. Based on the National Oceanic and Atmospheric Administration (NOAA 2017a) EFH online mapper, of the 23 species with designated EFH for the installation area, two are classified as AHMS: the bluefin tuna and the sand

tiger shark (BOEM 2017). However, the HAPCs for these two species are located in the Gulf of Mexico and Delaware Bay, respectively.

In addition to the aforementioned EFH species, two ESA-listed species, the Atlantic sturgeon and giant manta ray (*Manta birostris*), have the potential to occur within the vicinity of the proposed Met Buoy installation location. The preferred habitat and life histories of those two fish species relative to the location of the Met Buoy installation site are discussed below.

Atlantic sturgeon

Atlantic sturgeon spawn in freshwater riverine habitats but spend most of their adult life in the marine environment. The exact locations of spawning and nursery grounds for Atlantic sturgeon are not well known. Atlantic sturgeon spawning is believed to occur in flowing water between the salt front and fall line of large rivers. In the Mid-Atlantic coast, Atlantic sturgeon are known to spawn in the Delaware River and James River. After hatching, young-of-year (greater than 3 months and less than 1 year) move downstream to freshwater rearing grounds and eventually to brackish waters where they become residents in estuarine waters for months or years (ASSRT 2007).

Upon reaching a size of approximately 76 to 92 centimeters (2.4 to 3.0 feet), the Atlantic sturgeon subadults (i.e., greater than 1 year but not sexually mature) may move to coastal waters. Large subadults and adults have been shown to migrate long distances along the east coast (COSEWIC 2011). Coastal features or shorelines where migratory Atlantic sturgeon commonly aggregate include the Bay of Fundy, Massachusetts Bay, Rhode Island, New Jersey, Delaware, Delaware Bay, Chesapeake Bay, and North Carolina, but the fish` return to their natal river to spawn.

Important habitats for adult and subadult Atlantic sturgeon appear to be rivers with deep channels and access to the sea, estuaries with relatively warm, mesohaline conditions (salinity equals 5 to 25 parts per thousand (ppt)), and a coastal shelf region to at least 50 meters (164 feet) in depth dominated by gravel and sand substrates (COSEWIC 2011). While there are suitable depths and substrates present in the larger Lease Area (that could provide habitat to Atlantic sturgeon juveniles and/or adults during their coastal migrations in portions of the year during offshore migrations), conditions present in the vicinity of the Met Buoy installation location do not provide preferred habitat for Atlantic sturgeon.

Giant manta ray

Recently listed as a threatened species under the ESA in January 2018 by NMFS, the giant manta ray is a wide-ranging species inhabiting tropical, subtropical, and temperate waters worldwide. Very little information is available on giant manta populations in Atlantic waters, though they are observed as far north as coastal New Jersey (NOAA 2017b; NOAA 2018). Giant mantas are a migratory species commonly found offshore in oceanic waters and near productive coastlines with regular upwelling; including oceanic island groups, offshore pinnacles and seamounts (NOAA 2018). Giant mantas are capable of covering long distances, though recent studies conducted in waters off of coastal Mexico suggest that some populations demonstrate high degrees of residency and have shown connectivity between coastal sites and offshore islands (Miller and Klimovich 2016; NOAA 2017b).

Considered to be primarily a solitary species, giant mantas are known to aggregate seasonally to feed and mate and large numbers can be found at cleaning sites associated with coastal reefs (NOAA 2018; Rohner, et. al. 2013) While known to aggregate as described above, pupping and nursery grounds remain unknown and no critical habitat has been designated for this species (NOAA 2018). Giant manta rays are known to utilize surface waters for feeding where plankton are prevalent; however, they will utilize the entire water

column within their habitat including water depths exceeding 1,000 m (NOAA 2017b). The Met Buoy anchoring system will extend from the surface to the sea floor within suitable depths for Giant manta rays, however, no known aggregation habitat exists in the vicinity of the Met Buoy location.

Giant manta rays are targeted and caught as bycatch in several global fisheries and commercial fishing, including those serving a demand from the traditional Chinese medicine market for their dried gill rakers, is the primary threat to this species (NOAA 2018). No known direct fishery for this species exists in the area of the Met Buoy and it is expected that in areas where the species is not subject to fishing, populations may be stable (NOAA 2017). Other threats include boats strikes and entanglement (Miller and Klimovich 2017).

Potential Impacts and Proposed Mitigation Measures

The potential effects caused by the Met Buoy installation, operation, and decommissioning to fisheries resources, community assemblage and species diversity, or available benthic and water column habitats are expected to be localized, short-term, and temporary. As BOEM concluded in consultation with NMFS, the limited spatial extent and duration of activities analyzed in the Mid-Atlantic EA are not likely to cause more than temporary impacts and will not substantially affect fish populations or their habitats in the Lease Area (BOEM 2012).

Potential impacts to fisheries and their habitats as it pertains to installation and operation of the Met Buoy include noise (hydroacoustic), turbidity, vessel traffic, and physical disturbance of benthos (i.e., anchor chain scour), physical loss of sandy substrate beneath the anchor, and gain of hard substrate habitat (i.e., surface of the clump anchor, and subsurface of the Met Buoy). Each of these potential stressors as it pertains to this project is summarized below.

<u>Noise</u>: Vessel noise may affect but is not likely to adversely affect Atlantic sturgeon, giant manta rays, or EFH designated species. Vessel noise associated with installation of the mooring system could disturb normal fish behavior in the immediate vicinity of the installation, but would be temporary, likely undetectable, and thus insignificant. Furthermore, no pile driving or vibratory techniques are required for the installation; therefore, significant effects to fish populations are not anticipated. Operation of the Met Buoy will not generate noise that would significantly affect fish behavior.

<u>Turbidity</u>: The placement of mooring system would disturb the sediment and temporarily increase the turbidity in the water column. The expected turbidity levels resulting from the installation of the mooring system will be extremely localized, ephemeral, and likely confined to depths near the seafloor, and thus unlikely to impart lethal or sub-lethal effects to fish. Demersal fish in the immediate area of impact may experience some temporary physiological stress and exhibit flight behavior, but re-settlement of the sediment plume is likely to be minimal and unlikely to cause burial impacts to benthic invertebrates. No turbidity effects are anticipated during the Met Buoy operational period.

<u>Vessel Traffic</u>: Most of the vessel traffic generated during the proposed Met Buoy installation will be associated with transiting between the Met Buoy installation location and shore-based staging areas. The frequency and magnitude of vessel trips is expected to be minimal during installation and operation of the Met Buoy. This, combined with adherence to the avoidance protocols described in Appendix A, would likely eliminate the potential for significant effects to ESA-listed and other EFH designated species.

<u>Physical Effects/Contact</u>: Installation activities including placement of the mooring system would result in the temporary loss of the sandy seafloor habitat occupied by the footprint of the clump weight anchor and disturbance of the seafloor in the area of chain sweep (see Section 3.1). Sedentary and slow-moving benthic

fauna that are directly within the 27-square foot (2.5-square meter) footprint of the clump weight anchor during installation will likely experience mortality. In the area of anchor chain sweep, tube-dwelling amphipods and polychaetes, sedentary anemones, and other infauna are probably the most susceptible to either displacement or mortality. Given the relatively small spatial area 142,870 square feet (3.3 acres, 13,273 square meters) and temporal extent of impact, the loss of benthos from this area during Met Buoy installation and operation will not affect the general population or productivity. The single mooring chain for the buoy should not pose an entanglement threat to giant mantas, particularly since no known aggregation habitat exists in the vicinity of the met buoy location.

As described in Appendix C, the seabed near the installation area is 43.5 feet (13.2 meters) deep with evidence of large dunes and small ripples, suggesting a highly dynamic physical environment that will recover to its pre-disturbance state relatively rapidly by natural processes. The species most likely to be adversely affected (i.e., localized mortality of sedentary, benthic infauna such as nematode worms and mollusks) are also the species most likely to be early colonists of damaged habitat (e.g., Rhoads and Germano 1986). Recolonization of the benthic infaunal community will occur naturally by (a) immigration of species from surrounding, unimpacted habitats, (b) settlement of propagules from the water column, and (c) active transport of infaunal species within moving seabed sediments, driven by ocean waves and currents.

It is expected that placement of the Met Buoy in the relatively homogenous habitats present in the installation location would introduce an artificial hard substrate that opportunistic benthic and structure dependent species (e.g., tautog, black sea bass, striped bass) would be attracted to and colonize the newly formed habitat provided by the floating and mooring system components.

After completion of site assessment activities, the Met Buoy would be removed and transported by vessel to shore. After the Met Buoy is removed, the areas temporarily disturbed by the mooring system will fill in through natural processes and will ultimately be recolonized with native benthic species (Lundquist et al. 2010). It is expected that Met Buoy removal activities will have similar effects to those described for installation activities. The temporary and isolated disturbance to fish during removal of the Met Buoy is expected to have negligible effects (BOEM 2012).

7.2.2 Marine Mammals and Sea Turtles

Affected Environment

Over 30 species of marine mammal and five species of sea turtles have been documented as occurring or potentially occurring in the OCS waters off the Delaware and Maryland coast (BOEM 2012) (see Table 7-4). Among the more common species, marine mammals that may be observed in these waters include: baleen whales (e.g., humpback (*Megaptera novaeangliae*), fin (*Balaenoptera physalus*), minke (*Balaenoptera acutorostrata*), and North Atlantic right whales (*Eubalaena glacialis*)), toothed whales (e.g., bottlenose (*Tursiops truncatus*), Risso's (*Globicephala melas melas*), and short-beaked common dolphins (*Delphinus delphis*), and long-finned pilot whales (*Globicephala melas melas*)), as well as the occasional seal, West Indian manatee (*Trichechus manatus latirostris*), and other less common species (see Table 7-4). Many of the baleen and toothed whales are migratory and transit along the U.S. coastal and continental shelf waters during their annual migrations between temperate feeding grounds and tropical breeding grounds, although some species are present year-round. Loggerhead (*Caretta caretta*) and leatherback (*Dermochelys coriacea*) sea turtles and occasionally hawksbill (*Eretmochelys imbricata*), Kemp's ridley (*Lepidochelys kempii*), and green (*Chelonia mydas*) sea turtles can also be found in the marine waters off Delaware and Maryland when ocean water temperatures are warmest (hawksbill are considered only

accidental visitors to Mid-Atlantic waters). According to the Delaware Department of Natural Resources and Environmental Control (DNREC), most sea turtle strandings in Delaware occur between May and October (DNREC 2013). Large whale strandings also typically occur in spring and fall, during the whales' seasonal migrations, while strandings of species that prefer cooler water temperatures, such as harbor porpoise (*Phocoena phocoena*), are more common in winter or spring.

During GMI's avian surveys for NRG Bluewater from May through August 2008 and October 2010 through February 2011, opportunistic marine mammal and sea turtle sightings were recorded. In the winter 2010-2011 surveys, observers recorded sightings of fin whales, humpback whales, common dolphins, and harbor porpoises in or adjacent to the Project Area. During the fall 2010 surveys, opportunistic sightings consisted of bottlenose dolphins, common dolphins, fin whales, humpback whales, leatherback sea turtles, and a harbor seal (*Phoca vitulina*). A sighting of two North Atlantic right whales was also recorded in the Project Area during this season. During the spring and summer of 2008, sightings of bottlenose dolphins, a fin whale, and a loggerhead sea turtle were recorded.

Of the stocks or distinct populations of marine mammals that may interact with Project activities, six are listed under the ESA as either endangered (i.e., blue [*Balaenoptera musculus*], fin, North Atlantic right, sei [*Balaenoptera borealis*], and sperm whale [*Physeter macrocephalus*]), or threatened (i.e., the West Indian manatee). Leatherback, hawksbill, and Kemp's ridley sea turtles are listed as endangered under the ESA, while green and loggerhead sea turtles are listed as threatened. All cetaceans (whales, dolphins, and porpoises), pinnipeds (e.g., seals), and sirenians (e.g., manatees) are also protected under the Marine Mammal Protection Act of 1972 (as amended through 2015) and species (or stocks) that are designated as depleted are afforded additional conservation efforts.

All the aforementioned species of ESA-listed marine mammals and sea turtles are highly mobile and migratory and occurrence in any particular area (outside of their breeding or foraging aggregation areas) is typically transient in nature. There are no designated critical habitats in Atlantic OCS waters for any of the above sea turtle or marine mammal species, with the exception of the North Atlantic right whale. The North Atlantic right whale is critically endangered and has designated critical habitat around its northeastern U.S. foraging area (off Maine, New Hampshire, and Massachusetts) and southeastern U.S. calving area (from southern North Carolina to Florida). Additionally, seasonal management areas (SMA; i.e., mandatory 10 knot speed restriction zones) are in place to help reduce the potential for vessel collisions; the closest SMA is at the entrance to the Delaware Bay, to the northwest of the Met Buoy location. Skipjack will ensure that any Project-related vessels transiting through North Atlantic right whale seasonal (or dynamic) management areas follow the regulations in place at the time (see also Section 4.3 and Appendix A for protected species avoidance measures).

Additional, detailed life history information on marine mammals and sea turtles in mid-Atlantic waters is available in the *Final Programmatic Environmental Impact Statement for Alternative Energy Development and Production and Alternate Use of Facilities on the Outer Continental Shelf* (Programmatic EIS) (USDOI, MMS 2007)).

Common Name	Scientific Name	Stock or Distinct Population Segment (DPS)	Status under ESA/MMPA	Relative Likelihood of Occurrence in Lease Area	Expected Seasonal Occurrence
Mysticetes (Baleen	Whales)		1	•	
Blue whale	Balaenoptera musculus	Western North Atlantic	ESA Endangered/ Depleted and Strategic	Rare	summer
Fin whale	Balaenoptera physalus	Western North Atlantic	ESA Endangered/ Depleted and Strategic	Regular	spring, summer, fall, winter
Humpback whale	Megaptera novaeangliae	West Indies DPS	Protected	Common	spring, summer, fall, winter
Minke whale	Balaenoptera acutorostrata	Canadian East Coast	Protected	Regular	spring, summer, fall, winter
North Atlantic right whale	Eubalaena glacialis	Western North Atlantic	ESA Endangered/ Depleted and Strategic	Regular	spring, summer, fall, winter
Sei whale	Balaenoptera borealis	Nova Scotia	ESA Endangered/ Depleted and Strategic	Uncommon	winter, spring
Odontocetes (Toot	hed whales, dolphins,	, and porpoises)			
Atlantic spotted dolphin	Stenella frontalis	Western North Atlantic	Protected	Uncommon	summer
Atlantic white- sided dolphin	Lagenorhynchus acutus	Western North Atlantic	Protected	Uncommon	spring, summer, fall, winter
Bottlenose dolphin	Tursiops truncatus	Western North Atlantic (1) Offshore and (2) northern migratory coastal	(1) Protected (2) Strategic	(1) Uncommon (2) Common	spring, summer, fall
Clymene dolphin	Stenella clymene	Western North Atlantic	Protected	Not Expected	summer
Common dolphin	Delphinus delphis	Western North Atlantic	Protected	Common	spring, summer, fall, winter
Cuvier's beaked whale	Ziphius cavirostris	Western North Atlantic	Protected	Rare	spring, summer
Dwarf sperm whale	Kogia sima	Western North Atlantic	Protected	Rare	summer
False killer whale	Pseudorca crassidens	Western North Atlantic	Strategic	Rare	summer
Fraser's dolphin	Lagenodelphis hosei	Western North Atlantic	Protected	Rare	spring, summer, fall, winter

Common Name	Scientific Name	Stock or Distinct Population Segment (DPS)	Status under ESA/MMPA	Relative Likelihood of Occurrence in Lease Area	Expected Seasonal Occurrence
Harbor porpoise	Phocoena phocoena	Gulf of Maine/Bay of Fundy	Protected	Uncommon	winter, spring
Killer whale	Orcinus orca	Western North Atlantic	Protected	Rare	spring, summer, fall, winter
Long-finned pilot whale	Globicephala melas melas	Western North Atlantic	Strategic	Common	summer, fall
Melon-headed whale	Peponocephala electra	Western North Atlantic	Protected	Not Expected	spring, summer, fall, winter
Northern bottlenose whale	Hyperoodon ampullatus	Western North Atlantic	Protected	Not Expected	spring
Pantropical spotted dolphin	Stenella attenuata	Western North Atlantic	Protected	Rare	summer
Pygmy killer whale	Feresa attenuata	Western North Atlantic	Protected	Not Expected	spring, summer, fall, winter
Pygmy sperm whale	Kogia breviceps	Western North Atlantic	Protected	Rare	summer
Risso's dolphin	Grampus griseus	Western North Atlantic	Protected	Common	spring, summer, fall
Rough-toothed dolphin	Steno bredanensis	Western North Atlantic	Protected	Rare	summer
Short-finned pilot whale	Globicephala macrorhynchus	Western North Atlantic	Strategic	Rare	summer, fall
Mesoplodon beaked whales	Mesoplodon spp.	Western North Atlantic	Depleted	Rare	spring, summer
Sperm whale	Physeter macrocephalus	North Atlantic	ESA Endangered/ Depleted and Strategic	Uncommon	spring, summer, fall
Spinner dolphin	Stenella longirostris	Western North Atlantic	Protected	Rare	summer
Striped dolphin	Stenella coeruleoalba	Western North Atlantic	Protected	Rare	summer
White-beaked dolphin	Lagenorhynchus albirostris	Western North Atlantic	Protected	Rare	summer
Phocids	I	I		I	
Gray seal	Halichoerus grypus	Western North Atlantic	Protected	Rare	fall, winter, spring
Harbor seal	Phoca vitulina	Western North Atlantic	Protected	Rare	fall, winter, spring
Harp seal	Pagophilus groenlandicus	Western North Atlantic	Protected	Rare	winter and spring

Common Name	Scientific Name	Stock or Distinct Population Segment (DPS)	Status under ESA/MMPA	Relative Likelihood of Occurrence in Lease Area	Expected Seasonal Occurrence
Hooded seal	Cystophora cristata	Western North Atlantic	Protected	Rare	summer and fall
Sirenia	1	I			
West Indian manatee (Florida manatee subspecies)	Trichechus manatus latirostris	_	ESA Threatened/ Depleted and Strategic	Rare	summer
Sea Turtles					
Green sea turtle	Chelonia mydas	North Atlantic DPS	ESA Threatened	Rare	spring, summer, fall
Hawksbill sea turtle	Eretmochelys imbricata	_	ESA Endangered	Rare	spring, summer, fall
Kemp's ridley sea turtle	Lepidochelys kempii	_	ESA Endangered	Rare	spring, summer, fall
Leatherback sea turtle	Dermochelys coriacea	Northwest Atlantic	ESA Endangered	Regular	spring, summer, fall
Loggerhead sea turtle	Caretta caretta	Northwest Atlantic Ocean DPS	ESA Threatened	Regular	spring, summer, fall
Regular – Occurring Uncommon – Occurr Rare – Records for s Not expected – Rang	g consistently in moder in low to moderate nur ring in low numbers or some years but limited ge includes the Lease /	nbers on a regular b on an irregular basis Area but due to habi	pasis or seasonally s tat preferences and dis	tribution information, s	pecies are not

expected to occur in the Project Area although records may exist for adjacent waters

Potential Impacts and Proposed Mitigation Measures

The primary potential impacts to marine mammals associated with the installation and operation of a standalone offshore Met Buoy are related to the slight increase in vessel traffic involved in the installation, maintenance, and decommissioning of the Met Buoy. Specifically, service vessels will result in a slight increase in the risk of a vessel collision, and potential for harassment resulting from underwater noise.

<u>Vessel Collisions</u>: The operation of vessels around marine mammals or sea turtles increases the potential for a vessel-animal collision; however, BOEM (in consultation with NMFS) included stipulations in the Commercial Lease to reduce the likelihood of any such potential effects. All vessels will abide by the vessel strike avoidance measures detailed in Lease Addendum C, stipulation No. 4.1.1 (see Appendix A), and no significant impacts due to vessel strikes are anticipated.

<u>Underwater Noise</u>: Vessels also produce underwater noise, which stems primarily from cavitation of the vessels' propellers (Richardson et al. 1995) and is thus generally lower at lower vessel speeds. Installation of the Met Buoy will involve the use of work vessel(s), handling tug(s), and crew boat(s) (see Section 4.2). Underwater noise associated with these vessels is expected to be above sound-pressure levels considered

capable of causing acoustic disturbance in marine mammals; however, noise will dissipate quickly with distance from the source, and the overall potential for marine mammal or sea turtle exposure to these vessels is limited. Installation activities will occur once, over a period of only 1 to 4 days. Planned on-site maintenance will be scheduled to occur only twice per year and will be undertaken by vessels comparable or smaller-sized than the installation vessel. Upon completion of SAP activities, decommissioning of the Met Buoy will involve similar types and numbers of vessels to those used for the installation. Thus, the potential for marine mammals to interact with or be adversely affected by vessels associated with the Met Buoy will be extremely limited, both temporally (a few days per year) and spatially (within the immediate vicinity of the Met Buoy or transiting vessels). Given the Commercial Lease stipulations, the speeds at which the vessels will be travelling (which reduces both the likelihood of strike and the amount of underwater noise produced), and the short-term nature of the activities, effects of vessel noise on marine mammals and sea turtles are expected to be negligible.

In assessing potential environmental consequences associated with full leasing of the WEAs offshore of New Jersey, Delaware, Maryland, and Virginia, BOEM and NMFS agreed that the activities to be conducted are not likely to adversely affect listed whale species when implemented according to BOEM's mandatory project design criteria (detailed in Appendix A of the Mid-Atlantic EA) (BOEM 2012). Site assessment activities located within the Lease Area are therefore conservatively assumed to be of lesser impact than those assessed by BOEM for the maximum area of WEAs in the Mid-Atlantic.

Potential effects to sea turtles, specifically leatherback, loggerhead, green, and Kemp's ridley, include minor loss or displacement from foraging areas, noise harassment, and (to a lesser degree than marine mammals) vessel collisions. As for marine mammals, effects are expected to be short-term and highly localized and to result in minimal or negligible harassment. BOEM, supported by NMFS, concluded that the consequences to sea turtles are not anticipated to be significant (BOEM 2012). Potential effects to marine mammals and sea turtles from installation of buoys are assessed in greater detail in the Mid-Atlantic EA (BOEM 2012). Mitigation measures to reduce potential for vessel strikes are outlined in Appendix A.

7.2.3 Avian and Bat Resources

Affected Environment

As described in BOEM's 2009 compendium report of seabird occurrence information for the Continental Shelf waters along the Atlantic Coast (O'Connell et al. 2009), as well as DOE and BRI's Mid-Atlantic Baseline Survey (Williams et al. 2015), several types of birds including seaducks (e.g., eiders and scoters), waterbirds (e.g., loons and cormorants), seabirds (e.g., terns, gulls, shearwaters, alcids), shorebirds (e.g., plovers and sandpipers), and landbirds (e.g., nocturnal migrant passerines and migrant raptors) may seasonally occur in the region surrounding the Met Buoy installation location. The region provides yearround habitat for some species of gull. Some bird groups use offshore environments for foraging, roosting, and/or overwintering, while others, including shorebirds and migratory landbirds, may cross offshore locations during spring and fall migration. In the offshore environment, seaducks, waterbirds, and seabirds may forage at the water's surface or dive for prey sources, including small fish, plankton (larval fish, krill, and jellyfish), or benthic mollusks and crustaceans (Gaston 2004; Goudie et al. 2000). Federally listed bird species that may occur in the region include the endangered roseate tern (Sterna dougallii), threatened piping plover (Charadrius melodus), and threatened rufa red knot (Calidris canutus). These species specifically may cross areas of the Mid-Atlantic OCS during spring (March through May) and fall (August through October) migratory periods. Crossings of the area of the Met Buoy by these listed species are expected to be rare.

As described in BOEM's 2011 compendium report of shorebird occurrence information, there are 35 species of shorebird that are known to regularly occur either along the coast or offshore over the Atlantic during migration. With the exception of phalaropes, most shorebird species occur over areas of the OCS during a brief period (O'Connell et al. 2011), with individuals crossing the OCS potentially up to twice per year. The Federal waters of the Mid-Atlantic provide habitat for large numbers of seaducks and waterbirds during wintering and migratory periods (Spiegel et al. 2017). During a recent BOEM study, Spiegel et al. (2017) used satellite telemetry to study the distributions of three species, red-throated loon (Gavia stellata), surf scoter (Melanitta perspicillata), and northern gannet (Morus bassanus), in relation to WEA and Lease Areas in Federal waters from Long Island to southern North Carolina. The authors found that wintering birds were largely concentrated closer to shore (particularly at the mouths of bays), and the area that these species overlapped with WEA and Lease Areas accounted for less than 5 percent of the overall distribution of the species within the study area, and their occurrence in these areas was relatively short in duration (Spiegel et al. 2017). Another recent BOEM study was conducted by Viet et al. (2015) to identify seabird hot spots (defined by abundance and/or number of species) over the shelf waters of the East Coast. The researchers identified two primary hotspots of abundance, one off southeastern Cape Cod and the other at the mouth of Chesapeake Bay. The primary diversity hot spots were identified off northern New Jersey and in the New York Harbor area (Viet et al. 2015). The location of the Met Buoy does not occur within an identified hotspot for seabirds, and because migratory and wintering seaduck and waterbird distribution covers a large area, with concentrations closer to the coast, relatively few of these species are expected to occur in the area of the Met Buoy.

Emerging data from a recent BOEM telemetry study (Dowling et al. 2017) and bat acoustic surveys coordinated by BOEM and DOE (Pelletier et al. 2013; Stantec 2016) conducted at locations along the Atlantic Coast, islands, and the OCS suggest that, while offshore environments provide no natural roosting habitat, several bat species do occur offshore. Several bat species have been documented in coastal and offshore locations in the Mid-Atlantic region (Sjollema 2011; Sjollema et al. 2014). Bats have been documented as far as 130 km (81 mi) off the Mid-Atlantic coast (Stantec 2016a). Their presence offshore and on remote islands and structures has been documented primarily during spring or late summer/fall migration. Species documented offshore or on remote islands or structures include long-distance migrants (hoary bat [*Lasiurus cinereus*], eastern red bat [*Lasiurus borealis*], and silver-haired bat [*Lasionycteris noctivagans*]) and non-migrants/cave dwelling bats (the federally threatened northern long-eared bat [*Myotis septentrionalis*], little brown bat [*Myotis lucifugus*], eastern small-footed bat [*Myotis leibii*], big brown bat [*Eptesicus fuscus*], and tri-colored bat [*Perimyotis subflavus*]). The evening bat (*Nycticeius humeralis*) may also occur offshore, and in some rare cases may take small prey (e.g., crustaceans) from the surface of the water (Pelletier et al. 2013).

Potential Impacts and Proposed Mitigation Measures

The proposed deployment of the Met Buoy is unlikely to have an adverse effect on avifauna because the structures will not be large enough to substantially displace birds, will not extend substantially above the water to act as barriers to movement, or pose a substantial risk of collision to birds or bats. BOEM concluded that commercial lease issuances and site assessment activities in the Delaware WEA will have negligible effects on birds, including species protected under the Migratory Bird Treaty Act and the ESA, because the height of the Met Buoy will be generally low to the water and there will only be one buoy at a time in a large area (BOEM 2012). Similarly, BOEM concluded that site assessment activities are unlikely to adversely affect bats (BOEM 2012). Each type of potential effect is discussed in more detail below.

Risk of Collision: Above-water structures extending into the airspace of an otherwise flat landscape can pose risk of collision for birds, particularly during periods of reduced visibility (nighttime, fog, rain). Some birds may be at an increased risk of collision including shearwaters and storm-petrels which fly just above the surface of the waves while foraging and/or commuting. However, most commuting birds and migrants are expected to fly well above the height of the Met Buoy. Although bats may pass near the Met Buoy during migration or foraging, the Met Buoy is not expected to pose any threat of collision mortality to bats due to the lack of large moving components. The Met Buoy will be equipped with a small wind turbine to charge batteries; however, the blades are short (approximately 2 meters [6.6 feet] in length) and therefore will not pose a substantial risk of collision. The Met Buoy's above water structure is self-supported, not requiring guylines (which are more difficult to visually detect), which reduces the risk of collision. Risk of collision at the Met Buoy is expected to result in negligible or minor impacts to birds and bats.

Attraction: Lights on deployment vessels and the Met Buoy could attract birds migrating at night and potentially foraging bats. Artificial lighting, particularly steady burning lights, can disorient nighttime migrants, particularly in fog or rain, and can cause birds to circle around or collide with lit structures. The minimal navigational lighting required by the USCG will be used, and lighting on deployment vessels and the Met Buoy will be negligible compared with other sources of light in the area, including lighting on commercial vessels moving in and out of Delaware Bay. Installation activities will take place during daylight hours, and no shielding of vessel lights will be necessary to avoid potential attraction of nocturnal migrant birds or bats to the deployment vessel.

The increase in underwater substrate resulting from the clump weight anchors and mooring the yoke and chain will promote colonization by benthic crustaceans and mollusks and may also attract fish around these underwater structures. The availability of prey may attract some species of bird to forage around the underwater structures. However, the level of attraction will be minimal due to the dynamic availability and location of prey sources in the offshore environment and the minimal increase in underwater substrate. Some species of birds such as gulls, terns, and cormorants may be attracted to the Met Buoy for perching opportunities. Bats may also be attracted to the Met Buoy for roosting opportunities as they are known to roost on other offshore structures such as ships, barges, lighthouses, and wind turbines (Pelletier et al. 2013; Stantec 2016b). However, the potential for attraction for perching or roosting is expected to be minimal due the relatively small size of the Met Buoy.

GSOE I will install anti-perching devices on the proposed Met Buoy, and landing areas will be minimized. Anti-perching devices are an effective way of preventing perching on isolated structures, including remote sensing equipment (Avery and Genchi 2004). Anti-perching devices will be non-corrosive (either stainless steel or composite) to increase longevity and reduce potential for corrosion at the attachment point. Due to measures that will be in place to minimize attraction of birds and bats to the Met Buoy, only negligible to minor impacts are anticipated due to attraction.

The Met Buoy will be equipped with avian and bat sensors, specifically Wildlife Acoustic passive monitoring systems, which allows recording of both ultrasonic bat echolocation calls, as well as audible bird vocalizations. The acoustic detectors locally store the data on removable SD cards, which will be downloaded opportunistically during deployment and maintenance of the Met Buoy. Species-level identification of bat echolocation calls and bird calls is possible for most species that would be expected to be present. These data would be useful for supplementing the baseline of avian and bat activity data in the study area. BOEM has explicitly identified the advantages to future development projects of deploying acoustic monitoring systems on site characterization platforms (BOEM 2012).

7.3 Physical Resources

7.3.1 Water and Air Quality

Water Quality

BOEM concluded in the Mid-Atlantic EA that any impacts to coastal and marine waters would be minimal, if detectable (BOEM 2012). GSOE I will comply with Lease stipulation 4.1.2 regarding marine trash and debris prevention. Additionally, as stated in Sections 4.1.4 and 4.1.5 of the Commercial Lease, GSOE I will ensure that all employees and contractors are briefed on marine trash and debris awareness elimination and as appropriate, oil spill response procedures. In addition, GSOE I will implement an Oil Spill Response Plan prior to beginning any activities.

Air Quality

According to EPA's most recent listing of Nonattainment/Maintenance Status (the "Green Book"), several counties (in whole or in part) in Delaware and Maryland, the two States that could potentially be affected by air emissions from the project, are designated as either Nonattainment or Maintenance for certain criteria pollutants.

In Delaware, Sussex County and New Castle County are marginal nonattainment areas for the 2008 8-hour ozone standard. Kent County is designated as Unclassifiable/Attainment, meaning that there is not enough information to make a determination at this time and/or the State does not need to take additional steps to control emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs), the pollutants that react in the atmosphere to form ozone (EPA 2018a). New Castle County is a maintenance area for the 2006 PM2.5 standard, while Kent County and Sussex County are designated as Unclassifiable/Attainment.

In Maryland, Anne Arundel County, Baltimore City, and Baltimore, Carroll, Harford, and Howard Counties are designated as moderate nonattainment areas for the 2008 8-hour ozone standard, while Calvert, Cecil, Charles, Frederick, Montgomery, and Prince George's counties are designated as marginal nonattainment areas (EPA 2018b). Parts of Baltimore City and Montgomery and Prince George's counties are designated as maintenance areas for the carbon monoxide standard, while parts of Anne Arundel and Baltimore counties are designated as nonattainment for the 2010 sulfur dioxide standard.

Additionally, all of Delaware and Maryland are within the Northeast Ozone Transportation Region (OTR) as designated by the Clean Air Act. The OTR is a group of northeast States that are required to submit a State Implementation Plan (SIP) and require a certain level of controls for the pollutants that form ozone, even if they meet the ozone standards.

The installation, operation and decommissioning of the Met Buoy has the potential to impact local air quality. Potential emission sources would however be limited to the diesel engines on a tug boat, work vessels, a crane, and other equipment that would be used for the installation, operation, and decommissioning, and a small electrical generator powered by a diesel engine, to provide backup power for the Met Buoy. The diesel engines on the vessels and the backup generator would emit criteria air pollutants (nitrogen oxides, carbon monoxide, sulfur dioxide, particulate matter less than 10 microns in diameter [PM10], particulate matter less than 2.5 microns in diameter [PM2.5]), and volatile organic compounds), hazardous air pollutants (HAPs) and greenhouse gases (GHGs). These pollutants would be emitted both in State and Federal waters while traveling to and from the Met Buoy Installation Area throughout the operational lifecycle. Impacts from pollutant emissions associated with these vessels would

be short-term in nature, and likely be localized within immediate vicinity of the Met Buoy location and in the vicinity of vessel activity.

It is anticipated that the installation and decommissioning of the Met Buoy would each be completed over a period of approximately 1 to 4 days for a total of 4 to 8 days. To be conservative, GSOE I based the air emission calculations on 10 days for installation and an additional 10 days for decommissioning, for a total of 20 days. This contingency covers the potential for weather and other unforeseen events that, although unlikely, might occur. GSOE I has assumed 8 round-trips per year of a work boat during the 6- year operational period for a total of 42 round-trips during the operations phase. A summary of the air emission estimates is presented in Table 7-5, and the detailed emission calculations and assumptions are presented in Appendix D.

Activity	VOC tons	NOX tons	CO tons	PM/PM10 tons	PM2.5 tons	SO2 tons	HAPs tons	GHG tons
Installation Activities	0.30	6.09	3.06	0.37	0.36	0.0041	0.06	441.1
Operation & Maintenance Activities	0.01	0.34	0.20	0.01	0.01	0.0002	0.00	24.6
Decommissioning Activities	0.30	6.09	3.06	0.37	0.36	0.0041	0.06	441.1
Maximum Annual Emissions ¹	0.32	6.43	3.27	0.38	0.37	0.0045	0.06	465.7

Table 7-3. Met Buo	y Air Emissions Summary

Note:

1. The estimate of maximum annual emissions assumes that the annual maintenance activities and either the installation or decommissioning activities occur in the same year.

These emissions are well below the major source thresholds established under Prevention of Significant Deterioration (PSD) and Nonattainment New Source Review regulations applicable to new emission sources, and also below the *de minimis* emissions thresholds under the Federal General Conformity regulations (40 CFR Part 93). The emissions of Hazardous Air Pollutants (HAPs) are also well below the major source levels under the National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulations, in which a major source is defined as one that has the potential to emit 25 tons or more per year of all HAPs combined, or 10 tons or more per year of any individual HAP. Most of these emissions would occur within Met Buoy installation area and therefore would not affect local onshore air quality in either Delaware or Maryland. Additionally, the presence of the back-up generator on the Met Buoy, makes the Met Buoy an OCS source and an OCS air permit will likely be required.

7.3.2 Socioeconomic Resources

Commercial Fishing, Recreational Fishing, and Coastal and Marine Uses

Affected Environment

Based on Federal permit data of commercial fishery landings from 2007 to 2012, approximately \$14.0 million in annual commercial fishing revenue was sourced from the eight WEAs from Massachusetts to North Carolina (Kirkpatrick, et al., 2017). In a socio-economic analysis of impacts to fisheries from OCS wind energy development published in 2017, BOEM reported that the total annual revenue from these WEAs is approximately the historical yearly fluctuation in fisheries revenue observed every 5 years. Therefore, under the maximum impact scenario modeled (i.e., assuming no reallocation of effort and no harvesting occurs within a given WEA), the maximum potential impact to commercial fishing revenue would be equivalent to the fluctuation that is observed in the dataset every 5 years (Kirkpatrick, et al., 2017).

Of the total revenue calculated for the Mid-Atlantic WEAs, the Delaware WEA has a total of \$356,631 in annual commercial revenue, which was the fourth-lowest intensity of all eight WEAs. (Kirkpatrick, et al., 2017). Sea scallop (*Placopecten magellanicus*), Menhaden (*Brevoortia tyrannus*), and black sea bass (*Centropristis striata*) are the most economically important species harvested from the Delaware WEA, although harvest of these species from this area represents only approximately 0, 2.1, and 1.5 percent of the average total annual revenue for these species, respectively (BOEM, 2012) (Kirkpatrick, et al., 2017).

Because of the relatively low total revenue sourced within the Delaware WEA, this area did not meet the minimum thresholds to explicitly model the exposure to commercial fisheries that BOEM conducted in their analysis of socio-economic impacts. However, estimates based on the model results for WEAs that did meet the criteria (greater than 2 percent of total revenue from the WEA) led BOEM to conclude that any impacts realized from the development of the Delaware WEA were expected to be negligible on commercial fisheries in this area (Kirkpatrick, et al., 2017).

The Mid-Atlantic region has a robust recreational fishing sector in its coastal waters. BOEM reports that between 2008 and 2010 anglers from New Jersey, Delaware, and Maryland averaged 550,000, 24,000, and 67,500 recreational fishing trips in Federal waters, respectively (BOEM, 2012). Anglers from recreational for-hire and private fishing trips leaving from ports in Delaware, Maryland, and New Jersey reported more than 5.4 million trips from 2007 to 2012. However, fewer than 2 percent of those fishing trips traveled to within 1 nautical mile (the distance used by BOEM to assess exposure to impacts) of the Delaware WEA (Kirkpatrick, et al., 2017).

The top fish species targeted by recreational fishers in the Mid-Atlantic include bluefish (*Pomatomus saltatrix*), black sea bass (*Centropristis striata*), Atlantic striped bass (*Morone saxatilis*), and dolphin (*Coryphaena hippurus*) (BOEM, 2012). Exposure to impacts from development in the Delaware WEA can be affected by the species targeted. For example, Federal regulations prohibit striped bass fishing beyond 3 nautical miles from shore (BOEM, 2012). Therefore, striped bass fishers would not be expected to be within the Delaware WEA and would not be impacted by the Met Buoy deployment.

Potential Impacts and Proposed Mitigation Measures

Impacts may differ for WEA construction and operation; likewise, effects to recreational fish species from the deployment/retrieval of the Met Buoy may differ from the operational phase. Disruption to species that may be targeted by recreational fishers may occur in the immediate area during buoy deployment due to increased boat traffic and bottom disturbance, although any impacts would be localized and temporary. Alternatively, as was noted previously, because the benthic habitat in the Lease Area is primarily sand with minimal habitat features, the installation of the anchoring system for the Met Buoy will introduce artificial hard substrate that, although limited in size, may attract opportunistic benthic and structure dependent

species. Likewise, the Met Buoy itself will provide surface structure that may act to attract pelagic or migratory species (Kirkpatrick, et al., 2017).

Based on the finding of negligible impact for the development of the Delaware WEA, it is unlikely that the deployment, operation, and retrieval of the Met Buoy within the Lease Area will have measurable long-term effects on commercial or recreational fishers or other marine uses. With the low percentage of anglers exposed to impacts from the WEA development in general, the installation of the Met Buoy in the Lease Area is expected to be negligible. The possibility of improved recreational fishing experiences due to the limited increase in habitat complexity at the Met Buoy site exists, although these positive effects would also be limited in scale and would be eliminated upon retrieval of the Met Buoy.

While no specific stipulations concerning interactions with commercial and recreational fishing are provided in the Commercial Lease, as recommended in BOEM's October 20, 2015, Fisheries Social and Economic Conditions guidance document (BOEM 2015), GSOE I has hired a Fisheries Liaison, Mr. Rodney Avila. As necessary, Mr. Avila will conduct outreach with the surrounding commercial and recreational fishing communities including, but not limited to, Rehoboth Beach and Bethany Beach, Delaware; Ocean City, Maryland; and Cape May, New Jersey prior to buoy deployment. Outreach with commercial and recreational fishermen will continue throughout the buoy deployment period as part of GSOE I's standard fisheries communication plan. In addition, GSOE I will notify commercial and recreational fishermen, as well as other users the area about the proposed activities via a Local Notice to Mariners and broadcasts on Marine Channel 16 prior to installation and decommissioning.

Coastal and Marine Uses

GSOE I will notify commercial and recreational fishermen, as well as other users of the OCS, via a Notice to Local Mariners and broadcasts on Marine Channel 16 prior to installation and decommissioning activities as described in Sections 4 and 6.

Prior to deployment, the USCG will approve a Private Aids to Navigation for the Met Buoy. The navigational lighting will notify vessels in the area of the Met Buoy location so it can be avoided. BOEM included Lease stipulations regarding notification of and coordination with military and defense in the Lease Area (see Appendix A). GSOE I will notify Fleet Forces Command before the proposed installation of the Met Buoys to avoid conflicts with any seaspace and airspace activities planned by the United States Navy in the Warning Area 386 (W-386). Fleet Forces Command has confirmed that most at-sea training and operations in W-386 occurs to the south of the Lease Area. At the request of Fleet Forces Command, GSOE I provided the operational frequencies for data transmission equipment on the Met Buoy to avoid any potential conflicts due to electromagnetic emissions.

Potential Impacts and Proposed Mitigation Measures

Due to the distance from shore and the use of existing infrastructure, the Met Buoy is not anticipated to impact social and economic resources such as recreation and minority or low-income populations (BOEM 2012). GSOE I will use the existing facilities for vessel deployments, resulting in a short-term negligible beneficial economic effect in and around those ports. Adherence to the International Regulations for Preventing Collisions at Sea 1972 and the "Rule of Good Seamanship" by vessel operators will mitigate risks that the buoy may pose to safe navigation. GSOE I will notify mariners and other users of the area about the proposed activities via an LNM and broadcasts on Marine Channel 16 prior to installation and decommissioning. GSOE I will also submit an application to the USCG for a PATON for the Met Buoy. Additionally, the navigational lighting will notify vessels of the Met Buoy so it can be safely avoided.

7.3.3 Archeological Resources

Affected Environment

Cultural resources include archaeological sites, historic standing structures, objects, districts, cultural landscapes, and traditional cultural properties that illustrate or represent important aspects of prehistory or history or that have important and long-standing cultural associations with established communities or social groups. Significant archaeological and architectural properties, cultural landscapes, and traditional cultural properties are generally defined by the eligibility criteria for listing in the National Register of Historic Places (NRHP). Review under Section 106 of the National Historic Preservation Act (NHPA) (16 USC § 470f) occurs when projects require Federal permits, are located on Federal lands or in Federal waters, or are federally funded. Such Federal undertakings require consultation by Federal agencies with the SHPO, interested Native American tribes, and other stakeholders.

These consultations identify the Area of Potential Effect (APE) (the archaeological APE differs from the APE for structures, objects, landscapes, and traditional cultural properties) and potential adverse effects to archaeological, architectural, or other cultural resources that are listed in or are potentially eligible for listing in the NRHP.

The installation of the proposed Met Buoy has the potential to affect submerged archaeological resources that may relate to time periods both prior to and after contact between Native American and European groups. The proposed installation location is on the now-submerged Delaware Continental Shelf. During the late Pleistocene-early Holocene geological periods, the Delaware Continental Shelf was exposed upland, available for use by hunters and gatherers. Archaeological remnants of these populations date to the Paleo-Indian Stage (ca. 15,000 to 10,000 years ago [Before Present {BP}]) and parts of the Archaic Stage (i.e., Early Archaic ca. 10,000 to 8,500 BP and Middle Archaic ca. 8,500 to 5000 BP).

In 2018, R. Christopher Goodwin & Associates reported on the results of an initial marine archaeological survey conducted in 2009 and a follow-up survey conducted in 2010 covering a 1-nautical square mile (1.8-square kilometer) area located within OCS Blocks 6324, 6325, and 6375 (Appendix E). The proposed location for the Met Buoy is within this evaluated area. As reported in Schmidt et al. (2018) and included in Appendix E, background research did not indicate the presence of any pre-contact Native American archaeological resources or post-contact shipwrecks within the survey area. The on-water geophysical survey in 2009 employed multibeam echo sounder, magnetometer, side scan sonar, sub-bottom profiler (CHIRP), and multi-channel seismic reflection (BOOMER) equipment to collect data along transects spaced at 98.4-foot (30-meter) intervals with tie lines spaced at 492.1–foot (150-meter) intervals. In 2010, additional magnetometer and side scan sonar data were collected along survey transects spaced at 98.4-foot (30-meter) line spacing.

Schmidt et al. (2018) reviewed the data collected in 2009 and 2010 to determine whether submerged archaeological resources are present within the 22.9-acre (9.3-ha) Met Buoy Installation Area of Potential Effects (APE). Data from high resolution side-scan sonar (Schmidt et al. 2018: 49, 52, 54, Appendix II) and marine magnetometry (Schmidt et al. 2018:48, 51, 54, Appendix II) datasets were reviewed, and the authors concluded that no anthropometric seafloor disturbances or features and no magnetic anomalies were present with the 22.9-acre (9.3-ha) APE.

The surveyed area appears to be within a former inter-fluvial region that most likely was an estuarine/lagoonal setting during the Late Pleistocene and Early Holocene periods. Such a setting will have very low potential for the location of pre-contact Native American archaeological sites dating to any period.

Sonar images of the sub-bottom profiles were also reviewed to determine whether geomorphic features, such as now-submerged shorelines of freshwater rivers or lakes or salt water estuaries, locations favored by the earliest Native American inhabitants of North America, were present within the APE (Schmidt et al. 2018:54). No conclusive indicators of these geomorphic paleolandscapes were identified. Detailed information on the physiography and geologic evolution of the Delaware Continental Shelf is provided in Fugro (2010b) (Appendix C: pages 9-12; Figures 14, 15, 16, 17, and 18) and in the Goodwin & Associates report in Appendix E (pages 27-31, 53-54, 56; Figure 5-1), as required in Appendix A of the Commercial Lease (pages 9-10).

Based on these results, Schmidt et al. (2018:56) recommended that a determination of No Historic Properties Affected be made for this undertaking. However, the authors did recommend the preparation and implementation of an Unanticipated Discoveries Plan for the Met Buoy Installation APE.

Potential Impacts and Proposed Mitigation Measures

Based on the results of the 2009 and 2010 marine archaeological investigations and review of the data collected at that time for the current Met Buoy installation area, the installation, operation, and decommissioning of the Met Buoy will not result in impacts to marine archaeological resources. However, in compliance with 30 CFR 585.802 and the Commercial Lease, GSOE I will develop an Unanticipated Discoveries Plan (UDP) prior to the start of installation. In the case of an inadvertent discovery of a cultural resource, GSOE I's UDP will be implemented to prevent further disturbance of the resource.

8.0 **REFERENCES**

- ASSRT (Atlantic Sturgeon Status Review Team). 2007. Status review of Atlantic sturgeon (*Acipenser* oxyrinchus oxyrinchus). Report to the National Marine Fisheries Service, Northeast Regional Office. February 2007. 188pp.
- Avery, M. L, and A. C. Genchi. 2004. Avian perching deterrents on ultrasonic sensors at airport wind- shear alert systems. Wildlife Society Bulletin 32 (3) 718-725.
- AXYS Technologies Inc. 2016. FLiDAR WindSentinel Technical Specifications. Prepared for Deepwater Wind. November, 1, 2016.
- Bluewater & Tetra Tech 2013. Bluewater Wind Delaware LLC, Site Assessment Plan: Commercial Lease for Submerged Lands for Renewable Energy Development on the outer Continental Shelf (OCS-A-0482). Prepared for BOEM, United States Department of the Interior. Prepared by Bluewater Wind Delaware LLC and Tetra tech. 27 November 2013. 38pp. Prepared by Tetra Tech. Confidential.
- BOEM. 2012. Commercial lease issuance and site assessment activities on the Atlantic Outer Continental Shelf Offshore New Jersey, Delaware, Maryland and Virginia. OCS EIS/EA BOEM 2012-003.
- BOEM. 2015. Guidelines for Providing Information on Fisheries Social and Economic Conditions for Renewable Energy Development on the Atlantic Outer Continental Shelf Pursuant to 30 CFR Part 585. Available at: <u>https://www.boem.gov/Social-and-Economic-Conditions-Fishery-Communication-Guidelines</u>. Accessed March 2018.
- COSEWIC. 2011. Assessment and Status report in the Atlantic sturgeon *Acipenser oxyrinchus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, Ontario, Canada. http://publications.gc.ca/collections/collection_2012/ec/CW69-14-636-2011-eng.pdf. Accessed 7 October 2016.
- Dalyander, P. S., Butman, B., Sherwood, C.R., Signell, R.P., Wilkin, J.L. 2012. Characterizing Wave- and Current-Induced Bottom Shear Stress: U.S. Middle Atlantic Bight. Continental Shelf Research (52), pp. 73-86.
- Delaware Department of Natural Resources and Environmental Control (DNREC). 2013. DNREC, MERR working together in responding to Delaware marine mammal and turtle strandings. Available at: <u>http://www.dnrec.delaware.gov/News/Pages/DNREC,-MERR-working-together-in-responding-</u> to-Delaware-marine-mammal-and-turtle-strandings.aspx
- Dowling, Z., P. R. Sievert, E. Baldwin, L. Johnson, S. von Oettingen, and J. Reichard. 2017. Flight activity and offshore movements of nano-tagged bats on Martha's Vineyard, MA. OCS Study BOEM 2017-054. U.S. Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, Virginia, USA.
- EPA. 2018a. Green book: Delaware Nonattainment/Maintenance Status for Each County by Year for all Criteria Pollutants. Available at: <u>https://www3.epa.gov/airquality/greenbook/anayo_de.html</u>
- EPA. 2018b. Green book: Maryland Nonattainment/Maintenance Status for Each County by Year for all Criteria Pollutants. Available at: <u>https://www3.epa.gov/airquality/greenbook/anayo_md.html</u>

- Fugro. 2010a. Seafloor Scour Evaluation Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware, Fugro Project No. 3671.004-r1, dated November 23, 2010.
- Fugro. 2010b. Revised Shallow Hazards Assessment Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware, Fugro Project No. 3671.004, dated November 29, 2010.
- Goodwin, C.R. 2011. Archeological Resource Survey for the Bluewater Wind Meterological Data Collection Facility. Prepared for TetraTech,Inc.
- Greene, J.K., M.G. Anderson, J. Odell, and N. Steinberg, eds. 2010. The Northwest Atlantic Marine Ecoregional Assessment: Species, Habitats, and Ecosystems. Phase One. The Nature Conservancy, Eastern U.S. Division, Boston, MA
- Guida, V., A. Drohan, H. Welch, J. McHenry, D. Johnson, V. Kentner, J. Brink, D. Timmons, E. Estela-Gomez. 2017. Habitat Mapping and Assessment of Northeast Wind Energy Areas. Sterling, VA: US Department of the Interior, Bureau of Ocean Energy Management. OCS Study BOEM 2017-088. 312 p. https://www.boem.gov/espis/5/5647.pdf
- Halcrow/HPA. 2007. "Bluewater Wind Delaware Site Final Boring Logs," e-mail transmittal from Halcrow/HPA to Bluewater Wind, November 2, 2009.
- Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. 2009. The Diversity of Fishes: Biology, Evolution, and Ecology (2nd ed., pp. 528). Malden, MA: Wiley-Blackwell.
- Kirkpatrick, A., Benjamin, S., DePiper, G., Murphy, T., Steinback, S., & Demarest, C. (2017). Socio-Economic Impact of OuterContinental Shelf Wind Energy Developmenton Fisheries in the U.S. Atlantic. Volume I—Report Narrative. Washington, D.C.: .S Dept. of the Interior, Bureau of OceanEnergy Management, Atlantic OCS Region,.
- Lundquist, C. J., Thrush, S. F., Coco, G. & Hewitt, J. E. 2010. Interactions between disturbance and dispersal reduce persistence thresholds in a benthic community. Marine Ecology-Progress Series, 413, 217-228
- Lusseau D., D.E. Bain, R. Williams, and J.C. Smith. 2009). Vessel traffic disrupts the foraging behavior of southern resident killer whales *Orcinus orca. Endangered Species Research* 6:211-221
- Miller, M.H. and C. Klimovich. 2016. Endangered Species Act Status Review Report: Giant Manta Ray (Manta birostris) and Reef Manta Ray (Manta alfredi). Draft Report to National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD. December 2016. 127 pp.
- Moyle, P. B. & Cech, J. J., Jr. 1996. Fishes: An Introduction to Ichthyology (3rd ed., pp. 590). Upper Saddle River, NJ: Prentice Hall.
- Newcombe, C.P. and J.O. Jensen. 1996. Channel Suspended Sediment and Fisheries: A synthesis for Quantitative Assessment of Risk and Impact. North American Journal of Fisheries Management. 16:693-727. American Fisheries Society 1996.
- NOAA (National Oceanic and Atmospheric Administration) and BOEM. 2013. Marine Cadastre Viewer v3.0. <u>http://www.marinecadastre.gov.</u> Last visited on 11/05/2013

- NOAA. 2017a. The Essential Fish Habitat (EFH) Mapper. <u>https://www.habitat.noaa.gov/protection/efh/efhmapper/</u>. Last visited on 2/22/2018.
- NOAA. 2017b. National Marine Fisheries Service (NMFS) 12-Month Finding on a Petition To List Giant and Reef Manta Rays as Threatened or Endangered Under the Endangered Species Act. Federal Register Vol. 82. No. 8. January 12, 2017.p. 3694-3715.
- NOAA. 2018. Endangered And Threatened Wildlife And Plants; Final Rule To List The Giant Manta Ray As Threatened Under The Endangered Species Act. of Federal Register Vol. 83. No. 14. January 22, 2018.p. 2916-2931
- O'Connell, A. F., B. Gardner, A. T. Gilbert, and K. Laurent. 2009. Compendium of Avian Occurrence Information for the Continental Shelf Waters along the Atlantic Coast of the United States, Final Report (Database Section - Seabirds). Prepared by the USGS Patuxent Wildlife Research Center, Beltsville, MD. U.S. Department of the Interior, Geological Survey, and Bureau of Ocean Energy Management Headquarters, OCS Study BOEM 2012-076.
- O'Connell, A., C. S. Spiegel, and S. Johnson, 2011, Compendium of Avian Occurrence Information for the Continental Shelf Waters along the Atlantic Coast of the United States, Final Report (Database Section - Shorebirds). Prepared by the U.S. Fish and Wildlife Service, Hadley, MD for the USGS Patuxent Wildlife Research Center, Beltsville, MD. U.S. Department of the Interior, Geological Survey, and Bureau of Ocean Energy Management Headquarters, OCS Study BOEM 2012-076.
- Olney, J., Sr. and D.M. Bilkovic. 1998. Environmental Survey of Potential Sand Resource Sites Offshore Delaware and Maryland Part 3: Literature Survey of Reproductive Finfish and Ichthyoplankton Present in Proposed Sand Mining Locations. Minerals Management Service, Atlantic Outer Continental Shelf Study 2000-055.
- Parin, N.V. 1984. Oceanic Ichthyologeography: an attempt to review the distribution and origin of pelagic and bottom fishes outside continental shelves and neritic zones. Fourth Congress of European Ichthyologists, 35(1), 5-41.
- Pelletier, S.K., K. Omland, K.S. Watrous, T.S. Peterson. 2013. Information Synthesis on the Potential for Bat Interactions with Offshore Wind Facilities – Final Report. U.S. Dept of the Interior, Bureau of Ocean Energy Management, Headquarters, Herndon, VA. OCS Study BOEM 2013-01163. 119 pp.
- Richardson, J., C.R. Greene Jr, C. Malme and D. Thomson. 1995. Marine Mammals and Noise. Academic Press. San Diego.
- Rhoads, D.C and Germano, J.D. 1986. Interpreting long-term changes in benthic community structure: a new protocol. Hydrobiologia 142:291-308.
- Rohner CA, Pierce SJ, Marshall AD, Weeks SJ, Bennett MB, Richardson AJ (2013) Trends in sightings and environmental influences on a coastal aggregation of manta rays and whale sharks. Mar Ecol Prog Ser 482:153-168. https://doi.org/10.3354/meps10290
- Schmidt, James S., Benjamin C. Wells, and Martha Williams 2018. Marine Archaeological Resources Assessment for the Skipjack Offshore Wind Farm Project Met Buoy Installation Area, Official Protraction Areas Salisbury NJ18-05, OCS Block 6375, Offshore Delaware. Prepared for

Deepwater Wind, LLC. Prepared by R. Christopher Goodwin & Associates, Inc. 66 pp. + appendices.

- Sjollema, A.L. 2011. Bat activity in the vicinity of proposed wind power facilities along the mid-Atlantic coast. Thesis, Frostburg State University, Frostburg, USA.
- Sjollema, A. L., J. E. Gates, R. H. Hilderbrand, and J. Sherwell. 2014. Offshore Activity of Bats along the Mid-Atlantic Coast. Northeastern Naturalist 21 (2): 154 163.
- Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene, D. Kastak, D.R. Ketten, J.H. Miller, P.E. Nachtigall, W.J. Richardson, J.A. Thomas and P.L. Tyack. 2007. Marine mammal noise exposure criteria: Initial scientific recommendations. Aquatic Mammals 33(4).
- Spiegel, C.S., A.M. Berlin, A.T. Gilbert, C.O. Gray, W.A. Montevecchi, I.J. Stenhouse, S.L. Ford, G.H. Olsen, J.L. Fiely, L. Savoy, M.W. Goodale, and C.M. Burke. 2017. Determining Fine- scale Use and Movement Patterns of Diving Bird Species in Federal Waters of the Mid-Atlantic United States Using Satellite Telemetry. Sterling (VA): U.S. Department of the Interior, Bureau of Ocean Energy Management. OCS Study BOEM 2017-069.
- Stantec Consulting Services Inc. 2016a. Long-term Bat Monitoring on Islands, Offshore Structures, and Coastal Sites in the Gulf of Maine, mid-Atlantic, and Great Lakes—Final Report Prepared for: U.S. Department of Energy. Prepared by Stantec Consulting Services Inc. 68 pp + appendices.
- Stantec Consulting Services Inc. 2016b. Vessel-based acoustic bat monitoring, Block Island Wind Farm, Rhode Island. Prepared for Deepwater Wind, LLC. Prepared by T.S. Peterson and S.K. Pelletier.
- Viet, R.R, H.F. Goyert, T.P. White, M.-C. Martin, L.L. Manne, and A. Gilbert. 2015. Pelagic Seabirds off the East Coast of the United States 2008-2013. U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. OCS Study BOEM 2015-024. 186 pp.
- Williams, K. A., I. J., Stenhouse, E.E. Connelly, and S.M. Johnson. 2015. Mid-Atlantic Wildlife Studies Distribution and Abundance of Wildlife along the Eastern Seaboard 2012-2014. Biodiversity Research Institute. Portland, Maine. Science Communication Series BRI 2015-19. 32 pp.
- Williams, R., D. Lusseau and P.S. Hammond. 2006. Estimating relative energetic costs of human disturbance to killer whales (Orcinus orca). Biological Conservation 133:301-311.

APPENDIX A

LEASE STIPULATION TABLE

Lease (OCS-A 0482) Stipulations

Addendum "C" Stipulation: Activity	Condition	Compliance
2 SCHEDULE		
2.2.1.2 SAP Survey Plan.	If the Lessee proposes to conduct site assessment activities during the site assessment term, then the Lessee must submit to the Lessor a complete SAP survey plan. This SAP survey plan must include the results of prior relevant surveys conducted in the lease area, if available to the Lessee, and details of any surveys to be conducted on this lease necessary to support the submission of a SAP (see 2.1.2). The Lessee must submit in the SAP survey plan a supporting explanation to substantiate any assertion that the results of prior surveys conducted in the lease area satisfy all or some of the information requirements of a SAP. The Lessee must submit the SAP survey plan to the Lessor by the date specified in the Lesse's pre-filing plan and schedule. The Lessor will require that the Lessee modify the SAP survey plan to .address any comments the Lessor submits to the Lessee on the contents of the SAP survey plan in a manner deemed satisfactory to the Lessor prior to the commencement of any survey activities described in the SAP survey plan.	SAP Survey Plan to be submitted by March 1, 2019
2.2.1.3 COP Survey Plan	The Lessee must submit to the Lessor for review a complete COP survey plan providing details and timelines of the surveys to be conducted on this lease necessary to support of the submission of a COP (i.e., necessary to satisfy the information requirements in the applicable regulations, including but not limited to 30 CFR 621, 626, 627.). The COP survey plan must be submitted to the Lessor no later than the first anniversary of this lease's Effective Date, unless the deadline for submission of this plan is extended by the Lessor per 2.2.4. The Lessee must modify the COP survey plan to address any comments the Lessor submits to the Lessor prior to the contents of the COP survey plan in a manner deemed satisfactory to the Lessor prior to the commencement of these survey activities.	COP Survey Plan Submitted February 13, 2018
2.2.2: Pre-Survey Meeting with Lessor	At least 60 days prior.to the initiation of survey activities in support of the submission of a plan (i.e., SAP and/ or COP), the Lessee must hold a pre-survey meeting with the Lessor to discuss the applicable proposed survey plan and timelines. The Lessee must ensure the presence of a Qualified Marine Archaeologist at this meeting (See 4.2.2).	A pre-survey meeting will be completed 60 days prior to the start of survey activities
2.3.1 Semi-Annual Progress Report	The Lessee must submit to the Lessor a semi-annual (i.e., every six months) progress report through the duration of the site assessment term that includes a brief narrative of the overall progress since the last progress report, or – in the case of the first report – since the Effective Date. The progress report must include an update regarding progress in executing the activities included in the survey plans, and include as an enclosure updated survey plans accounting for any modifications in schedule.	Deepwater will comply when necessary
3 NATIONAL SECURITY AND MILITAR	AY OPERATIONS	
3.2.4: Lessee Point-of-Contact for Evacuation/ Suspension Notifications	The Lessee must inform the Lessor of the persons/offices to be notified to implement the terms of 3.2.2 and 3.2.3.	Aileen Kenney Vice President Deepwater Wind <u>akenney@dwwind.com</u> (401) 648-0607 – office (617) 852-7031 – mobile
3.2.5: Coordination with Command Headquarters	The Lessee must establish and maintain early contact and coordination with the appropriate command headquarters, in order to avoid or minimize the potential to conflict with and minimize the potential effects of conflicts with military operations.	Skipjack will establish a point of contact at United States Fleet Forces in Norfolk, Virginia, as directed in the Lease.

Addendum "C"		
Stipulation: Activity	Condition	Compliance
3.3: Electromagnetic Emissions	The Lessee, prior to entry into any designated defense operation area, warning area, or water test area, must enter into an agreement with the commander of the appropriate command headquarters prior to commencing survey activities undertaken to support SAP or COP submittal, to coordinate the electromagnetic emissions associated with such survey activities. The lessee must ensure that all electromagnetic emissions associated with such survey activities are controlled as directed by the commander of the appropriate command headquarters.	To be addressed for any relevant surve activities when coordinating with Command Headquarters (see stipulatio 3.2.5).
STANDARD OPERATING CONDITIO	NS	
4.1 General		
4.1.1 Vessel Strike Avoidance Measures	The Lessee must ensure that all vessels conducting activities in support of plan (i.e., SAP and COP) submittal comply with the vessel-strike avoidance measures specified in stipulations 4.1.1.1 through 4.1.1.7, except under extraordinary circumstances when the safety of the vessel or crew is in doubt or the safety of life at sea is in question."	All vessel operators and crews will be informed of this requirement
1.1.1.1	The Lessee must ensure that vessel operators and crews maintain a vigilant watch for cetaceans, pinnipeds, and sea turtles and slow down or stop their vessel to avoid striking these protected species.	All vessel operators and crews will be informed of this requirement
1.1.1.2	The Lessee must ensure that all vessel operators comply with 10 knot (18.5 km/hr.) speed restrictions in any Dynamic Management Area (DMA). In addition, the Lessee must ensure that all vessels operating from November 1 through April 30 operate at speeds of 10 knots (18.5 km/hr) or less.	All vessel operators and crews will be informed of this requirement
4.1.1.3 North Atlantic right whales.	 4.1.1.3.1 The Lessee must ensure all vessels maintain a separation distance of 500 meters (1,640 ft) or greater from any sighted North Atlantic right whale. 4.1.1.3.2 The Lessee must ensure that the following avoidance measures are taken if a vessel comes within 500 meters (1,640 ft) of any North Atlantic right whale: 4.1.1.3.2.4 If underway, any vessel must steer a course away from the North Atlantic right whale at 10 knots (18.5 km/hr) or less until the 500 meters (1,640 ft) minimum separation distance has been established (except as provided in 4.1.1.3.2.2). 4.1.1.3.2.4 If a North Atlantic right whale is sighted within 100 meters (328 ft) to an underway vessel, the vessel operator must immediately reduce speed and promptly shift the engine to neutral. The vessel operator must not engage the engines until the North Atlantic right whale has moved beyond 100 meters (328 ft). 4.1.1.3.2.4 If a vessel is stationary, the vessel must not engage engines until the North Atlantic right whale has moved beyond 100 meters (328 ft), at which point the Lessee must comply with 4.1.1.3.2.1. 	All vessel operators and crews will be informed of this requirement

<u>CS-A-0482</u>		SAP Plan
Addendum "C" Stipulation: Activity	Condition	Compliance
	 4.1.1.4.1 The Lessee must ensure that all vessels maintain a separation distance of 100 meters (328 ft) or greater from any sighted non-delphinoid cetacean. 4.1.1.4.2 The Lessee must ensure that the following avoidance measures are taken if a vessel comes within 100 	
4.1.1.4 Non-delphinoid cetaceans other than the North Atlantic right whale.	meters (328 ft) of any non-delphinoid cetacean: Amendment, 2014 Page 4 of 9 4.1.1.4.2. 4 If any non-delphinoid cetacean is sighted, the vessel underway must reduce	All vessel operators and crews will be informed of this requirement
	speed and shift the engine to neutral, and must not engage the engines until the nondelphinoid cetacean has moved beyond 100 meters (328 ft).	
	4.1.1.4.2. 4If a vessel is stationary, the vessel must not engage engines until the nondelphinoidnondelphinoidcetacean has moved beyond 100 meters (328 ft).	
	4.1.1.5.1 The Lessee must ensure that all vessels maintain a separation distance of 50 meters (164 ft) or greater from any sighted delphinoid cetacean.	
	4.1.1.5.2 The Lessee must ensure that the following avoidance measures are taken if the vessel comes within 50 meters (164 ft) of any delphinoid cetacean:	
4.1.1.5 Delphinoid cetaceans.	4.1.1.5.2. 4 The Lessee must ensure that any vessel underway remain parallel to a sighted delphinoid cetacean's course whenever possible, and avoid excessive speed or abrupt changes in direction. The Lessee may not adjust course and speed until the delphinoid cetacean has moved beyond 50 meters (164 ft) or the delphinoid cetacean has moved abeam of the underway vessel.	All vessel operators and crews will be informed of this requirement
	4.1.1.5.2. 4 The Lessee must ensure that any vessel underway reduce vessel speed to 10 knots (18.5 km/hr) or less when pods (including mother/calf pairs) or large assemblages of delphinoid cetaceans are observed. The Lessee may not adjust course and speed until the delphinoid cetaceans have moved beyond 50 meters (164 ft) or abeam of the underway vessel.	
4.1.1.6 Sea Turtles and Pinnipeds.	4.1.1.6.1 The Lessee must ensure all vessels maintain a separation distance of 50 meters (164 ft) or greater from any sighted sea turtle or pinniped.	All vessel operators and crews will be informed of this requirement
4.1.1.7 Vessel Operator Briefing.	The Lessee must ensure that all vessel operators are briefed to ensure they are familiar with the requirements specified in 4.1.1."	All vessel operators will be briefed or requirements specified in 4.1.1
4.1.2: Marine Trash and Debris Prevention	The Lessee must ensure that vessel operators, employees and contractors actively engaged in activity in support of plan (i.e., SAP and COP) submittal are briefed on marine trash and debris awareness and elimination, as described in the BSEE NTL No. 2012-G01 ("Marine Trash and Debris Awareness and Elimination") or any NTL that supercedes this NTL, except that the Lessor will not require the	All vessel operators, employees, and contractors conducting the COP surve
	Lessee, vessel operators, employees and contractors to undergo formal training or post placards. The Lessee must ensure that these vessel operator employees, and contractors are made aware of the environmental and socioeconomic impacts associated with marine trash and debris and their responsibilities for ensuring that trash and debris are not intentionally or accidentally discharged into the marine environment. The above-referenced NTL provides information the Lessee may use for this awareness training."	will be briefed on NTL No. 2012-G01 prior to vessel deployment.
4.2 Archaeological Survey Requirem	ents	
4.2.1 Archaeological Survey Required.	The Lessee must provide the results of an archaeological survey with its SAP and COP.	Results of the archaeological surveys be provided in the SAP and COP.

OCS-A-0482

	SAP Plan
Condition	Compliance
The Lessee must ensure that the analysis of archaeological survey data collected in support of plan (e.g, SAP and/or COP) submittal and the preparation of archaeological reports in support of plan submittal are conducted by a Qualified Marine Archaeologist	R. Christopher Goodwin & Associates, Inc. of Frederick, MD will serve as the Qualified Marine Archaeologist
Subsequent to any pre-survey meeting with the Lessor (see 2.2.2) and at least forty-five (45) calendar days prior to commencing survey activities performed in support of plan (Le., SAP and/ or COP) submittal, the Lessee must invite by certified mail the Narragansett Indian Tribe, the Shinnecock Indian Nation, and the Lenape Tribe of Delaware to a tribal pre-survey meeting. The purpose of this meeting will be for the Lessee and the Qualified Marine Archaeologist to discuss the Lessee's Survey Plan and consider requests to monitor portions of the archaeological survey and the geotechnical sampling activities, including the visual logging and analysis of geotechnical samples (e.g., cores, etc.). The meeting must be scheduled for a date at least thirty (30) calendar days prior to commencing survey and at a location and time that affords the participants a reasonable opportunity to participate. The anticipated date for the meeting must be identified in the timeline of activities described in the applicable survey plan (see 2.2.1).	Skipjack will host a tribal pre-survey meeting at least forty-five calendar days prior to initiating survey activities, as described in this plan. Invitations will be sent via certified mail to the Narragansett Indian Tribe, the Shinnecock Indian Nation, and the Lenape Tribe of Delaware
The Lessee may only conduct geotechnical exploration activities, including geotechnical sampling or other direct sampling or investigation techniques, which are performed in support of plan (i.e., SAP and COP) submittal in locations where an analysis of the results of geophysical surveys has been completed. This analysis must include a determination by a Qualified Marine Archaeologist as to whether any potential archaeological resources are present in the area. Except as allowed by the Lessor under 4.2.6, the geotechnical exploration activities must avoid potential archaeological resources by a minimum of 50 meters, and the avoidance distance must be calculated from the maximum discernible extent of the archaeological resource. A Qualified Marine Archaeologist must certify, in the Lessee's archaeological reports, that geotechnical exploration activities did not impact potential historic properties identified as a result of the HRG surveys performed in support of plan submittal, except as follows: in the event that the geotechnical exploration activities did impact potential historic properties identified as a result of the Lessor's prior approval, the Lessee and the Qualified Marine Archaeologist who prepared the report must instead provide a statement documenting the extent of these impacts.	Skipjack will comply. R. Christopher Goodwin & Associates, Inc. of Frederick, MD will serve as the Qualified Marine Archaeologist
The Lessee must inform the Qualified Marine Archaeologist that he or she may be present during HRG surveys and bottom-disturbing activities performed in support of plan (i.e., SAP and/or COP) submittal to ensure avoidance of potential archaeological resources, as determined by the Qualified Marine Archaeologist (including bathymetric, seismic, and magnetic anomalies; side scan sonar contacts; and other seafloor or sub- surface features that exhibit potential to represent or contain potential archaeological sites or other historic properties). In the event that this Qualified Marine Archaeologist's presence, as requested by the Qualified Marine Archaeologist, and provide the Qualified Marine Archaeologist the opportunity to inspect data quality.	Skipjack will comply. R. Christopher Goodwin & Associates, Inc. of Frederick, MD will serve as the Qualified Marine Archaeologist
In no case may the Lessee knowingly impact a potential archaeological resource without BOEM's prior approval.	Skipjack will comply.
	The Lessee must ensure that the analysis of archaeological survey data collected in support of plan (e.g., SAP and/or COP) submittal and the preparation of archaeological reports in support of plan submittal are conducted by a Qualified Marine Archaeologist Subsequent to any pre-survey meeting with the Lessor (see 2.2.2) and at least forty-five (45) calendar days prior to commencing survey activities performed in support of plan (Le., SAP and/ or COP) submittal, the Lessee must invite by certified mail the Narragansett Indian Tribe, the Shinnecock Indian Nation, and the Lenape Tribe of Delaware to a tribal pre-survey meeting. The purpose of this meeting will be for the Lessee and the Qualified Marine Archaeologist to discuss the Lessee's Survey Plan and consider requests to monitor portions of the archaeological survey and the geotechnical sampling activities, including the visual logging and analysis of geotechnical samples (e.g., cores, etc.). The meeting must be scheduled for a date at least thirty(30) calendar days prior to commencing survey and a ta location and time that affords the participants a reasonable opportunity to participate. The anticipated date for the meeting must be identified in the timeline of activities described in the applicable survey plan (see 2.2.1). The Lessee may only conduct geotechnical exploration activities, including geotechnical sampling or other direct sampling or investigation techniques, which are performed in support of plan (i.e., SAP and COP) submittal in locations where an analysis of the results of geophysical surveys has been completed. This analysis must include a determination by a Qualified Marine Archaeological resources. A clug exploration activities must avoid potential archaeological reports, that geotechnical exploration activities fund to timpact potential historic properties identified as a result of the HRG surveys performed in support of plan submittal, except as follows: in the event that the geotechnical exploration activities did not impact potential h

<u>CS-A-0482</u>		SAP Plan
Addendum "C" Stipulation: Activity	Condition	Compliance
	If the Lessee, while conducting site characterization activities in support of plan (i.e., SAP and/ or COP) submittal, discovers a potential archaeological resource as determined by a Qualified Marine Archaeologist, such as the presence of a shipwreck (e.g., a sonar image or visual confirmation of an iron, steel, or wooden hull, wooden timbers, anchors, concentrations of historic objects, piles of ballast rock), prehistoric artifacts, and/ or relict landforms, etc. within the project area, the Lessee must: 4.2.7.1 Immediately halt seafloor bottom-disturbing activities within the area of discovery;	
4.2.7: Post-Review Discovery Clause	4.2. 7.2 Notify the Lessor within 24 hours of discovery;	Skipjack will comply
	4.2.7.3 Notify the Lessor in writing via report to the Lessor within 72 hours of its discovery;	
	4.2.7.4 Keep the location of the discovery confidential and take no action that may adversely affect the archaeological resource until the Lessor has made an evaluation and instructs the applicant on how to proceed; and	
	4.2.7.5 Conduct any additional investigations as directed by the Lessor to determine if the resource is eligible for listing in the National Register of Historic Places (30 CFR 585.802(b)). The Lessor will do this if: (1) the site has been impacted by the Lessee's project activities; or (2) impacts to the site or to the area of potential effect cannot be avoided If investigations indicate that the resource is potentially eligible for listing in the National Register of Historic Places, the Lessor will tell the Lessee how to protect the resource or how to mitigate adverse effects to the site. If the Lessor incurs costs in protecting the resource, under Section 110(g) of the National Historic Preservation Act, the Lessor may charge the Lessee reasonable costs for carrying out preservation responsibilities under the OCS Lands Act (30 CFR 585.802(c-d)).	
4.4 Benthic Habitat		
4.4.1 Grounds/Fish Habitat	The Lessee must survey, collecting physical and biological survey data, the fishing grounds/fish habitat known as the "Old Grounds", "Mussel Bed", "Inside Mud Hole", "Middle Mud Hole", and "Outer Mud Hole."	Skipjack will comply.
4.5 Protected Species Reporting Re	quirements	
4.5.1: Reporting Injured or Dead Protected Species	The Lessee must ensure that sightings of any injured or dead protected species (e.g., marine mammals, sea turtles or sturgeon) are reported to the Lessor, NMFS, and the NMFS Northeast Regional Stranding Hotline within 24 hours of sighting, regardless of whether the injury or death is caused by a vessel. In addition, if the injury or death was caused by a collision with a project-related vessel, the Lessee must ensure that the Lessor is notified of the incident within 24 hours. The Lessee must use the form provided in Appendix A to Addendum "C" to report the sighting or incident. If the Lessee's activity is responsible for the injury or death, the Lessee must ensure that the vessel assist in any salvage effort as requested by NMFS.	Skipjack will comply.
4.5.2 Protected Species Observer Reports	The Lessee must ensure that the protected species observer record all observations of protected species using standard marine mammal observer data collection protocols. The list of required data elements for these reports is provided in Appendix B of Addendum "C"	Skipjack will provide the protected species observers with a copy of Appendix B of Addendum "C" and submit reports that comply.

O <u>CS-A-0482</u>		SAP Plan
Addendum "C" Stipulation: Activity	Condition	Compliance
4.5.3: Final Report of G&G Survey Activities and Observations	The Lessee must provide the Lessor with a report within 90 calendar days following the commencement of HRG or geotechnical sampling activities that includes a summary of survey activities, and an estimate of the number of listed marine mammals and sea turtles observed and/or Taken during these survey activities.	Within 90 days of HRG survey commencement, Skipjack will provide a field survey report describing survey activities, including protected species reports s.
4.5.4 Marine Mammal Protection Act Authorization(s)	If the Lessee is required to obtain an authorization pursuant to section 101(a)(5) of the Marine Mammal Protection Act prior to conducting survey activities, then the Lessee must provide to the Lessor a copy of the authorization prior to commencing these activities	<u>No IHA is required.Skipjack has-</u> applied for an IHA with NMFS

APPENDIX B

MET BUOY EQUIPMENT SPECIFICATIONS

(CONFIDENTIAL – PROVIDED UNDER SEPARATE COVER)

APPENDIX C

SHALLOW HAZARD ASSESSMENT

Originally prepared for the Bluewater SAP and attached hereto in support of the Current Submission FUGRO ATLANTIC

REVISED SHALLOW HAZARDS ASSESSMENT PROPOSED METEOROLOGICAL DATA COLLECTION FACILITY (MDCF) SALISBURY NJ 18-05 BLOCK 6325 OFFSHORE DELAWARE

Prepared for: NRG BLUEWATER WIND

November 2010 Fugro Job No. 3671.004-r1

World Trade Center 101 West Main Street, Suite 350 Norfolk, Virginia 23510 **Tel: (757) 625-3350**

November 29, 2010 Project No. 3671.004-r1

NRG Bluewater Wind 22 Hudson Place - 3rd Floor Hoboken, NJ 07030

Attention: Kevin Pearce

Subject: Revised Shallow Hazards Assessment Report Proposed Meteorological Data Collection Facility (MDCF) Salisbury NJ 18-05 Block 6325, Offshore Delaware

Dear Mr. Pearce:

Fugro Atlantic (Fugro) is pleased to present our *Revised Shallow Hazards Assessment* for Bluewater Wind's proposed offshore Delaware Meteorological Data Collection Facility (MDCF). Our shallow hazards assessment is based on the geophysical survey conducted in October and November 2009, as well as supplemental survey data collected in October and November 2010, in the 1.8-km by 1.8-km survey area located in Outer Continental Shelf (OCS) Block 6325, about 14 nautical miles offshore of Dewey's Beach, Delaware. The geophysical surveys collected data for both shallow hazards and archeological resource evaluations.

COPY FORWARD

for review and comment

11-30-10

The survey and reporting were authorized by the signed Master Service Agreement between Bluewater Wind and Fugro. The survey was conducted in accordance with Fugro's proposal dated September 30, 2009. The supplemental geophysical data acquisition and revision of our original report were authorized by NRG PO #: K0923101. The survey was planned and executed to meet the U.S. Minerals Management Service (MMS; in spring 2010, MMS was renamed Bureau of Ocean Energy Management, Regulation and Enforcement [BOEMRE]) *Guidelines* for: 1) *Shallow Geologic Hazards and 2*) *Archaeological Resources Surveys for Meteorological Towers*. Those guidelines are included as Appendices C and B, respectively, of MMS' Interim Lease OCS-A-0474 to Bluewater Wind for Salisbury NJ 18-05 Block 6325. As recommended by those MMS guidelines, Fugro prepared a *Marine Geophysical Survey Plan*, dated September 29, 2009, for submittal to and review by the MMS.

The original *Shallow Hazards Assessment* report, based on geophysical data collected in fall 2009, was dated February 5, 2010. That prior report has been revised and updated to include the results of the supplemental geophysical data collected in fall 2010. The revised *Archaeological Resources Assessment* report that also includes consideration of the supplemental data will be prepared by R. Christopher Goodwin & Associates, Inc. under contract to Tetra Tech EC. Under separate cover, Fugro will transmit the electronic survey data to NRG Bluewater Wind for submittal to the MMS, in accordance with MMS' *Guidelines*.

On behalf of the Fugro organization, we appreciate the opportunity to contribute to NRG Bluewater Wind's development of renewable energy resources offshore the United States. Please call us if you have any questions or when we can be of further assistance.

Sincerely, FUGRO ATLANTIC

Len R. mitt

Kevin R. Smith Senior Engineering Geologist

Thomas W. McNeilan, P.E. Vice President

Copies Submitted:

(5) Hard Copies and CDs with PDF files

CONTENTS

	Page
EXECUTIVE SUMMARY	ES-1
Project and Study Description	ES-1
Site and Seafloor Condtions	ES-2
Potential Man-Made Artifacts	ES-2
Subsurface Conditions	ES-3
Conclusions	ES-3
INTRODUCTION	1
Location and Survey Purpose	1
Original Fall 2009 Survey and Shallow Hazards Report	2
Supplemental Fall 2010 Survey and Revised Shallow Hazards Report	2
Project Team	3
Report Format	4
Referenced Reports for Proposed MDCF Site	4
FIELD SURVEY DATA AND DATA ASSESSMENT	5
Survey Descriptions	5
Original, Fall 2009 Data Acquisition	5
Supplemental Fall 2010 Data Acquisition	5
Data Sets and Limitations	6
Bottom Charting Data	6
Sub-Bottom Imaging Systems and Data	6
Previous Seismic Reflection Survey OCS Block 6325	7
Previous Geotechnical Boring in OCS Block 6325	7
Methods of Analysis	8
Chart Presentations	9
REGIONAL SETTING	9
Physiography	9
Geologic Framework	10
Continental Shelf	10
Ancestral Delaware River Drainage	11
Regional Seafloor Geomorphology	11
Geologic Structures and Processes	12
Faulting	12
Seismicity	12
Shallow Gas	13
Slope Failures	13
Active Sediment Transport Processes	14

SEAFLOOR CONDITIONS	14
Water Depth and Seafloor Gradient at Proposed MDCF Site	14
Seafloor Features and Morphology	15
Sand Ridge	15
Dunes	16
Ripples	16
Seafloor Sediments	16
Man-Made Features and Possible Artifacts	17
General Comments	17
Side Scan Sonar and Magnetometer Data Tables and Data Presentations	17
Central Area Anomaly	17
Other Anomalies and Targets	18
SUBSURFACE CONDITIONS	19
Stratigraphy and Structure	19
Correlations Between Seismic Units and Boring Stratigraphy	20
Unit 1 (Seafloor to Event 10)	21
Unit 2 (Event 10 to Event 20)	21
Unit 3 (Event 20 to Event 25)	22
Unit 4 (Event 25 to Event 30)	22
Unit 5 (Event 30 to Event 40)	22
Unit 6 (Event 40 to Event 43)	22
Unit 7 (Event 43 to Event 45)	23
Unit 8 (Event 45 to Event 50)	23
Unit 9 (Event 50 to Event 60)	23
Faults	23
Gas Hazards	23
Slope Failures	24
CONCLUSIONS AND IMPLICATIONS	24
REFERENCES	25

TABLES

(within and following text)

	Page
Table 1: Subsurface Stratigraphy Identified in Boring at Proposed MDCF Location	21
Table 2: Side Scan Sonar Targets	
Table 2a: Fall 2009 Survey	29
Table 2b: Fall 2010 Survey	30
Table 2c: Fall 2010 Survey, Returns from Water Column	31
Table 3: Magnetic Anomaly Summary	
Table 3a: Fall 2009 Survey	32
Table 3b: Fall 2010 Survey	33

FIGURES

(following text and tables)

Figure

Project Location	1		
Project Vicinity	2		
Regional Bathymetry			
Bottom-Charting Survey Navigation Post-Plot			
Original Fall 2009 Survey Data Collection			
Fall 2010 Supplemental Survey Data Collection			
Seismic Reflection Survey Navigation Post-Plot			
Bathymetry	5 6		
Three-Dimensional, Sun-Illuminated, Hillshaded Bathymetry			
Seafloor Slope Gradient	8		
Side Scan Sonar Mosaic	-		
Original Fall 2009 Survey Data Collection	9a		
Fall 2010 Supplemental Survey Data Collection	9b		
Side Scan Sonar Targets			
Original Fall 2009 Survey Data Collection	ah 10c		
Fall 2010 Supplemental Survey Data Collection	•		
Magnetic Anomalies	- <u>-</u>		
Original Fall 2009 Survey Data Collection	11a		
Fall 2010 Supplemental Survey Data Collection	11b		
Original Fall 2009, Proposed MDCF Area	12a		
Fall 2010 Supplemental Survey, Proposed MDCF Area	12b		
Boring Log B-102	13		
Geologic Structure	14		
Geologic Evolution of Mid-Shelf Corridor	15		
Channel Incision and Burial Example	16		
Ancestral Delaware River	17		
Paleodrainages Beneath the Delaware Shelf Valley	18		
2006 Boomer Seismic Record, Line 12	nd 19b		
Bedforms	20a		
Sand Waves	20b		
Surficial Sediments	20c		
Evidence of Sediment Transport in Side Scan Sonar Data	21		
3.125-mgi Boomer Record, Line 131	22		
3.125-mgi Boomer Record, Line 207	23		
Tophole Prognosis Chart	24		
1.56-mgi Boomer Seismic Record, Line 207	25a		
Chirp Seismic Records, Line 143	25b		
1.56-mgi Boomer Seismic Record, Line 134	26		
Unit 1 Isopach (Between Seafloor and Event 10)	27		
Unit 2 Isopach (Between Events 10 and Event 20)			
Structural Contour Map of Event 10			
Structural Contour Map of Event 20			
Site Features	31		
Site Features within the Proposed MDCF Area	32		

CHARTS

Bottom-Charting Survey Navigation Post-Plot	
Original Fall 2009 Survey Data Collection	1a
Fall 2010 Supplemental Survey Data Collection	1b
Seismic Reflection Survey Navigation Post-Plot	2
Bathymetry	3
Side Scan Sonar Mosaic	
Original Fall 2009 Survey Data Collection	4a
Fall 2010 Supplemental Survey Data Collection	4b
Magnetic Anomalies	
Original Fall 2009 Survey Data Collection	5a
Fall 2010 Supplemental Survey Data Collection	5b
Unit 1 Isopach	6
Unit 2 Isopach	7
Event 10 Structure	8
Event 20 Structure	9
Site Features	10

APPENDICES

APPENDIX A	DATA ACQUISITION AND PROCESSING
APPENDIX B	GEOPHYSICAL MAPPING PROCEDURES

Chart

EXECUTIVE SUMMARY

PROJECT AND STUDY DESCRIPTION

Fugro Atlantic (Fugro) has conducted a shallow hazard survey and evaluation for NRG Bluewater Wind's proposed meteorological tower (referred to as a meteorological data collection facility [MDCF]), offshore Delaware. The proposed MDCF is to be located in about 32.5-foot water depth (re: MLLW Datum) at Latitude N 38°41' 14"/Longitude W 74° 46' 06" (WGS84), and is to be founded on a 9-foot-diameter monopile foundation. The site is about 14 nautical miles offshore of Rehoboth Beach, Delaware in the southwestern quadrant of Salisbury Protraction Area NJ18-05, Block 6325 of the Atlantic Offshore Continental Shelf (OCS).

This *Revised Scour Evaluation Report* is one of three technical reports provided by Fugro for NRG Bluewater Wind's proposed MDCF. The other two reports are the *Geotechnical and Pile Design Report* (dated February 28, 2010) and the *Scour Evaluation Report* (dated November 23, 2010). Collectively, these reports document the geologic, seafloor, and subsurface conditions and their implications for the siting, design, installation and performance of the proposed MDCF. Our evaluations are based on the fall 2009 and fall 2010 geophysical survey data acquisition at the proposed project area, a historical boring drilled at the site of the proposed MDCF, and other preliminary investigations, regional data, and prior studies.

The fall 2009 geophysical survey was conducted to satisfy the U.S. Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE; formerly the Minerals Management Service's [MMS]) requirements for: 1) shallow hazards assessment, and 2) marine archaeological resource assessment. The data acquisition and reporting were performed in general accordance with the MMS' *Guidelines for Geological and Geophysical Site-Surveys for Meteorological Towers and Other Seafloor Founded Structures and Devices on the OCS* (MMS, 2009a) and *Archaeological Resources: Recommended Guidelines for Field Surveys and Reporting* (MMS, 2009b). Those guidelines are included as Appendices to MMS' *Interim Lease OCS-A-0474 to Bluewater Wind for Salisbury NJ 18-05 Block 6325.*

The shallow hazards assessment is based on an integrated interpretation of twodimensional, high-resolution seismic reflection (to a maximum depth limit of 0.5 seconds twoway travel time [~1,250 feet] below the seafloor), sub-bottom profiler, side scan sonar, multibeam echosounder, and magnetometer data in the 1.8-km by 1.8-km survey area. The data collected during the surveys were provided to R. Christopher Goodwin and Associates, Inc. (Goodwin) for the archaeological resource assessment which is provided in Goodwin's report.

The *Revised Shallow Hazards Assessment* report supersedes and replaces the previous *Shallow Hazards Assessment* report, dated February 5, 2010. The revised report updates the previous report to include the results of the supplemental geophysical data collected in the fall 2010. The supplemental data were collected to: 1) provide new magnetometer data at the northwest and southeast limits of the survey area, 2) add supplemental data data disclosed several spacing in the central portion of the survey area, where the original data disclosed several magnetometer anomalies, 3) obtain a second set of side scan sonar data using a different system than used to collect the original data, and 4) obtain samples of the seafloor sediment.

SITE AND SEAFLOOR CONDITIONS

The project is to be sited on the Atlantic Shelf. The proposed MDCF is located on the crest of a large northeast-southwest-trending ridge. The water depth at the proposed MDCF location is 32.4 feet (re: MLLW) and varies by up to 5 feet within a 1,000-foot radius around the proposed MDCF location.

The Atlantic Shelf is an area of complex seafloor geomorphology and dynamic ocean currents. Subtle changes in the seafloor have been documented at the site during minor storms, while large storms can produce significant changes in the seafloor due to erosion, transport and redeposition of the seafloor sediments. It is the interrelationship between the bottom currents produced by the various oceanographic processes and conditions, and the seafloor conditions and materials that produce the seafloor geomorphology and create the potential for sediment mobility.

The geophysical data and seafloor sampling document three scales of bedforms that are inferred to reflect bottom current flows of different duration, intensity, and direction. As noted, the MDCF is to be on the crest of a regional northeast-southwest-trending ridge. The sand ridge is the largest of the three bedforms present in the survey area. Two types of smaller bedforms or sand waves are superimposed on the ridge and adjacent swales. Approximately 4-foot-high dunes are present on the southeastern flank of the sand ridge, while smaller sand ripples are present throughout most of the survey area. The fall 2009 geophysical data collection documented modification to the sand ripples on the northern flank of the sand ridge during a small wind-event.

Seafloor sampling shows that the seafloor sediments are fine sand and fine to medium sand. The measured grain size of the seafloor sediments correlates with the side scan sonar reflectivity, which allows the sediment grain size to be mapped in the survey area. The distribution of the sediment grain size in the project survey area is consistent with the inferred long-term evolution of the ridge.

POTENTIAL MAN-MADE ARTIFACTS

The magnetometer data from both the fall 2009 and fall 2010 surveys indicate the presence of a large (800+ gamma) artifact to the southeast of the proposed MDCF location. The presence of the anomaly or a cluster of anomalies was observed in the magnetometer data from multiple survey lines during both surveys. Analyses of the magnetic signatures suggest a probable location of the anomaly (or center of the cluster of anomalies) to be about 85 feet to the southeast of the proposed MDCF location. No seafloor expression of this magnetic anomaly was observed in either the fall 2009 or fall 2010 side scan sonar data. The buried metal object may be debris from prior investigation activities for the MDCF.

The two geophysical surveys also documented the presence of several other pointsource magnetic anomalies (typically less than 5 to 10 gamma intensity with a 3 point-source anomalies with intensities of 40 to 50 gammas) and side scan sonar targets (typically no larger than a 6 feet in length or width and extending less than 0.5- to 1-foot above the seafloor; the

maximum size of one long, narrow target is about 20 feet and maximum height of a different target is about 6 feet above the seafloor). None of the magnetic anomalies correlated with side scan sonar targets on either survey. In addition, none of the small anomalies and side scan sonar targets was identified in both surveys. This is inferred to suggest that the dynamic seafloor conditions periodically bury, expose, and/or move the small artifacts that may have been imaged in either the magnetometer or side scan sonar data.

SUBSURFACE CONDITIONS

The sediments underlying the site to the depth of stratigraphic mapping (approximately 460 feet below the seafloor) are comprised of alternating layers of unconsolidated sand and clay sediments. Boring B-102, drilled in 2007 and logged by Halcrow/HPA, provides lithologic information to 167 feet below mudline. Nine seismic units (Units 1 through 9) were mapped using the two-dimensional, high-resolution seismic data. The upper four of those units are within the depth penetrated by the boring. The seismic units correlate fairly well to soil strata defined in the boring log.

Sub-seafloor amplitude anomalies observed in the seismic data are inferred to represent shallow, free-gas accumulations. A number of water column anomalies (that could be due to intermittent gas seeps) in the side scan sonar data generally correlate to the area where shallow gas was mapped below the seafloor. Near the MDCF, the potential gas zone correlates to a layer of silty clay with organics and strong organic odor. The anomalies were observed in seismic Units 2 and 3. The gas is likely produced from decaying organics within estuarine-lagoonal deposits and is accumulating within sandy layers or lenses. The anomalies are observed at fairly shallow depths below the seafloor and therefore will have limited overburden capable of capping low-pressured gas accumulations. Boring B-102 drilled in 2007 (Halcrow/HPA, 2009) did not report any encounters with gas during drilling (e.g. kick-backs, gas blisters in samples, etc.).

CONCLUSIONS

The seafloor and shallow geologic conditions are generally favorable for installation of the proposed MDCF. The proposed MDCF location avoids known obstructions identified in this survey. Construction and installation activities should be planned to avoid the area of magnetic anomalies or further investigation should be conducted to identify the source of those anomalies. Sediment transport processes, most likely caused by storms, and potential scour should be considered during design of the MDCF foundation.

No applicable BOEMRE Notice to Lessees (NTLs) have been issued for Atlantic OCS structures. Thus, there are no criteria for required offset between the MDCF and the buried metal object(s) to the southeast of the proposed MDCF location or to areas where gas is present in the shallow sediments. We anticipate that these issues will require dialogue with the BOEMRE.

INTRODUCTION

LOCATION AND SURVEY PURPOSE

Fugro Atlantic (Fugro) conducted the marine geophysical survey and prepared the shallow hazards assessment report for NRG Bluewater Wind's (or Bluewater's) proposed meteorological tower (referred to as a meteorological data collection facility [MDCF]), offshore Delaware. The proposed MDCF location (Figure 1) is about 14 nautical miles (Nm) offshore of Rehoboth Beach, Delaware in Salisbury Protraction Area NJ18-05, Block 6325 of the Atlantic Offshore Continental Shelf (OCS). The location of the proposed MDCF is at:

- Latitude N 38°41' 14", Longitude W 74° 46' 06" WGS84,
- UTM Zone 18N, E 520,148 meters, N 4,282,094 meters, WGS84, and
- Water depth = 32.4 feet re: Mean Lower Low Water (MLLW), measured with a multibeam echosounder.

The 1.8-km by 1.8-km geophysical survey area is centered near the southwest corner of OCS Block 6325 (Figures 2 and 3). The western and southern corners of the survey area extend into Blocks 6324 and 6375, respectively.

The purpose of the geophysical survey was to satisfy the U.S. Minerals Management Service's (MMS'; in spring 2010, MMS was renamed Bureau of Ocean Energy Management, Regulation and Enforcement [BOEMRE]; the terms MMS and BOEMRE are used interchangeably within this report) requirements for: 1) shallow hazards assessment, and 2) marine archaeological resource assessment. The data acquisition and reporting were performed in general accordance with the MMS *Guidelines for Geological and Geophysical Site-Surveys for Meteorological Towers and Other Seafloor Founded Structures and Devices on the OCS* (MMS, 2009a) and *Archaeological Resources: Recommended Guidelines for Field Surveys and Reporting* (MMS, 2009b). Those guidelines are included as Appendices C and B, respectively, of MMS' *Interim Lease OCS-A-0474 to Bluewater Wind for Salisbury NJ 18-05 Block 6325*.

Currently, Notice To Lessees (NTLs) have not been released for alternate-energyproject shallow hazard and marine archaeology assessments on the Atlantic OCS. However, the aforementioned guidance documents (MMS, 2009a and 2009b) refer to the following NTLs for data acquisition and reporting requirements: Pacific OCS Region NTL No. 06-P01 (MMS, 2006), Gulf of Mexico Region NTL 2008-G05 (MMS, 2008), and Alaska OCS Region NTL 05-A01 (MMS, 2005b). Considering those NTLs were developed for siting oil and gas structures and drilling wells, in our opinion, this study and report meets or exceeds requirements from the NTLs that are applicable to the proposed meteorological tower project described herein.

ORIGINAL FALL 2009 SURVEY AND SHALLOW HAZARDS REPORT

The scope of this study consists of the interpretation, mapping, and geologic/hazard assessment of the high-resolution-survey data. The data include bottom charting and subbottom imaging data. The bottom charting systems included: multibeam echosounder, side scan sonar, and magnetometer data acquisition. The sub-bottom imaging systems included: a Chirp sub-bottom profiler and two-dimensional (2D) high-resolution, multichannel seismic reflection data collection.

Considering that few studies (consistent with the requirements of the MMS guidelines) have been conducted on the Atlantic OCS and the requirements for future wind turbine foundations will likely require investigative depths that exceed those for the meteorological tower, we used two multichannel hydrophone arrays (streamers) to aid in defining optimal data acquisition parameters for the MDCF and future turbine foundations. The 16-channel, 3.125-meter group interval (mgi) streamer obtained data to a two-way travel time (TWT) of 0.5 seconds (~1,250 feet), and the 8-channel, 1.56-mgi streamer obtained mappable data to a TWT of 0.080 seconds (~200 feet). The 1.56-mgi streamer provided high-resolution, detailed data of the shallower interval while the 3.125-mgi provided deeper data, and defines the depth limit of this investigation (~0.5 seconds TWT).

A Marine Survey Plan (Fugro, 2009b) was prepared by Fugro on behalf of Bluewater for submittal to the MMS. The original Shallow Hazards Assessment report (Fugro 2010a) was the second of three Fugro submittals for the marine survey for Bluewater's proposed Delaware MDCF project. The first submittal was comprised of the electronic bottom charting and subbottom data with documentation of data acquisition and processing procedures for use by and inclusion in the Archaeological Resources Assessment report being prepared by R. Christopher Goodwin & Associates, Inc. under contract to Tetra Tech EC. The first submittal was transmitted to R. Christopher Goodwin & Associates on February 2, 2010. Fugro's third survey submittal transmitted the electronic survey data to Bluewater for submittal to the MMS, in accordance with MMS' Guidelines.

The original survey data collection and reporting were authorized by Bluewater Wind Delaware Energy LLC's acceptance of Fugro's proposal dated September 30, 2009 and the execution of the Master Service Agreement between Fugro and Bluewater.

SUPPLEMENTAL FALL 2010 SURVEY AND REVISED SHALLOW HAZARDS REPORT

In fall 2010, Fugro collected additional side scan sonar and magnetometer data across the 1.8-km by 1.8-km survey area. The purposes of the supplemental data collection were to:

- Collect new magnetometer data at the northwest and southeast limits of the survey area, where the original magnetometer data were collected with the instrument being flown too high from the seafloor;
- Add supplemental magnetometer data at 15-meter line spacing in the central portion of the survey area, where the original data disclosed several magnetometer anomalies;

- Obtain a second set of side scan sonar data using a different system than was used to collect the original data; and
- Obtain samples of the seafloor sediment.

Rather than merge the supplemental data with the original data, full sets of magnetometer and side scan sonar data were collected across the entire survey area.

The supplemental survey and reporting were authorized by NRG Energy, Inc's Purchase Order # K0923101, dated September 23, 2010. The survey was conducted in accordance with Fugro's proposal dated September 22, 2010.

PROJECT TEAM

Fugro was contracted by Bluewater to provide geophysical and shallow hazards interpretation, mapping, and report preparation services. The equipment choices and survey plan were prepared by: Mr. Tom McNeilan, Vice President; Mr. Jeff Carothers, Survey Manager; Mr. Kevin Smith, Senior Engineering Geologist; and Mr. Mike Barth, Senior Geophysical Systems Technician.

The principal personnel involved in the original 2009 offshore acquisition stage of the project were:

- Pat Nissen Party Chief and Multibeam Echosounder (MBES) Engineer,
- Herb Tovar Survey Technician,
- Mike Barth Senior Geophysical Systems Technician, and
- Robbie Dame Engineering Geologist.

Miller's Launch, under subcontract to Fugro, provided captains and crew for the M/V *Samantha Miller*. Two marine mammal observers (MMOs) were provided by Geo-Marine, under separate contract to Bluewater.

The supplemental data acquisition systems were evaluated by the Fugro staff and the new data were collected under the direction of Mr. Kevin Morris, Fugro Atlantic's survey supervisor, from the survey vessel R/V *Chinook*. Because no sub-bottom systems were used, MMOs were not required during the supplemental data collection.

The 2D seismic reflection data were processed by Legg Geophysical. The Fugro interpretation, mapping and reporting team included: Mr. James Fisher, Staff Engineering Geologist; Ms. Cindy Pratt, Senior Surveyor; Mr. John Reitman, subconsultant; Mr. Kevin Morris, survey supervisor; and Mr. Kevin Smith, Senior Engineering Geologist. Report graphics and charts were prepared by Mr. Dan Shaffer, Senior GIS Analyst; Mr. Fisher; and Mr. Smith. The report text was authored by Mr. Smith and reviewed by Mr. Tom McNeilan, Vice President.

REPORT FORMAT

This introductory section is followed by a section summarizing the field survey and data acquired. That section is followed by sections describing the regional geologic setting, the seafloor conditions, and the sub-seafloor conditions. Sections describing our conclusions and the implications of the findings conclude the main text. References, figures, and charts follow the main text. Appendix A provides and describes the survey operational overviews, instrumentation settings, vessel diagrams, geophysical job logs, and data processing procedures. Appendix B describes the geophysical mapping procedures used to produce the interpretational charts accompanying this report.

REFERENCED REPORTS FOR PROPOSED MDCF SITE

Fugro has provided three reports for Bluewater Wind's proposed Delaware MDCF that are directly relevant to the evaluation of scour. Those reports are:

- Fugro 2010a: Shallow Hazards Assessment Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware. Report Number 36714.004, dated February 5, 2010. This report is subsequently referred to as the Shallow Hazards Report.
- Fugro 2010b: Geotechnical and Pile Design Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware. Report Number 3671.006, dated February 28, 2010. This report is subsequently referred to as the Pile Design Report.
- Fugro 2010c: Seafloor Scour Evaluation Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware. Report Number 36714.004-r1, dated November 23, 2010. This report is subsequently referred to as the Scour Evaluation Report.

In addition to the Fugro reports, two prior survey and geotechnical exploration efforts also contributed to understanding the site and seafloor conditions. Those surveys and explorations (and their results) are documented in the following:

- Preliminary Geophysical Survey: Ocean Surveys, Inc. (OSI) (2006), Reconnaissance Marine Geophysical Survey, Bluewater Wind Energy Project, Delaware Wind Park Development, Delaware Bay and Atlantic Ocean, Final Report, prepared for Bluewater Wind, LLC, OSI Report #06ES081.
- Geotechnical Exploration:
 - "Bluewater Wind Delaware Site Final Boring Logs," e-mail transmittal from Halcrow/HPA to Bluewater Wind, November 2, 2009.
 - Technical Report on Physical Testing of Sediment from Delaware Wind Park, prepared by Aqua Survey for Bluewater Wind LLC, November 2007, ASI Job No. 27-249.

 Field Report, Presentation of CPTU Test Results for Bluewater Wind Project, Offshore from Bethany Beach, DE, Prepared by ConeTec for Aqua Survey, October 2007, ConeTec Job No. 07-798.

FIELD SURVEY DATA AND DATA ASSESSMENT

SURVEY DESCRIPTIONS

The shallow hazards (also termed the geologic and geophysical [G&G]) survey included collection of bottom charting and sub-bottom imaging data over the 1.8-km by 1.8-km survey area (Figure 4 and Chart 1). All geophysical data were digitally recorded during field acquisition. Further description of the geophysical systems utilized during the G&G surveys and a summary of survey operations are provided in Appendix A.

The original survey was conducted using Fugro's equipment onboard Miller's Launch survey vessel the M/V *Samantha Miller* from October 11 through November 1, 2009. The supplemental data were collected during October and early November 2010 from the R/V *Chinook*.

Original, Fall 2009 Data Acquisition

The bottom charting systems included: MBES, side scan sonar, and magnetometer data acquisition. The sub-bottom imaging systems included: a Chirp sub-bottom profiler and 2D high-resolution, multichannel seismic reflection system. The seismic reflection data were collected using a mechanical, dual-plate "boomer" source and two multichannel, GeoEel, hydrophone arrays.

The sub-bottom profiler, side scan sonar, magnetometer, and MBES systems were run simultaneously along 61 primary lines (line numbers 101 through 161) oriented 051°/231° and spaced nominally 30 meters apart (Figure 4a and Chart 1a). These systems also were used along the 13 crosslines (line numbers 201 through 213) run at a nominal spacing of 150 meters, with an orientation of 141°/321°.

The 2D seismic reflection "boomer" data were collected along every third (i.e. line 101, 104, ..., 158, and 161) primary lines oriented 051°/231°. The nominal spacing of those primary seismic reflection lines is 90 meters apart (Figure 5 and Chart 2). The 2D seismic reflection data were also collected on each of the 13 crosslines (line numbers 201 through 213) run at a nominal spacing of 150 meters, with an orientation of 141°/321°.

Supplemental Fall 2010 Data Acquisition

The supplemental, fall 2010 magnetometer and side scan sonar data were collected along: 61 primary lines (line numbers 501 through 561) oriented 051°/231° and spaced nominally 30 meters apart and three equally spaced crosslines (line numbers 601 through 603) with an orientation of 141°/321°, at the edges and through the center of the survey area (Figure

4b and Chart 1b). Additional data were collected in the center of the survey area where the original data identified several magnetometer anomalies; that additional data included: six approximately 0.4-km-long crosslines (numbered 701 though 706) at 30-meter spacing and two approximately 300-meter-long primary lines (numbered 801 and 802) at 15-meters spacing.

DATA SETS AND LIMITATIONS

Bottom Charting Data

The MBES survey provided high-quality, full-coverage bathymetry data of the survey area (Figures 6 through 8, and Chart 3). Line spacing was sufficient to provide overlapping side scan sonar coverage (Figures 9 and 10 and Chart 4). The multibeam hydrographic data, collected with a Reson SeaBat 8101, provide a high quality data set.

Side scan sonar data display good lateral resolution, are free of distortion and interference, and are judged to resolve seafloor features as small as 1.5 feet (0.5 meter). The original 2009 side scan sonar data, collected with an Edgetech 272-TD side scan sonar system, are considered to be of good quality. The 2010 data, collected with a Klein 3000 side scan sonar system are considered to be of superior quality.

The magnetometer survey data for both surveys were collected with a SeaSPY magnetometer. The data provided adequate coverage to identify small magnetometer anomalies and interpolate a relative magnetic field chart (Figures 11 and 12 and Chart 4). The 2009 magnetometer data are judged to be of acceptable quality but somewhat "noisy" due to the sea conditions. The 2010 data are considered to be of superior quality and provide detail for interpretations of: natural variations in magnetic field across the site magnetic field trends due to geology, and point-source magnetic anomalies.

Sub-Bottom Imaging Systems and Data

An EdgeTech X-Star Full Spectrum Sub-bottom Profiler (Chirp) system was employed to obtain shallow seismic reflection data in the sediment layers immediately beneath the seafloor. These shallow data provide information on the spatial distribution and thickness of surficial sediments. The EdgeTech X-Star system included a SB-216S towfish, a Model 3200 topside processor, and EdgeTech's Discover acquisition software. The system was triggered at a 6-hertz (-Hz) pulse rate with a swept frequency range between 2 kilohertz (kHz) to 15 kHz over 20 milliseconds (ms). The Chirp sub-bottom profiler typically achieved penetration of 30 to 40 feet below the seafloor and was capable of resolving layers approximately 1 foot thick.

The 2D, high-resolution seismic reflection survey was conducted using a dual-plate, boomer source and two multichannel, GeoEel, hydrophone arrays. The shorter hydrophone array was comprised of four elements per group, eight groups (channels), and a group interval of 1.56 meters. The 1.56-mgi streamer acquired good data to approximately 0.08 seconds (TWT) or ~200 feet below sea surface (BSS) and provided high-resolution data of the shallow geologic structure. The longer hydrophone array was comprised of five elements per group

interval, sixteen groups, and a group interval of 3.125 meters. The 3.125-mgi streamer acquired good data for the full record length (TWT of 0.5 seconds) or ~1,250 feet BSS.

The processed data were loaded onto a workstation and interpreted by Fugro using Seismic Micro-Technology (SMT) interpretation software. The dominant frequency in the shallow section imaged by the 1.56-mgi streamer is approximately 143 Hz (Figure B-1a). The dominant frequency range in the section imaged the 3.125-mgi streamer is between 88 Hz and 215 Hz (Figure B-1b).

The dominant frequency can be used to calculate the characteristic "limit of separability" for the seismic data volume. The limit of separability, which is a function of vertical resolution, is defined as the minimum bed thickness for which the top and bottom of the bed can be fully resolved in the seismic data. This limit is based on the one-quarter acoustic wavelength approximation. Based on the dominant frequency, the limit of separability is about 8 feet for the 1.56-mgi streamer and 5 feet to 14 feet for the 3.125-mgi streamer, assuming an average velocity of approximately 5,000 feet per second (ft/s). Individual strata or other geologic features thinner than the limit of separability, which varies locally, may be detected but not resolved in true thickness or lateral extent. Small-scale topographic features and man-made obstructions such as pipelines, shipwrecks, and seafloor debris cannot be resolved in this data set.

Previous Seismic Reflection Survey OCS Block 6325

In 2006, Bluewater subcontracted work for a reconnaissance geophysical survey to support concept planning for a future wind farm. Ocean Surveys, Inc. conducted the survey in 2006 using an Applied Acoustics 300-joule boomer system (0.4-8 kHz) with a single-channel hydrophone. The survey tracklines were widely spaced and conducted along conceptual turbine layouts. Primary lines were oriented NW-SE and spaced nominally 0.4 Nm apart and crosslines were oriented NE-SW and spaced nominally 1.9 Nm apart. Survey tracklines, within the MDCF survey vicinity, are shown on Chart 2 and Figure 5. Fugro was provided with PDF files of the seismic records.

Survey tracklines 2 and 11 through 14 pass through the 2009 shallow hazards survey area. The seismic records provide data from the seafloor to the first seafloor water-bottom multiple (approximately 13 to 20 ms TWT [~30 to 50 feet] below the seafloor) within the shallow hazards survey area. Interpretation and mapping of seismic data within the shallow hazards survey area below the first seafloor multiple is difficult to impossible with the data from the 2006 survey. However, the data provide useful insight that assists with interpretation of the seismic data (above the first seafloor multiple) into the larger geologic context. Shallow hazards assessment using the seismic data was not conducted as part the preliminary study (OSI, 2006).

Previous Geotechnical Boring in OCS Block 6325

During October 14 through 17, 2007, a soil boring was advanced to a depth of 167 feet below mudline (BML) near the proposed MDCF location by Halcrow/HPA and subcontractors.

The work was performed under contract to Bluewater. The borehole was advanced using rotary wash techniques and included standard penetration test sampling at approximately 5-foot intervals. One Shelby Tube sample was attempted, but failed to recover sample. The reported location coordinates were N38° 41.2352' and W74° 46.1035', and the reported water depth was 31 feet (MLW). The details of navigation and measurement methods were not reported (by Halcrow/HPA), so the precision of the position and water depth measurement is unknown. The location of boring is shown on relevant figures and charts in this report. Halcrow/HPA provided the final boring log in November 2009 and it is reproduced in this report as Figure 13.

The boring log provides a description of the soil stratigraphy of the sediments from the seafloor to 167 feet below mudline (BML). The soil types encountered in the boring are reported to include alternating layers of unconsolidated sand and fine-grained sediments of varying thickness and composition.

Two relatively thick fine-grained units (an upper 20-foot-thick silty clay with abundant organics at 33.5 feet and a lower 30-foot-thick silty clay at 108.5 feet) were encountered. The upper fine-grained unit contained organics, and "strong organic odors" are noted on the log. One sample in the lower fine-grained unit was reported to contain "trace organic debris." Decaying organics of those two fine-grained units may be potential sources for biogenic gas.

Figure 21 through 25 provide comparisons of the boring log stratigraphy and seismic data. Graphical depiction of the soils encountered in the boring are also superimposed on the seismic records shown on Figures 21 through 25. In general, the seismic and geotechnical data are judged to correlate fairly well.

METHODS OF ANALYSIS

As noted, all of the navigation and geophysical data were digitally recorded. The multibeam data were velocity-corrected with velocimeter information collected at the project site. Observed tides for the Lewes, Delaware National Oceanic and Atmospheric Agency (NOAA) tidal station 8557380 were used to reduce observed bathymetric values to MLLW tide level. The tide-corrected data were contoured within ArcGIS for final presentation.

Both the side scan sonar and magnetic data were imported into Chesapeake Technology's SonarWiz software on a line-by-line basis. The magnetic anomalies and side scan sonar targets identified in the 2009 and 2010 data sets were cross-checked between surveys, and the side scan sonar targets and magnetic anomalies were cross-checked against each other. For each set of magnetic data, we used least squares regression analysis on each line to remove variations in the magnetic field (e.g. diurnal effects) and a relative magnetic difference from the best fit line calculated along each trackline. The resulting relative magnetic fields were contoured using ArcGIS version 9.3 3D Analyst software.

The bottom charting, sub-bottom profiler, and high-resolution geophysical data collected from the remote sensing systems were reviewed for geologic interpretation, evidence of manmade obstructions and the possible presence of geohazards. The results of our interpretations are discussed and presented herein.

CHART PRESENTATIONS

The study area charts and figures display a plan view of the survey area and include:

- Bottom Charting and Seismic Reflection Navigation Post-Plots (Charts 1 and 2, Figures 4 and 5),
- Bathymetry (Chart 3 and Figure 6),
- Side Scan Sonar Mosaic (Chart 4 and Figure 9),
- Magnetic Anomalies (Chart 5 and Figures 11 and 12),
- Units 1 and 2 Isopach Charts (Charts 6 and 7, Figures 26 and 27),
- Events 10 and 20 Structure Contour Charts (Charts 8 and 9, Figures 28 and 29), and
- Site Features that includes surface and sub-surface hazards (Chart 10 and Figure 30).

Where two sets of data have been collected (i.e. the original fall 2009 and supplemental fall 2010 data), the Figure or Chart for the original fall 2009 data is numbered Figure Xa. The Figure or Chart number for the supplemental fall 2010 data is numbered Figure Xb.

The charts and figures are presented at scales of 1:6,000 (1 inch = 500 feet) and 1:12,000 (1 inch = 1,000 feet), respectively. The charts and figures present coordinate grids for UTM Zone 18N, WGS84, meters, and Latitude/Longitude WGS84. Navigation station markers are displayed every 100 meters.

REGIONAL SETTING

PHYSIOGRAPHY

The study area is located in the Delaware Shelf Valley of the Mid-Atlantic Bight (Figure 13). The Delaware Shelf Valley is part of the continental shelf, which is the submerged extension of the Coastal Plain Province. The continental shelf has a very gentle, regional slope of about 0.1 degree and extends from the southern New Jersey/Delaware coastline eastward for about 75 Nm. The edge of the continental shelf is demarcated by the shelf break at about the 650-foot (200-meter) isobath. Seaward of that isobath, the slope of the seafloor steepens to about 3 to 6 degrees down the continental slope.

Predominant features on or buried beneath the continental shelf include paleoshorelines, shoals, filled channels, and shoal retreat massifs. The presence or absence of these features defines the seafloor and subsurface conditions and their variability at any specific location.

GEOLOGIC FRAMEWORK

Continental Shelf

The project area lies near the western rim, or the hinge-line, of the Baltimore Canyon Trough -- a northeast-southwest-trending rift basin structure (Figure 14) that formed as a result of extensional tectonics during the Jurassic and Triassic periods (Grow et al, 1988). Following the basin formation, from Late Cretaceous through the Cenozoic, sedimentation and erosion as sea level fluctuated controlled much of the geologic development (Figures 15 and 16). As an undertone during this time, minor structural deformation is attributed to: 1) sediment loading and thermal subsidence eastward of the hinge-line (from zero westward of the hinge-line up to 0.015 mm/yr east of the hinge-line [Greenlee et al., 1988]), 2) differential crustal movement from isostatic adjustment to the north of the "glacial-isostatic hinge zone" (Figure 14) following retreat of the Late Wisconsin ice sheet (Dillon and Oldale, 1978), and 3) local uplift from movement of salt intrusions near the seaward edge of the shelf (Carey et al., 1998). This region is currently considered to be a tectonically quiet, passive margin.

The geologic units underlying the site are comprised of Cenozoic-age sediments. The sediments consist of sand, gravel, silt, and clay. Although Quaternary glaciers did not advance across the site, the subsurface conditions were significantly influenced by the glacial-interglacial cycles (Figures 15 and 16). Sea-level fluctuations that occurred as a result of the glacial-interglacial cycles caused the shoreline to regress and transgress across the shelf several times throughout geologic time. Those geologic processes during the Quaternary (Figures 15 and 16) are primarily responsible for shaping the geology and subsurface conditions that will influence the siting, type selection, engineering design, installation, and performance of the MDCF foundation.

During periods of inundation, marine sediments were deposited on the shelf. During sea level low-stands, paleodrainages developed on the shelf, deltas formed at river mouths, and estuary-lagoon-barrier complexes formed behind inlets. During the Last Glacial Maximum (Wisconsin glacial period, approximately 25 to 15.7 thousand years ago [kya]), the sea level was approximately at the 120-meter isobath. During this time, drainages formed across and carved channels into what is now the shelf (Figure 16 inset B).

As the sea level rose and the shoreline transgressed and retreated westward (Figure 16 - inset C), the channels were flooded, transitioned into estuaries, and then were infilled with sediments. The channels typically are infilled with a fining-upward sequence. That sequence often included coarse basal lag deposits overlain by sands and then silts or clays. The infill sediments may be dissimilar to the sediments outside the incised channel or they may be composed of similar, but younger, materials.

Additionally, an estuary-lagoon-barrier depositional system transitioned west along the shelf as sea level rose. Estuary and lagoon deposits are generally fine-grained, may contain organics, and can be channelized to varying degrees. Barrier deposits (islands, spits, or bars) are generally sandy sediments. After the shoreline transgressed to near its current position, the

shelf was inundated and marine sediments deposited over the shelf. These marine deposits have buried and masked the underlying geology.

The combined effects of these processes often result in a subsurface stratigraphy that is composed of sequences of layered deposits. In some locations, individual layers may be many tens of feet thick and extend over significant distances. Elsewhere, the layers may be much thinner and laterally discontinuous.

Ancestral Delaware River Drainage

The ancestral Delaware River drainage system is buried beneath the seafloor of the Delaware Shelf Valley (Figures 17 and 18). During sea level lowstands, this major ancestral river system is inferred to have flowed across the continental shelf and emptied at the head of canyons that are still present along the shelf break.

The post-Wisconsin (approximately 10,000 kya) drainage course was interpreted by Twichell et al. (1977) to have flowed from the existing mouth of the Delaware Bay, across the shelf, and emptied into Wilmington Canyon. Twichell et al. (1977) interpret the main trunk of the ancestral paleodrainage to be about 2 to 3 Nm to the southeast of the proposed MDCF location. The thalweg of the Holocene Delaware River paleodrainage is inferred to be as deep as 190 feet below present day sea level (Kraft, 1971). The Holocene channel infill materials are inferred to be fine-grained, lagoonal-estuarine deposits with appreciable organics (Sheridan et al., 1974).

The buried system of drainages that fed into the ancestral Delaware River drainage is not well documented in the vicinity of the MDCF. The 2006 reconnaissance seismic survey conducted in 2006 (OSI, 2006) suggests the presence of buried paleochannels to the north, south, and west of the proposed MDCF. Figure 19 shows the 2006 seismic record from trackline 12 that passes through the shallow hazards survey area. A large paleochannel, which likely connects to the main ancestral Delaware drainage, is present approximately 5,800 feet northwest of the proposed MDCF location (between navigation fix points 830 and 850). The current shallow hazards survey confirms that the proposed MDCF location is not underlain by a large, deeply incised paleochannel.

The ancestral Delaware River channel and its tributaries can be infilled with thick deposits of soft, fine-grained sediment that may not provide adequate end-bearing strata for the MDCF pile foundations. Those sediments or associated lagoonal-estuarine deposits can include decaying organics that may be the source shallow gas accumulations.

Regional Seafloor Geomorphology

The inner and mid continental shelf areas off the Mid-Atlantic coastline are comprised of ridges and swales that have a northeasterly trend (Figures 2 and 3). The sand ridges typically exhibit relief of 15 to 25 feet, are between 0.5 and 1.5 Nm wide, and may extend for a distance of 5 to 15 Nm. The ridges are postulated to be shoreface deposits abandoned as the shoreline transgressed during the last rise in sea level (Swift et al., 1973). As discussed by Snedden et al

(1999), ridge shape and morphology are inferred to be a function of the hydrodynamic environment with ridges evolving over time until dynamic equilibrium is reached with the hydrodynamic environment.

Smaller-scale bedforms are commonly superimposed on the larger ridges and swales. Dunes, sand waves, and sand ripples of varying size are common throughout the area and form in response to flow conditions. It is not uncommon to observe bedforms in an area that form in response to two or more flow conditions (e.g. downwelling currents from the north during nor'easters and currents from the south in response to tropical storms).

GEOLOGIC STRUCTURES AND PROCESSES

Faulting

Potentially Active Faults. Based on our review of publicly available information and data acquired as part of this study, no known active faults (defined as ruptured during the Holocene or last 10,000 years) or potentially active faults (defined as ruptured during the Quaternary or last 1.6 million years) were identified within or trend toward the study area. Thus, no known faults are considered to pose a fault rupture hazard to the project.

Basement Faults. The three closest, post-basement forming (post-Jurassic) fault zones are described below.

The New York Bight fault is a 27-Nm-long fault that forms the western margin of the New York Bight Basin (Figure 14). The fault trends north-south from approximately 8 Nm south of Long Island's southern shoreline to a location approximately 16 Nm east of Asbury Park, New Jersey. The southern mapped extent of this fault is approximately 105 Nm north of the proposed MDCF. The New York Bight fault has accommodated the largest post-Cretaceous and younger displacement of the base of the Coastal Plain along the East Coast (Hutchinson and Grow, 1985). The displacement is inferred to have occurred during the Late Cretaceous (95 million years before present [mybp]) and middle Oligocene (30 mybp). Hutchinson and Grow (1985) indicate that evidence for Quaternary activity is ambiguous.

The Ramapo fault in the Newark Basin is located in northern New Jersey near the New York-New Jersey border (Figure 14). This fault is approximately 95 Nm northwest of the proposed MDCF. The Ramapo fault formed during the Mesozoic but is possibly reactivated and associated with the cluster of recorded microseismicity in northern New Jersey (Ratcliffe and Burton, 1985).

Several listric growth faults have been indentified beneath the shelf break approximately 45 Nm east of the proposed MDCF (Klitgord et al., 1988). Klitgord et al. (1988) indicate that the faults offset geologic units as young as Tertiary age.

Seismicity

Earthquakes may pose hazards to meteorological towers by: 1) causing ground shaking that may affect the structure, especially if the site resonance matches the structural resonances;

2) causing liquefaction that will decrease lateral resistance and the skin friction of the soils around the foundation; 3) generating a tsunami; and/or 4) inducing submarine landslides. Although earthquake magnitudes that the known faults are capable of generating are limited, ground motions from earthquakes in the eastern U.S. are capable of travelling larger distances than in the western U.S. due to differences in the attenuation properties of the crust.

Based on our review of historical seismicity, the known earthquakes that occurred within 100 Nm of the proposed MDCF location were less than a magnitude 5. The locations of the instrument-recorded microseismicity are primarily onshore. The three nearest clusters of microseismicity are located in southeastern Pennsylvania (approximately 90 Nm from the site), northern New Jersey (associated with the Ramapo fault, Figure 14; approximately 95 Nm from the site) and the Central Virginia Seismic Zone (approximately 120 Nm from the site). Microseismicity can be used to illuminate the location of an active fault (e.g. the New Madrid Seismic Zone in the central U.S.) or indicate the reactivation of a dormant fault (e.g. Ramapo fault). The absence of recorded microseismicity offshore Delaware suggests that no active faults are present within the study area or (more likely) that the land-based seismic recording network cannot record or accurately locate micro-earthquakes that have occurred offshore.

Shallow Gas

During our literature review (Fugro, 2009a), we found that certain geologic conditions may be present beneath the site that are favorable for producing shallow biogenic gas. Geologic sediments with abundant organic deposits (e.g. peat) have been mapped in the regional subsurface (e.g. Sheridan, et al., 1974).

The decaying organics may produce appreciable gas concentrations in the shallow subsurface. The ancestral Delaware River incised large channels (150+ feet deep) that are inferred to be infilled with fine-grained, organic-rich sediments (Sheridan et al., 1974). Additionally, thick sequences of organic-rich, lagoonal-estuarine deposits of Quaternary age have been mapped in the regional subsurface. Seismic surveys within Delaware Bay have observed shallow gas in Quaternary-aged sediments.

The 2006 boring B-102 noted organic-rich sediments and samples that had a "strong organic odor," which suggests that biogenic gas may be present. In addition, we observed features in the 2006 and 2009 seismic data that suggest shallow gas is likely present in the subsurface. We have incorporated that information in our shallow gas hazard evaluation.

Slope Failures

Submarine mass movement features are not common in this part of the Mid-Atlantic continental shelf. Among other factors, the lack of slope instability features is likely attributed to the lack of seismic activity, canyons, valleys, submarine fans or deltas with high sedimentation rates. The nearest documented large-scale submarine slope failures (Chaytor et al., 2007) are located near the shelf break and slope, approximately 45 Nm east of the proposed MDCF.

Active Sediment Transport Processes

On the continental shelf, sediments can be transported by tidal currents, density-driven circulation currents, wind-driven circulation, and/or wave-driven currents. Sediment transport processes may result in net erosion or deposition. Erosion processes may be problematic for structures if scour occurs at the base of the structure, where removal of material can reduce skin friction resistance (and transfer axial pile loads farther down the pile shaft), reduce lateral resistance, or modify the resonance of the structure.

Scour produced by sediment transport is considered to be a primary geologic hazard for structures in the study area. Storm-driven bottom currents are anticipated to be the primary sediment transport mechanism for this part of the continental shelf. Circulation currents are likely also capable of transporting sediments. An evaluation of the sediment mobility and potential for scour at the MDCF is provided in Fugro (2010c).

SEAFLOOR CONDITIONS

The survey area water depths are shown on Chart 3 and Figure 5 at scales of 1:6,000 and 1:12,000, respectively. Water depth contours in Chart 3 and Figure 5 are presented at 1-foot intervals within the multibeam survey area and at 5-foot intervals outside the surveyed area. Figure 6 presents a three-dimensional (3D) rendering of the seafloor within the survey area. Water depth data and discussion of seafloor conditions within the survey area are based on Fugro's 2009 multibeam survey data.

We augmented the 2009 multibeam survey data with regional data from: 1) the New Jersey Department of Environmental Protection (NJDEP), which extends south into the proposed MDCF area, and 2) NOAA. The regional bathymetric data shown in Figure 3 represent a compilation of surveys conducted during the last several decades. The sounding data point spacing is variable and may be tens to hundreds of feet. The regional datasets are provided as 100-foot and 25-foot binned data. The regional bathymetry data are present at 5-foot contour intervals on all charts and figures except Figure 3 where it is presented at a 10-foot contour interval.

WATER DEPTH AND SEAFLOOR GRADIENT AT PROPOSED MDCF SITE

The survey area covers a portion of a large ridge, which is outlined by the 50-foot water depth contour on Figure 3. The ridge is elongated and its axis has a bearing of approximately 45 degrees northeast. Within the surveyed area, the water depth at the crest of the ridge is between 32 and 37 feet (re: MLLW datum). The northwest flank of the ridge deepens to the northwest from 37 to about 50 feet in the survey area. The southeast flank of the ridge deepens from 37 feet to about 50 feet within the surveyed area. The water depth at the proposed MDCF location is 32.4 feet (re: MLLW) and varies by up to 5 feet within a 1,000-foot radius of the proposed MDCF location (Figure 6). A 3D view of the bathymetric surface is shown on Figure 7.

Figure 8 presents the seafloor slope gradient calculated from the multibeam, echosounder data. Characterization of the seafloor gradient within the survey area is divided herein into three areas: the central area (area enclosed by the El. -37-foot contour), the northern flank (seafloor area below El. -37 feet sloping to the northwest), and the southern flank (seafloor area below El. -37 feet sloping to the southeast).

The central area forms the axis of the ridge and is generally flat with a smaller, elongated ridge in the area above El. -36 feet oriented parallel to the larger ridge. The proposed MDCF is located on top of this smaller ridge. The seafloor gradient at the proposed MDCF location is approximately 0.45 degrees (0.8 percent). Above El. -35 feet, the seafloor gradient is typically between 0.3 and 0.4 degrees (0.5 and 0.6 percent). Elsewhere within the central area, the seafloor is generally flat with a gradient between <0.05 and 0.4 degrees (<0.08 and 0.6 percent).

The northern flank of the ridge is generally flatter than the southern flank. The seafloor slope gradient of the northern flank is typically between 0.3 and 0.4 degrees (0.5 and 0.6 percent) and slopes to the northwest.

The seafloor slope gradient of the southern flank is typically between 0.3 and 0.8 degrees (0.5 and 1.4 percent). The seafloor gradients along the northern faces of the broad sand waves, near the southeastern boundary of the survey area, are about 1.4 degrees (2.5 percent).

SEAFLOOR FEATURES AND MORPHOLOGY

The bathymetry in the study area is comprised of three scales of bedforms (Figure 8a). Each type of bedform is inferred to reflect bottom current flows of different duration, intensity, and direction. The largest and most prominent bedform is the sand ridge, on which the proposed MDCF is located. Two other types of bed waves or sand waves were also observed on the site. The larger-scale bed waves are dunes along the southeastern flank of the sand ridge. The smaller-scale bed waves are ripples that are present throughout most of the survey area and are superimposed on the sand ridge and dunes.

The ridge and other bedforms likely have been influenced and modified by storms and tidal currents associated with the Delaware Bay. The modern tidal channel is located approximately 2 Nm southwest of the survey area and extends more than 15 Nm seaward of the bay mouth. The water depth in the modern tidal channel to the southwest of the proposed MDCF is up to 100 feet deep.

We did not observe evidence of pockmarks, fluid expulsion features, slope failures, chemosynthetic communities, or gravel and rock outcrops.

Sand Ridge

The dominant seafloor feature in the survey area is the large, elongated ridge that crosses the center of the survey area. The proposed MDCF location is centered on this ridge.

Previous scientific studies have suggested that these ridges form due to eustatic processes; i.e., shoreface deposits abandoned as the shoreline transgressed during the last rise in sea level (Swift et al., 1973; Snedden et al., 1999). The ridges are believed to further evolve under the influence of the modern hydrodynamic flow regime (Snedden et al., 1999).

Dunes

Superimposed on the ridge are smaller-scale bedforms. Large, low-amplitude dunes (note arrows on Figure 7 and Figure 20a) are located on the seaward flank (southern portion) of the sand ridge and splay from its crest. The dunes are asymmetrical in shape and oriented more-or-less perpendicular to the axis of the ridge. The large, broad sand waves (e.g. dunes) are up to 4 feet high and their crests are about 900 feet apart. The northeastern flanks of these dunes are significantly steeper than their southwestern flank, which implies a northeasterly migration in response to currents from the south.

Ripples

Ripples, the smallest bedforms, are visible in the increased sonar reflectivity areas of both the shoal ridge and the smaller dunes (Figure 20b). Throughout most of the northwestern third of the study area, the ripples are linear and parallel, with their long axes oriented approximately north-south. The extent of those 2D ripples is shown on Figure 20a. The ripples on the low-amplitude dunes appear to be much more laterally discontinuous (similar to 3D ripples) in the side scan sonar data.

These features typically have a wavelength of up to about 3 feet and amplitude of about 0.5 feet. Some of the features are too small to measure using sonar or multibeam data. These features are modified by bottom currents as was documented in the side scan sonar images captured the day before and the day after a strong wind event on October 31, 2009 (Figure 21). It is apparent when comparing the pre-storm and post-storm images that this event generated bottom currents that diminished or planed off the ripples.

SEAFLOOR SEDIMENTS

Concurrent with the supplemental geophysical data collection, Fugro also collected nine, approximately 1/2-gallon grab samples of the seafloor sediments. The nine sample locations and the mean grain size d_{50} for each sample are shown on Figure 20c.

In general, the seafloor sediments in the survey area are comprised of poorly-graded fine to medium sand and fine sand. Figure 20c presents the interpreted sediment type distribution based on side scan sonar and grain size data. The side scan sonar data show higher-amplitude backscatter on the northwest flank than on the southeast flank of the sand ridge. This implies (and is supported by the grain size analyses of the grab samples) that the sediments are coarser grained on the northwest flank than the southeast flank. The sediments appear to grade from predominantly medium sand on the northwest flank to medium and fine sand on the ridge crest and to fine sand on the southeast flank. Backscatter intensity in the side

scan data suggests that this transition is gradational and that the transitions appear to roughly parallel the bathymetric contours.

MAN-MADE FEATURES AND POSSIBLE ARTIFACTS

General Comments

Fugro conducted a review of: 1) publicly available data (e.g. NOAA Charts 12200 and 12214 [NOAA, 2007a and 2007b], 2) various charts of shipwrecks [CSS, 2006a and 2006b], New Jersey Scuba, 2007) and 3) Fugro's proprietary database for man-made structures in the project vicinity (Fugro, 2009a). Figures 2 and 3 show the locations of known obstructions, including reefs and shipwrecks in the region.

The nearest known structure is Delaware Reef 11 that is located approximately 1.3 Nm southeast of the proposed MDCF location (Figure 3). An unknown obstruction charted on NOAA Chart 12214 is located approximately 800 feet northwest of the proposed MDCF location (Figures 3, 8, 10, and 11; Charts 4 and 5). That obstruction location does not coincide with any identified side scan sonar targets or magnetometer anomalies in either survey. The nearest anomaly or target in either survey was a side scan sonar target about 530 feet to the northeast of the NOAA location identified in the fall 2009 survey data.

The study area falls within an area considered to potentially have cultural resources (e.g. shipwrecks, ancient civilization artifacts), and the MMS requires an archaeological resource survey and report to be completed. To satisfy these requirements, Fugro conducted the survey and provided the data (Fugro, 2010a) to R. Christopher Goodwin & Associates, Inc., under subcontract to Tetra Tech EC, for the archaeological resource assessment. R. Christopher Goodwin & Associates has prepared a standalone Archaeological Resources Assessment Report.

Side Scan Sonar and Magnetometer Data Tables and Data Presentations

The side scan sonar targets and their characteristics from the two surveys are tabulated in Tables 2a and 2b at the conclusion of the text of this report. The maps of the side scan sonar target locations are shown on the side scan sonar mosaic provided on Figure 9 and Chart 4. As noted previously Figure 9a and Chart 4a provide the 2009 side scan sonar mosaic, while Figures 9b and Chart 4b provide the 2010 side scan sonar mosaic. Figure 10 provides detailed views of the contacts identified in both survey data.

The magnetometer anomalies and their characteristics from the two surveys are tabulated in Tables 3a and 3b at the conclusion of the text of this report. Maps of the locations of the anomalies are provided on Figure 11 and Chart 5. As noted previously, Figure 11a and Chart 5a provide the 2009 data, while Figures 11b and Chart 4b provide the 2010 data.

Central Area Anomaly

The artifact of greatest significance to the siting of the proposed MDCF is a large magnetic anomaly, or cluster of anomalies, located to the southeast of the proposed MDCF

location. The presence of the anomaly or the cluster of anomalies was observed in the magnetometer data from multiple survey lines during both the fall 2009 and fall 2010 surveys. The magnetometer anomalies, as imaged on the various 2009 and 2010 survey lines, in the central portion of the survey area are shown on Figure 12.

We note that the anomaly or cluster of anomalies is in the vicinity of where the 3-legged, 65-foot, lift boat R/V Russell W. Peterson floundered during a storm in March 2008. Information relative to possible debris left behind from that accident is unknown to Fugro. The anomaly (or cluster of anomalies) also is to the southeast of the reported location where boring B-102 was advanced and a cone penetration test (CPT) sounding was attempted in 2007. Bluewater's communication with the contractors who conducted the work in 2007 did not establish the record of loss of drill string, casing, or other metal objects. The accuracy and precision of the reported boring and CPT sounding locations are unknown to Fugro.

The largest measured magnetic intensities in the 2010 survey were 832 gammas (M-23) on trackline 802 and 340 gammas (M-7) on trackline 529. Anomaly M-23 had the character of a monopole anomaly, while anomaly M-7 had the character of a dipole anomaly. The mapped location of anomaly M-23 is interpreted to be very close to the center of the magnetic mass that produced the various anomalies on the different survey tracklines.

During the fall 2009 survey, anomaly M-11 on trackline 207 had the greatest measured intensity (613 gammas). This anomaly exhibited a clean ricker signature (Figure A-5). Anomaly M-11 was identified during the first run of line 207 which was rerun due to noise along the line. In spite of the noisy data from the initial run of line 207, anomaly M-11 was very clean, well-defined, and large. Because of this, we include the anomaly as a target, but do not use the rest of the magnetometer data along the initial run of line 207 (which explains why we present the trackline of the reshoot instead of the initial pass)

Analyses of the 2010 magnetic signatures suggest a probable location of the anomaly (or center of the cluster of anomalies) to be about 85 feet to the southeast of the proposed MDCF location, while the 2009 data suggest the center of the anomaly to be farther to the southeast. We consider the 2010 location to be more probable, as those data are of superior quality and at closer spacing. No seafloor expression of this magnetic anomaly was observed in either the fall 2009 or fall 2010 side scan sonar data.

Other Anomalies and Targets

The two geophysical surveys also documented the presence of various other side scan sonar targets and point-source magnetic anomalies.

The numbers, typical sizes, and maximum size of the side scan sonar targets are as follows:

- Fall 2009 Survey 7 targets:
 - Typical size: less than 6 feet,
 - Typical height above seafloor: less than 0.5 to 1 foot,
 - o Maximum size: one narrow target about 20 feet long, and
 - Maximum height above seafloor: 6 feet (3-foot-long target with minimal width)
- Fall 2010 Survey 3 targets:
 - Size: less than 10 feet ,and
 - Height above seafloor: less than about 0.5 foot

The numbers of point-source magnetic anomalies with more than 10 gamma intensities are as follows:

- Fall 2009 Survey Three dipole anomalies with 10 to 20 gamma intensity
- Fall 2010 Survey One dipole and two monopole anomalies with 40 to 50 gamma intensity

None of the targets or anomalies correlates to features in our database of known manmade structures. None of the anomalies correlated with side scan sonar targets on either survey. In addition, none of the small anomalies and side scan sonar targets was identified in both surveys. None of the targets' origins was discernable. This is inferred to suggest that the dynamic seafloor conditions periodically bury, expose, and/or move the small artifacts that may have been imaged in either the magnetometer or side scan sonar data.

In addition to the point-source magnetic anomalies, the 2010 data identify several geologic trends due to sediment composition. The most significant of those trends is the northwest-southeast trend of higher magnetic intensity along the southwest boundary of the survey area. The southwest linear trend has a relative intensity of between about 3 and 6 gammas and as shown on the Figure 11b and Chart 5b is interpreted to be of geologic origin. In addition to this geological trend, several trends with a magnetic intensity of about 1 to 2 gammas appear to correlate with the crests of the dunes present on the seaward flank of the ridge.

SUBSURFACE CONDITIONS

STRATIGRAPHY AND STRUCTURE

The seismic reflection and Chirp data have been used to interpret seismic reflectors (or events) that separate different units of sediment. The mapped events (Events 5, 10, 15, 20, 25, 30, 40, 43, 45, 50, and 60) divide the shallow section into nine stratigraphic units (Units 1 through 9) with distinct seismic character and inferred sediment (or lithologic) characteristics. Higher numbers indicate deeper, older events and units. The inferred lithology that correlates to the seismic character of each unit is based primarily on the information obtained from boring B-102, located at the center of the survey area and conducted by Halcrow/HPA and subcontractors as part of the proposed MDCF geotechnical program (Halcrow/HPA, 2009).

Correlations Between Seismic Units and Boring Stratigraphy

Boring B-102 was drilled in 2007 near the crossing of seismic reflection lines 131 and 207. The stratigraphy encountered in the boring is superimposed on seismic reflection lines 131 and 207 on Figures 22 and 23, respectively. The wiggle variable, area-filled presentation of the seismic reflection data (such as shown on Figures 22 and 23) shows both positive- and negative-amplitude reflections. Figures 24, 25, and 26 also present the subsurface conditions as interpreted from seismic reflection data.

Seismic impedance is the product of a layer's density times the compression wave velocity (Vp). When using American polarity (e.g. seismic data collected by Fugro in this study), a positive impedance contrast (lower impedance layer overlying a higher impedance layer) produces a positive-amplitude reflection (blue reflectors in Figures 22 and 23). Conversely, a negative impedance contrast (higher impedance layer overlying a lower impedance layer) produces a negative-amplitude reflection (red reflectors in Figures 22 and 23). Thus, negative-or positive-amplitude reflections provide information indicating whether a stratigraphic boundary is a hard or dense layer overlying a softer layer (negative impedance contrast) or vice versa. The amplitude of the reflection is proportional to the magnitude of the impedance contrast. The greater the difference between the seismic impedance of the two layers, the larger is the reflection coefficient and amplitude of the reflection at the interface between the layers.

Table 1 correlates the seismic units and corresponding strata encountered in boring B-102. A seismic unit may include more than one soil stratum for several reasons. One reason is that lithologic transitions may not correlate to seismic events. For example, transitions between Unified Soil Classification System (USCS) lithologies may not always result in impedance contrasts strong enough to produce mappable seismic reflections. Additionally, the thickness of a thin stratum defined in the boring may be less than the limit of separability for the seismic data (refer to previous discussion) or the variability of the stratum's thickness may be less than the limit of separability in portions of the site and therefore preclude mapping the seismic events that correspond to the top and bottom of the stratum. The mapped events and the units that these events separate are noted on the annotated data examples accompanying this report.

The seismic reflection data and subsurface boring at the center of the survey area are judged to correlate moderately well. Some of the thinner soil layers identified in the boring are thinner than the limit of separability in the seismic data. Thus, the top and bottom of those layers are unresolved by the seismic reflection data.

The correlation between seismic units and soil lithology/strata are summarized in the following table:

Seismic Unit		n at Boring 2 (ft)	Lithologic Description from Boring B-102					
Unit	From	То						
1a	0	10	No Recovery (running sands)					
1b	10	33.5	Sand (increase in penetration resistance)					
2	33.5	80	Soft silty Clay with occasional sand lenses and abundant organics					
3	80	138	Interbedded silty Sand to Sand with silt overlying silty Clay with sand lenses					
4	138	167*	Sand with silt to Sand with gravel					

Table 1. Subsurface Stratigraphy Identified in Boring at Proposed MDCF Location

* Bottom of drill hole is 167 feet below mudline.

Unit 1 (Seafloor to Event 10)

Unit 1 comprises the surficial unit throughout the survey area and is bound between the Seafloor and Event 10. The unit is inferred to be Holocene-aged sediments. Unit 1 may be subdivided into two units. Unit 1a, the upper unit extends from the seafloor to Event 5. Unit 1a is inferred to be loose, potentially mobile sand and corresponds to the zone of "no recovery" in boring B-102. Gently dipping, parallel to subparallel internal reflectors that are near parallel to the seafloor of the large shoal's southern flank are observed in the Chirp data. Event 5, a moderately strong positive-amplitude event is a relatively flat-lying reflector that is inferred to a significant increase in sediment density inferred from an increase in standard penetration test blow counts (standard penetration blows or N-values are the number of blows it takes to drive a 1-3/8" inner-diameter, split spoon sampler 12 inches using a 140-lb hammer dropped from a height of 30 inches). The higher blow counts and positive-amplitude reflection of Event 5 imply that Unit 1b is denser and has a higher impedance than the overlying Unit 1a.

Unit 1 ranges in thickness from 18 to 36 feet (Figure 27 and Chart 6). This unit is thickest beneath axis of the shoal and thins to the north and south. At the proposed MDCF location it is about 37 feet thick. Elevation of the base of this unit ranges from El. -63 to -72 feet (MLLW). At the proposed MDCF location it is at about El. -64 feet.

Unit 2 (Event 10 to Event 20)

Seismic Unit 2 is defined by Events 10 and 20. Unit 2 is comprised of soft silt and clay with high organic content, and is inferred to be Holocene transgressive, estuarine-lagoonal deposits. This unit is considered to be equivalent to the sediments that infilled the large ancestral Delaware River Holocene Channel (Figures 17 and 19). Negative-amplitude anomalies were identified in this unit (Figure 26). The anomalies are likely free-phase gas accumulating from decaying organics. Locations of those anomalies are shown Chart 10 and Figure 31.

Unit 2 is mapped using an upper negative-amplitude reflector (Event 10) that correlates to the sand over clay interface. The bottom of Unit 2 is defined by the positive-amplitude reflector (Event 20) correlating to the clay over sand boundary. Sand layers noted in boring log B-102 are inferred to be laterally discontinuous based on the seismic data. Bright stringers inferred to be sand interbeds are observed in the seismic data. A small, shallow, nested channel was identified near the proposed MDCF location (Figure 23). Channeling in this unit within the survey area is considerably smaller and subtle compared to channeling observed in larger paleochannels of the regional seismic lines from the 2007 survey (e.g. Figure 19a).

The unit ranges in mapped thickness from 38 to 57 feet (Chart 7 and Figure 28). The unit thickens and deepens to the southeast and southwest (possibly due to a regional, buried drainage trend; see Figure 18). Chart 9 and Figure 30 show that the mapped surface elevation of the base of Unit 2 is between El. -103 and -126 feet (MLLW). The base of the unit dips gently to the southeast and northwest. Beneath the proposed MDCF location, Unit 2 is approximately 35 feet thick and the base of the unit is at approximate El. -104 feet (MLLW).

Unit 3 (Event 20 to Event 25)

Seismic Unit 3 is defined by Events 20 and 25. This unit is comprised of interbedded sand deposits that transition downward to clay. Reflectors within this unit are discontinuous and demonstrate the interbedded nature of Unit 3. It is inferred that these layers represent fluvialestuarine sand and clay layers. This unit is likely comprised of late Pleistocene-aged sediments. Unit 3 is approximately 47 feet thick.

Unit 4 (Event 25 to Event 30)

Seismic Unit 4 is defined by Events 25 and 30. Based on the boring log data, the top of this unit is composed of sand with gravel layers. The bottom of the unit does not have any direct data to help define unit lithology or changes in the lithology. It is inferred that Unit 4 is comprised primarily of sand with the base having strong positive-over-negative amplitude reflectors implying a transition from higher impedance to lower impedance (possibly sand over clay). Limited areas with diffractions within this unit observed outside the survey area in regional seismic lines suggest that gravel is present elsewhere in this unit but may be limited to localized deposits.

Unit 5 (Event 30 to Event 40)

Seismic Unit 5 is defined by Events 30 and 40. Reflectors within this unit appear to be more flat-lying than the internal reflectors of Unit 4 which imply that they may be marine sediments.

Unit 6 (Event 40 to Event 43)

Unit 6 consists of high-amplitude, flat-lying positive reflectors. The lithology is inferred to be sandy marine sediments. The base of this unit has strong positive-over-negative amplitude

reflectors suggesting a transition to lower impedance unit (possible clay or fine-grained deposits).

Unit 7 (Event 43 to Event 45)

Unit 7 is defined by the strong positive-over-negative amplitude reflector at the base of Unit 6 and Event 45. This reflector changes in character across the site, having a higher amplitude in the southern section of the area and then a lower amplitude from the center of the area northward. The low-amplitude portion of this reflector was very weak in several sections and often difficult to correlate between survey lines. The unit consists of flat-lying positive and negative reflectors.

Unit 8 (Event 45 to Event 50)

Unit 8 consists of low-amplitude, flat-lying reflectors that are relatively parallel. The top of the unit is Event 45, which changes from high amplitude to low amplitude from the south of the site to the north. Event 50 defines the base of the unit, which appears to be an erosional surface. Event 50 dips to the south at the northern end of the site and becomes flat-lying toward the south. The lithology is inferred as possible fine-grained deposits.

Unit 9 (Event 50 to Event 60)

Seismic Unit 9 underlies Event 50 and exhibits generally flat-lying internal reflectors. Several seismic units above Event 50 exhibit features that suggest influence by the large ancestral drainage. Below this unit, most horizons are relatively flat-lying do not exhibit significant channeling, which suggests that this unit predates when this site was carved by the ancestral Delaware drainage.

FAULTS

No faults were identified in the survey data.

GAS HAZARDS

All seismic in-lines and crosslines from the seafloor to the depth limit of investigation (0.5 seconds TWT BSS) were screened for high-amplitude anomalies. Multiple high-amplitude anomalies representing possible shallow gas were identified throughout the survey area. Figure 24 presents the inferred shallow gas potential. Figure 26 presents an example of a typical gas anomaly. Figure 31 and Chart 10 present the spatial distribution of the anomalies inferred to be potential gas. The anomalies displayed on Figure 31 and Chart 10 are symbolized to indicate in which seismic unit the shallowest part of the anomaly is identified.

At the MDCF, the potential gas zone correlates to a layer of silty clay with organics and strong organic odor. The potential shallow gas is thus inferred to be biogenic gas associated with the decay of organic matter. The amplitude anomalies were observed in seismic Units 2 and 3. The anomalies are observed at fairly shallow depths below the seafloor and therefore will have limited overburden capable of capping low-pressured gas accumulations. Moreover,

boring B-102 drilled in 2007 (Halcrow/HPA, 2009) did not report any encounters with gas (e.g. kick-backs, gas blisters in samples, etc.).

SLOPE FAILURES

We did not find evidence of existing slope failures or evidence such as deformed sediment structure that suggests slope instability will pose a hazard to the proposed MDCF.

CONCLUSIONS AND IMPLICATIONS

Based on our assessment of shallow hazards data for the study area, we conclude the following:

- The proposed MDCF is located on the crest of a NE-SW-trending ridge in a water depth of about 32.5 feet (re: MLLW datum).
- The seafloor sediments are poorly-graded fine to medium and fine sand.
- There are many bedforms on the seafloor in the survey area and the seafloor sediments are mobile.
- The magnetometer data from both surveys indicate the presence of a large (800+ gamma) artifact to the southeast of the proposed MDCF location. The presence of the anomaly or a cluster of anomalies was observed in the magnetometer data from multiple survey lines during both surveys. Analyses of the magnetic signatures suggest a probable location of the anomaly (or center of the cluster of anomalies) to be about 85 feet to the southeast of the proposed MDCF location. No seafloor expression of this magnetic anomaly was observed in either set of side scan sonar data.
- Several small side scan sonar targets and magnetic anomalies were identified in other portions of the survey area. No side scan sonar targets correlate with magnetic anomalies. No targets or anomalies correlated between surveys. None is considered significant.
- During the drilling and sampling of Boring B-102, no samples were recovered from sampling attempts at the seafloor and at 5-foot depth. The presumably loose surface sands are likely another indication of potential sediment mobility.
- Boring B-102 encountered soft, organic, clay and silt between 33 and 54 feet below the seafloor. Leg penetration evaluations for future construction jack-up or lift-barge activities should consider the potential for punch-through into this layer.
- Several near-surface amplitude anomalies were identified in the seismic reflection data within the study area. The amplitude anomalies suggest that free-phase gas has accumulated in the shallow subsurface. The anomalies were generally observed in seismic Units 2 and 3 at fairly shallow depths below the seafloor and therefore will have limited overburden capable of capping low-pressured gas accumulations. The gas is likely produced from decaying organics within the estuarine-lagoonal deposits.
- No seafloor or subsurface faults were identified within the study area.

The seafloor and shallow geologic conditions are generally favorable for installation of the proposed MDCF. The proposed MDCF location avoids known obstructions identified in this survey. Construction and installation activities should be planned to avoid the area of magnetic anomalies, or further investigation should be conducted to identify the source of those anomalies. Sediment transport processes, most likely caused by storms, and potential scour should be considered during design of the MDCF foundation.

No applicable BOEMRE NTLs have been issued for Atlantic OCS structures. Thus, there are no established criteria for required offsets between the MDCF and: 1) the buried metal object to the southeast of the proposed MDCF location, or 2) to areas where gas is present in the shallow sediments. Although no applicable NTLs have been issued for Atlantic OCS structures, the MMS guidelines for MDCF structures make reference to NTLs issued for other areas. Thus, it is appropriate to compare the mapped location of the magnetic anomalies and the subsurface gas with set-back distances as defined by MMS NTL 2008-G05 (MMS, 2008) for the Gulf of Mexico (GOM) OCS.

Figure 32 shows the proposed location of the MDCF together with the mapped site features and set-back distances defined by that reference MMS NTL 2008-G05. As shown, the mapped magnetic anomalies lie at the periphery of the set-back defined by the reference NTL, and the apparent subsurface gas is within the set-back established by the reference NTL. The referenced NTL indicates three options when anomalies or subsurface gas are located within the immediate area (within 30 meters of a 50 gamma or greater intensity magnetic anomaly or 75 meters of shallow gas; MMS, 2008) from a proposed structure. Those options are: 1) relocation of the structure to avoid the hazard, 2) demonstration to the MMS that the use of special protective measures will minimize the risk to safe operations (e.g. pile driving), or 3) further investigation to establish that such operations will not be adversely affected by the shallow hazard. While Fugro does not consider the subsurface gas to be a significant hazard (because it is due to biogenic decay at shallow depths, it is unlikely to be under excess pressure), it will be appropriate for installation plans to recognize and mitigate the existence of these conditions.

REFERENCES

- Captain Segull's Sportfishing (CSS) (2006a), "Sea Girt to Little Egg Inlet Chart, Nearshore New Jersey," Captain Segull's Sportfishing Chart No. ONJ19, 2006.
- _____ (2006b), "Little Egg to Hereford Inlet Chart, Nearshore New Jersey," Captain Segull's Sportfishing Chart No. ONJ19, 2006.
- Carey, J.S., Sheridan, R.E., and Ashley, G.M. (1998), "Late Quaternary sequence stratigraphy of a slowly subsiding passive margin, New Jersey Continental Shelf," *American Association of Petroleum Geologists*, vol. 82, no. 5A, pg. 773-791.
- Chaytor, J.D., Twichell, D.C., Ten Brink, U.S., Buczkowski, B.J., and Andrews, B.D. (2007), "Revisiting submarine mass movements along the U.S. Atlantic Continental Margin:

implications for tsunami hazards," *in* Lykousis, V., Sakellariou, D. and Locat, J., editors, *Advances in Natural and Technological Hazards Research, Submarine Mass Movements and Their Consequences*, pg. 395-403.

- Dillion, W.P. and Oldale, R.N. (1978), "Late Quaternary sea-level curve: Reinterpretation based on glacio-tectonic influence," *Geology*, vol. 6, pg. 56-60.
- Duncan, C.S., Goff, J.A., Austin, Jr., J.A., Fulthorpe, C.S. (2000), "Tracking the last sea-level cycle: seafloor morphology and shallow stratigraphy of the latest Quaternary New Jersey middle continental shelf," *Marine Geology*, V. 170, pg. 395-421.
- Fugro (2010a), Shallow Hazards Assessment Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware, Fugro Project No. 3671.004, dated February 5, 2010.
- (2010b), Geotechnical and Pile Design Report, Proposed Meteorological Data Collection Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware, Fugro Project No. 3671.006, dated February 28, 2010.
- (2010c), Seafloor Scour Evaluation Report, Proposed Meteorological Data Collection *Facility (MDCF), Salisbury NJ 18-05 Block 6325, Offshore Delaware*, Fugro Project No. 3671.004-r1, dated November 23, 2010.
- (2009a), Geosciences Desktop Study, Delaware Continental Shelf for a Proposed *Meteorological Tower,* Prepared for Bluewater Wind, LLC, Fugro Project No. 3671.001, September.
- (2009b), *Marine Geophysical Survey Plan, Bluewater Wind Meteorological Tower Site, Offshore Delaware*, Prepared for Bluewater Wind, LLC, Fugro Project No. 3671.004, September.
- Greenlee, S.M., Schroeder, F.W., and Vail., P.R. (1988), "Seismic stratigraphic and geohistory analysis of Tertiary strata from the continental shelf off New Jersey: calculation of eustatic fluctuations from stratigraphic data," *in* Sheridan R.E. and Grow, J.A., editors, *The Atlantic Continental Margin: U.S. Geological Society of America, The Geology of North America*, v. I-2, p. 437-444.
- Grow, J.A., Klitgord, K.D., and Schlee, J.S. (1988), "Structure and evolution of the Baltimore Canyon Trough," *in* R.E. Sheridan and J.A. Grow, editors, *The Atlantic Continental Margin: U.S. Geological Society of America, The Geology of North America*, v. I-2, pg. 269-290.
- Halcrow/HPA (2009), "Final Boring Logs for Borings B-101 and B-102 completed in 2007, Delaware Wind Park, Offshore Delaware," Prepared for Bluewater Wind, LLC, Provided to Fugro on November 2, 2009.

- Home Ports Charts (HPC) (1996), "#6 Mudhole Chart, Long Island NY to Sandy Hook to Great Egg Inlet, NJ."
- Hutchinson, D.R. and Grow, J.A. (1985), "New York Bight Fault," *Geological Society of America Bulletin*, vol. 96, no. 8, pg. 975-989.
- Klitgord, K.D., Hutchinson, D.R., and Schouten, H. (1988), "U.S. Atlantic continental margin: Structural and tectonic framework," *in* Sheridan, R.E. and Grow, J.A., editors, *The Atlantic Continental Margin: U.S. Geological Society of America, The Geology of North America*, v. I-2, p. 19-55.
- Kraft, J. C. (1971), "Sedimentary facies patterns and geologic history of a Holocene Marine Transgression," *Geological Society of America Bulletin*, v. 82, p. 2131-2158.
- Minerals Management Service (MMS) (2009a), Recommended Guidelines for Geological, Geophysical, and Geotechnical Site-surveys for Meteorological Towers and Other Seafloor Founded Structures and Devices on the Outer Continental Shelf (OCS), Revision 1, March 17, 2009.
- _____(2009b), Archaeological Resources: Recommended Guidelines for Field Surveys and Reporting on the Outer Continental Shelf (OCS), Revision 1, March 17, 2009.
 - (2008), "Notice to Lessees and Operators of Federal oil, gas, and sulphur leases and pipeline right-of-way holders in the Outer Continental Shelf, Gulf of Mexico OCS Region, Shallow Hazards Program, NTL No. 2008-G05," United States Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, Issue Date: April 1, 2008, Effective Date: May 1, 2008, Expiration Date: March 31, 2013.
 - (2006), "Notice to Lessees and Operators of Federal oil and gas leases in the Pacific Outer Continental Shelf Region, Shallow Hazards Survey and Report Requirements for OCS development operations, NTL No. 06-P01," United States Department of the Interior, Minerals Management Service, Pacific OCS Region, Effective Date: October 16, 2006.
- (2005a), Digital Offshore Cadastre (DOC) Atlantic83 OCS Blocks, MMS Mapping and Boundary Branch, Lakewood, Colorado, GIS Data and Metadata downloaded from http://www.mms.gov/Id/Maps.htm, February 28.
 - (2005b), "Notice to Lessees and Operators of Federal oil and gas leases in the Alaska Outer Continental Shelf Region, Shallow Hazards Survey and Evaluation for OCS Exploration and Development Drilling, NTL No. 05-A01," United States Department of the Interior, Minerals Management Service, Alaska OCS Region, Effective Date: July 25, 2005.
- National Oceanic and Atmospheric Administration (NOAA) (2007a), "Cape May to Cape Hatteras, Nautical Chart 12200," 47th edition, scale is 1:419,706.

- (2007b), "Cape May to Fenwick Island, Nautical Chart 12214," 48th edition, scale is 1:80,000.
- New Jersey Department of Environmental Protection (NJDEP) (2007), Bathymetric Digital Elevation Grid Offshore of New Jersey, Digital Geodata Series DGS07-3. NJDEP, New Jersey Geological Survey.
- New Jersey Scuba (2007), "New Jersey and Long Island, New York, Dive Wreck Valley Dive Sites," Barnegat Chart www.njscuba.net
- Ocean Surveys, Inc. (OSI), (2006), *Reconnaissance Marine Geophysical Survey, Bluewater Wind Energy Project, Delaware Wind Park Development, Delaware Bay and Atlantic Ocean, Final Report*, Prepared for Bluewater Wind, LLC, OSI Report #06ES081.
- Ratcliffe, N.M. and Burton, W.C. (1985), "Fault reactivation models for origin of the Newark Basin and studies related to eastern U.S. seismicity," *in* Robinson, G.R. and Froelich, A.J. editors *Proceedings of the Second U.S. Geological Survey Workshop on the Early Mesozoic Basins of the Eastern United States*, USGS Circular 946, pg. 36-45.
- Sheridan, R.F., Dill, C., and Kraft, J.D. (1974), "Holocene sedimentary environment of the Atlantic Inner Shelf off Delaware," *Geological Society of America Bulletin*, v. 85, p. 1319-1328.
- Snedden, J.W., Kreisa, R.D., Tillman, R.W., Culver, S.J., and Schweller, W.J. (1999), "An expanded model for modern shelf sand ridge genesis and evolution on the New Jersey Atlantic Shelf," *in* Bergman, K.M., Snedden, J.W. (Eds.), *Isolated Shallow Marine Sand Bodies: Sequence Stratigraphic Analysis and Sedimentologic Interpretation,* SEPM Special Publication, vol. 64, p. 147-163.
- Swift, D.J., Duane, D.B., and McKinney, T.F. (1973), "Ridge and swale topography of the middle Atlantic bight: Secular response to Holocene hydraulic regime," *Marine Geology*, vol. 14, pg. 1-43.
- Twichell, D.C., Knebel, H.J., Folger, D.W. (1977), "Delaware River: Evidence for its former extension to Wilmington Submarine Canyon," Science, v. 195, p. 483-484.
- Williams, C.P. (1999), "Late Pleistocene and Holocene stratigraphy of the Delaware inner continental shelf: Newark, Delaware, University of Delaware, unpublished M.S. thesis, 175 p.

Target No.	OCS Block ¹	Height (m)	Length (m)	Width (m)	Latitude ²	Longitude ²	Easting ³ (m)	Northing ³ (m)	Corresponding Magnetic Anomaly	Minimum Avoidance Distance (m)	Description
S-1	6325	0.2	1.5	0.5	38.69649981	74.76941528	520052	4283123		50	Unknown
S-2	6325	0.1	1.9	0.5	38.68761188	74.76052709	520827	4282139		50	Circular target
S-3	6325	<0.1	1.4	1.6	38.69727279	74.7664679	520308	4283209		50	Unknown
S-4	6325	0.5	1.8	0.7	38.69447953	74.7689347	520094	4282899		50	Unknown
S-5	6325	<0.1	6.6	0.3	38.68162939	3162939 74.76279469 520632 4281474			50	Linear target	
S-6	6325	0.3	1.0	1.2	38.68883885	74.76904042	520087	4282273	-	50	Square target
S-7	6325	1.9	1.0	0.0	38.68938088	74.7578803	521057	4282336	M-9(?)	75	Circular target

Table 2a. 2009 Side Scan Sonar Targets

¹ Located in Salisbury Protraction Area (NJ 18-05) ² WGS84 ³ UTM Zone 18N, WGS84

							0	· ·		,	
Target No.	OCS Block ¹	Line ²	Height (m)	Length (m)	Width (m)	Latitude ²	Longitude ²	Easting ³ (m)	Northing ³ (m)	Minimum Avoidance Distance (m)	Description
S-1	6325	549	0.1	2.8	2.1	38.696142	74.765299	520409.82	4283084.2		Debris
S-2	6325	512	0.2	2.6	0.9	38.689192	74.755695	521247.05	4282315.1		Debris
S-3	6975	502	0	2.2	1.3	38.682078	74.761819	520716.52	4281524.3		Debris
4											

Table 2b. 2010 Side Scan Sonar Targets (Sonar Contacts)

¹ Located in Salisbury Protraction Area (NJ 18-05) ² Survey Line Number ³ WGS84 ⁴ UTM Zone 18N, WGS84

N:\MANAGEMENT\3671_BWW\3671-004_BWW_DESURVEY\06_REPORTS\REVISED

Table 2c. 2010 Side Scan Sonar Returns from Water Column (possible intermittent gas seeps)

Target No.	OCS Block ¹	Line ²	Height (m)	Length (m)	Width (m)	Latitude ²	Longitude ²	Easting ³ (m)	Northing ³ (m)	Minimum Avoidance Distance (m)	Description
G-1	6324	547	-	-	-	38.685492	74.781611	518994.11	4281898.8		Possible Gas
G-2	6325	539	-	-	-	38.683578	74.778237	519288.11	4281687.2		Possible Gas
G-3	6375	530	-	-	-	38.681863	74.77816	519295.28	4281496.9		Possible Gas
G-4	6325	534	-	-	-	38.68289	74.776981	519397.52	4281611.1		Possible Gas
G-5	6375	528	-	-	-	38.681268	74.77697	519398.9	4281431.2		Possible Gas
G-6	6375	532	-	-	-	38.681639	74.776917	519403.42	4281472.3		Possible Gas
G-7	6325	532	-	-	-	38.683098	74.776235	519462.36	4281634.4		Possible Gas
G-8	6325	533	-	-	-	38.683484	74.775532	519523.36	4281677.3		Possible Gas
G-9	6325	542	-	-	-	38.687995	74.772917	519749.61	4282178.5		Possible Gas
G-10	6325	526	-	-	-	38.683119	74.772382	519797.47	4281637.5		Possible Gas
G-11	6325	527	-	-	-	38.683134	74.772179	519815.09	4281639.2		Possible Gas
G-12	6325	526	-	-	-	38.683043	74.771974	519833.01	4281629.2		Possible Gas
G-13	6325	532	-	-	-	38.685868	74.771819	519845.66	4281942.7		Possible Gas
G-14	6325	535	-	-	-	38.687949	74.77096	519919.83	4282173.8		Possible Gas
G-15	6325	529	-	-	-	38.686043	74.770059	519998.7	4281962.4		Possible Gas
G-16	6325	526	-	-	-	38.684283	74.769544	520043.95	4281767.3		Possible Gas
G-17	6325	534	-	-	-	38.688128	74.769186	520074.04	4282194		Possible Gas
G-18	6325	533	-	-	-	38.688928	74.768139	520164.89	4282283.1		Possible Gas
G-19	6325	535	-	-	-	38.688937	74.767411	520228.21	4282284.2		Possible Gas
G-20	6325	527	-	-	-	38.68693	74.767239	520243.68	4282061.5		Possible Gas
G-21	6325	533	-	-	-	38.688515	74.766779	520283.28	4282237.5		Possible Gas
G-22	6325	528	-	-	-	38.688457	74.765883	520361.25	4282231.2		Possible Gas
G-23	6325	534	-	-	-	38.690254	74.765474	520396.28	4282430.8		Possible Gas
G-17	6325	534	-	-	-	38.688128	74.769186	520074.04	4282194		Possible Gas
G-18	6325	533	-	-	-	38.688928	74.768139	520164.89	4282283.1		Possible Gas
G-19	6325	535	-	-	-	38.688937	74.767411	520228.21	4282284.2		Possible Gas
G-20	6325	527	-	-	-	38.68693	74.767239	520243.68	4282061.5		Possible Gas
G-21	6325	533	-	-	-	38.688515	74.766779	520283.28	4282237.5		Possible Gas
G-22	6325	528	-	-	-	38.688457	74.765883	520361.25	4282231.2		Possible Gas
G-23	6325	534	-	-	-	38.690254	74.765474	520396.28	4282430.8		Possible Gas
G-24	6325	519	-	-	-	38.685352	74.764713	520463.81	4281887		Possible Gas
G-25	6325	519	-	-	-	38.685371	74.764449	520486.77	4281889.2		Possible Gas
G-26	6325	507	-	-	-	38.683794	74.760137	520862.29	4281715.1		Possible Gas
G-27	6325	504	-	-	-	38.684179	74.757901	521056.63	4281758.3		Possible Gas

¹ Located in Salisbury Protraction Area (NJ 18-05) ² Survey Line Number ³ WGS84

⁴ UTM Zone 18N, WGS84

Target	OCS Block ²	Line ¹	Nav. Fix Mark	Latitude (N) ³	Longitude (W) ³	Easting (m) ⁴	Northing (m) ⁴	Duration (m)⁵	Intensity (γ) ⁶	Altitude (m) ⁷	Type ⁸	Minimum Avoidance (m)	Corresponding Side Scan Sonar Target	Comments ⁹
M-1	6325	207	210.8	38.6869	74.7687	520148	4282075	85.8	31.1	2.6	COMPLEX	41		Correlate 5/11
M-2	6325	125	105.8	38.6912	74.7656	520417	4282552	41.5	10.3	3.3	DP	20		Possible noise
M-3	6325	125	118.9	38.6838	74.7773	519397	4281730	93.4	8	4.2	DP	44		Possible SOL noise
M-4	6375	131	118.9	38.6826	74.776	519516	4281592	93.1	7.1	4.2	MP +	44		Possible SOL noise
M-5	6325	132	109.4	38.6867	74.7685	520160	4282052	52	105.4	2.6	MP +	25		Correlate 1/11
M-6	6375	136	119	38.6814	74.7752	519586	4281460	137.1	12.5	4.2	MP +	65		Possible SOL noise
M-7	6325	142	109.1	38.6849	74.7659	520390	4281858	45.6	19.5	4.2	DP	22		Debris
M-8	6375	143	119.6	38.6796	74.7741	519678	4281263	90.7	4.5	4.8	MP +	43		Possible SOL noise
M-9	6325	145	100.3	38.689	74.7575	521118	4282314	67.6	22.2	4.2	DP	32	S-7	Possible SOL noise
M-10	6375	148	119.5	38.6786	74.7729	519786	4281155	75.4	5.4	5	MP +	36		Possible SOL noise
M-11	6325	207	211.2	38.6867	74.7681	520197	4282056	73.1	613.1	2.6	COMPLEX	35		Correlate 1/5

Table 3a. 2009 Magnetic Anomaly Summary

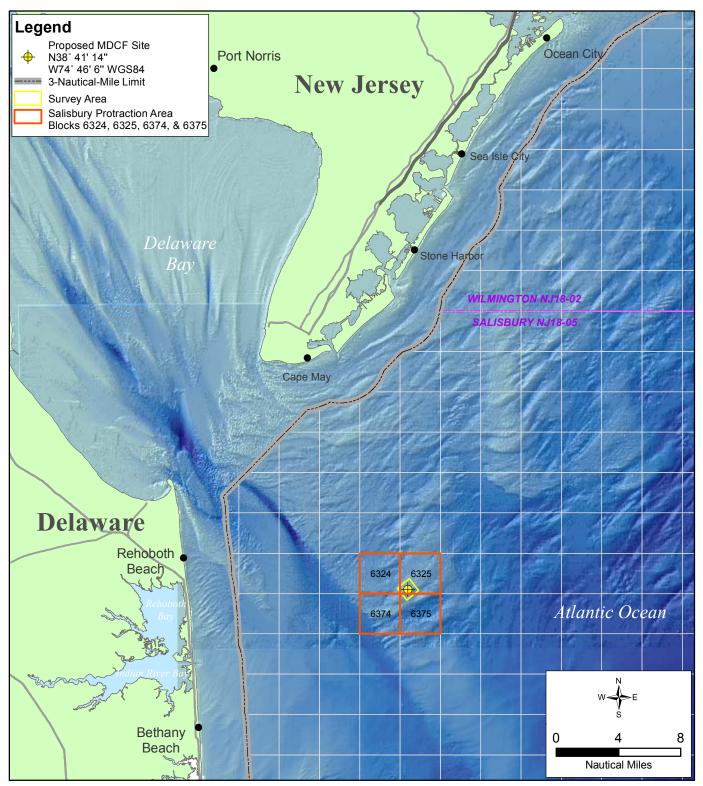
¹ Survey line number
 ² Salisbury Protraction Area (NJ 18-05)
 ³ WGS 84 Geographic
 ⁴ UTM Zone 18 North, WGS 84, meters
 ⁵ Length of the magnetic anomaly in meters

⁶ Intensity in Gammas [Monopole = baseline to peak, Bipole = peak to peak]
 ⁷ Height above the seafloor in meters
 ⁸ Anomaly Shape BP=Bipolar, DP=Dipole, MP=Monopole +/- = negative/positive
 ⁹ Interpreters observations

32

Target	OCS Block ²	Line ¹	Nav. Fix Mark	Latitude (N) ³	Longitude (W) ³	Easting (m) ⁴	Northing (m) ⁴	Duration (m) ⁵	Intensity (γ) ⁶	Altitude (m) ⁷	Type ⁸	Minimum Avoidance (m)	Comments ⁹
M-1	6375	501	10.9	38.6812	74.7620	520703	4281425	45.1	2.0	5.6	MP +	22	N/A
M-2	6325	505	20.0	38.6868	74.7551	521297	4282053	55.6	8.0	4.6	DP	27	N/A
M-3	6375	513	2.6	38.6790	74.7719	519844	4281184	40.3	4.0	4.1	DP	20	N/A
M-4	6325	517	8.9	38.6831	74.7677	520207	4281636	65.9	3.0	4.9	MP +	33	N/A
M-5	6325	526	13.0	38.6873	74.7659	520364	4282106	69.3	14.0	3.3	DP	34	N/A
M-6	6325	528	11.4	38.6869	74.7678	520195	4282054	94.8	5.0	3.3	MP +	47	Central anomaly cluster
M-7	6325	529	11.3	38.6871	74.7680	520174	4282076	77.5	339.5	3.4	DP	39	Central anomaly cluster
M-8	6325	530	11.4	38.6873	74.7682	520159	4282102	61.1	3.5	3.3	DP	30	Central anomaly cluster
M-9	6325	535	17.3	38.6920	74.7635	520563	4282620	64.3	2.0	5.1	DP	32	Correlate with 10
M-10	6325	536	17.4	38.6922	74.7637	520550	4282648	73.2	43.0	5.1	MP +	36	Correlate with 9
M-11	6325	538	9.5	38.6882	74.7712	519902	4282205	93.1	45.0	5	DP	46	N/A
M-12	6325	540	11.8	38.6900	74.7694	520053	4282398	70.0	3.0	5.1	MP +	35	N/A
M-13	6325	544	15.4	38.6928	74.7672	520249	4282710	63.0	3.0	3.1	DP	31	Correlate with 24
M-14	6325	547	11.0	38.6907	74.7722	519809	4282476	42.9	2.5	4.9	MP +	21	N/A
M-15	6324	550	3.5	38.6870	74.7796	519168	4282063	43.0	48.0	5.3	MP +	21	N/A
M-16	6325	552	16.8	38.6949	74.7682	520159	4282947	40.1	3.0	4.7	COMPLEX	19	N/A
M-17	6325	556	5.4	38.6897	74.7787	519242	4282361	99.9	4.0	4.7	DP	50	Probable Geologic (#18)
M-18	6325	557	5.5	38.6899	74.7789	519227	4282387	69.2	6.0	5.2	DP	34	Probable Geologic (#17)
M-19	6325	559	19.6	38.6983	74.7667	520289	4283327	35.2	5.0	4.9	MP -	17	N/A
M-20	6325	601	610.1	38.6870	74.7682	520163	4282072	55.3	64.0	1.5	DP	28	Central anomaly cluster
M-21	6325	704	7.3	38.6873	74.7679	520189	4282101	73.0	5.0	2.5	DP	36	Central anomaly cluster
M-22	6325	801	6.6	38.6874	74.7684	520144	4282110	81.3	3.0	2.2	DP	41	Central anomaly cluster
M-23	6325	802	5.7	38.6871	74.7681	520165	4282084	78.9	832.0	2	DP	39	Central anomaly cluster
M-24	6325	1543	15.5	38.6927	74.7671	520257	4282704	45.2	8.5	4.7	DP	22	Correlate with 13

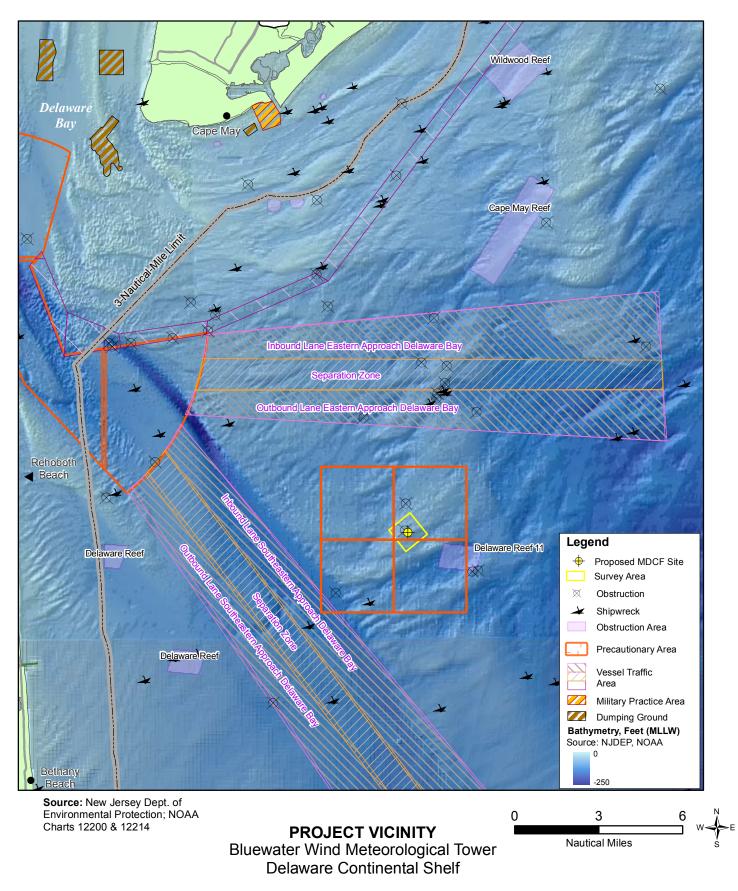
Table 3b. 2010 Magnetic Anomaly Summary


¹ Survey line number
 ² Salisbury Protraction Area (NJ 18-05)
 ³ WGS 84 Geographic
 ⁴ UTM Zone 18 North, WGS 84, meters
 ⁵ Length of the magnetic anomaly in meters

⁶ Intensity in Gammas [Monopole = baseline to peak, Bipole = peak to peak]
 ⁷ Height above the seafloor in meters
 ⁸ Anomaly Shape BP=Bipolar, DP=Dipole, MP=Monopole +/- = negative/positive
 ⁹ Interpreters observations

ယ္သ

FIGURES



Source: MMS; NOAA; NJDEP

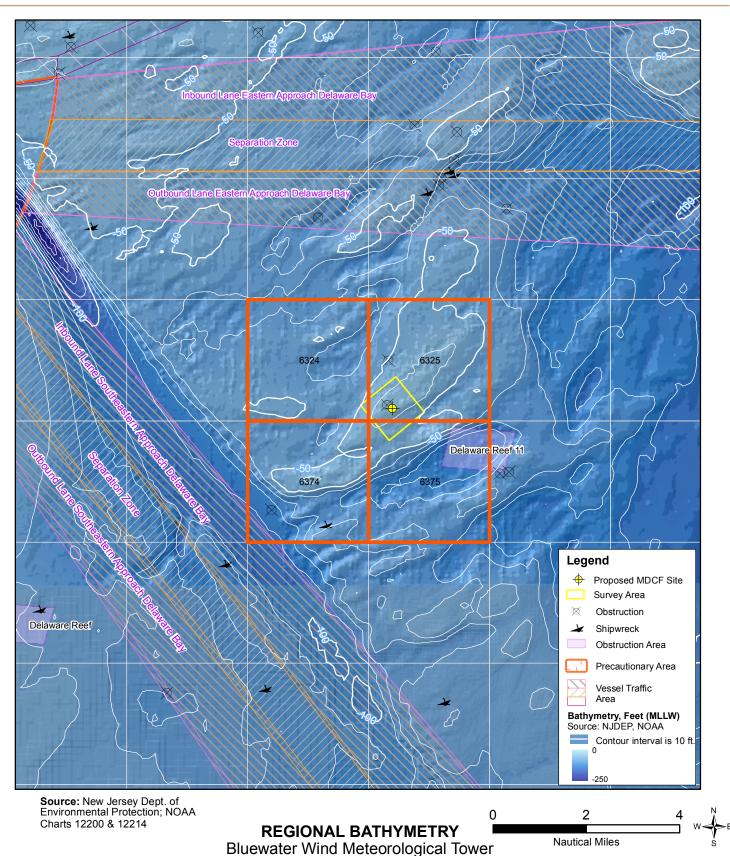
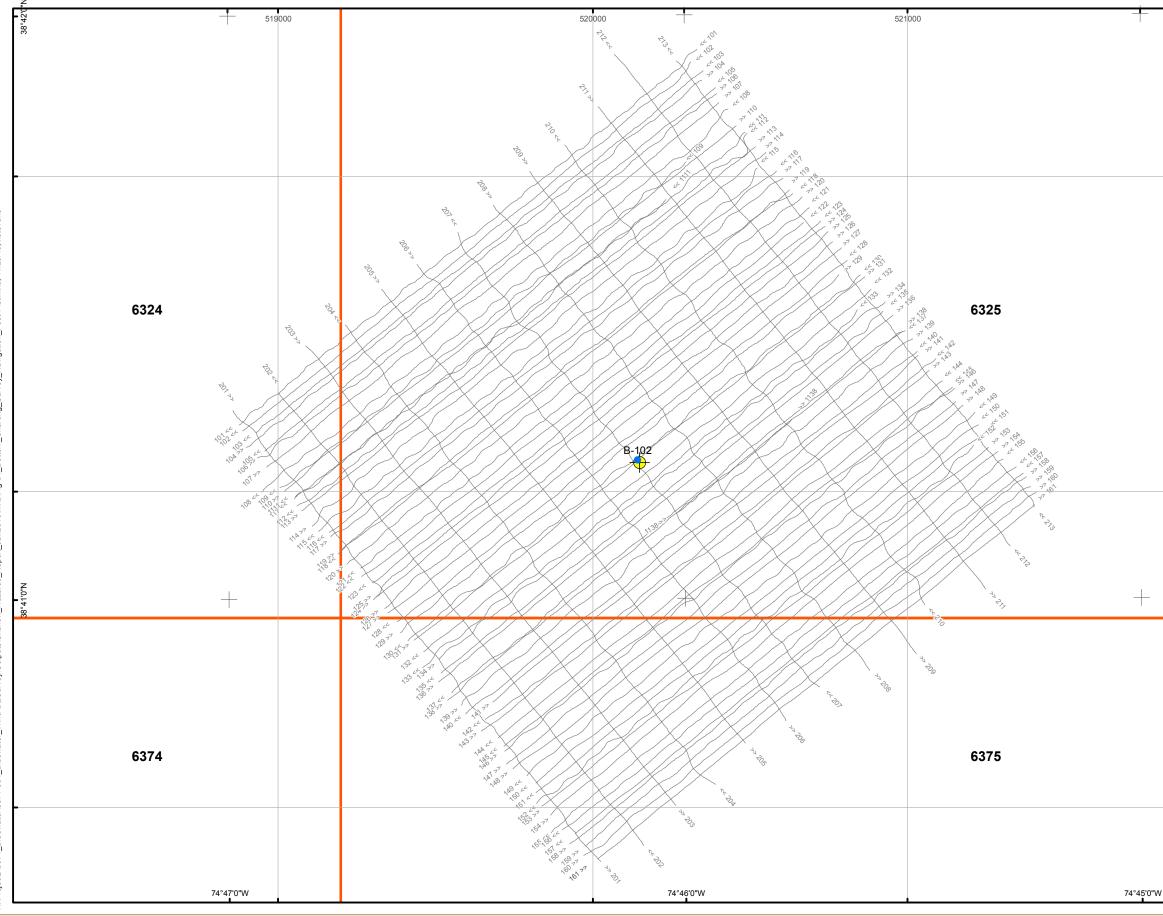

PROJECT LOCATION Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE 1



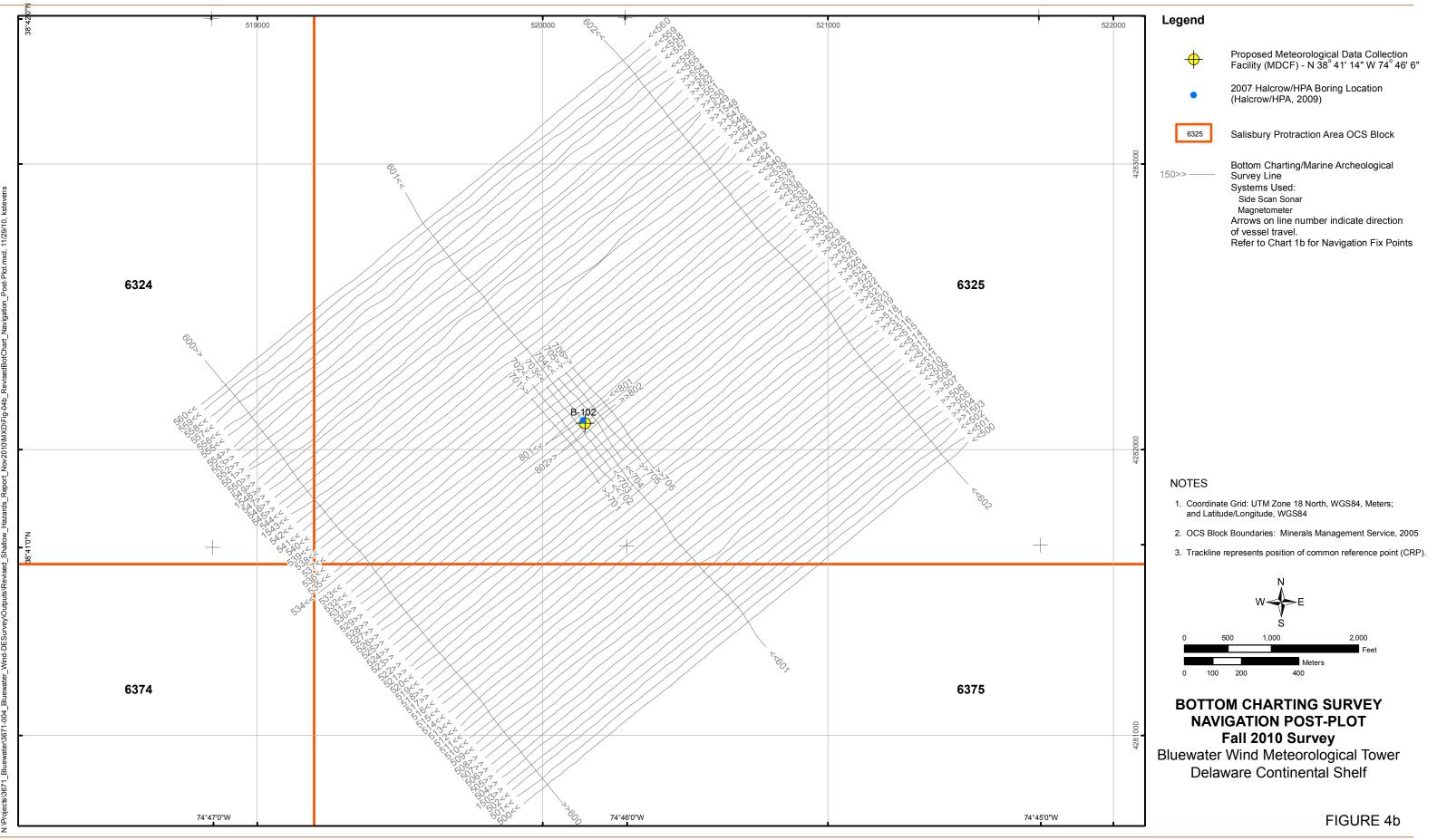
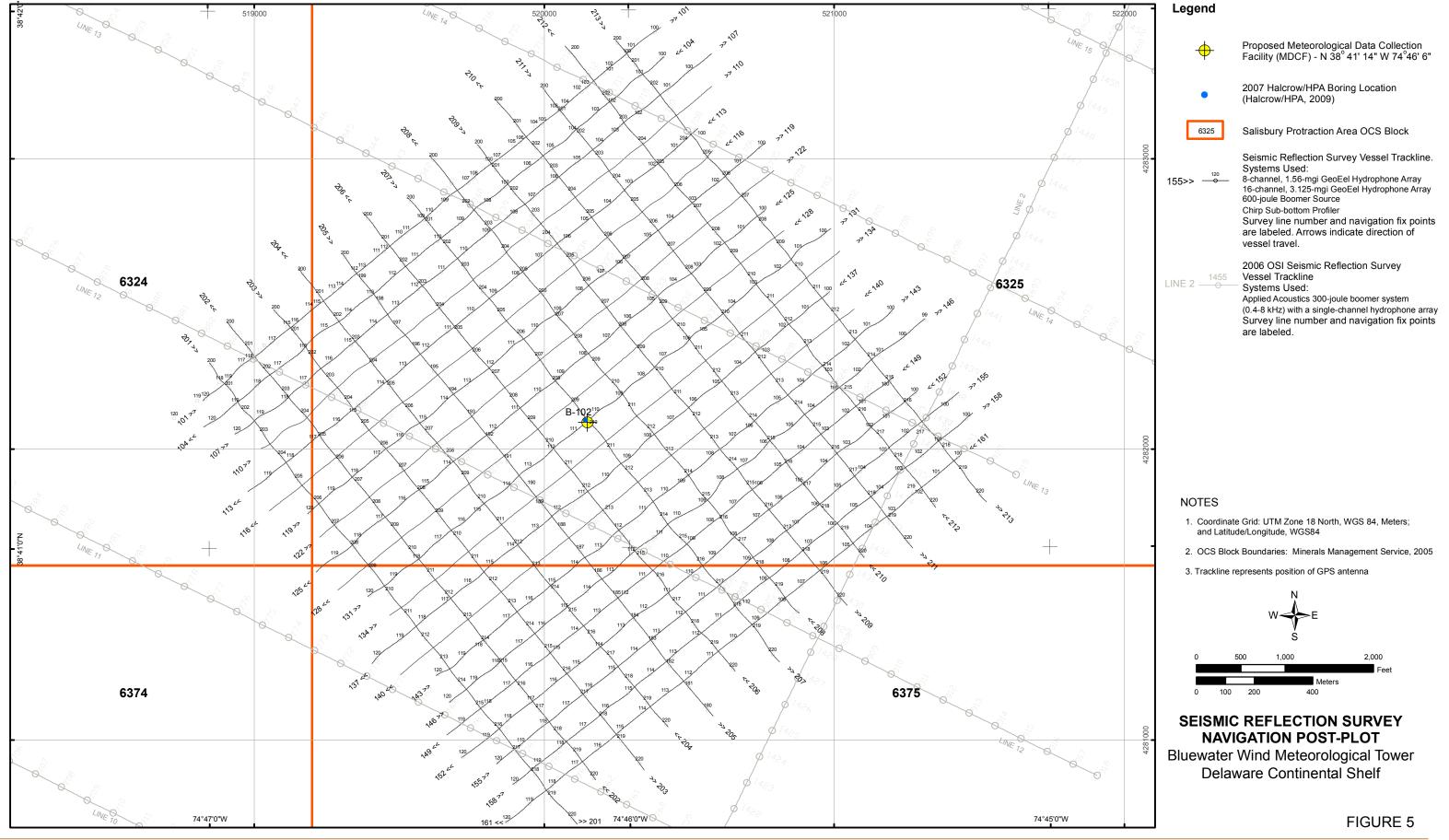
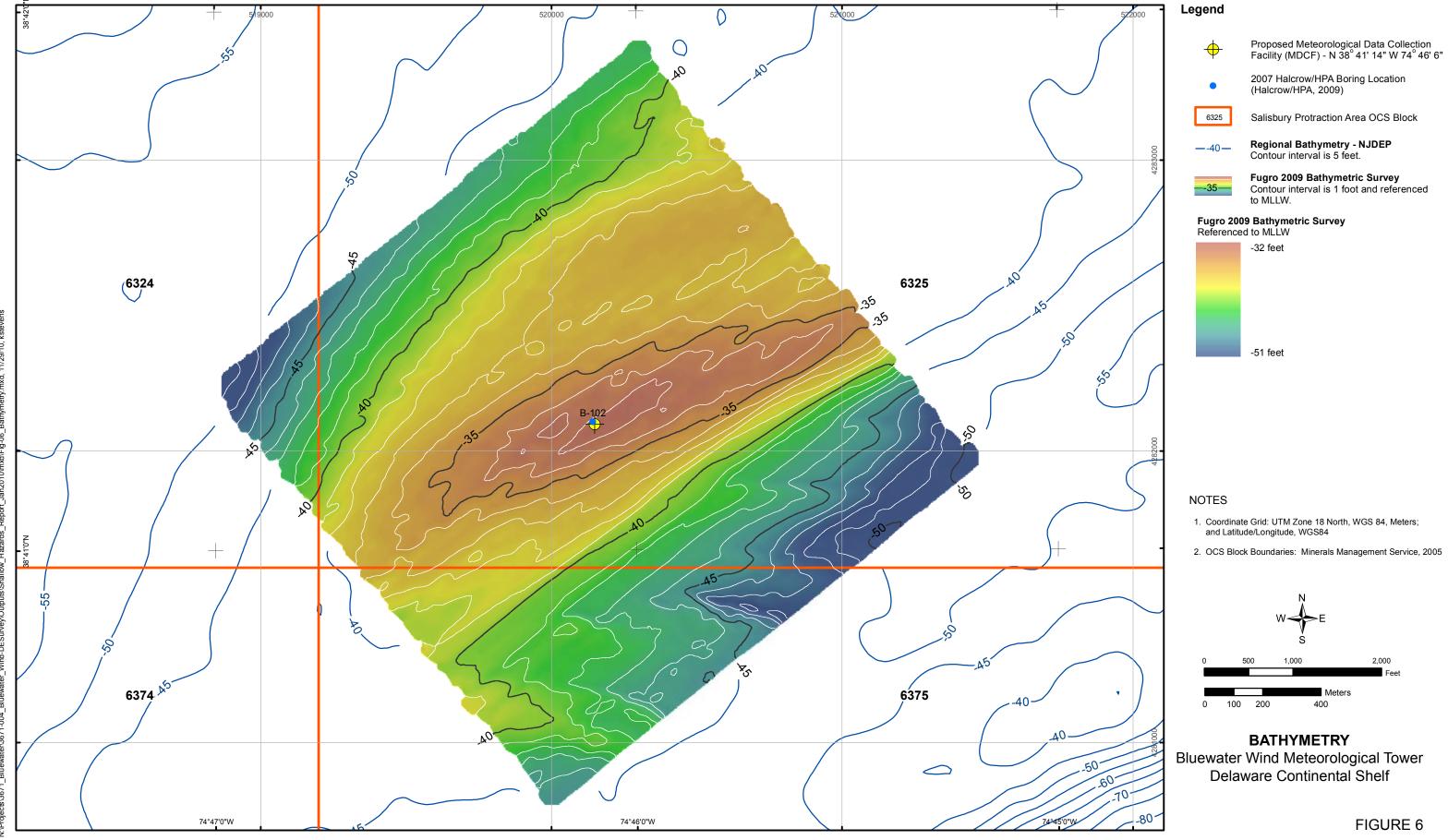
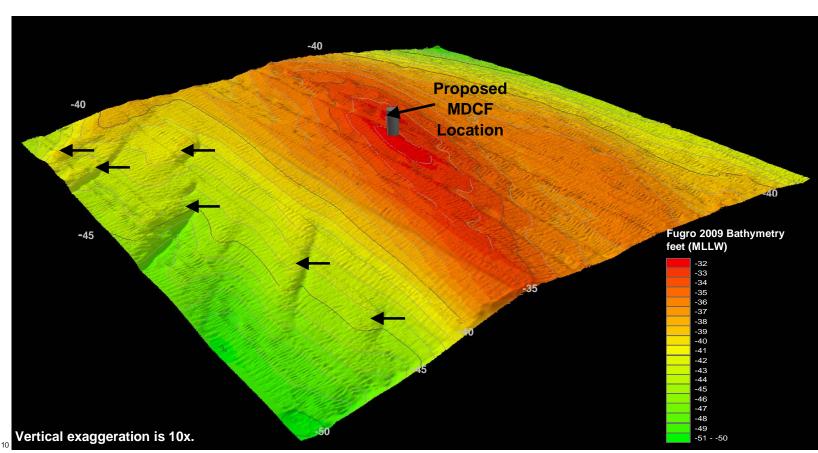

Delaware Continental Shelf

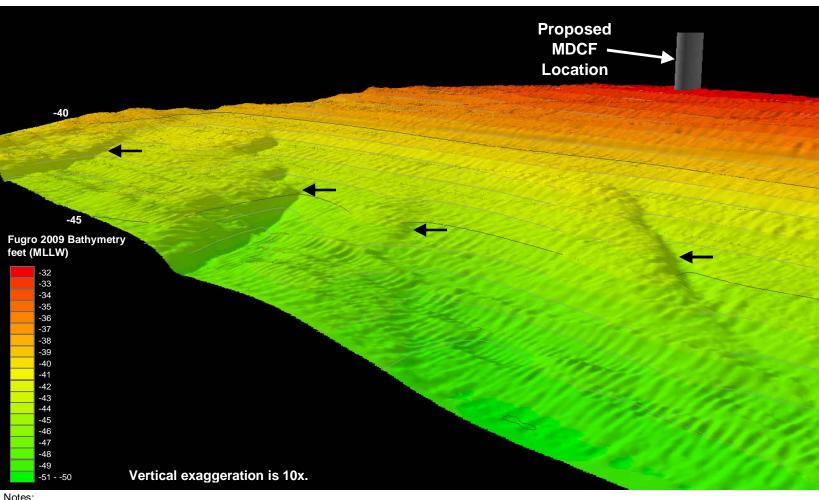
FIGURE 3



52200	00	Legend		
		\	Proposed Meteorolog Facility (MDCF) - N 3	ical Data Collection 8 [°] 41' 14" W 74 [°] 46' 6"
		•	2007 Halcrow/HPA Bo (Halcrow/HPA, 2009)	oring Location
	0	6325	Salisbury Protraction	
	4283000	150>>	Bottom Charting/Marin Survey Line and Navi Systems Used: Chirp Sub-bottom Prof Multibeam Echosounde Side Scan Sonar Magnetometer Arrows on line numbe of vessel travel. Refer to Chart 1 for N	gation Fix Marks er er indicate direction
	0001			
	4282000			
			e Grid: UTM Zone 18 North de/Longitude, WGS84	n, WGS84, Meters;
			Boundaries: Minerals Ma	anagement Service, 2005
		3. Trackline r	epresents position of GOS	Santenna.
	4281000	0 100 BOTTO NAVI	N N N N N N N N N N N N N N	SURVEY -PLOT ≫y
1			Wind Meteorolovare Continenta	



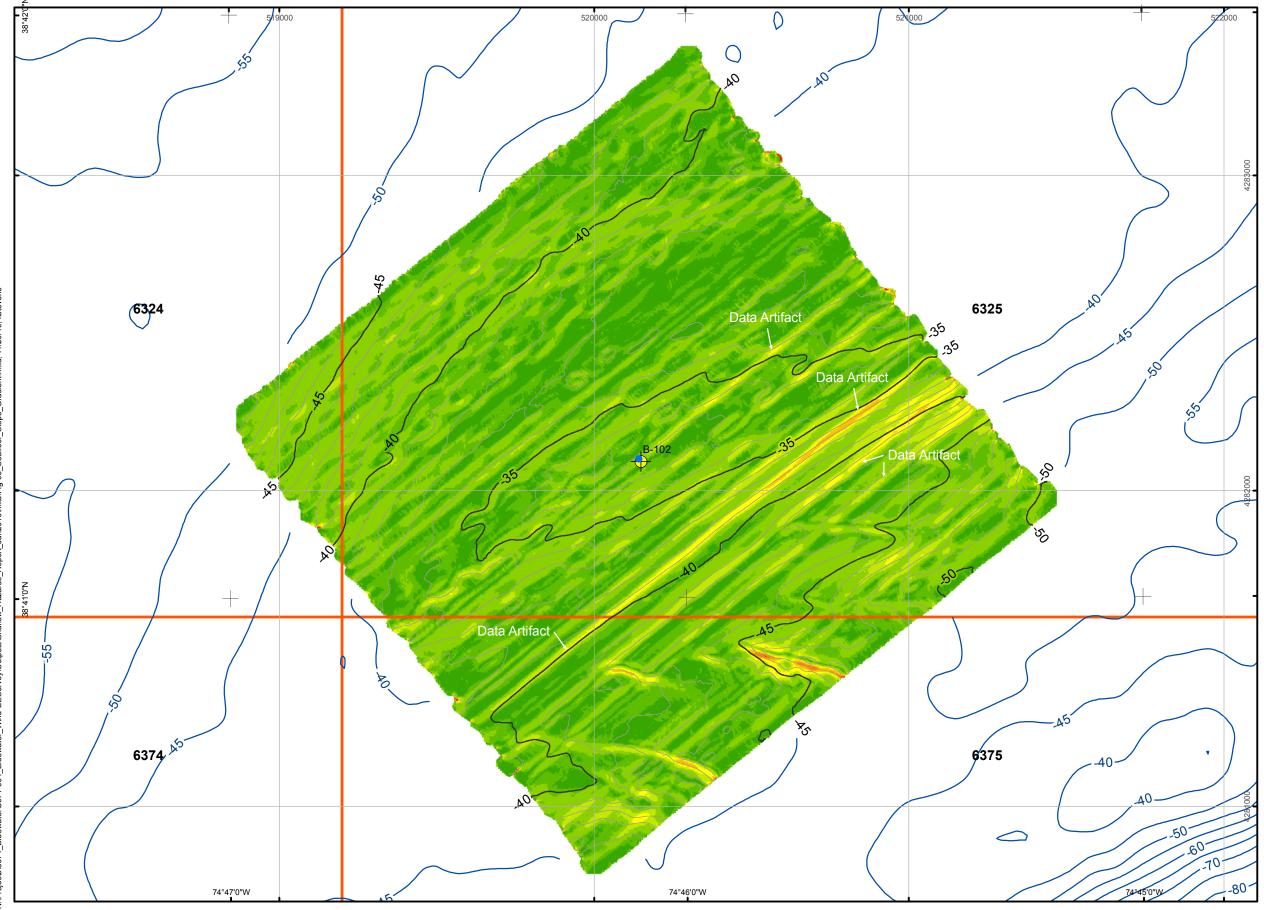

NRG Bluewater Wind Project No. 3671.004



Notes:

- 1) View is looking west-northwest.
- 2) Contour interval is 1 foot.
- Bathymetric surface is original, unsmoothed surface that shows weather-related artifacts.
 Small-scale "ripples" are resultant from strong winds and rough sea state. They are not bedforms.
- 4) Arrows point to large, low-amplitude sand waves. Refer to Figure 7b and Chart 4a Insets 3 and 3a for detailed view. It is unclear whether features are active or dormant.

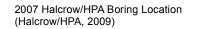
Bluewater Wind Meteorological Tower Delaware Continental Shelf


- 1) View is looking west-northwest.
- 2) Contour interval is 1 foot.
- 3) Bathymetric surface is original, unsmoothed surface that shows weather-related artifacts. Small-scale "ripples" are resultant from strong winds and rough sea state. They are not bedforms.
- 4) Arrows point to large, low-amplitude sand waves. Refer to Chart 4a Insets 3 and 3a for additional detailed views. It is unclear whether features are active or dormant.

THREE-DIMENSIONAL, SUN-ILLUMINATED, HILLSHADED BATHYMETRY

Bluewater Wind Meteorological Tower

Delaware Continental Shelf



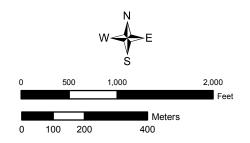
Legend

Salisbury Protraction Area OCS Block

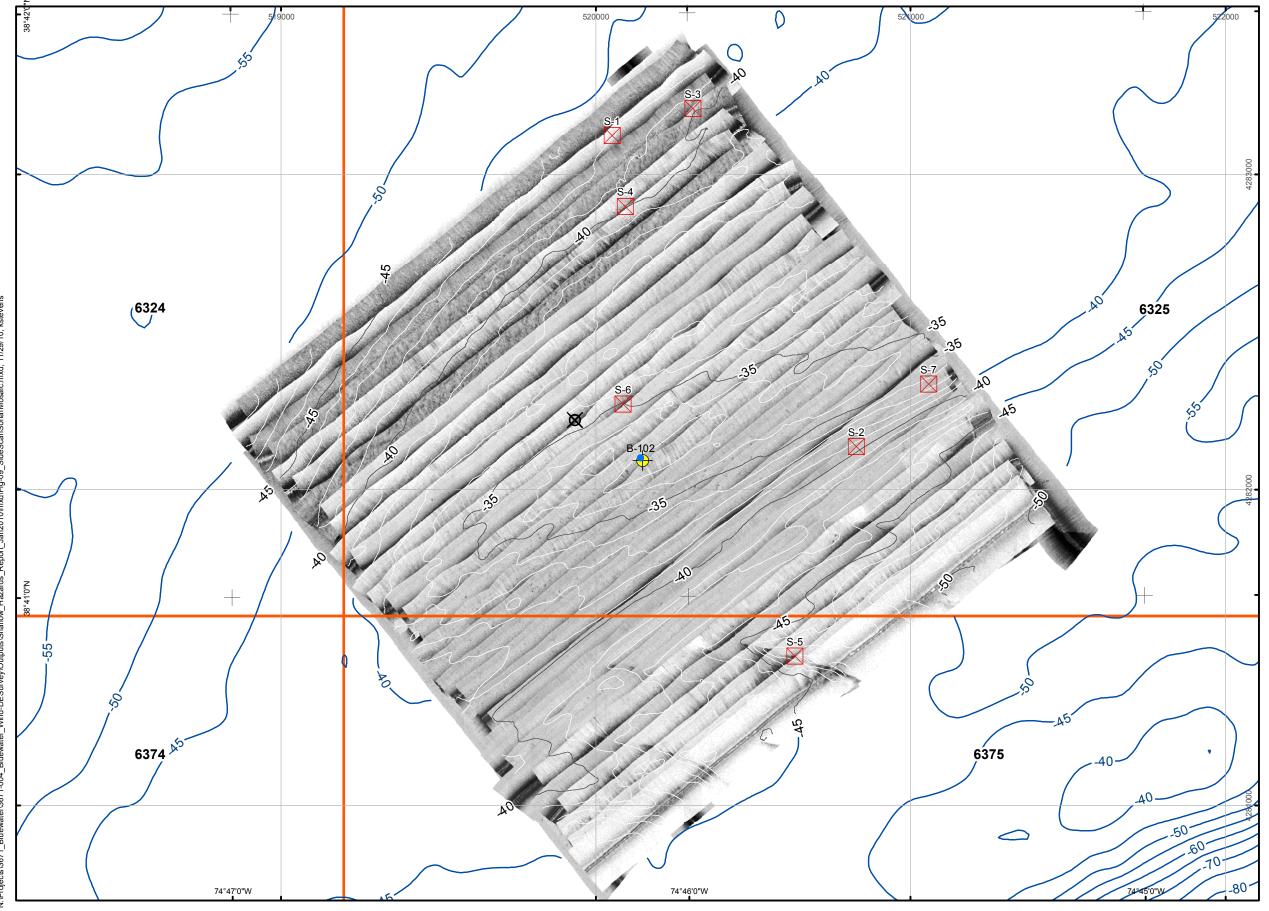
Proposed Meteorological Data Collection Facility (MDCF) - N 38° 41' 14" W 74° 46' 6"

-35-

Regional Bathymetry - NJDEP Contour interval is 5 feet.


Fugro 2009 Bathymetric Survey Contour interval is 1 foot and referenced to MLLW.

Degrees	or slope d	Percent
0 - 0.15		0 - 0.25
0.15 - 0.3		0.25 - 0.5
0.3 - 0.55		0.5 - 1
0.55 - 0.85		1.0 - 1.5
0.85 - 1.1		1.5 - 2
1.1 - 1.4		2.0 - 2.5
1.4 - 1.7		2.5 - 3
1.7 - 2.0		3.0 - 3.5
2.0 - 2.9		3.5 - 5


Seafloor Slope Gradient

NOTES

- 1. Coordinate Grid: UTM Zone 18 North, WGS 84, Meters; and Latitude/Longitude, WGS84
- 2. OCS Block Boundaries: Minerals Management Service, 2005

SEAFLOOR SLOPE GRADIENT Bluewater Wind Meteorological Tower Delaware Continental Shelf

Legend

 \oplus

• S-5

 \square

X

6325

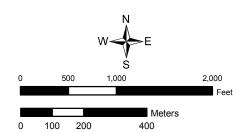
Proposed Meteorological Data Collection Facility (MDCF) N 38° 41' 14" W 74° 46' 6"

2007 Halcrow/HPA Boring Location (Halcrow/HPA, 2009)

Side Scan Sonar Targets Sonar target designation is posted above symbol.

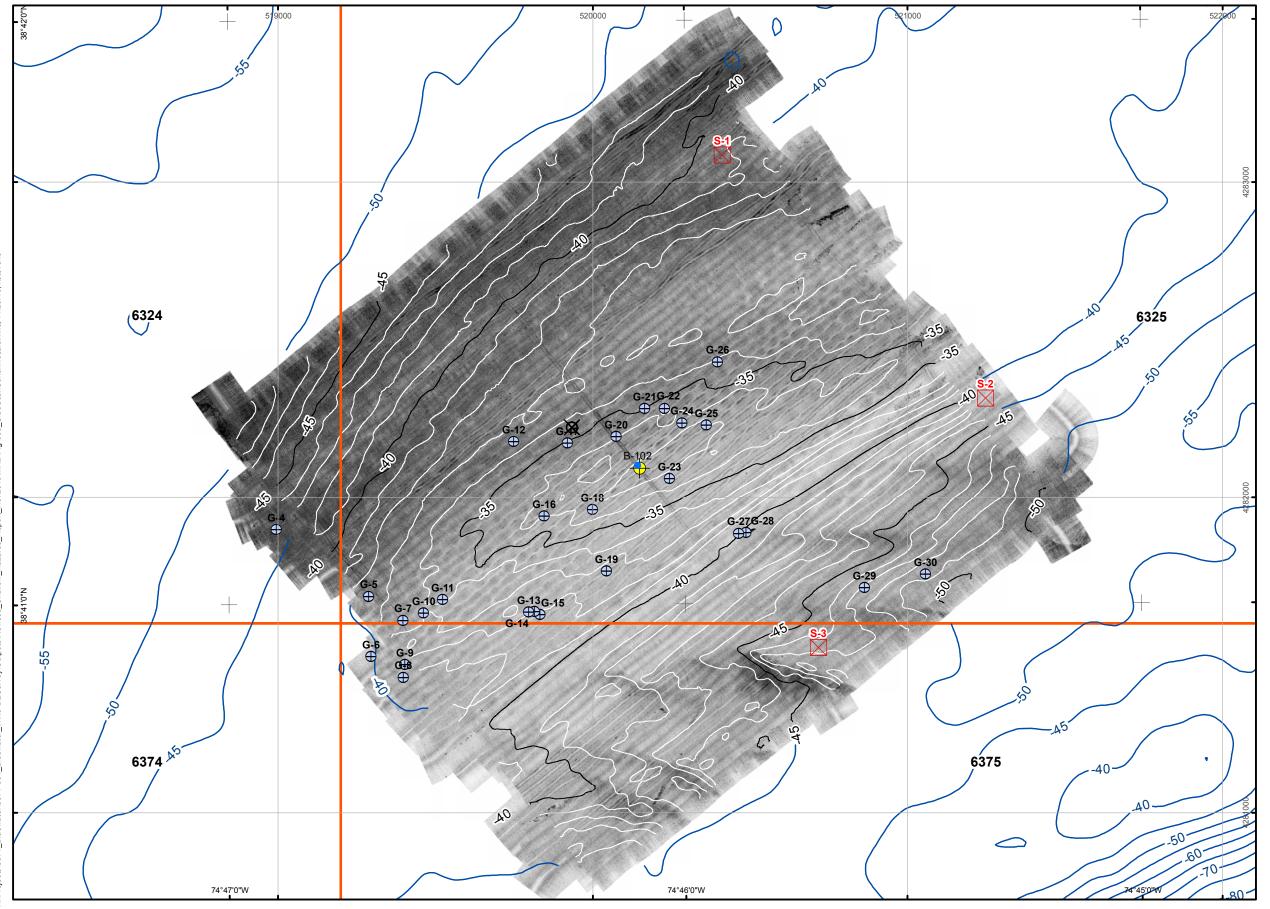
NOAA-Charted Obstruction See NOAA Chart 12214

Salisbury Protraction Area OCS Block


Regional Bathymetry - NJDEP Contour interval is 5 feet.

Fugro 2009 Bathymetric Survey Contour interval is 1 foot and referenced to MLLW.

NOTES


- 1. Coordinate Grid: UTM Zone 18 North, WGS84, Meters; and Latitude/Longitude, WGS84
- Side Scan Sonar Instrumentation: EdgeTech Model 272-TD sonar towfish interfaced to the EdgeTech analog control interace (ACI), and A/D card and acquisition software. Chesapeake Technology, Inc.'s SonarWiz.MAP software was utilized to provide real-time mosaics for quality control.

3. OCS Block Boundaries: Minerals Management Service, 2005

SIDE SCAN SONAR MOSAIC Fall 2009 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE 9a

Legend

 \oplus

• G-1

 \oplus

S-1

 \square

X

6325

--50

—-35—

Proposed Meteorological Data Collection Facility (MDCF) N 38° 41' 14" W 74° 46' 6"

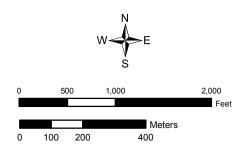
2007 Halcrow/HPA Boring Location (Halcrow/HPA, 2009)

Gas Seeps (Fugro, 2010)

2010 Side Scan Sonar Targets Sonar target designation is posted above symbol.

NOAA-Charted Obstruction See NOAA Chart 12214

Salisbury Protraction Area OCS Block


Regional Bathymetry - NJDEP Contour interval is 5 feet.

Fugro 2009 Bathymetric Survey Contour interval is 1 foot and referenced to MLLW.

NOTES

- 1. Coordinate Grid: UTM Zone 18 North, WGS84, Meters; and Latitude/Longitude, WGS84
- 2. Side Scan Sonar Instrumentation: Klein System 3000 sonar Towfish and armored tow cable interfaced to the Klein topside unit, which was networked to a data logging computer and Klein's SonarPro acquisition software. SonarPro features include, amongst other features, automatic gain control, real-time bottom tracking, and time varied gain.

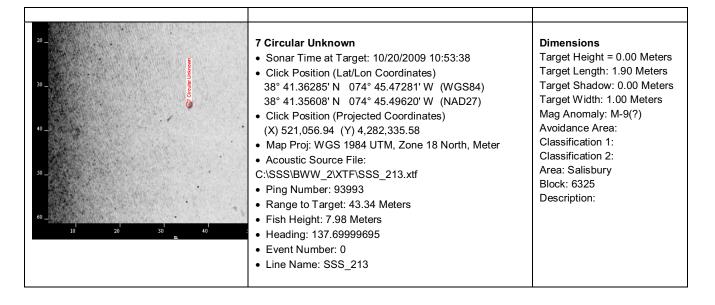
SIDE SCAN SONAR MOSAIC Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE 9b

Target Image	Target Info	User Entered Info
	 1 Unknown Sonar Time at Target: 10/20/2009 15:11:22 Click Position (Lat/Lon Coordinates) 38° 41.78998' N 074° 46.16491' W (WGS84) 38° 41.78322' N 074° 46.18827' W (NAD27) Click Position (Projected Coordinates) (X) 520,051.77 (Y) 4,283,122.94 Map Proj: WGS 1984 UTM, Zone 18 North, Meter Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_101.xtf Ping Number: 231370 Range to Target: 36.10 Meters Fish Height: 7.65 Meters Heading: 49.9000153 Event Number: 0 Line Name: SSS_101 	Dimensions Target Height = 0.19 Meters Target Length: 1.46 Meters Target Shadow: 0.92 Meters Target Width: 0.50 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:
<u>ک او </u>	 2 Multiple Unknown Sonar Time at Target: 10/22/2009 12:57:16 Click Position (Lat/Lon Coordinates) 38° 41.25671' N 074° 45.63162' W (WGS84) 38° 41.24994' N 074° 45.65500' W (NAD27) Click Position (Projected Coordinates) (X) 520,827.27 (Y) 4,282,138.67 Map Proj: WGS 1984 UTM, Zone 18 North, Meter Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_146.xtf Ping Number: 121889 Range to Target: 60.53 Meters Fish Height: 9.47 Meters Heading: 50.79999924 Event Number: 0 Line Name: SSS_146 	Dimensions Target Height = 0.12 Meters Target Length: 0.91 Meters Target Shadow: 0.78 Meters Target Width: 0.46 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:
	3 Unknown • Sonar Time at Target: 10/20/2009 15:21:37 • Click Position (Lat/Lon Coordinates) 38° 41.83636' N 074° 45.98807' W (WGS84) 38° 41.82960' N 074° 46.01143' W (NAD27) • Click Position (Projected Coordinates) (X) 520,307.85 (Y) 4,283,209.37 • Map Proj: WGS 1984 UTM, Zone 18 North, Meter • Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_104.xtf • Ping Number: 236837 • Range to Target: 40.10 Meters • Fish Height: 6.66 Meters • Heading: 226.69999695 • Event Number: 0	Dimensions Target Height = 0.03 Meters Target Length: 1.37 Meters Target Shadow: 0.15 Meters Target Width: 1.60 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:

SIDE SCAN SONAR TARGETS Bluewater Wind Meteorological Tower Delaware Continental Shelf

N:\PROJECTS\3671_BLUEWATER\3671-004_BLUEWATER_WIND-DESURVEY\OUTPUTS\REVISED_SHALLOW_HAZARDS_REPORT_NOV2010\DOC\FIG-10_SSS_TARGETS.DOC



	Line Name: SSS_104	
	 4 Unknown Sonar Time at Target: 10/30/2009 16:50:27 Click Position (Lat/Lon Coordinates) 38° 41.66877' N 074° 46.13608' W (WGS84) 38° 41.66201' N 074° 46.15943' W (NAD27) Click Position (Projected Coordinates) (X) 520,094.12 (Y) 4,282,898.87 Map Proj: WGS 1984 UTM, Zone 18 North, Meter Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_110.xtf Ping Number: 221408 Range to Target: 32.43 Meters Fish Height: 8.81 Meters Heading: 58.59999847 Event Number: 0 Line Name: SSS_110 	Dimensions Target Height = 0.50 Meters Target Length: 1.76 Meters Target Shadow: 2.02 Meters Target Width: 0.72 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:
10 15 20 25 30 35 40	 5 Multi Linear Sonar Time at Target: 11/01/2009 15:18:42 Click Position (Lat/Lon Coordinates) 38° 40.89776' N 074° 45.76768' W (WGS84) 38° 40.89099' N 074° 45.79104' W (NAD27) Click Position (Projected Coordinates) (X) 520,631.77 (Y) 4,281,474.31 Map Proj: WGS 1984 UTM, Zone 18 North, Meter Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_158.xtf Ping Number: 232173 Range to Target: 22.83 Meters Fish Height: 10.63 Meters Heading: 50.79999924 Event Number: 0 Line Name: SSS_158 	Dimensions Target Height = 0.03 Meters Target Length: 6.63 Meters Target Shadow: 0.06 Meters Target Width: 0.34 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:
	 6 Square Unknown Sonar Time at Target: 11/01/2009 12:22:18 Click Position (Lat/Lon Coordinates) 38° 41.33033' N 074° 46.14242' W (WGS84) 38° 41.32356' N 074° 46.16577' W (NAD27) Click Position (Projected Coordinates) (X) 520,086.51 (Y) 4,282,272.92 Map Proj: WGS 1984 UTM, Zone 18 North, Meter Acoustic Source File: C:\SSS\BWW_2\XTF\SSS_126_A.xtf Ping Number: 138141 Range to Target: 22.77 Meters Fish Height: 6.82 Meters Heading: 60.79999924 Event Number: 0 Line Name: SSS_126_A 	Dimensions Target Height = 0.32 Meters Target Length: 0.97 Meters Target Shadow: 1.05 Meters Target Width: 1.23 Meters Mag Anomaly: None Avoidance Area: Classification 1: Classification 2: Area: Salisbury Block: 6325 Description:

SIDE SCAN SONAR TARGETS Bluewater Wind Meteorological Tower Delaware Continental Shelf

N:\PROJECTS\3671_BLUEWATER\3671-004_BLUEWATER_WIND-DESURVEY\OUTPUTS\REVISED_SHALLOW_HAZARDS_REPORT_NOV2010\DOC\FIG-10_SSS_TARGETS.DOC

SIDE SCAN SONAR TARGETS

Bluewater Wind Meteorological Tower Delaware Continental Shelf

N:\PROJECTS\3671_BLUEWATER\3671-004_BLUEWATER_WIND-DESURVEY\OUTPUTS\REVISED_SHALLOW_HAZARDS_REPORT_NOV2010\DOC\FIG-10_SSS_TARGETS.DOC

Sonar Contacts-2010 S-1

Target Info for S-1

- Sonar Time at Target: 10/23/2010 12:23:01
- Click Position (Lat/Lon Coordinates) 38° 41.76853' N 074° 45.91794' W (WGS84) 38° 41.76177' N 074° 45.94130' W (NAD27)
- Click Position (Projected Coordinates) (X) 520,409.82 (Y) 4,283,084.17
- Map Proj: WGS 1984 UTM, Zone 18 North, Meter
- Acoustic Source File:
- C:\SonarSurveys\3671_004\SSS\XTF\549.xtf
- Ping Number: 23650
- Range to Target: -40.34 Meters
- Fish Height: 7.54 Meters
- Heading: 56.09999847
- Event Number: 0
- Line Name: 549

User Entered Info

Target Height = 0.12 Meters Target Length: 2.75 Meters Target Shadow: 0.63 Meters Target Width: 2.12 Meters Mag Anomaly: Avoidance Area: Classification 1: debris Classification 2: Area: Block: Description:

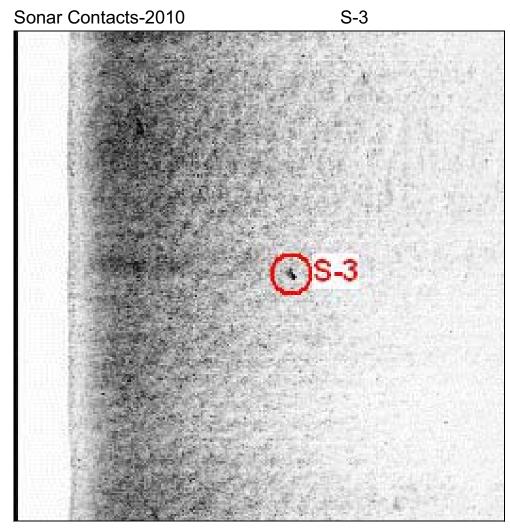
SIDE SCAN SONAR TARGETS Bluewater Wind Meteorological Tower Delaware Continental Shelf

 Sonar Contacts-2010
 S-2

 OS-2

Target Info for S-2

- Sonar Time at Target: 10/20/2010 14:02:49
- Click Position (Lat/Lon Coordinates) 38° 41.35149' N 074° 45.34169' W (WGS84)
- 38° 41.34472' N 074° 45.36508' W (NAD27) • Click Position (Projected Coordinates)
- (X) 521,247.05 (Y) 4,282,315.07
- Map Proj: WGS 1984 UTM, Zone 18 North, Meter
- Acoustic Source File:
- C:\SonarSurveys\3671_004\SSS\XTF\512.xtf
- Ping Number: 68435
- Range to Target: 26.66 Meters
- Fish Height: 5.14 Meters
- Heading: 257.79998779
- Event Number: 0
- Line Name: 512


User Entered Info

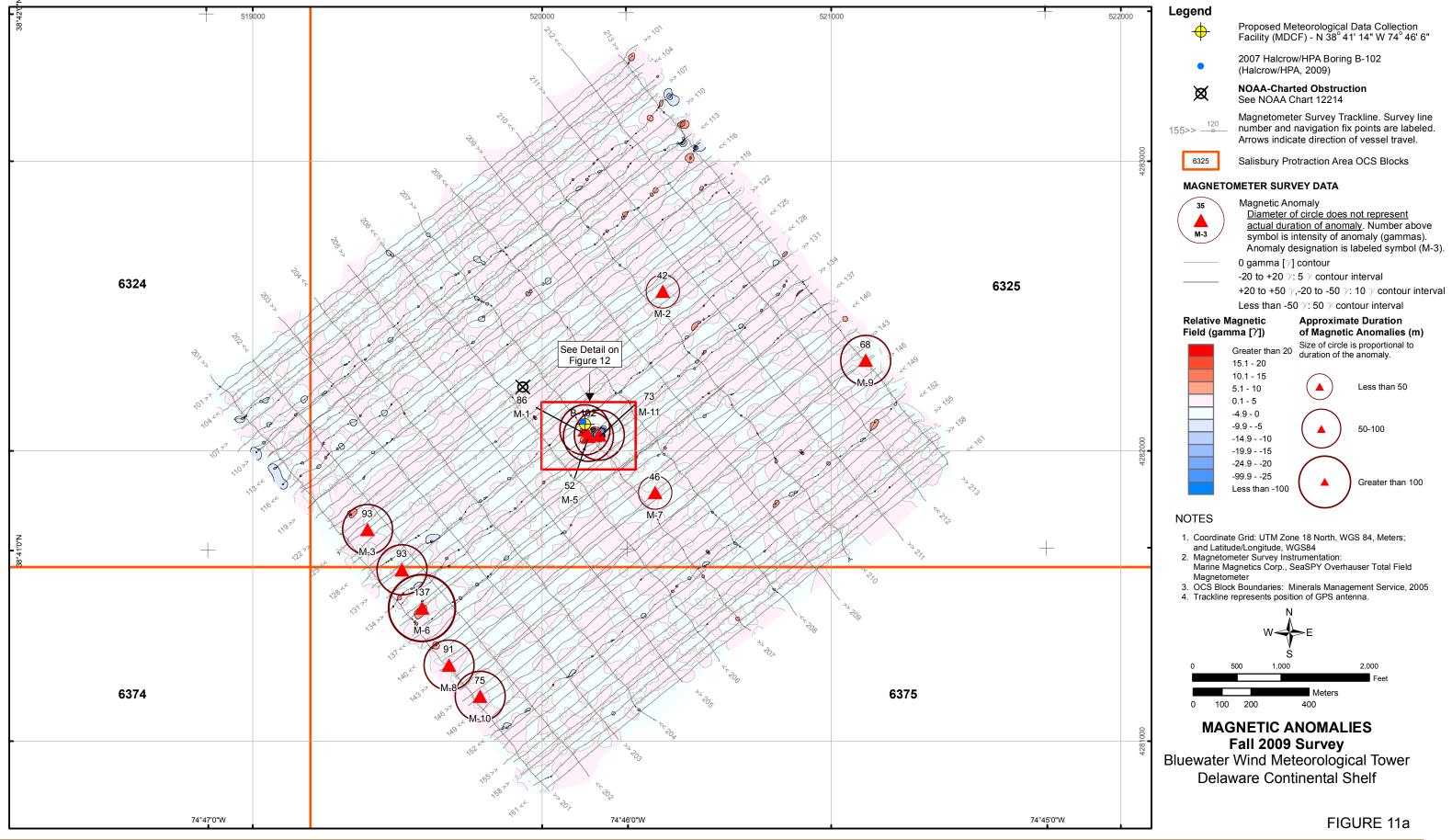
Target Height = 0.16 Meters Target Length: 2.56 Meters Target Shadow: 0.85 Meters Target Width: 0.89 Meters Mag Anomaly: Avoidance Area: Classification 1: debris Classification 2: Area: Block: Description:

SIDE SCAN SONAR TARGETS Bluewater Wind Meteorological Tower

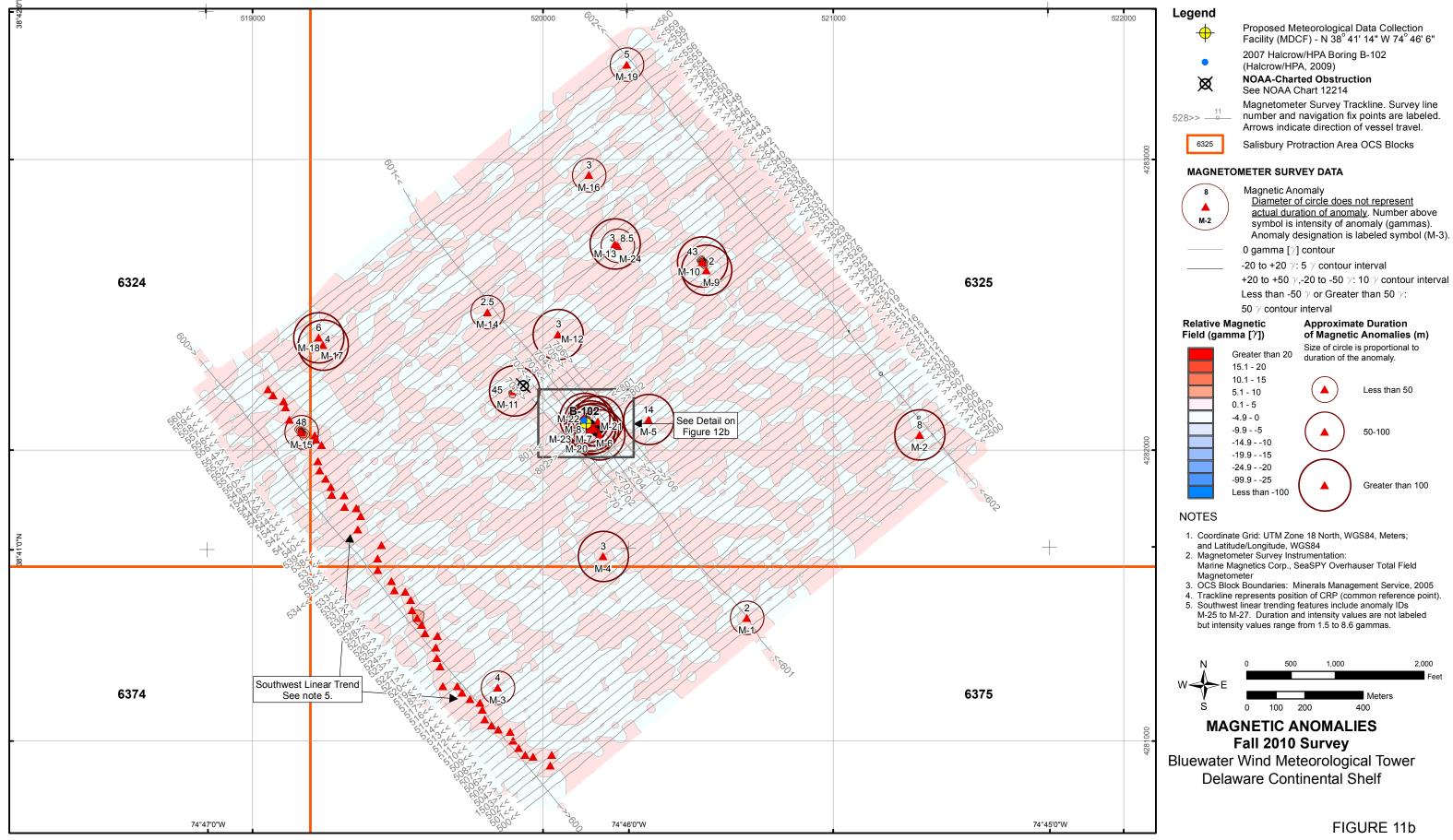
Delaware Continental Shelf

Target Info for S-3

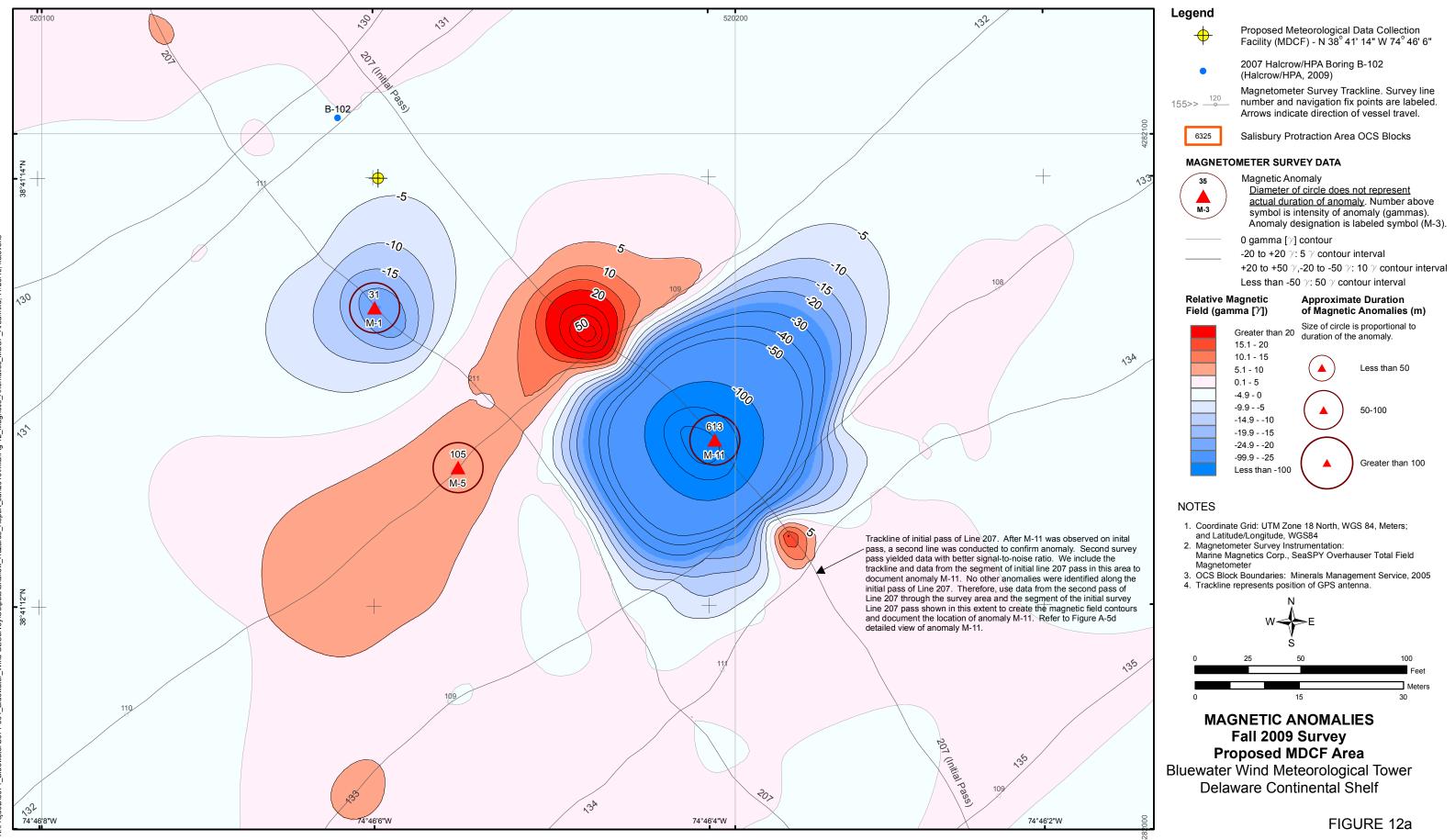
- Sonar Time at Target: 10/14/2010 14:51:26
- Click Position (Lat/Lon Coordinates) 38° 40.92465' N 074° 45.70912' W (WGS84) 38° 40.91789' N 074° 45.73249' W (NAD27)
- Click Position (Projected Coordinates)
 (X) 520,716.52 (Y) 4,281,524.27
- Map Proj: WGS 1984 UTM, Zone 18 North, Meter
- Acoustic Source File:
- C:\SonarSurveys\3671_004\SSS\XTF\502.xtf
- Ping Number: 61361
- Range to Target: 42.33 Meters
- Fish Height: 9.15 Meters
- Heading: 262.50000000
- Event Number: 0
- Line Name: 502

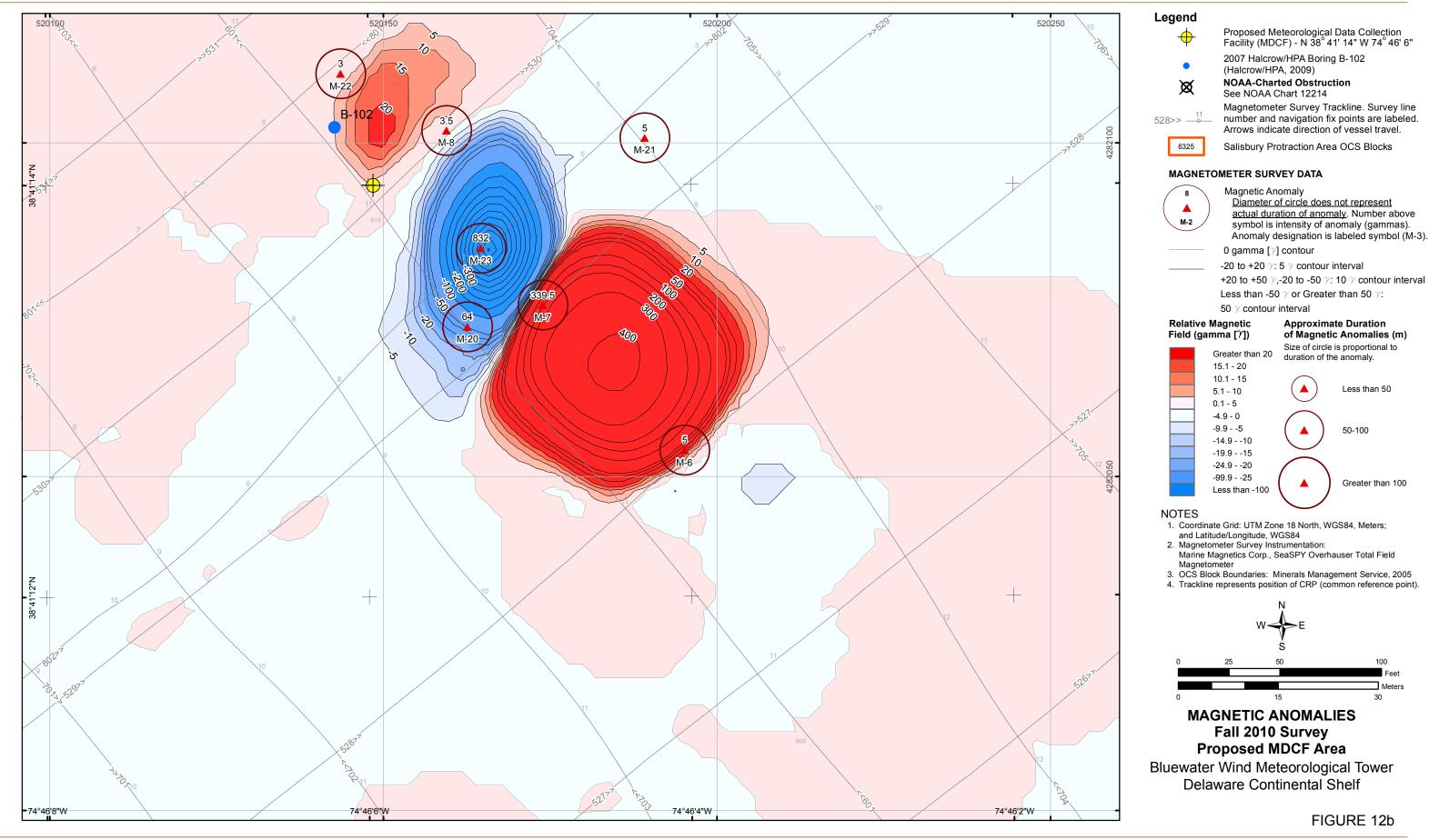

User Entered Info

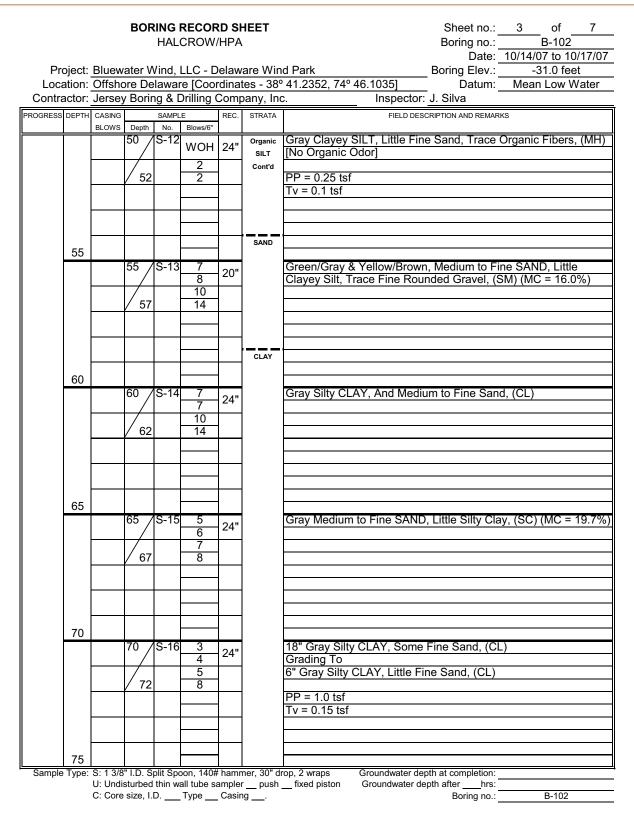
Target Height = 0.00 Meters Target Length: 2.23 Meters Target Shadow: 0.00 Meters Target Width: 1.28 Meters Mag Anomaly: Avoidance Area: Classification 1: debris Classification 2: Area: Block: Description:


SIDE SCAN SONAR TARGETS

Bluewater Wind Meteorological Tower Delaware Continental Shelf


FIGURE 10f





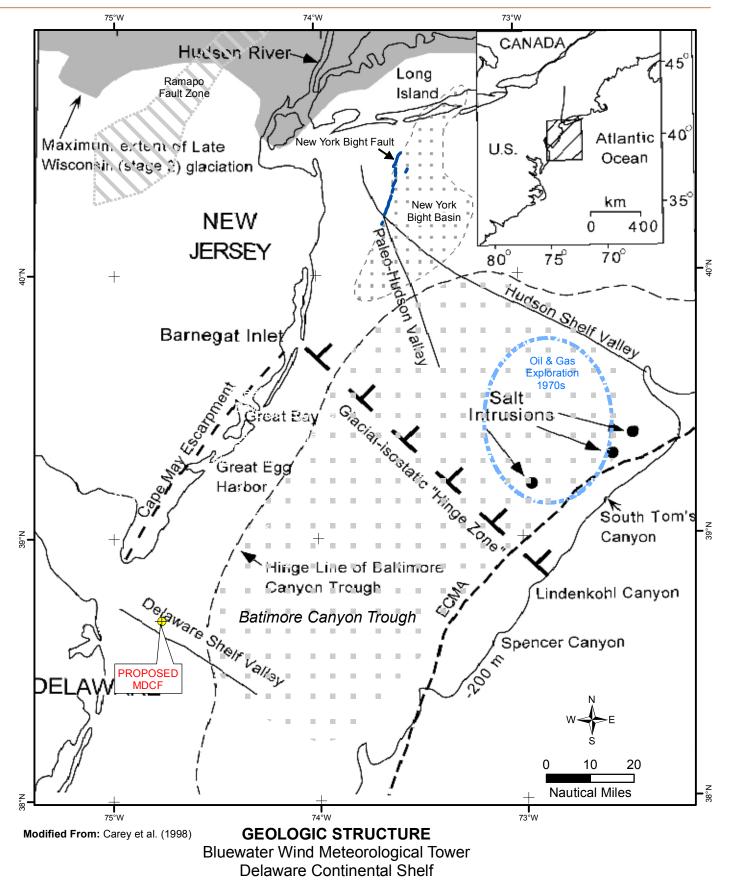
			BOR		Sheet no.: 1 of 7 Boring no.: <u>B-102</u> Date: 10/14/07 to 10/17/07				
Proje	ect:	Bluew	ater V	/ind,	LLC - D	elaw	are Win	d Park	Boring Elev.: -31.0 feet Datum: Mean Low Water
Locati Contract								2 41.2352, 74° 46.1035] c. Inspector:	
PROGRESS DE			Dom	SAMPL	-	REC.	STRATA		
		BLOWS	Depth	No.	Blows/6"				
10/14/2007 1:30 PM			0 /	S-1	10 11	NR	SAND	No Recovery	- Running Sands Observed)
1.30 FIM	-				10				
	-		/ 2		11				
						•			
	-								
	5					•			
			5 /	S-2	ğ	NR		No Recovery	- Running Sands Observed)
	-				Jetted			Wash Sample Recovered in	Its Place
	-		/ 7		\ √ `			Brown Fine SAND, Trace Si	lt, (SP)
						+ I			
	-								
	-								
	10					$\frac{1}{2}$			
			10 /	S-3		20"	n.	Gray Medium to Fine SAND	, Trace Silt, (SP) (MC = 15.4%)
	-				41 30				
			/ 12		27				
						$\left \right $			
	-								
	-								
	15								
			15 /	S-4	19 27	18"		Gray Medium to Fine SAND	, Trace Silt, Trace Shells, (SP-SM)
	-				38				
	-		/ 17		47				
						•			
	-								
	20					•	1		
			20 /	S-5	23 38	14"		Gray Medium to Fine SAND	, Trace Silt, Trace Shells, (SP)
	-				61				
	ŀ		/ 22		76				
						┥			
	Ī								
	ŀ								
	25	0.4.6%					0.00		
Sample Ty		U: Undis	sturbed	thin w	all tube s	ampler	r push	17 1	oth at completion: pth afterhrs:
		C: Core	size, I.	D	Туре	Casir	ng <u> </u> .		Boring no.: B-102

			BOR		RECOR			Sheet no.: 2 of 7 Boring no.: B-102
					011011			Date: 10/14/07 to 10/17/07
Pr	oject:	Bluew	ater V	/ind,	LLC - D	elaw	are Win	d Park Boring Elev.: -31.0 feet
							<u>tes - 38⁰</u> bany, Inc	2 41.2352, 74º 46.1035] Datum: Mean Low Water
PROGRESS			/ Borir	SAMPL	-	REC.	strata	c. Inspector: J. Silva
PROGRESS	DEPTH	BLOWS	Depth	No.	E Blows/6"	REC.	SIRAIA	FIELD DESCRIPTION AND REMARKS
10/15/2007			25 /	S-6	30	16"	SAND	Gray Medium to Fine SAND, Trace Silt, (SP-SM)
8:30 AM			-/		48 56	10	CONT'D	Medium Grading to Fine Sand
			/ 27		50			
	20							
	30		30 /	S-7	17			Gray Fine SAND, Trace Silt, (SP-SM)
	$30 / \frac{5-7}{28} \frac{17}{14"}$							
			/ 22		32			
			/ 32		27			
							Organic SILT	
	35							
			35 /	S-8		24"		Gray SILT & CAY, Trace Yellow/Brown Organic Fibers, (OL) [Strong Organic Odor] (MC = 28.7%)
					WOR			
			/ 37					PP = 0.25 tsf
								Tv = 0.15 tsf
	40							
			40 /	S-9		24"		Same as Above, with Occasional 1/4 to 1/2 inch Medium to Fine
			\vdash		WOR			Sand Lenses, (OH)
			/ 42					
			40 /	S-10		24"		Attempted Shelby Tube Sample From 40 to 42 Feet with No Recovery. Split-Spoon Sample Taken Following Attempt.
			\vdash		WOR			12" Gray Medium to Fine SAND, Some Clayey Silt, (SM)
			/ 42					[Strong Organic Odor]
	45							12" Gray Clayey SILT, Some Medium to Fine Sand, (OH) [Strong Organic Odor]
			45 /	S-11		17"		Gray SILT & CLAY, Some Medium to Fine Sand, (O)
					WOR	17"		(Occasional Sand Lenses)
			47					[Strong Organic Odor in Top 6 inches] (MC = 21.8%)
			, -1					PP = 0.25 tsf
								Tv = 0.1 tsf
Sample	50 Type:	S: 1 3/9	י חו"	nlit Snr	0n 140#	hamn	ner 30" d	rop, 2 wraps Groundwater depth at completion:
Jample	, туре.	U: Undi	sturbed	thin wa	all tube sa	ampler	push	fixed piston Groundwater depth after hrs:
		C: Core	size, I.	D	Туре	Casin	ng <u> </u>	Boring no.: B-102

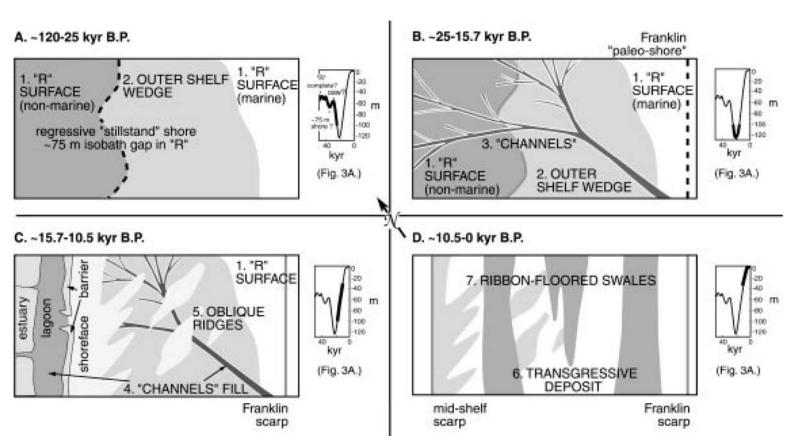
			BOR		RECOR			Sheet no.: <u>4</u> of <u>7</u> Boring no.: B-102
				HAL		ΠFA		Date: 10/14/07 to 10/17/07
Pro	oject:	Bluew	ater V	Vind, I	LLC - D)elaw	are Win	nd Park Boring Elev.: -31.0 feet
								• 41.2352, 74• 46.1035] Datum: <u>Mean Low Water</u> c. Inspector: J. Silva
PROGRESS				SAMPL		REC.	strata	C. IIISPECIOL J. SIIVA
FROGRESS	DEFIN	BLOWS	Depth	No.	∟ Blows/6"	REC.	SIRAIA	
			75' /	S-17	3	16"	CLAY	Gray Silty CLAY, And Medium to Fine Sand, (CL)
					7 8	_	CONT'D	
			/ 77'		11			
	80						SAND	
			80 /	S-18		21"		Gray Coarse to Fine SAND, Some Clayey Silt, (SM)
					11 15	21		
			/ 82		16			
	85							
10/16/2007	00		85 /	S-19	42	0.0"		Gray Medium to Fine SAND, Some Silt, Trace Fine Gravel,
8:30 AM					22	20"		Trace Wood Fragments/Lignite, (SM)
			/ 87		38 41			
			/ 0/		- 11			
	~~							
	90		90 /	S-20	53			Light Brown Coarse to Fine SAND, Trace Silt, (SP-SM)
			°°/	0 20	69	20"		(MC = 13.1%)
			/ 92		83 92			
			/ 92		92			
	95		95 /	S-21	11			6" Gray Fine SAND, Some Silt, (SM)
			° /	5-21	8	24"	CLAY	18" Gray Silty CLAY, Little Fine Sand, (CL)
			/		11			[Occasional Fine Sand Lenses Spaced 3 to 4 inches]
			/ 97		20			PP = 1.75 tsf
								Tv = 0.35 tsf
						$ \neg$		
							SAND	
	100							
Sample	i ype:				,		,	rop, 2 wraps Groundwater depth at completion:
		C: Core	size, I.	D	Туре	Casin	ıg <u> </u> .	Boring no.: B-102

		BOF	Boring no.:	5 of B-102						
Droioc	t: Dluou	(otor V	Vind			oro Min	d Dork	Date:	10/14/07 to 10/1 -31.0 feet	7/07
Locatio	n: Offsh	ore De	elawai	re [Coo	rdinat	tes - 38 ^o	d Park 2 41.2352, 74º 46.1035]	Datum:		iter
Contracto	r: Jerse	y Borir	ng & [c. Inspector:						
PROGRESS DEP			SAMPL		REC.	STRATA	FIELD DES	CRIPTION AND REMAR	KS	
	BLOWS	Depth	No. S-22	Blows/6" 43		SAND	Gray/Brown Coarse to Fine	SAND Trace	Silt (SP-SM)	
		100/	0 22	55	20"	CONT'D				
		100		71						
		/102		85						
10	5	105	0.00	<u> </u>						0:14
		105	S-23	60 100/5"	9"		Gray/Brown Coarse to Fine (SP-SM)	SAND, LITTIE F	ine Gravel, Little	SIII,
		1/		-						
		/107		-						
		-				CLAY				
11	0									
		110/	S-24	WOR	24"		Gray CLAY & SILT, Little Fin	ne Sand, Trace	e Organic Debris,	(CL)
							(MC = 24.6%) PP = 1.0 tsf			
		/112		8			Tv = 0.35 tsf			
11	5				-					
	-	115/	S-25		24"		12" Gray Fine SAND, And S	Silt, (SM)		
				15 15	24		12" Gray Silty CLAY, Little F (Fine Sand Lenses @ 3" to	Fine Sand, (CL) him the Class)	
		/117		15	-		(Fine Sand Lenses @ 3 to	4 Spacing with	nin the Clay)	
		Í					PP = 0.75 to 1.5 tsf			
		-					Tv = 0.3 to 0.4 tsf			
10	~									
12	0	120 /	S-26	WOH			Gray Silty CLAY, Little Fine	Sand, (CL)		
				3	24"		(Fine Sand Lenses @ 3" to			
		/122		11			PP = 2.0 to 3.5 tsf			
		γ 122		13			Tv = 0.4 to 0.7 tsf			
Sampla Tur			nlit Or :	oop 140+	ham	nor 001 -	ron 2 urrono - Oraunduratar da	nth at completions		
Sample Typ	U: Und	isturbed	thin w	all tube s	amplei	r push		pth at completion: pth afterhrs:		
	C: Core	e size, I.	D	Туре	Casir	ng <u></u> .		Boring no.:	B-102	

			BOR		RECOF				Sheet no.: Boring no.:	-	of B-102	7
_									Date:	10/14/0	7 to 10/	17/07
Pro	oject: ation:	Offsho	ater v	vind, Iawai	LLC - D re [Cooi	elaw dina	are Win	<u>а Рагк</u> во 2 41.2352, 74º 46.1035]	oring Elev.: Datum:		Low Wa	
							bany, Ind			moun	2011 111	
PROGRESS	DEPTH			SAMPL		REC.	STRATA	FIELD DESCRIPT	TION AND REMARK	KS		
		BLOWS	Depth	^{№.}	Blows/6"		CLAY	 Gray Silty CLAY, Trace Fine Sa	and (CL)			
			120/	0-21	WOR	14"	CONT'D					
			407		WUR			PP = 1.25 to 1.5 tsf				
			/127					Tv = 0.4 to 0.6 tsf				
	130		120 /	C 20	WOD				Cand (CL)	MC = C	1 20/)	
			130	5-20	WOR WOH	24"		Gray CLAY & SILT, Trace Fine	Sand, (CL)	(IVIC = 2	4.3%)	
			/		5			PP = 1.0 to 1.5 tsf				
			/132		14			Tv = 0.4 to 0.8 tsf				
	135											
			135/	S-29		24"		Gray Silty CLAY, Trace Fine Sa	and, (CL)			
					WOR			PP = 1.25 tsf				
			/137					Tv = 0.6 to 0.7 tsf				
							SAND					
	140											
10/17/2007			140/	S-30	38 48	20"		Gray Medium to Fine SAND, Tra	ace Silt, Tra	ace She	ls, (SP-	SM)
9:00 AM					48 55							
			/142		72							
	145											
			145/	S-31		18"		Gray Coarse to Fine SAND, Tra	ace Silt, (SP	')		
			\vdash		46 53							
			/147		68							
						<u> </u>						
	150											
Sample								rop, 2 wraps Groundwater depth a				
					all tube sa _Type			fixed piston Groundwater depth a	after hrs: Boring no.:		B-102	



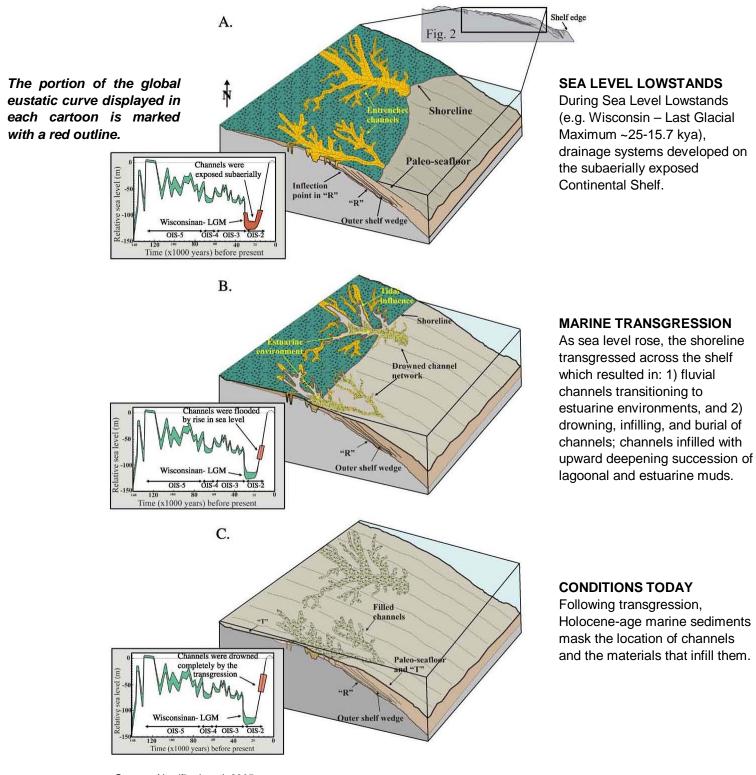
			BOR		RECOF			Sheet no.: 7 of 7 Boring no.: B-102
-								Date: 10/14/07 to 10/17/07
Pro	oject:	Offsho	ater V	Vind, Jawai	LLC - L re [Coo	elaw) Pelaw	are Win	nd Park Boring Elev.: -31.0 feet ° 41.2352, 74° 46.1035] Datum: Mean Low Water
							any, Ind	
PROGRESS	DEPTH		-	SAMPL		REC.	STRATA	FIELD DESCRIPTION AND REMARKS
		BLOWS		^{№.}	Blows/6"		SAND	Gray Coarse to Fine SAND, Trace Silt, (SP) (MC = 14.7%)
				0 02	35	18"	CONT'D	
			/152		41 46			
			/ 102		40			Increased Pressure Observed on Roller-bit
	155				-			
	155		155/	S-33	91	4.01		6" Gray Fine Subrounded & Rounded GRAVEL, Some Coarse
					70	12"		to Fine Sand, Trace Silt, (GP)
			/157		100/5"			6" Gray Medium to Fine SAND, Trace Silt, (SP)
			/ 10/		_			Continued High Pressure Observed on Roller-bit
	160							
	160		160 /	S-34	45	0"		Gray Medium to Fine SAND, Trace Silt, (SP)
					97	8"		
			/162		100/3"			
			/ 102			_		Continued High Pressure Observed on Roller-bit
	165					-		
	105		165/	S-35		- 8"		Gray Medium to Fine SAND, Trace Silt, Trace Fine Rounded
					78	-		Gravel, (SP-SM)
10/17/2007			/167		100/5"	-		
1:00 PM							END	Boring Terminated @ 167 Feet Below The Sea Floor.
	170							
	170							
						-		
					-			
	175							
Sample								Irop, 2 wraps Groundwater depth at completion:
					all tube s _Type			fixed piston Groundwater depth afterhrs: Boring no.: B-102
			,				<u> </u>	2011.g.101



		BORING F	RECORD SH	EET		Sheet no.:	1 of	1
		HALC	CROW/HPA			Boring no.:	B-102	
					Date: 10/14/07 to 10/17/07			
	Bluewater Wi					Boring Elev.:		
				41.2352, 74º 4			Mean Low V	Vater
Contractor:	Jersey Boring	& Drilling Co	ompany, Inc.		Inspecto	r: J. Silva		
Groundwater	Level Observ	ations.						
Date	Time	TOC	TOD	Tide Height	C	onditions of Obse	ervation	
		to Mud	to Water	Above MLW				
10/14/2007	1:30 PM	48' - 7"	9' - 11"	2' - 5"	TOC is +5'	- 3" above TOD		
<u>Boring Equip</u> Drill Rig:	<u>ment Used:</u> Acker	Cooinc	g Used					
Truck	ACKEI		a. (in):	Depth (ft) from:	to		
Skid XL	S			Depth (ft) from:	to		
Barge		Dia	a. (in):	Depth (ft) from:	to		
Other		Dia	. (in): Depth (ft) from: to					
				_	·			
Sampling Me		Automatic Ha	mmer					
S-sampler:		poon	-	Drilling Mud:		iikGel		
U-sampler:				and Dia of Bit:				
Core Barrel: Core Bit:				type and Dia: Hammer, lbs.:		Avg. Fall (in)		
Drill Rods:				Hammer, Ibs.:			30	
Dim Rous.			Gampler	lammer, ibs	140	Xvg. 1 all (iii)	50	
Piezometer II								
Standpipe:			ID (in	·	Length (ft)	Top E		
Intake:	Type:		OD (ii		Length (ft)	Tip E		
Filter:	Material:		OD (ii	n)	Length (ft)	Bot E	lev.:	
Boring Cont	ractor: Jersey	Boring & Dril	ling Compar	w Inc				
	Driller: Gerry			Helper:	Brent			
	pector: Joseph	n Silva						
	marks:					Date: 1	0/14/07 to 10	/17/07
						Boring No.:	B-102	

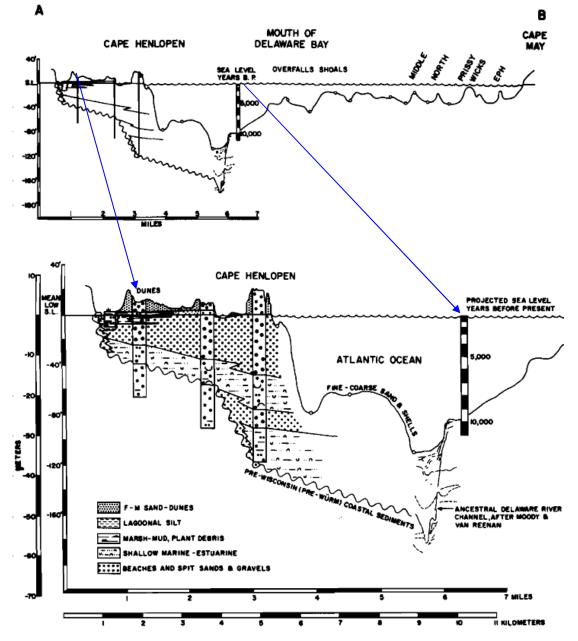
FIGURE 14

Schematic geologic evolution of the mid-shelf corridor since ~120 kyr B.P. The portion of the global eustatic curve (inset Fig. 3A above) displayed in each cartoon is marked with a heavy black line. (A) Depicts period when the shoreline moved seaward across the mid-shelf corridor during the last regression (~120-25 kya); (B) shows the Wisconsin glacial maximum, when the mid-shelf corridor was subaerially exposed, and "channels" were carved (~25-15.7 kya); (C) illustrates the portion of the Holocene transgression when the shoreline moved from the Frankline "paleo-shore" to the mid-shelf scarp, and "channels" were infilled with an upward-deepening succession of lagoonal and estuarine muds; estuaries, lagoons, shoreface barriers, and nearshore shores/oblique ridges comprised the various depositional environments in this cartoon (~15.7-10.5 kya); (D) shows the modern seafloor of the mid-shelf corridor (10.5 kyr to Present). Shelf currents have reworked and winnowed the oblique ridges, creating the surficial unit. <u>"Channels" and other subsurface features (e.g. deltas, unconformities, etc.) have no seafloor bathymetric expression</u>, and the ribbon-floored swales represent erosion of the surficial unit.


GEOLOGIC EVOLUTION OF MID-SHELF CORRIDOR

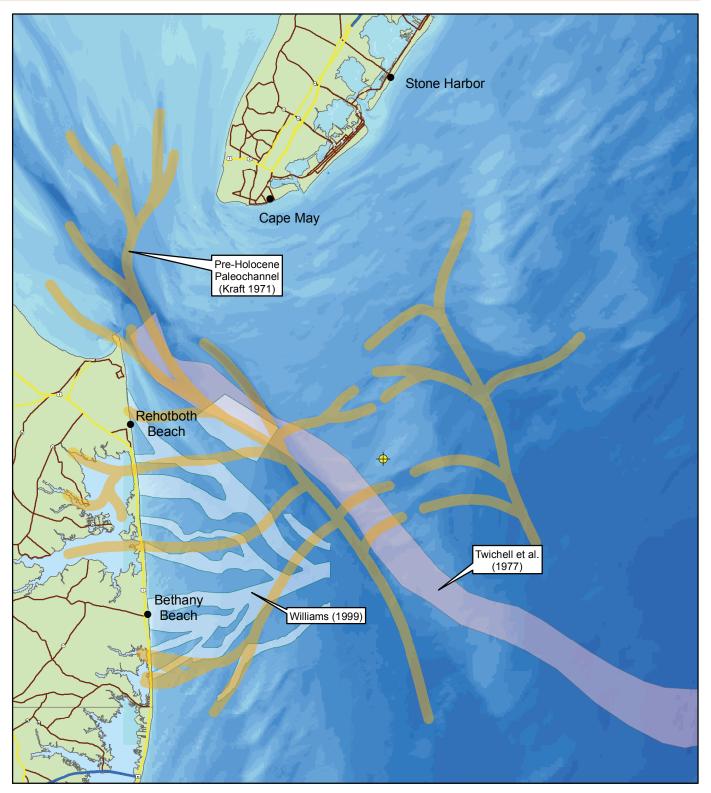
Source: Duncan et al. (2000)

Bluewater Wind Meteorological Tower Delaware Continental Shelf



Source: Nordfjord et al. 2005

CHANNEL INCISION AND BURIAL EXAMPLE Bluewater Wind Meteorological Tower Delaware Continental Shelf



Modified from Kraft (1971). Interpretive cross section showing Holocene sedimentary environments near mouth of Delaware Bay. The ancestral Delaware River channel is inferred to be as deep as 100 feet below sea level in the thalweg areas. Pre-Holocene paleochannels are inferred to exist below the Holocene thalweg. Channel infill materials are inferred to consist of silt, clay, organic-rich sediments, and variable amounts of sand (Sheridan et al., 1974). The proposed MDCF is located approximately 14 Nm southeast (downstream) of this cross section. Based on the seismic survey, the proposed in MDCF is not located in a thalweg of a major drainage related to this system.

ANCESTRAL DELAWARE RIVER Bluewater Wind Meteorological Tower New Jersey Continental Shelf

Bluewater Wind Meteorological Tower Delaware Continental Shelf

← Proposed MDCF Site

FIGURE 18

NRG Bluewater Wind Project No. 3671.004

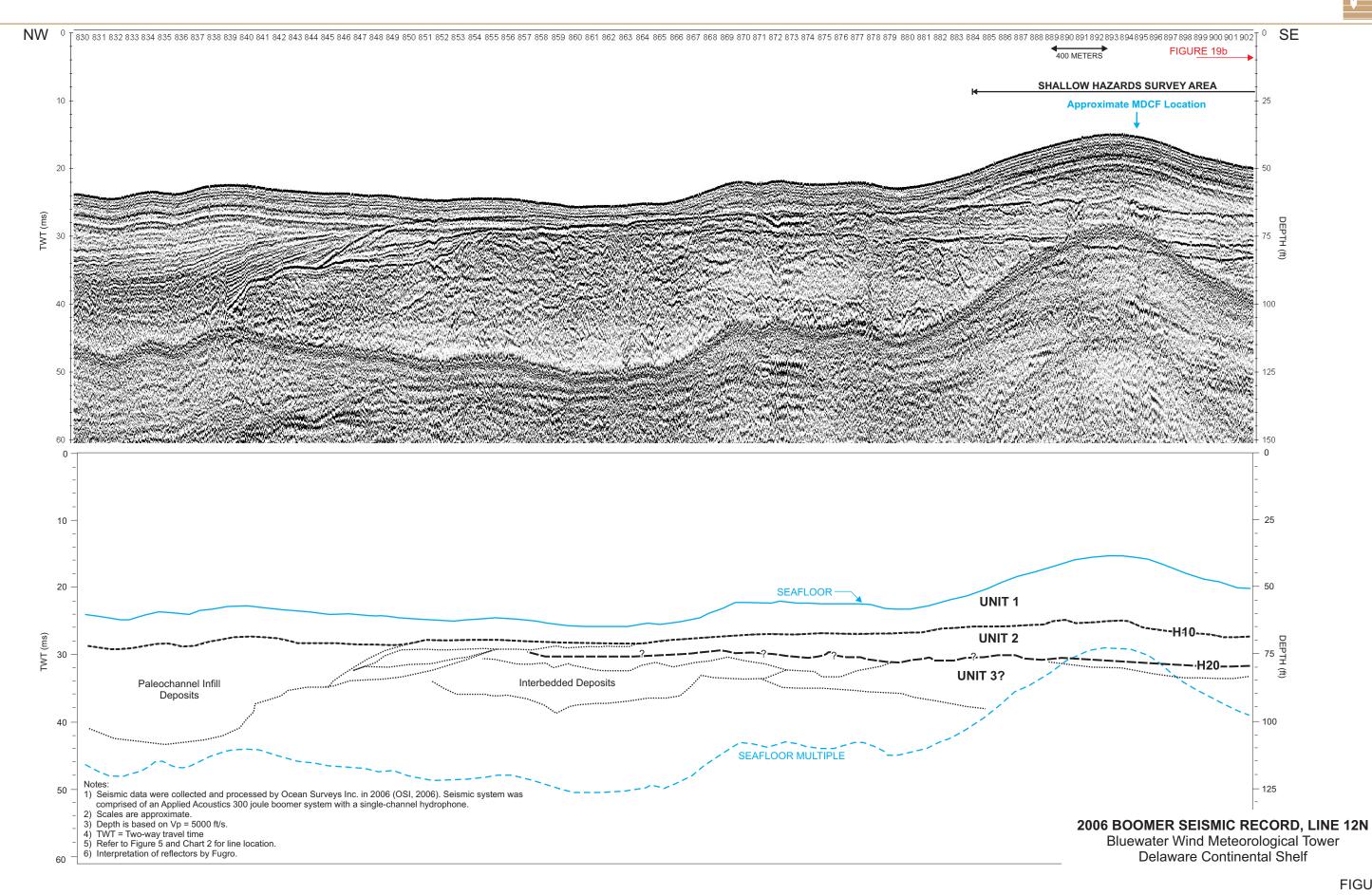
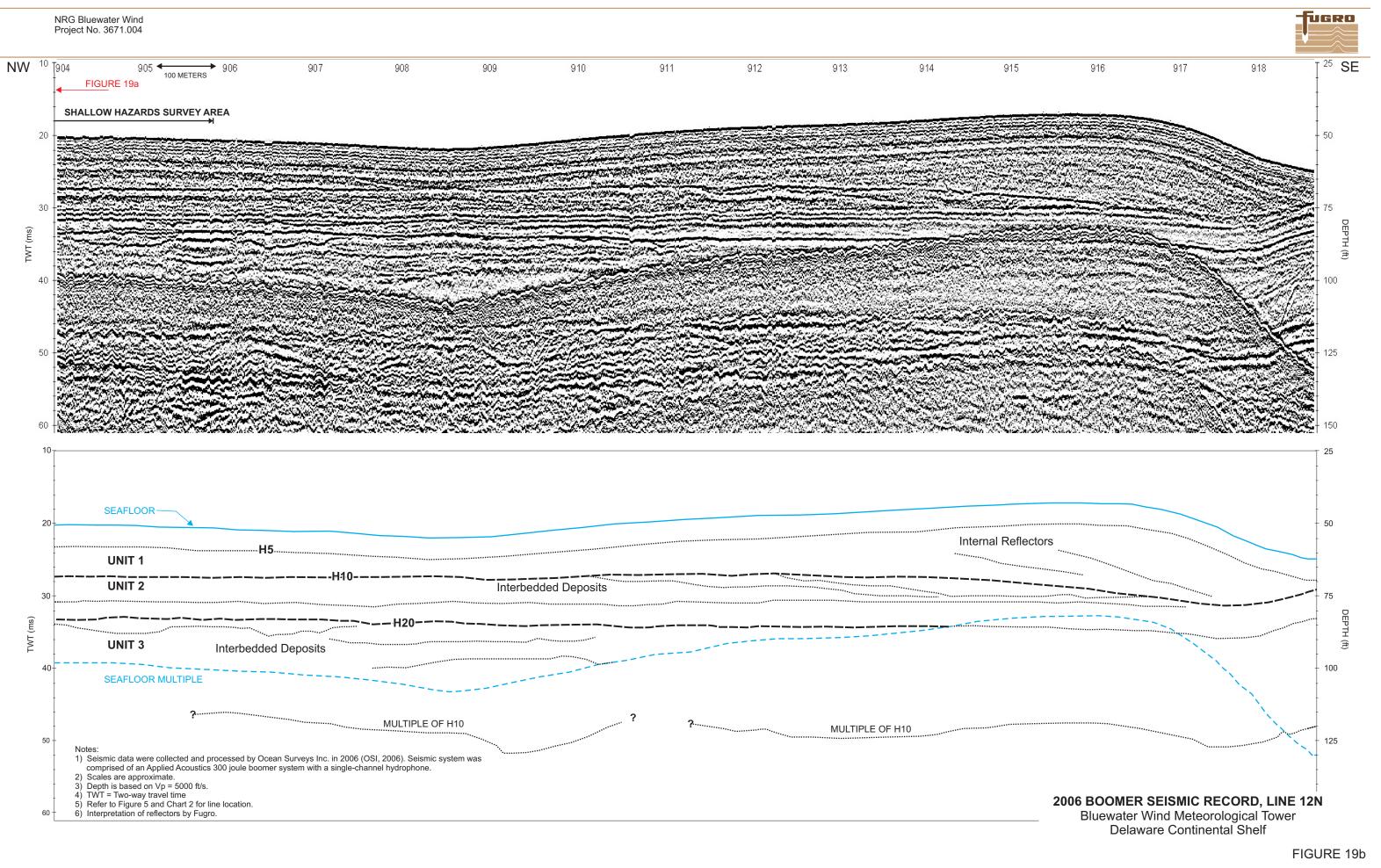
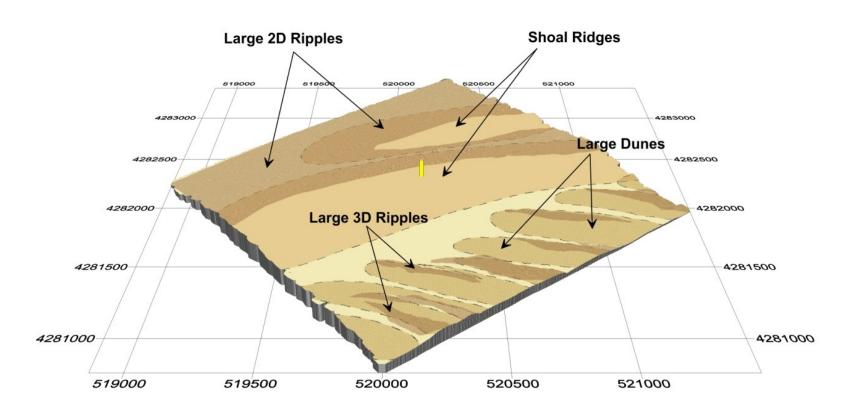
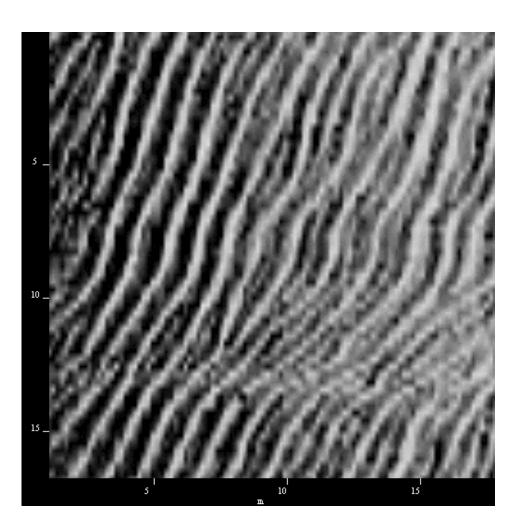
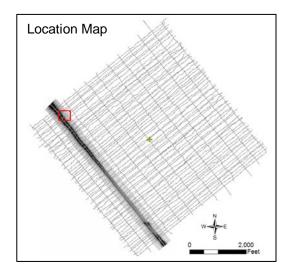




FIGURE 19a


7


The three bedform scales in the study area are sand ridges, large dunes and ripples of both straight (2D) and discontinuous (3D) types. The proposed MDCF (yellow cylinder in center) is located on the crest of the primary ridge. A smaller crest is superimposed on the ridge north of the MDCF. The dunes crests are on the order of 900 ft apart, and approximately 5 ft high. The 2D ripple crests are approximately 3 ft apart; those of the 3D ripples were not sufficiently visible to be measured. The yellow post is the location of the proposed meteorological tower.

BEDFORMS Bluewater Wind Meteorological Tower Delaware Continental Shelf

Side scan sonar data example (above) showing ripples from survey line 207. The ripples are up to about 3 feet in wavelength and 0.5 feet in wave height. Many ripples are too small to measure. The tick marks along the sides of the image are in meters. Ripples were observed throughout the survey area but were more prevalent in the northern half and southwestern corner of the survey area. The ripples are transient. For example, after strong wind events the ripples were planed off in areas where they were prevalent prior to the wind event (refer to Figure 21 for an example). The location of the image above is shown in the location map to the right.

BEDFORMS Ripples Bluewater Wind Meteorological Tower Delaware Continental Shelf

NRG Bluewater Wind Project No. 3671.004

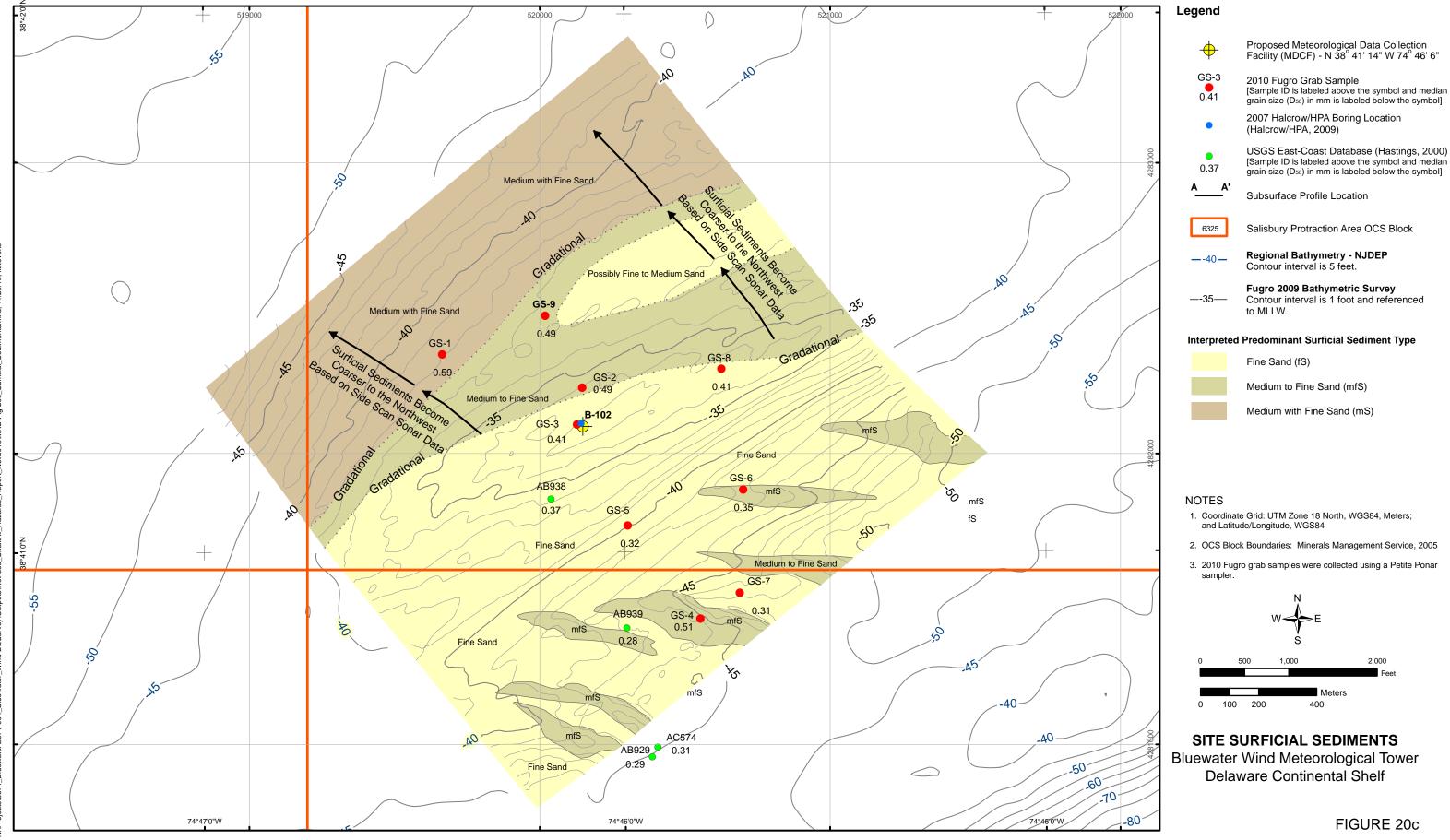
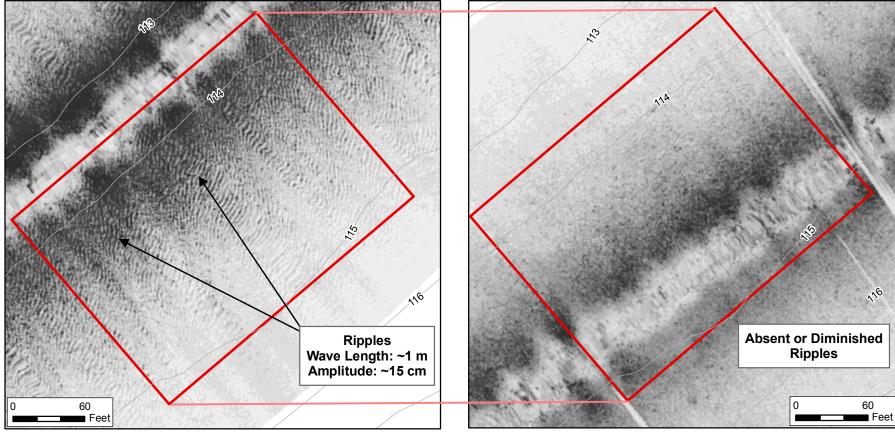
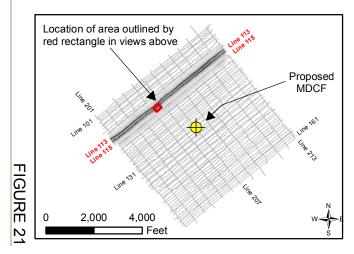



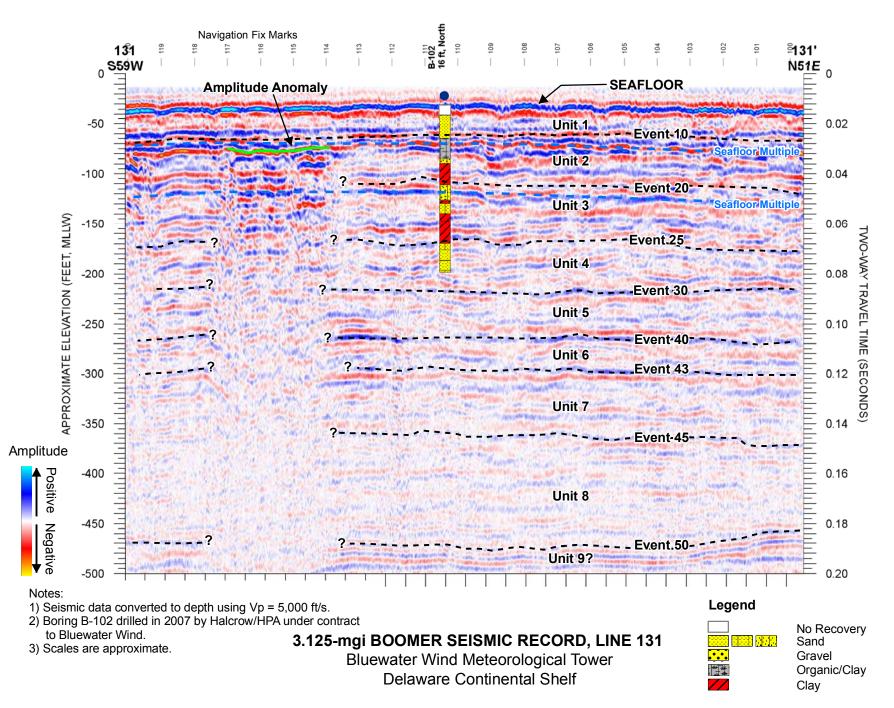
FIGURE 20c


2,000

N:\Projects\3671_Bluewater\3671-004_Bluewater_Wind-DESurvey\Outputs\Shallow_Hazards_Report_Jan2010\mxd\Fig-20_SSS_sedtransport.mxd, 02/11/10, jfisher

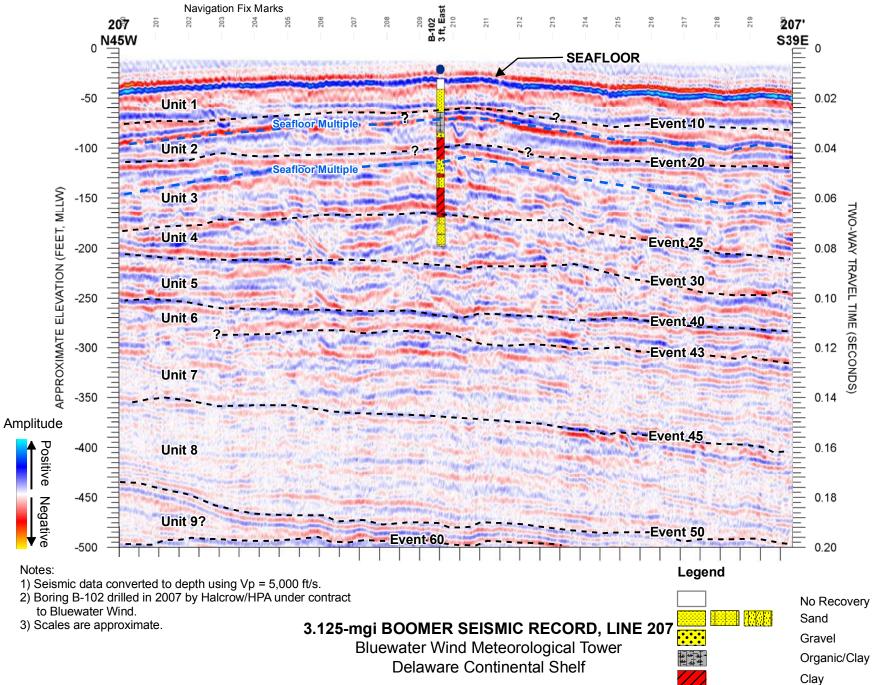
Pre-Storm Seafloor Conditions, Survey Line 113, October 30, 2009

Post-Storm Seafloor Conditions, Survey Line 115, November 1, 2009



No surveying was performed on October 30, 2009 due to strong wind and rough sea-state conditions associated with a storm event. The side scan sonar image on the left (Line 113) shows the seafloor conditions prior to the storm event and the side scan sonar image on the right (Line 115) shows the seafloor conditions after the storm event. The red rectangle defines the same extent in both images.

The image on the left shows bedforms (ripples) that are planed off or diminished in the right image. It is postulated that the storm event produced strong bottom flow and turbulance which induced sediment transport and modified bedforms on the seafloor.


EVIDENCE OF SEDIMENT TRANSPORT IN SIDE SCAN SONAR DATA Fall 2009 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

NRG Bluewater Wind Project No. 3671.004

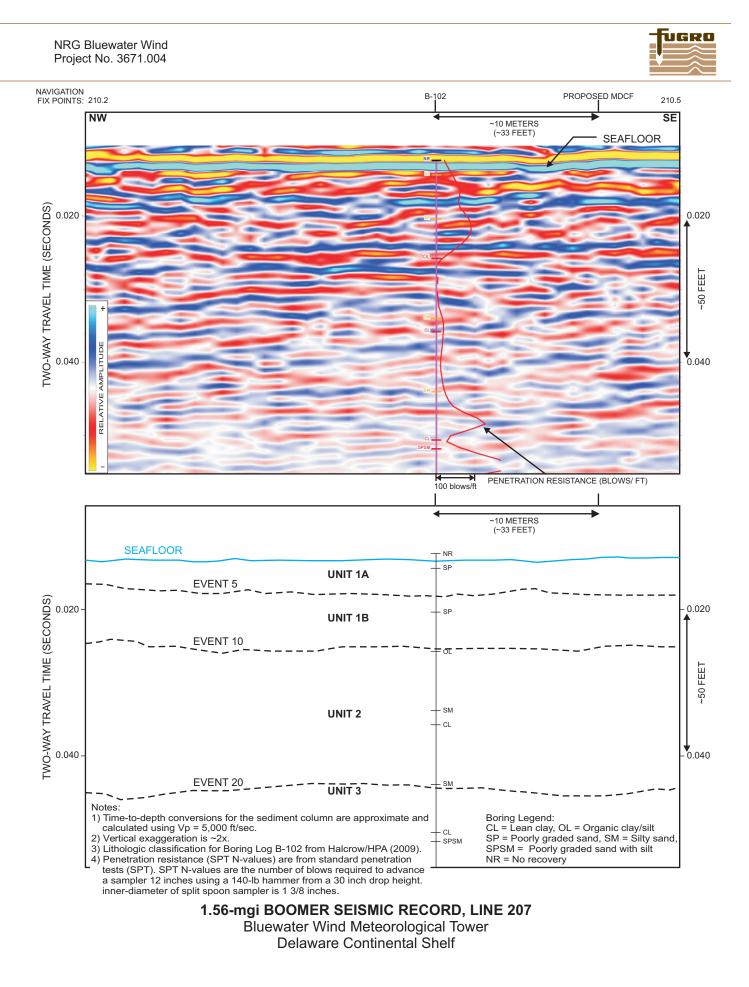

	3.125-mgi BOOMER SEISMIC SECTION PROPOSED MDCF SITE, LINE 207	EVENT & INFERRED LITHOLOGY &		DEPTH			TWO-WAY TRAVEL	APPROXIMATE UNIT/EVENT	SHALLOW GAS
	N 38° 41' 14" W 74° 46' 6" WGS84, Latitude/Longitude	SEISMIC UNIT DESIGNATION	SURFACE CONDITIONS	FEET (BML)		FEET (BSS)	TIME (sec)	THICKNESS (ft)	POTENTIAL
0.000	Proposed MDCF Location B-102 Shot Point 210 900 I 1000 								
		— SEAFLOOR	Local seafloor is smooth and stable, with a gradient of about 0.5° (0.8 %) to the northwest.	— 0		32	- 0.013		
0.020		1 — EVENT 10	Holocene-age sand ridge deposits that are parallel bedded sand layers, dipping west-northwest.	— 0 — 37		69	- 0.013	37	NEGLIGIBLE
0.040		EVENT 10 WBM 2 EVENT 20	Thin estuarine or lagoonal clay deposits overlying sand with silt and silty sand deposits. Reflectors in sand deposits are low-amplitude, subparallel, and discontinuous amplitude anomalies present.	— 37 — 72		104	- 0.027	35	MODERATE
			Lagoonal sand deposits that transition to clay deposits. Reflectors are discontinuous and subparallel. Few amplitude anomalies present.					47	MODERATE
000.0 (SECONDS) VE (SECONDS)		EVENT 25 4	Sand deposits with variable amounts of gravel. Reflectors are low-amplitude and subparallel.	— 119		151	- 0.060	68	NEGLIGIBLE
L TIN		EVENT 30		— 187	-	219	0.088		
U.100		5	Possible clay deposits. Reflectors are discontinuous and low-amplitude.					47	NEGLIGIBLE
0.080 0.080 0.100 0.100 0.120		EVENT 40 6	Possible sand with silt and sandy silt strata. High amplitude, flat-lying, parallel reflectors. Probable marine sediments.	- 234		266	0.106	31	NEGLIGIBLE
		EVENT 43 7	Possible sand or fine grained sediments. Reflectors are low-amplitude, flat-lying, and parallel. Probable marine sediments.	265		297	- 0.119	71	NEGLIGIBLE
0.140		EVENT 45		334		368	0.147		
0.160		8	Possible fine grained deposits with low-amplitude, flat-lying parallel reflectors. Base of sequence is a possible erosional contact.	9				108	NEGLIGIBLE
0.180									
		EVENT 50 9? EVENT 60	Parallel, high-amplitude reflectors that dip to the south in the north and then are flat-lying.	444 462		476 494	0.190 0.198	18	NEGLIGIBLE
0.200		LVENT 00	Limit of mapping	BML: Below	Mudlin		0.150		
FIGURE	 Note: 1) Time-to-depth conversions for the sedime column are approximate and calculated u Vp = 5,000 ft/sec. 2) Halcrow/HPA boring B-102 was advanced 	ising	TOPHOLE PROGNOSIS CHART			SHALLOV POTEN	HIGH MODERATE LOW		
The second secon									NEGLIGIBLE

FIGURE 24

TOPHOLE PROGNOSIS CHART Bluewater Wind Meteorological Tower Delaware Continental Shelf

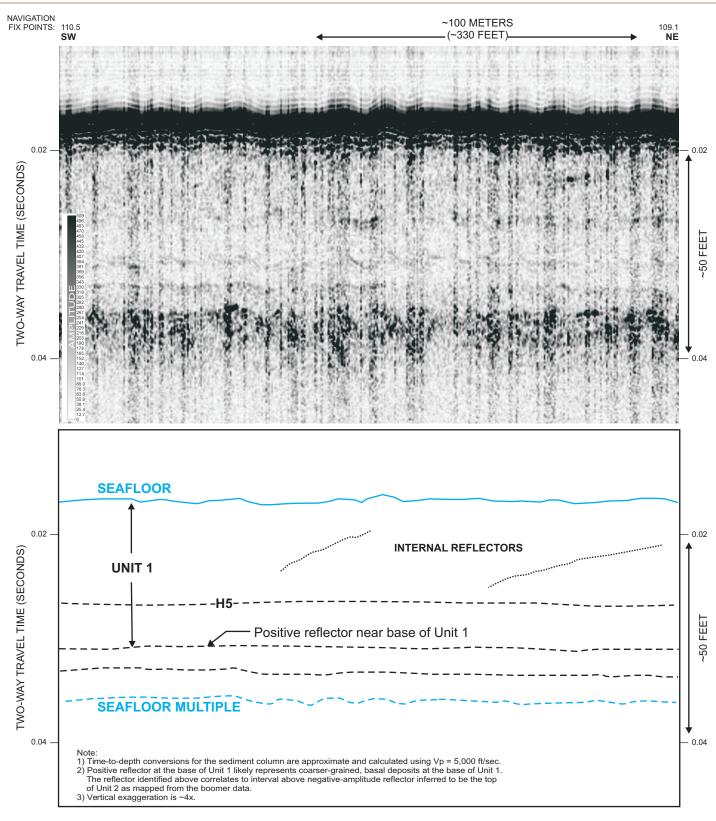
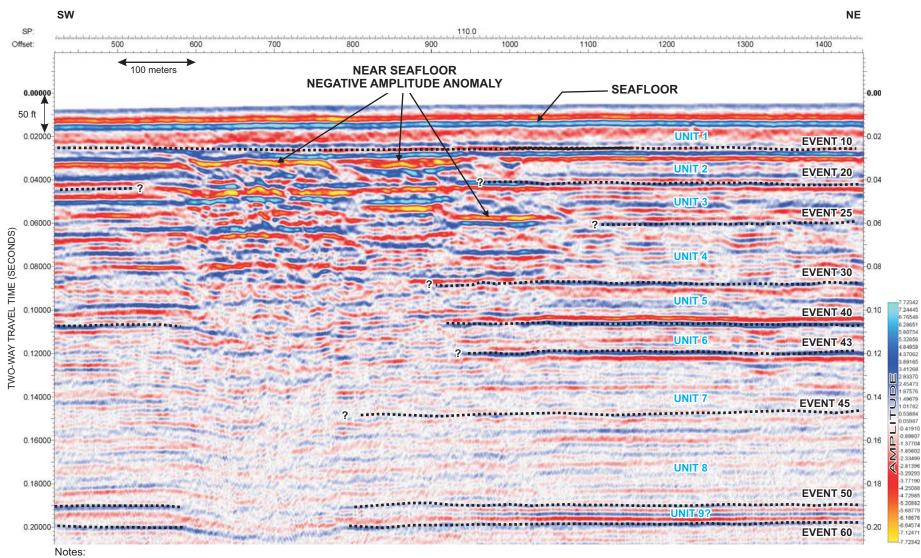
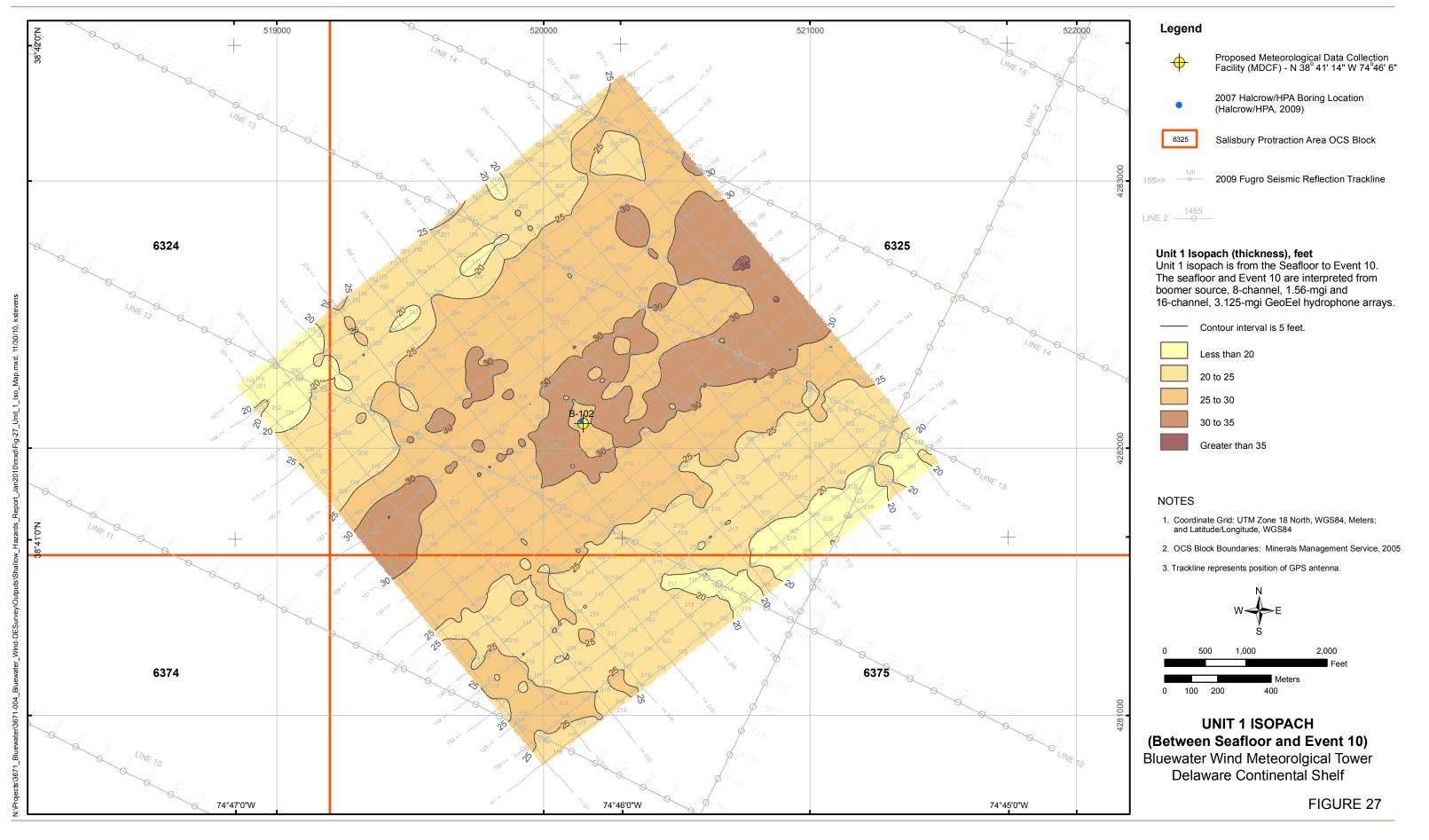


FIGURE 25a

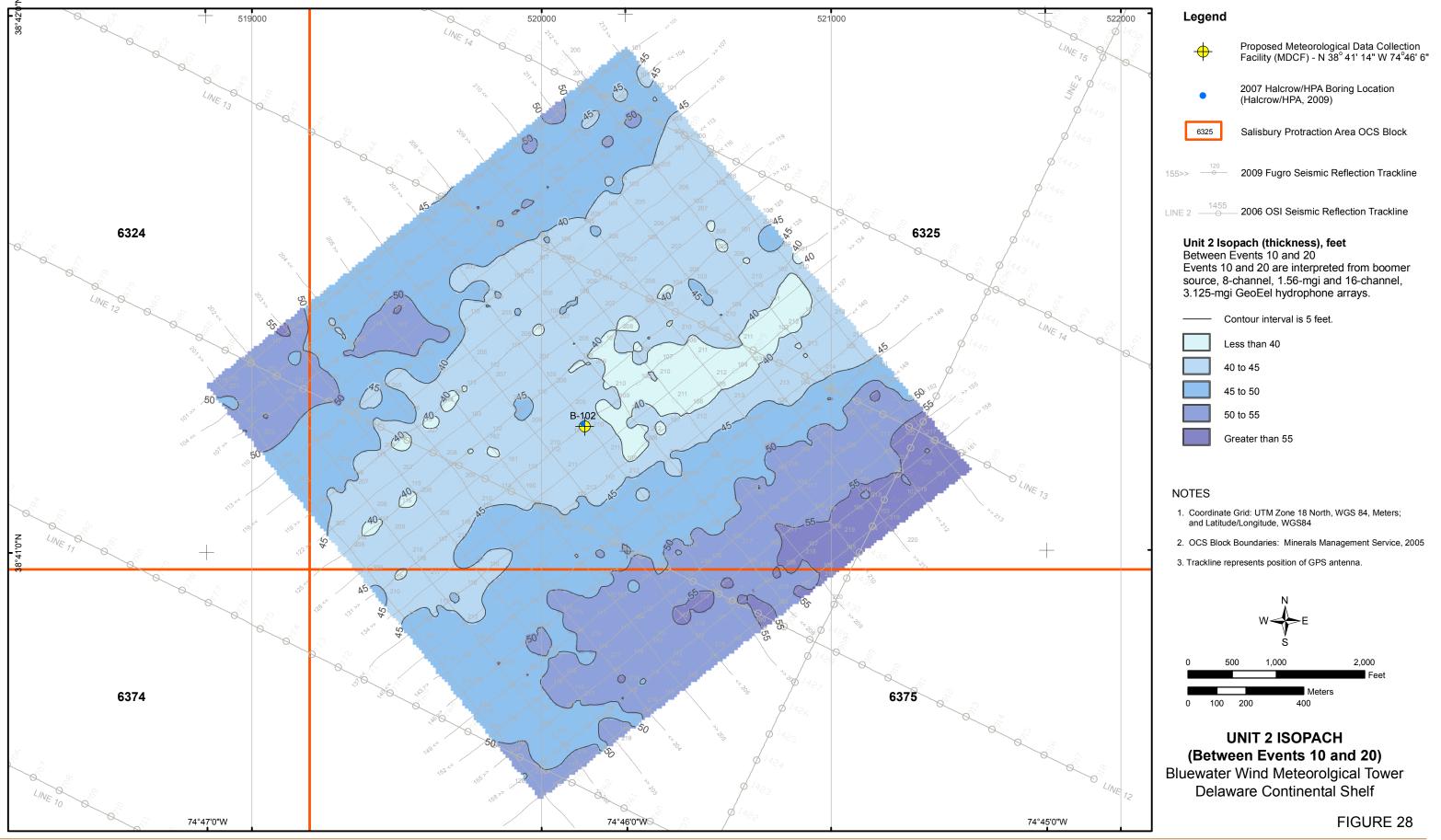

NRG Bluewater Wind Project No. 3671.004

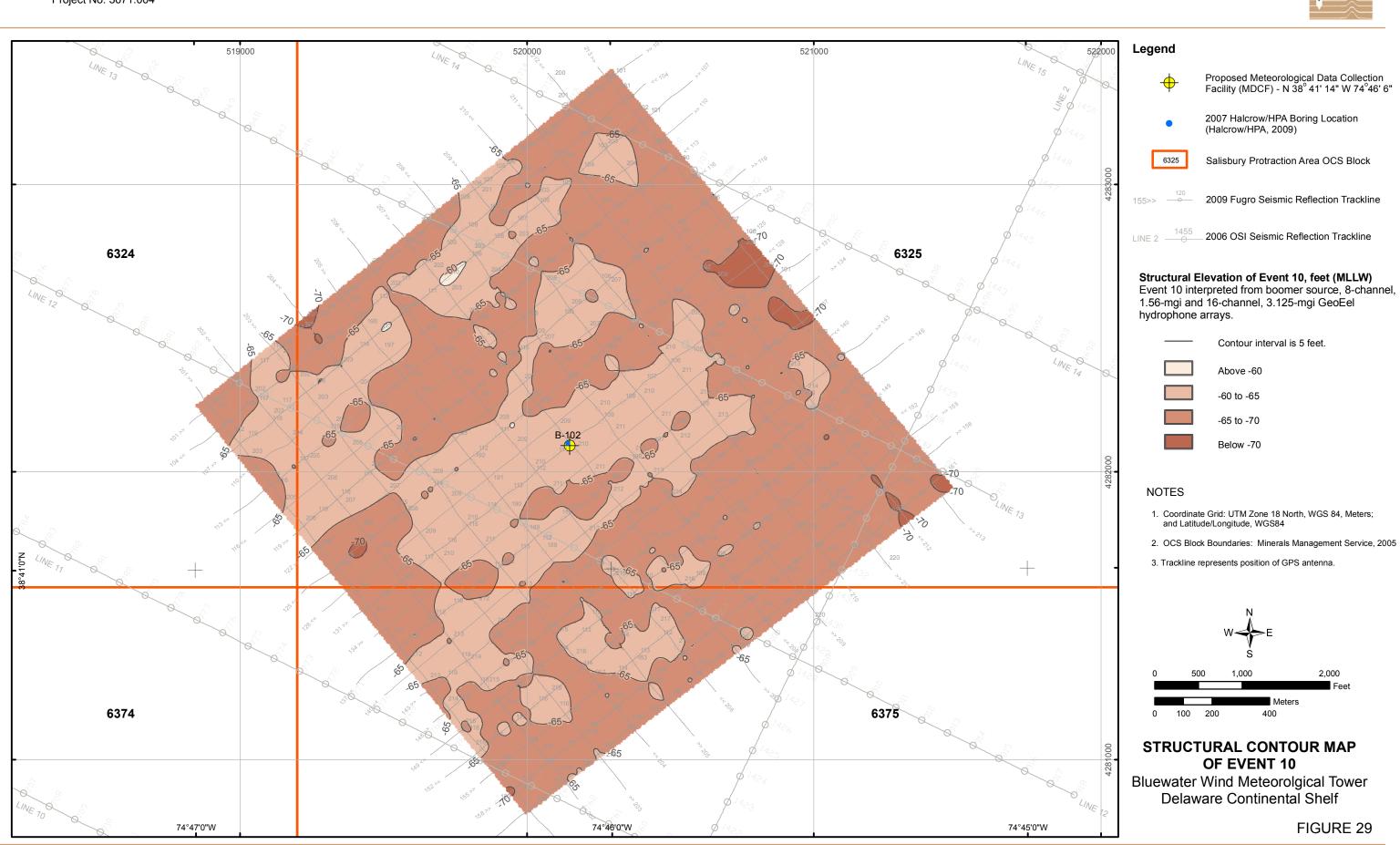
CHIRP SEISMIC RECORD, LINE 143 Bluewater Wind Meteorological Tower Delaware Continental Shelf

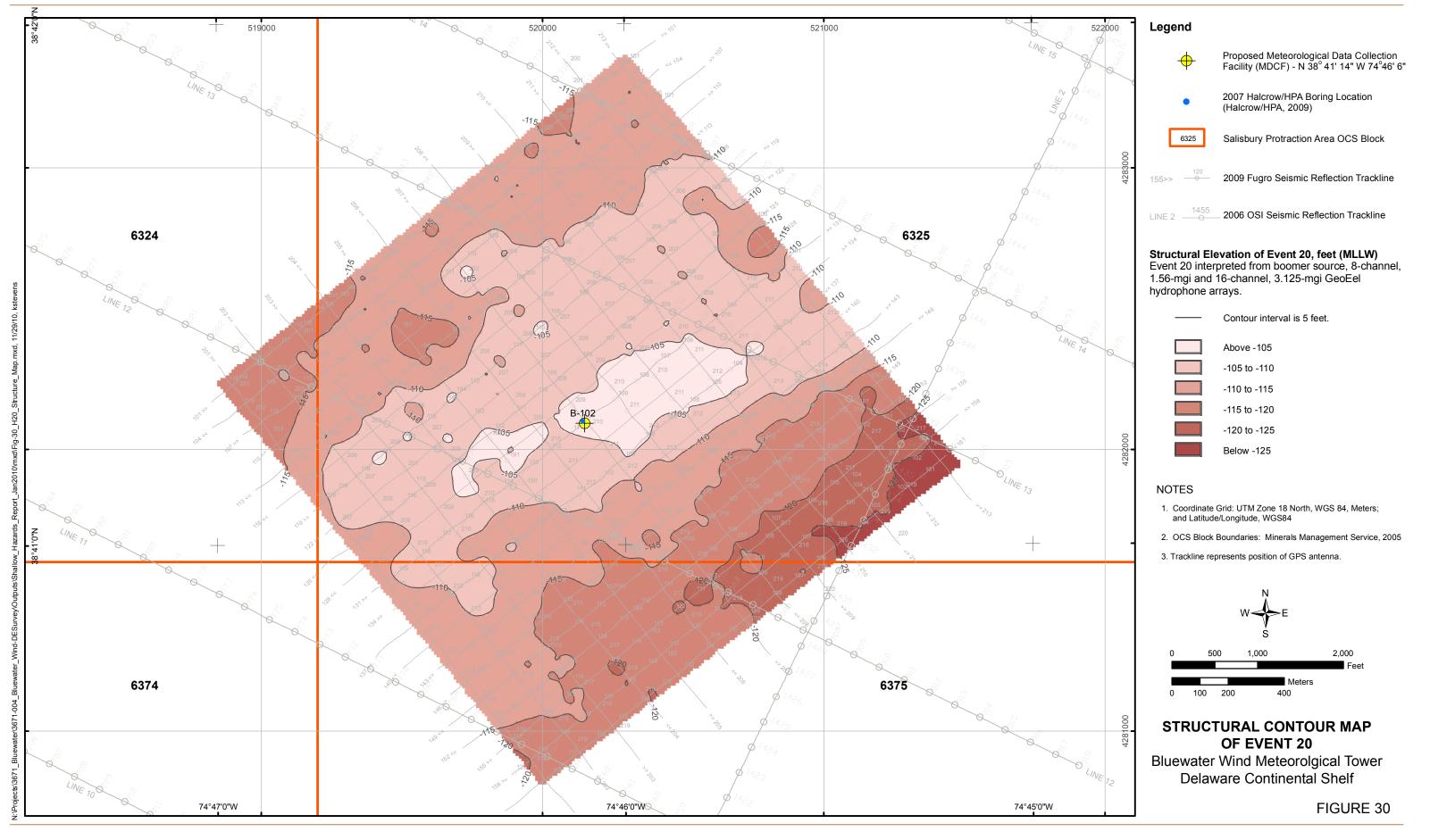


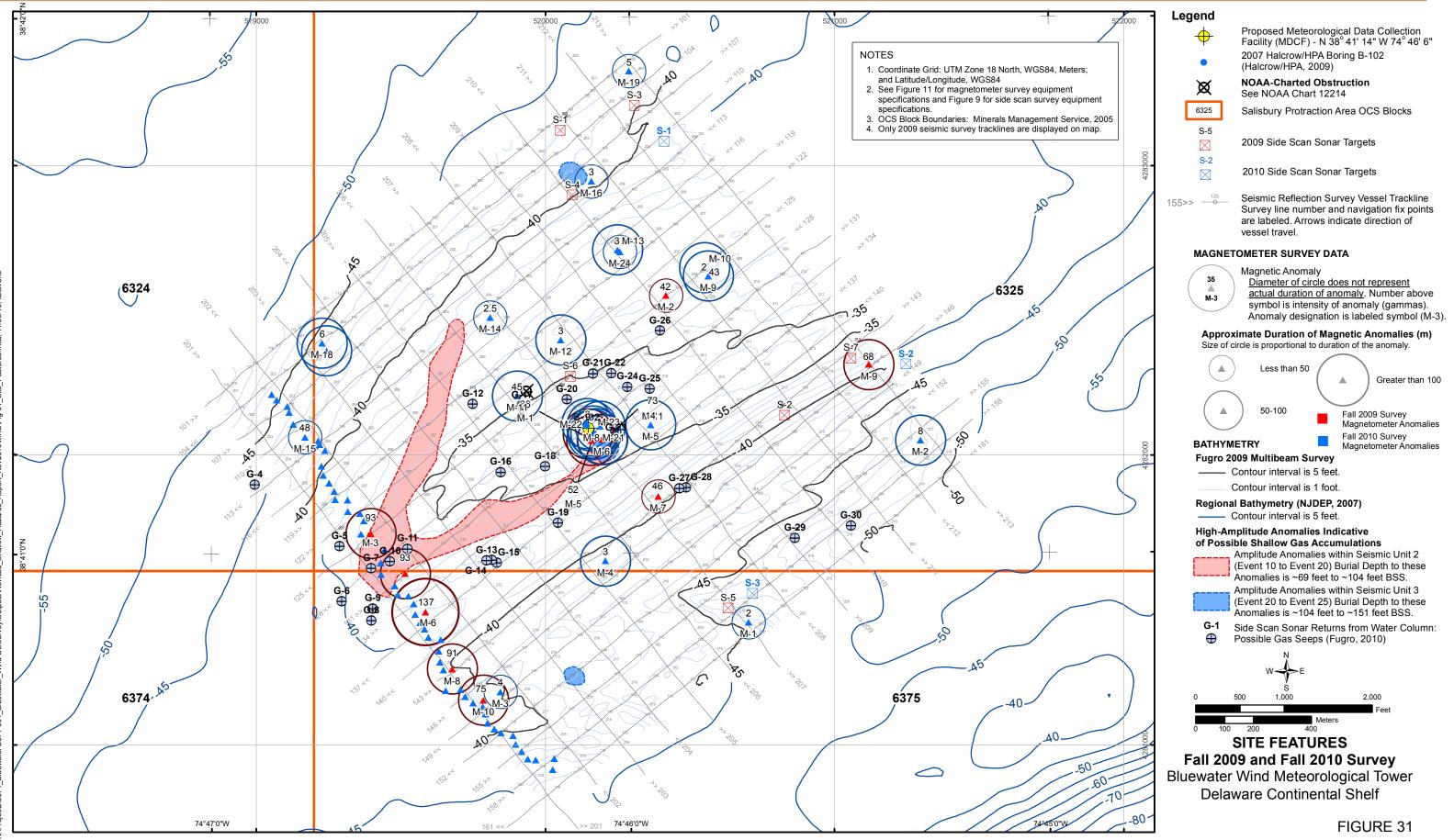
- 1) Scales are approximate.
- 2) Time converted to depth using Vp = 5,000 ft/s.
 3) Negative amplitude anomalies suggest that free phase gas may be present. Note degradation of data quality and pull down effects below the anomalies.

3.125-mgi BOOMER SEISMIC RECORD LINE 134 NEAR SEAFLOOR ANOMALY

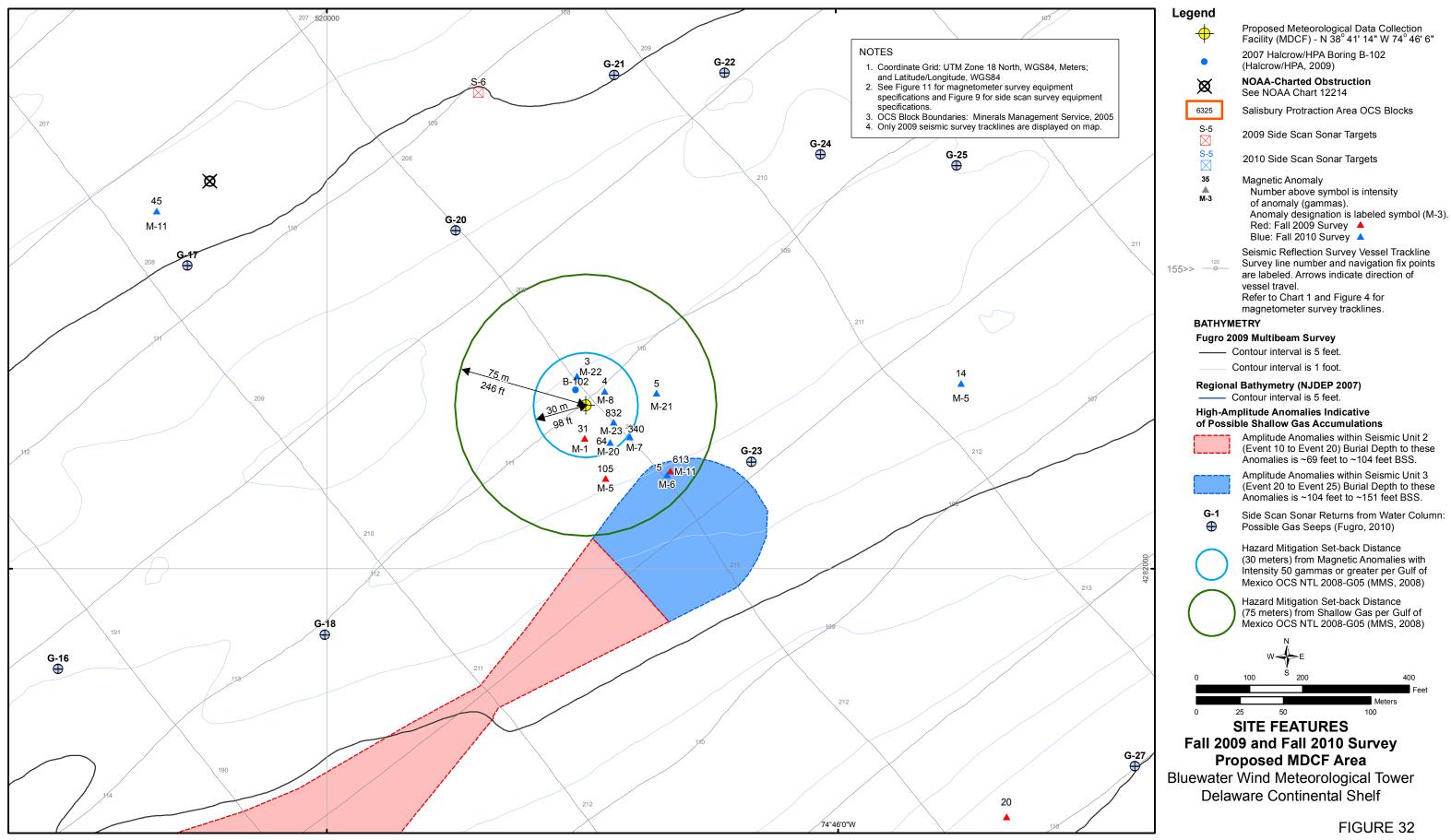

Bluewater Wind Meteorological Tower Delaware Continental Shelf



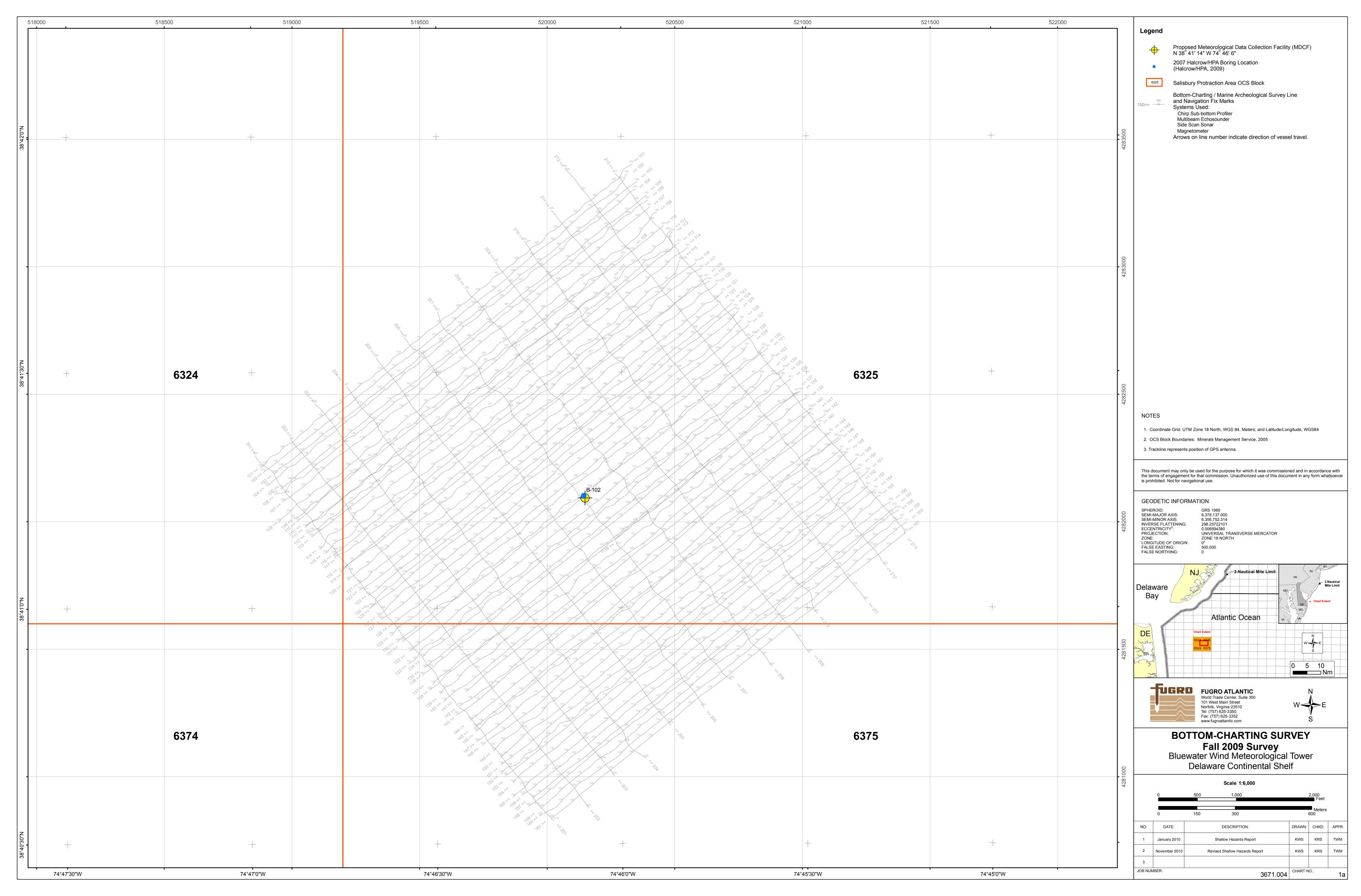

NRG Bluewater Wind Project No. 3671.004

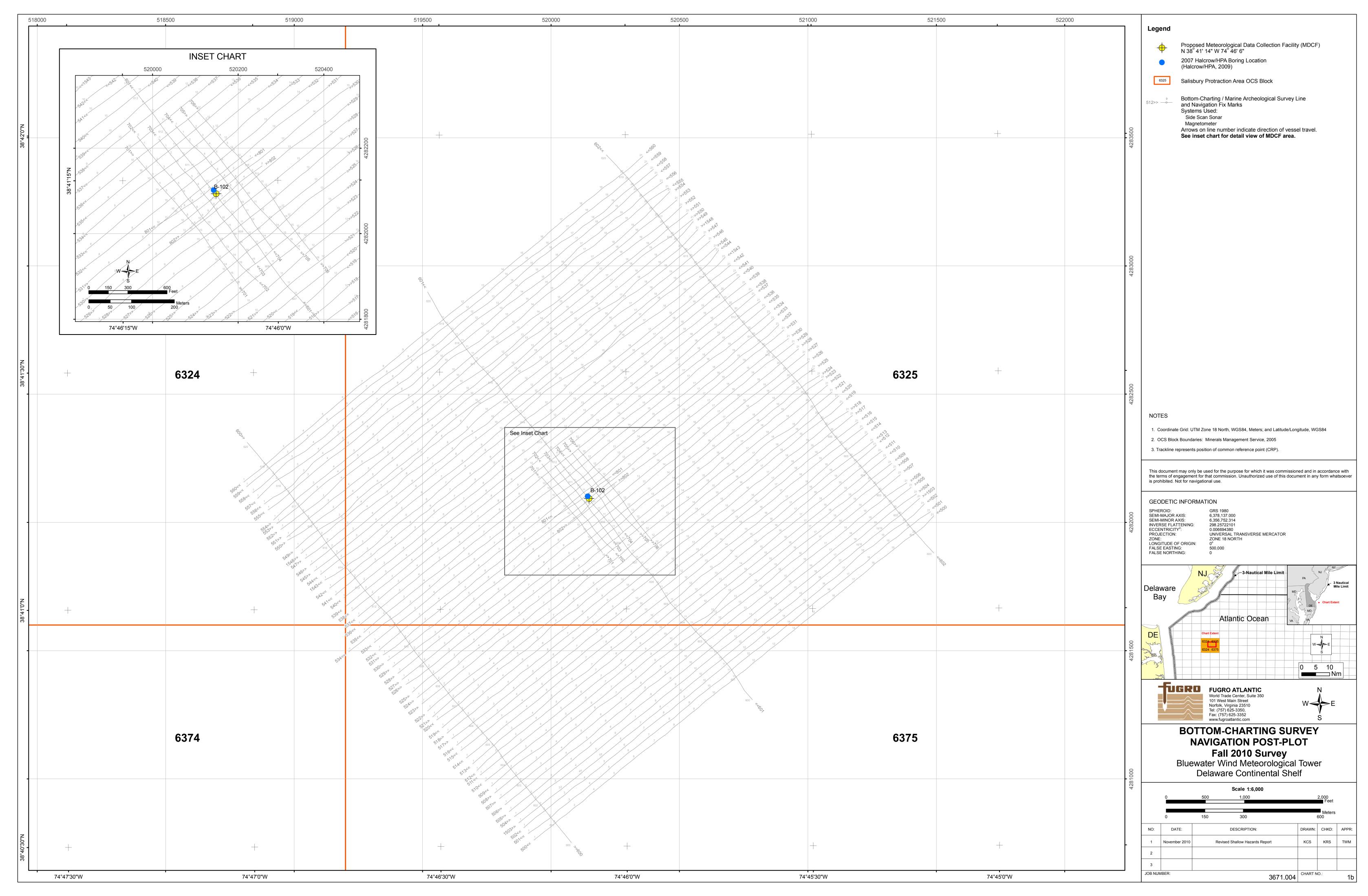


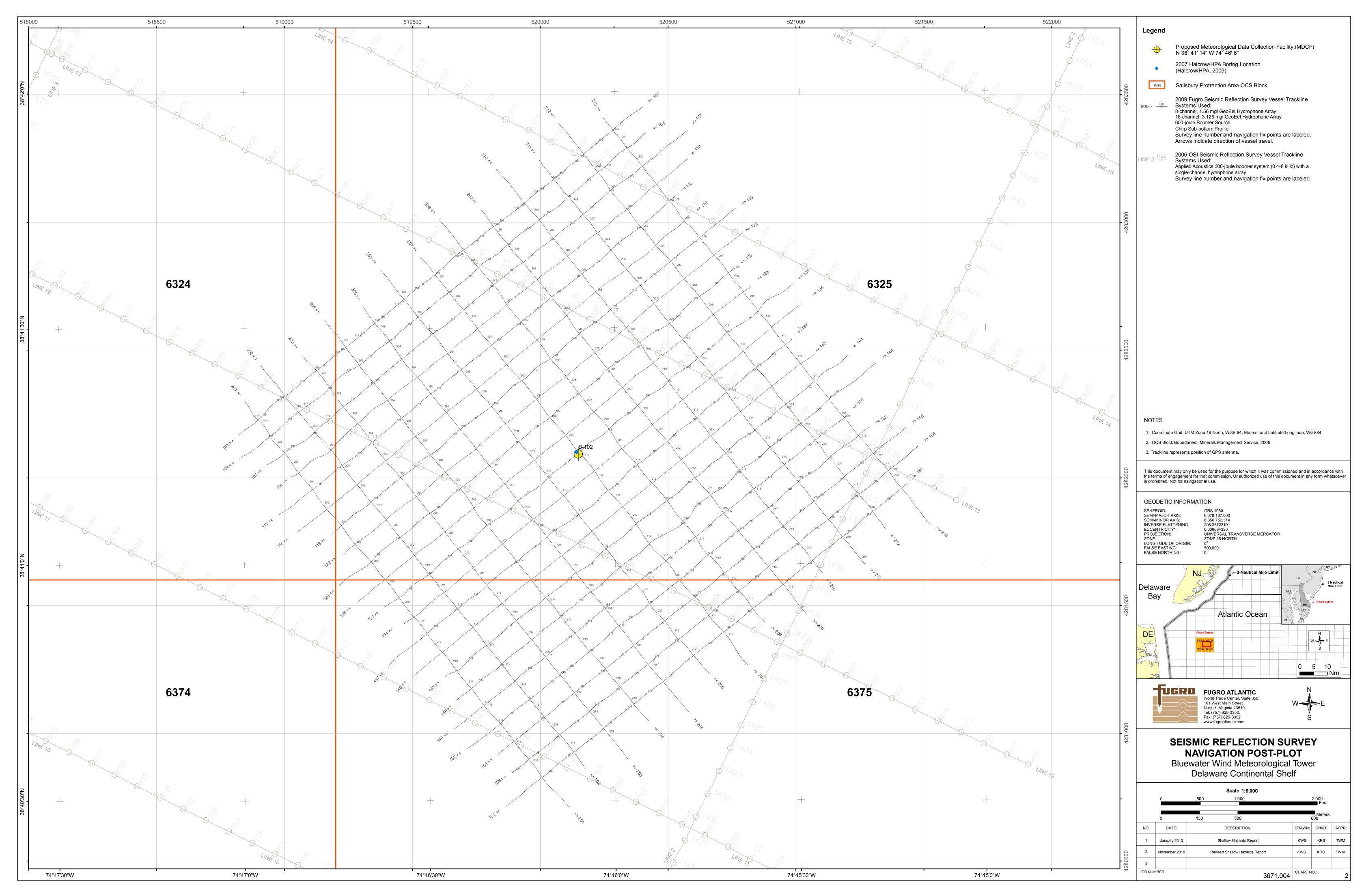
Tugro

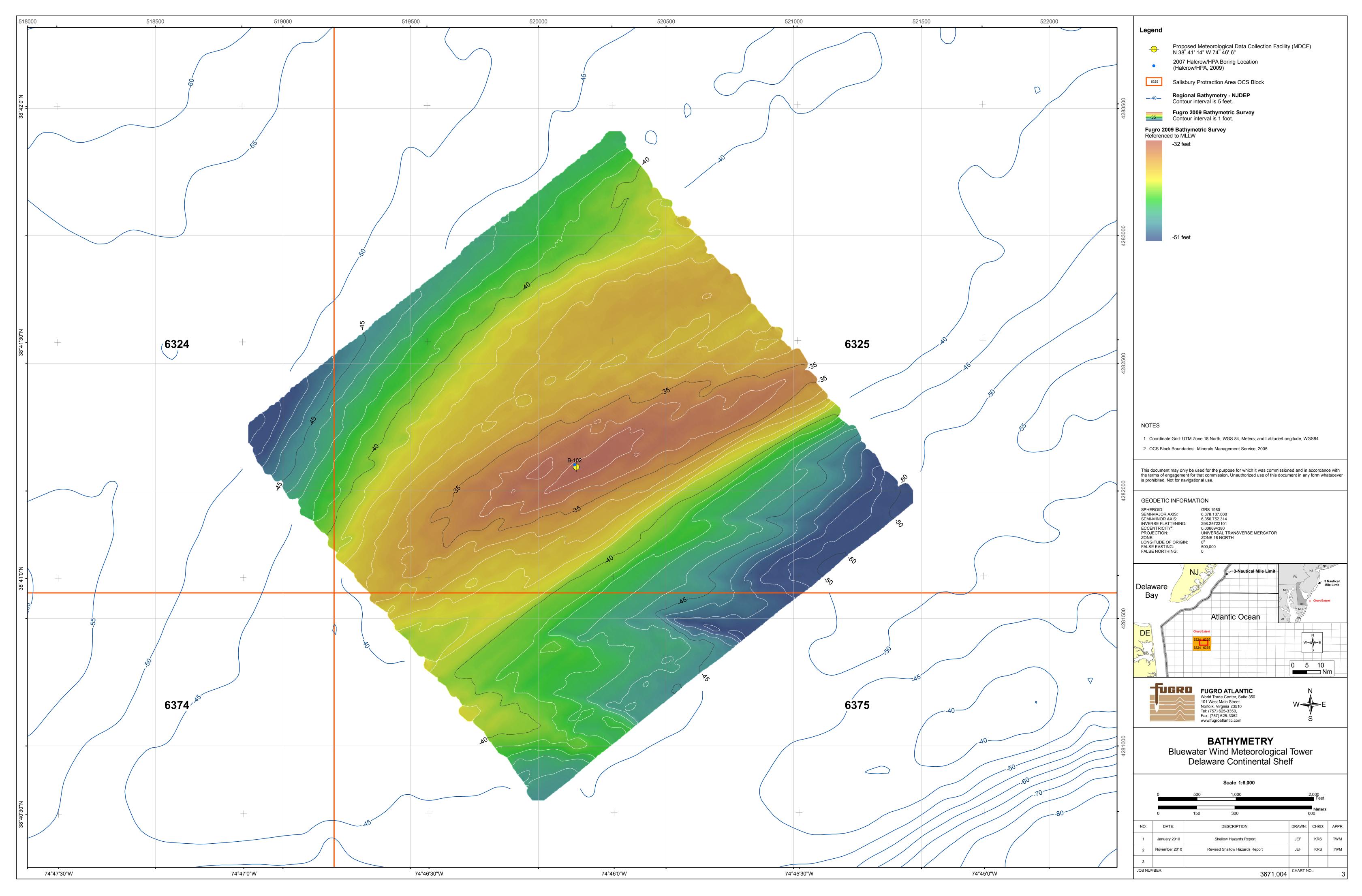


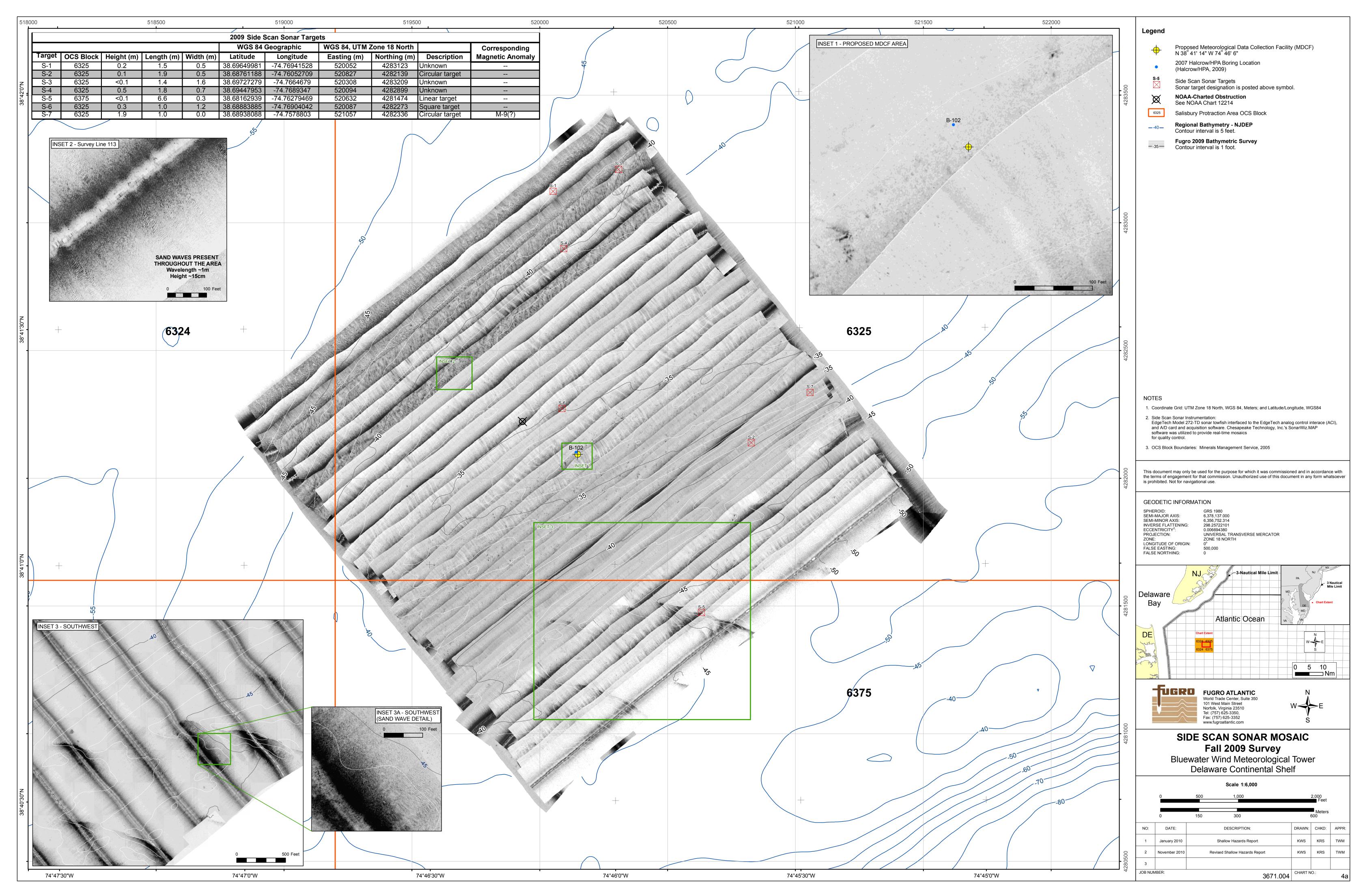
NRG Bluewater Wind Project No. 3671.004

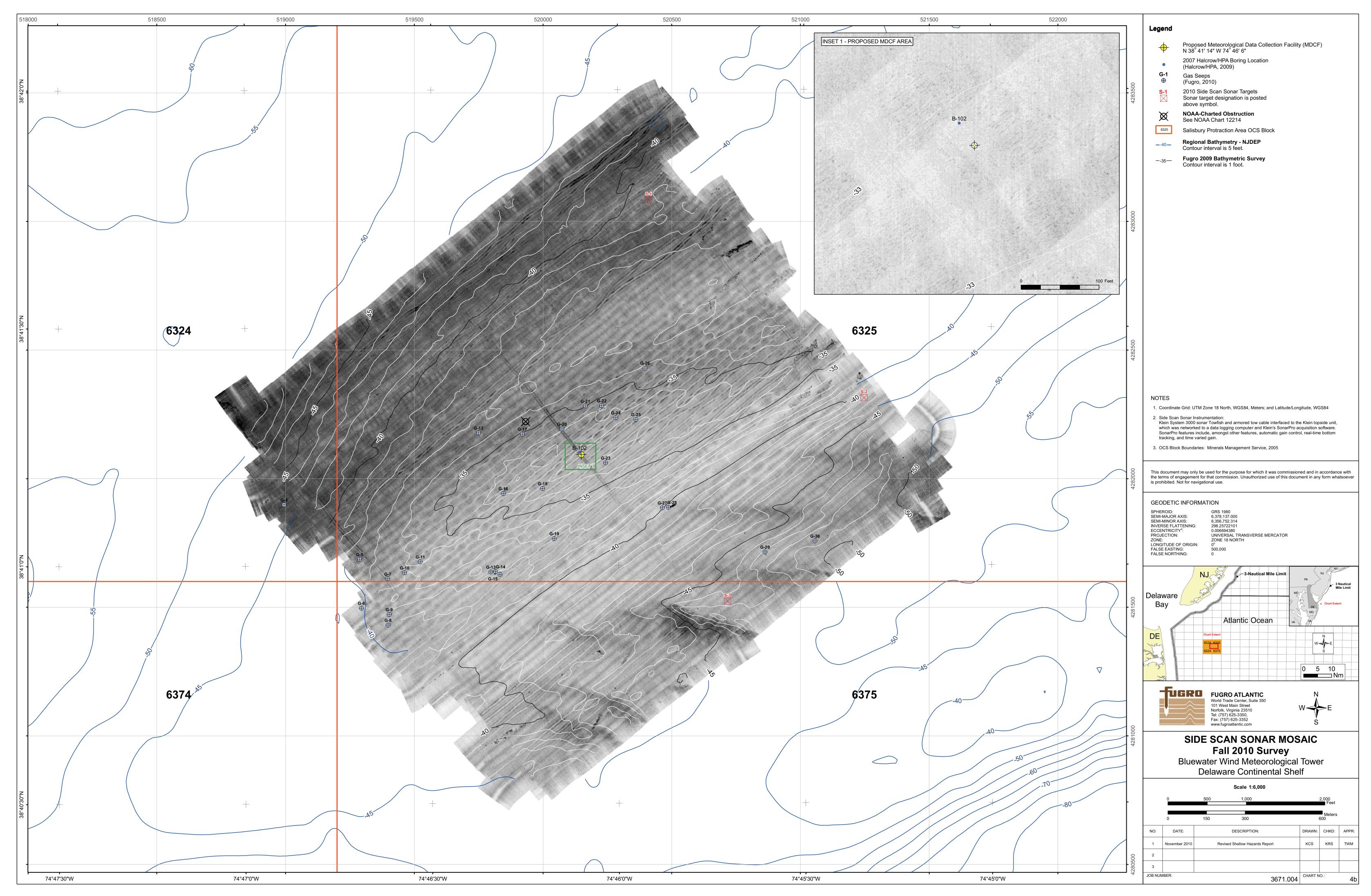




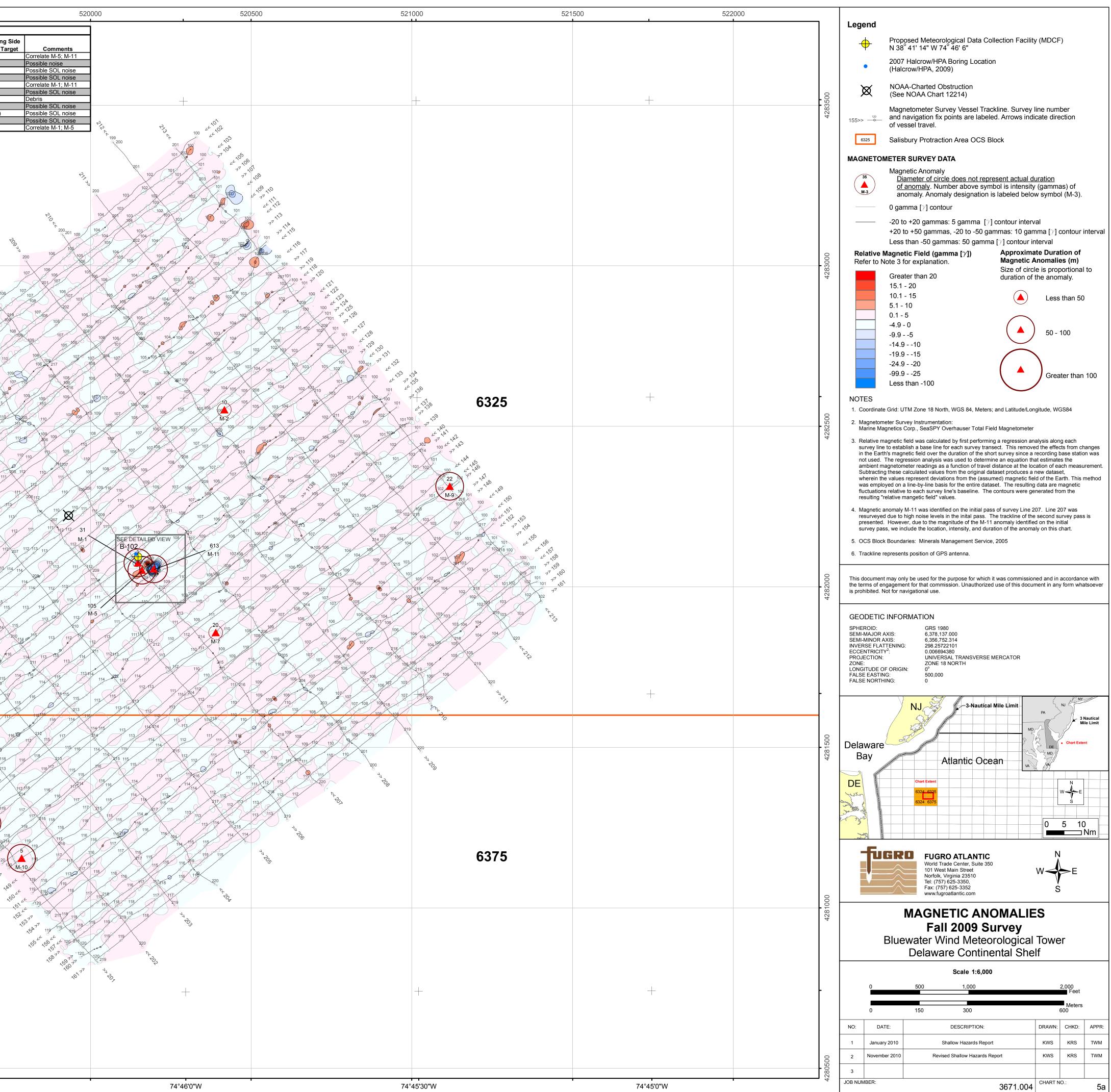


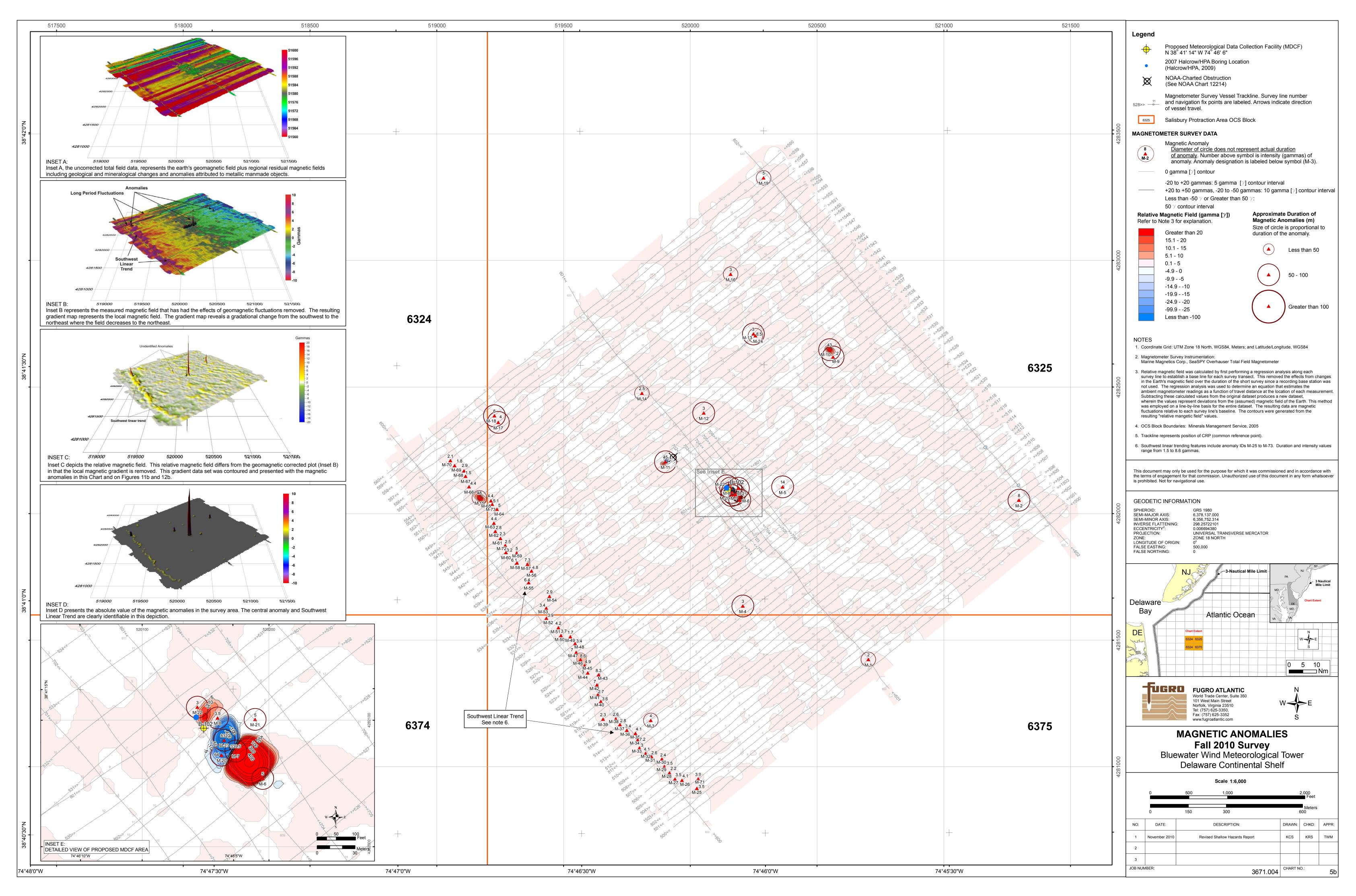

CHARTS

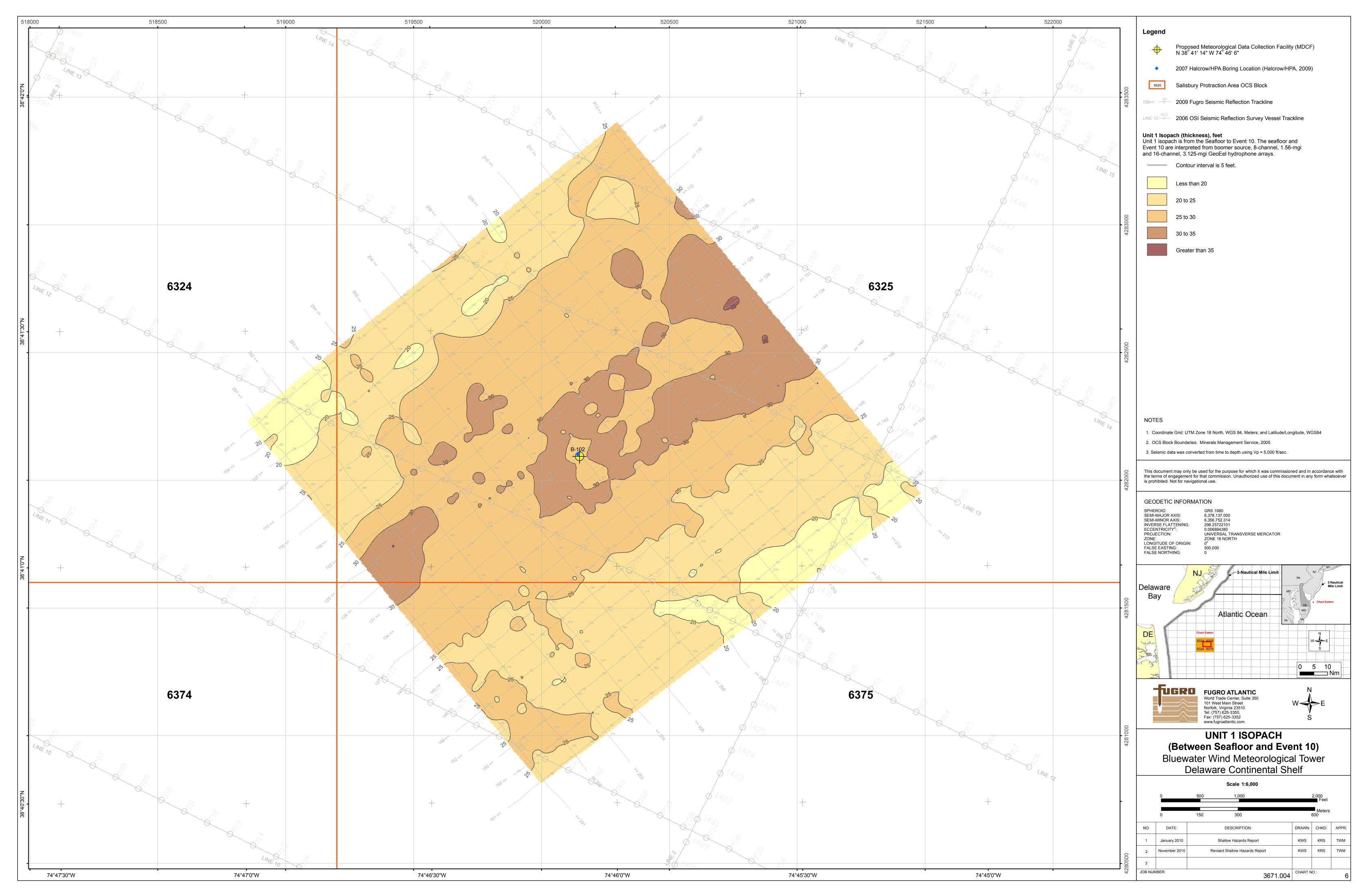


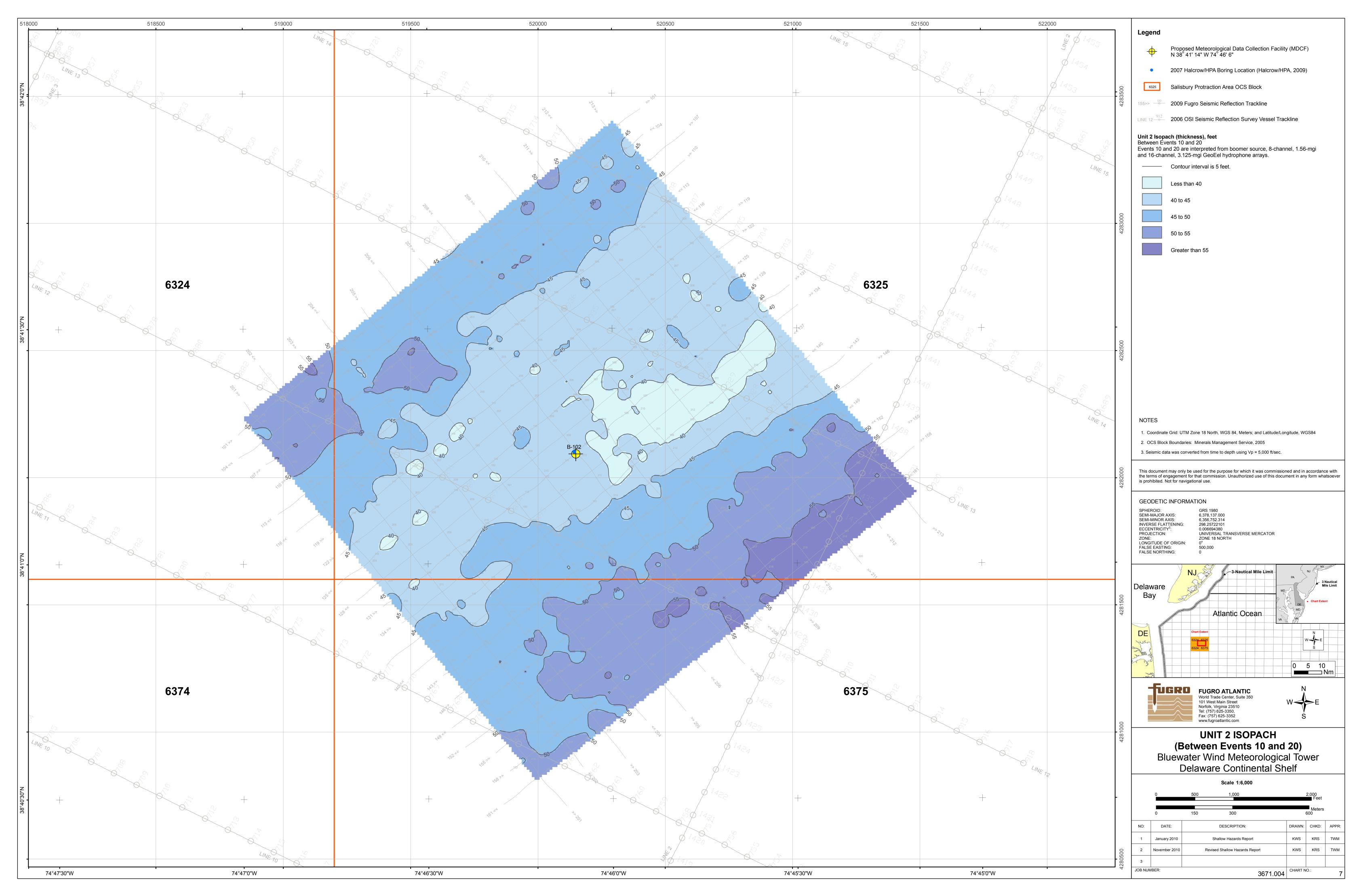


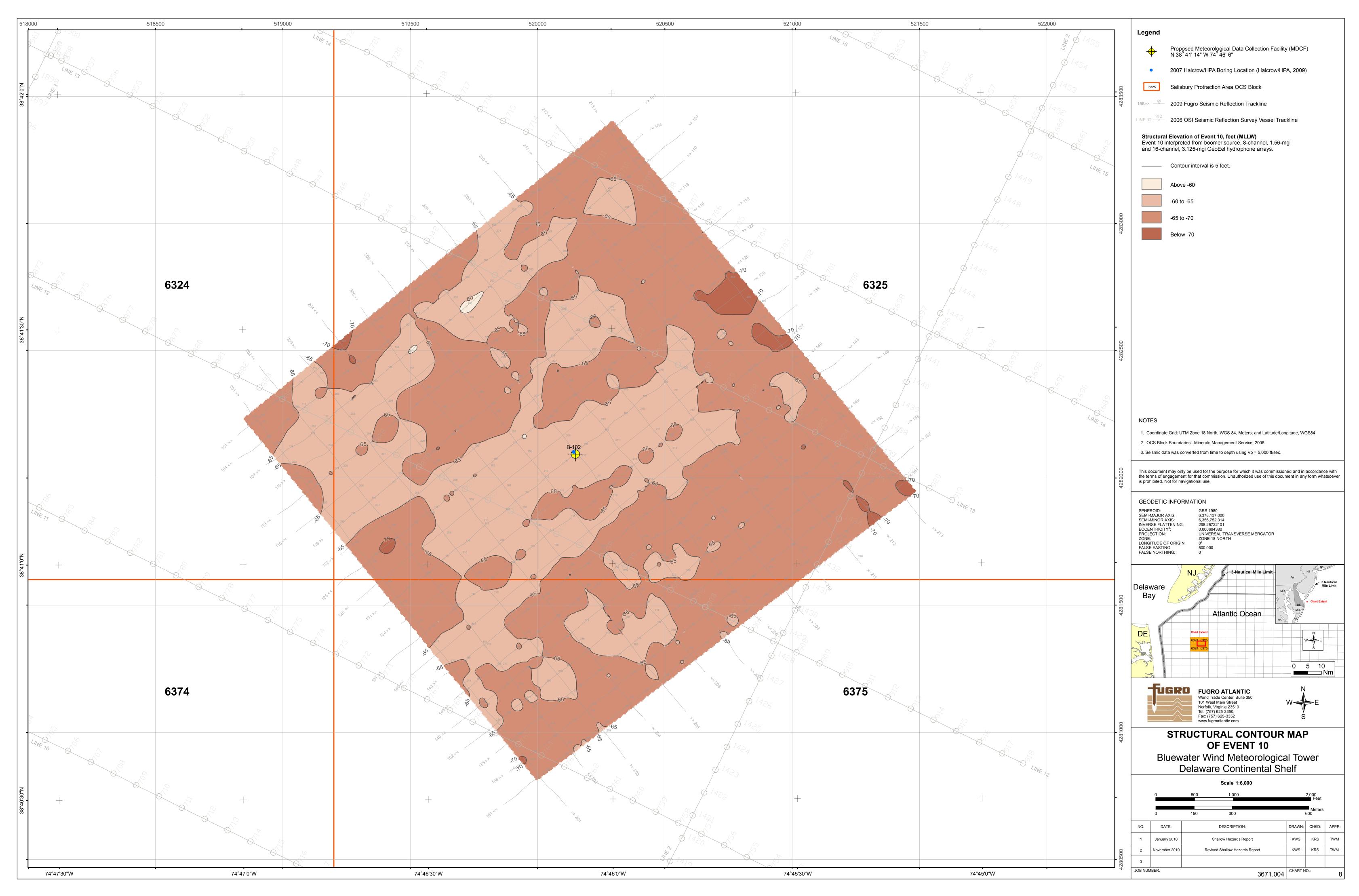
N:Projects/3671_Bluewater/3671-004_Bluewater_Wind-DESurvey/Outputs/Shallow_Hazards_Report_Jan2010(mxdl/Chart-2_Seismic_Reflection_Survey_Navigation_Post-Plot.mxd, 11/29/10, kstevens

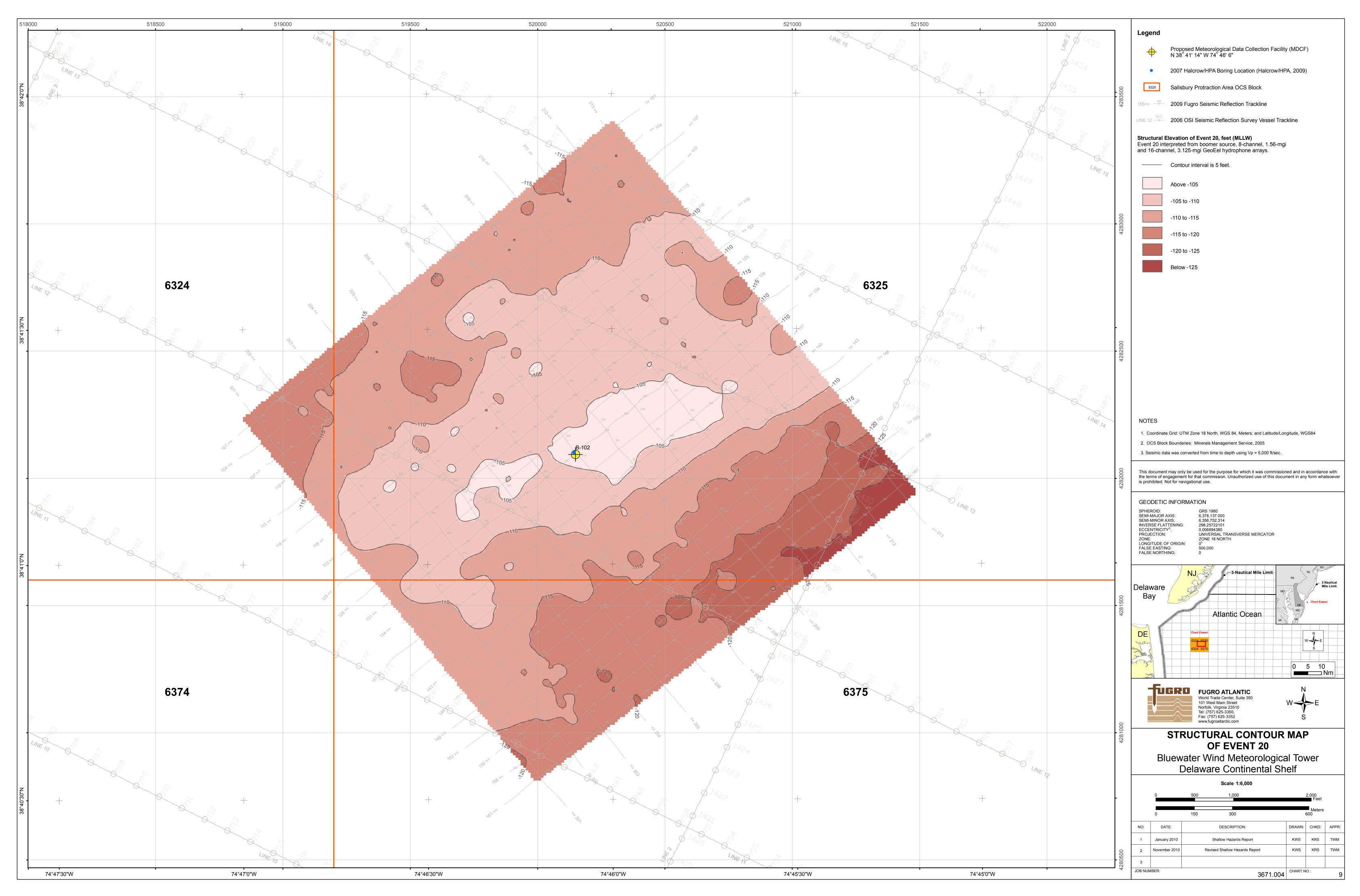


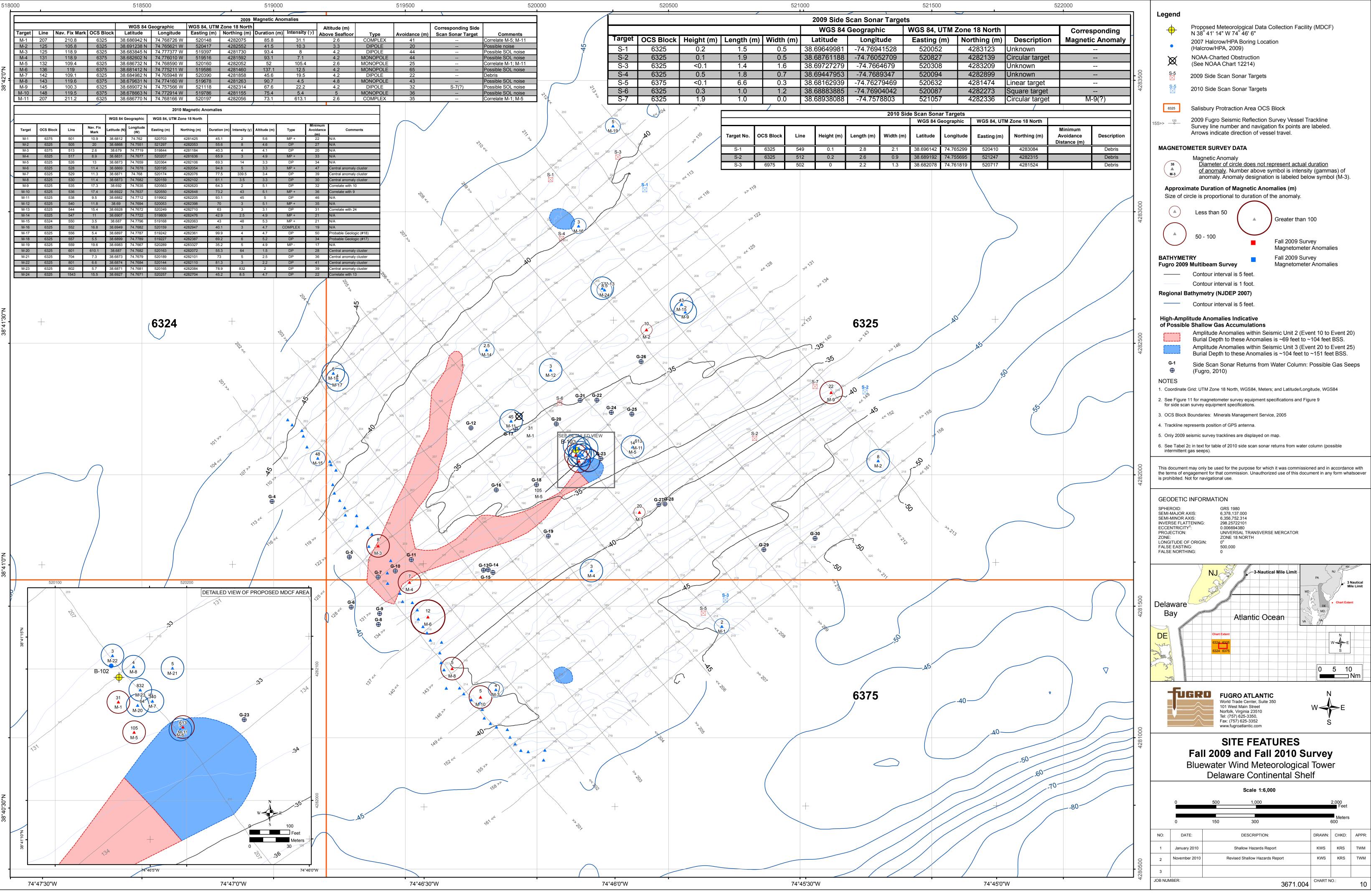







5180	000 5185	00		519000			519500	
38°42'0"N	Target Line Nav. Fix Mark OCS Block Latitude M-1 207 210.8 6325 38.686942 f M-2 125 105.8 6325 38.681238 f M-3 125 118.9 6325 38.682602 f M-4 131 118.9 6375 38.682602 f M-5 132 109.4 6325 38.684732 f M-6 136 119 6375 38.684412 f M-7 142 109.1 6325 38.684982 f M-8 143 119.6 6375 38.687963 f M-9 145 100.3 6325 38.689072 f M-10 148 119.5 6375 38.678663 f	Longitude Easting (m) N 74.768726 W 520148 N 74.765621 W 520417 N 74.77377 W 519397 N 74.776010 W 519516 N 74.768590 W 520160 N 74.765948 W 520390 N 74.765948 W 520390 N 74.774160 W 519678 N 74.757566 W 521118 N 74.772914 W 519786	A Zone 18 North Northing (m) Dur 4282075 4 4282552 4 4281730 4 4281592 4 4281592 4 4281592 4 4281460 4 4281263 4 4281263 4 4282314 4 4281155 4	85.8 31.1 41.5 10.3 93.4 8 93.1 7.1 52 105.4 137.1 12.5 45.6 19.5 90.7 4.5 67.6 22.2 75.4 5.4	Altitude (m) Above Seafloor 2.6 3.3 4.2 4.2 2.6 4.2 4.2 4.2 4.2 4.2 4.2 5 2.6	COMPLEX DIPOLE DIPOLE MONOPOLE MONOPOLE DIPOLE MONOPOLE DIPOLE MONOPOLE	Avoidance (m) 41 20 44 44 25 65 22 43 32 36 35	Corresponding Scan Sonar Ta S-7(?)
	M-11 207 211.2 6325 38.686770 1	N 74.768166 W 520197	4282056	73.1 613.1	2.6	COMPLEX	35 ⁷ ⁷ ²⁰¹ ¹¹	
38°41'30"N -	+	6324	+	20	201 114	200 112 200 113 113 112 112 112 113 111 113 111 113 111 113 111 113	111	202 109 109 110 10 10 111 111 110 0 0 0 108 111 110 110
			12000 12010 12010 12010 12010 100 100 10	201 117 118 117 118 117 118 118 11	116 203 116 203 116 203 116 203 116 203 116 203 116 203 117 205 118 118 118 118 118 119 118 118 119 118 119 119 119 119 206 119	114 0 112 1/5 004 112 1/5 004 113 115 116 115 116 117 118 118 118 118 118 118 117 118 118	112 110 113 10 113 10 113 10 113 112 113 113 113 804 114 114 115 114 114 115 115 116 116 115	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
38°41'0"N	520100	520200 DETAI		POSED MDCF AREA	12 12 12 12 12 12 12 12 12 12 12 12 12 1	28 120	117 118 117 210 117 118 117 117	115 116 115 116 115 115 116
	NuSLIPSE		108	108 132 108 132 109 100 134 10 110 134 10 134 10 100 100 100 100 100 100 100 100 100		1977 - 11920 130 - 24 130 - 24 14 130 - 24 14 14 14 15 14 14 15 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14	118 117 118 117 118 117 118 120 120 120 120 120 120 120 120	
38°40'30"N	NOLLE-BE 74°47'30"W	*46'5"W	74°47'0"W	110,38 110,38 E S 100 Feet Meters 30 109 74°46'0"W			74°46'30	"W





APPENDIX A DATA ACQUISITION AND PROCESSING

APPENDIX A - DATA ACQUISITION AND PROCESSING

CONTENTS

Page

ORIGINAL, FALL 2009 SURVEY OVERVIEW	1
Geological and Geophysical (G&G) Survey	1
Marine Archaeology Resource Survey	1
Work Performed	1
Authorization	1
	0
SUPPLEMENTAL, FALL 2010 SURVEY OVERVIEW	2
Scope of Supplemental Data Collection	2
Work Performed	2
Authorization	2
DATA COLLECTION AND PROCESSING	2
Positioning and Navigation	2
Bathymetric Survey	3
Data Collection	3
Data Processing	4
Sound Velocity Profiles	4
Side Scan Sonar Survey	5
Original, Fall 2009 Data Collection	5
Supplemental, Fall 2010 Data Collection	5
Data Processing	6
Magnetometer Survey	6
Original, Fall 2009 Data Collection	6
Supplemental, Fall 2010 Data Collection	7
Data Processing	7
Chirp Sub-bottom Profiler	8
Data Collection	8
Data Processing	9
Multichannel Seismic Reflection Survey	9
Data Collection	9
Data Processing	9
Survey Line Logs	10

Fugro

ILLUSTRATIONS

Survey Vessel	
Original, Fall 2009 Survey from the Samantha Miller	A-1a
Supplemental Fall 2010 Survey from the Chinook	A-1b
Equipment Configuration	
Original, Fall 2009 Survey from the Samantha Miller	A-2a
Supplemental Fall 2010 Survey from the Chinook	A-2b
Sound Velocity Profiles	A-3
Magnetic Anomalies	
Original, Fall 2009 Survey from the Samantha Miller	A-4a through A-4d
Supplemental Fall 2010 Survey from the Chinook	A-4e through A-4ac
Survey Line Logs	
Original, Fall 2009 Survey from the Samantha Miller	A-5a through 5e
Supplemental Fall 2010 Survey from the Chinook	A-5f through 5I
Seismic Line Logs, Original, Fall 2009 Survey from the Samantha Miller	A-6a through A-6e

Figure

DATA ACQUISITION AND PROCESSING

This appendix describes the data acquisition and processing procedures. The original, fall 2009 survey was conducted using Miller's Launch S/V *Samantha Miller* (Figure A-1a), while the supplemental fall 2010 data collection was conducted from the R/V *Chinook* (Figure A-1b). Survey equipment configurations are shown on Figures A-2a, A-2b, and A-2c.

ORIGINAL, FALL 2009 SURVEY OVERVIEW

GEOLOGICAL AND GEOPHYSICAL (G&G) SURVEY

The geological and geophysical (G&G) survey was comprised of collecting twodimensional (2D) high-resolution, multichannel seismic reflection, sub-bottom profiler, multibeam echosounder, side scan sonar, and magnetometer data over the 1.8-km x 1.8-km survey area (Figure 5 and Chart 2). Twenty-one primary G&G lines (line numbers 101 through 161) oriented 051°/231° and spaced nominally 90 meters apart (Figure 5 and Chart 2). Thirteen crosslines were run at a nominal spacing of 150 meters, with an orientation of 141°/321°. Survey equipment tow configurations are shown in Figures A-2.

MARINE ARCHAEOLOGY RESOURCE SURVEY

The marine archaeology resource survey was comprised of collecting sub-bottom profiler, multibeam echosounder, side scan sonar, and magnetometer data over the 1.8-km x 1.8-km survey area (Figure 4 and Chart 1). Those systems were run on all survey tracklines. Sixty-one primary lines were run at an orientation of 051°/231°, nominally spaced 30 meters apart. Thirteen crosslines were run at a nominal spacing of 150 meters, with an orientation of 141°/321°.

WORK PERFORMED

Fugro survey equipment was mobilized onto the *Samantha Miller* (Figures A-1a and A-2a) at Miller's Launch shipyard in Staten Island, New York. System checks and calibrations were performed offshore Staten Island prior to transiting to the survey area. The survey was commenced on October 11, 2009, and conducted during the periodic suitable weather days through November 1, 2009. The vessel then returned to Staten Island for demobilization. Two marine mammal observers (MMOs) were provided by Geo-Marine, under separate contract to Bluewater Wind.

AUTHORIZATION

Fugro's survey efforts were authorized by Bluewater Wind's execution of a Master Service Agreement (MSA) between Fugro and Bluewater Wind. The scope of work was as established by Fugro Proposal No. 2009.398, dated September 30, 2009.

Fugro's scope of work included the collection of marine survey data for both the G&G survey and the Archaeological Resources survey, as described by the U.S. Minerals

Management Service (MMS') *Guidelines*. Fugro's scope of work included the G&G interpretation and reporting. The archaeological resources interpretation will be provided by R. Christopher Goodwin & Associates (Goodwin), working for Tetra Tech EC, under separate contract to Bluewater Wind. The survey data for archaeological resource interpretation are included in this data report. In addition, the applicable survey data have been provided to Goodwin in electronic format.

A Marine Survey Plan, dated September 29, 2009, was prepared by Fugro on behalf of Bluewater Wind for submittal to the MMS.

SUPPLEMENTAL, FALL 2010 SURVEY OVERVIEW

SCOPE OF SUPPLEMENTAL DATA COLLECTION

In the fall 2010, Fugro collected additional side scan sonar and magnetometer data across the 1.8-km by 1.8-km survey area. The purposes of the supplemental data collection were to: 1) collect new magnetometer data at the northwest and southeast limits of the survey area, where the original magnetometer data were collected with the instrument being flown too high from the seafloor, 2) add supplemental tie-lines and infill data lines at 15-meter line spacing in the central portion of the survey area where the original data disclosed several magnetometer anomalies, and 3) obtain a second set of side scan sonar data using a different system than used to collect the original data. Rather than merge the supplemental data with the original data, full sets of magnetometer and side scan sonar data were collected across the entire survey area.

WORK PERFORMED

Fugro survey equipment was mobilized onto the R/V *Chino*ok (Figures A-1b and A-2b) in Ocean City, Maryland. System checks and calibrations were performed offshore Staten Island prior to transiting to the survey area. The survey was commenced on October 10, 2010, and conducted during 6 days of suitable weather days through November 3, 2010_. The vessel then returned to Ocean City, Maryland for demobilization.

AUTHORIZATION

The supplemental survey data acquisition was authorized by NRG Bluewater Wind Purchase Order (PO) #: K0923101, dated 09-23-2010. The related bottom grab sampling was authorized by NRG Bluewater Wind PO #: K1025101, dated 10-25-2010.

DATA COLLECTION AND PROCESSING

POSITIONING AND NAVIGATION

Wide-area Differential Global Position System (DGPS) was used to position the survey vessel. DGPS is a satellite-based positioning system operated by the U.S. Department of Defense. A "wide-area" application operates with correction values applied to a standalone

GPS receiver from base stations located over large distances. DGPS corrections were supplied to the system using the STARFIX II network. This differential network is a nationwide system operated by Fugro. STARFIX II broadcasts differential corrections via a communications satellite downlink to field receivers.

The vessel position information was linked to an onboard Pentium-based personal computer (PC) running Fugro's Starfix.SEIS Suite 9.1 navigational software. Starfix is an advanced PC-based Windows navigation system designed for both surface and subsurface vehicle positioning. A helmsman's display continually updates true vessel position, tracklines, distances off line, and distances along line. Other common input/output (I/O) interfaces include connections to gyros, echosounders, sub-bottom profilers, magnetometers, acoustic tracking systems, or virtually any receiver/sensor capable of a standard serial interface.

Positional fixes, from the navigation system, were output at a rate of 1 pulse per second. This enables external instruments (e.g. PC or navigation program) to synchronize their internal time with a time that is derived from highly accurate GPS time. Positional accuracy with this system is sub-meter for the GPS antenna.

Event data or navigation fix marks were recorded in the field every 100 meters as a single ASCII raw data file, which was used to plot ship tracks for the survey. The positional data were used to produce the post-plot map (Charts 1 and 2, Figures 3 and 4) used to reference and locate information derived from the geophysical interpretation.

Equipment offsets and laybacks from the GPS antenna were measured during the mobilization using a steel tape and level. Measurements were recorded to the tenth of an inch. Layback distances during deployment were measured and noted if adjusted. Coordinate locations reported herein have been corrected for instrument layback and offset.

BATHYMETRIC SURVEY

Data Collection

Bathymetric data was acquired using an over-the-side mounted Reson SeaBat 8101 (240 kilohertz [kHz]) Multibeam Echosounder (MBES). The Reson SeaBat 8101 is designed to meet International Hydrographic Organization (IHO) standards to measure the seafloor to a maximum depth of 320 meters. The Reson SeaBat 8101 system was used to collect bathymetry data from approximately 32.4 to 50.9 feet water depth during the survey. Heave, pitch and roll were compensated for with a Coda F185 Inertial Motion Unit (IMU). The IMU was used to compensate for the varying dynamics of vessel motion in an open water environment, thus achieving a higher level of bathymetric accuracies.

A patch test, or the measurement of the angular mounting components of the correction sensors (roll, pitch, and yaw), was conducted prior to collecting data on October 11, 2009. The patch test is a data collection and processing exercise designed to document the offsets, corrections and positioning system latency. The patch test calibration capability of Caris HIPS/SIPS processing Suite 6.1 was used to determine the orientation of the multibeam

system, along with the combined delay time between the inertial system and multibeam sonar, and any azimuthal misalignment. By running a defined pattern of six short survey lines, the patch test program provides the "best fit" solution for each of these items.

The Reson SeaBat 8101 measured the water depths across an approximately 45-meter swath that is perpendicular to the survey vessel's track. The system has a sonar footprint on the seafloor approximately 150° across track by 1.5° along track. Due to a high degree of water velocity variability at the survey site, the swath width of data used for our interpretation was confined to the inner 130° of the swath. The swath consisted of 101 individual 1.5° by 1.5° beams with a bottom detection range resolution of 1.25 centimeters (cm).

The 101 beams were sampled at intervals corresponding to the 1.25-cm range resolution. The intensity data were displayed in real-time together with a readout of the detected bottom. This ability to display the raw data gave the operator an excellent quality-check facility. The 101 detected bottom samples were read out to the acquisition system on a serial port up to 40 times per second. The format was X, Y and Z relative to the acoustical center of the sonar head.

Data Processing

A software package by Caris was used to process the multibeam data. The Caris processing software was used on a Windows XP workstation to edit and bin the raw data sets. Multibeam bathymetric data processing involves two steps:

- Applying acquisition or field-specific variables, and
- Data editing to remove spurious soundings.

The sensor calibration factors and sensor offsets were applied during data processing together with sound velocity (derived from sound velocity profile casts) and tidal corrections (from the National Oceanic and Atmospheric Administration [NOAA] acoustic tide gauge, Station No. 8557380 located in Lewes, Delaware).

Sound Velocity Profiles

Sound velocity profiles were conducted each day at a minimum at the start and end of the survey data collection. The *Samantha Miller* was brought to an all stop, and the cast was performed near the multibeam sensor along the port side of the vessel. Sound velocity profiles are used in the processing of the multibeam data and provide accurate conversions of beam travel times to water depth.

An Applied Microsystems Limited (AML) PA-10 sound velocity and pressure smart sensor profiler was used to conduct the sounding casts. The sensor records the sound velocity in meters per second while being deployed downward through the water column at a rate of 10 scans per second. The data are recorded using HyperTerminal text acquisition, and then incorporated into Caris HIPS/SIPS during processing of the multibeam data. Table A-1 lists the location, date, and time of the sound casts. Figure A-3) presents the sound velocity profiles.

Sounding Cast			Water Depth	
Cast	Cast Date	Northing	Easting	(meters)
C-1	11-Oct-09	4281084	521119	12.50
C-2	13-Oct-09	4306537	519968	11.97
C-3	21-Oct-09	4283788	519591	16.56
C-4	21-Oct-09	4282372	521429	13.01
C-5	21-Oct-09	4282440	521890	15.55
C-6	22-Oct-09	4283821	519443	16.62
C-7	22-Oct-09	4281290	519284	13.40
C-8	22-Oct-09	4281169	519501	12.99
C-9	30-Oct-09	4283323	520287	13.38
C-10	30-Oct-09	4282643	519011	15.78
C-11	1-Nov-09	4283234	519905	11.23
C-12	1-Nov-09	4283355	519809	10.74

Table A-1.	Summary	of Sound	Velocit	y Profiles
------------	---------	----------	---------	------------

SIDE SCAN SONAR SURVEY

Original, Fall 2009 Data Collection

Seabed features and obstructions have been interpreted from a digital, dual-frequency (100 kHz and 500 kHz) side scan sonar system. The system consisted of an EdgeTech Model 272-TD sonar towfish and Kevlar tow cable that was interfaced to a data logging computer with the EdgeTech analog control interface (ACI), an A/D card, and acquisition software. Chesapeake Technology, Inc.'s SonarWiz.MAP software was utilized to provide real-time mosaics for quality control. The software also provides complete post-processing capabilities. Features include automatic gain control, Time Variable Gain (TVG), beam angle correction, integrated bottom tracking, and a navigation editor.

During the survey, the towfish was deployed from the stern of the *Samantha Miller* as the vessel traversed the survey grid. The towfish was towed at an altitude between 10 and 20 percent of the range and provided full coverage of the survey area.

Supplemental, Fall 2010 Data Collection

Surficial features and targets were interpreted from data collected with a digital, dualfrequency, side scan sonar system. The system consisted of a Klein 3000 sonar towfish and armored tow cable interfaced to the Klein topside unit, which was networked to a data logging computer and Klein's SonarPro acquisition software. SonarPro features include: automatic gain control, real-time bottom tracking, and time varied gain.

During the survey, the towfish was deployed from the center stern of the R/V *Chinook* as the vessel traversed the survey grid. The side scan sonar was operated simultaneously using frequencies of 100 kHz and 500 kHz at a slant range of 75 meters for all survey lines. The towfish altitude was maintained at about 7 to 8 meters above the seafloor so as to provide the optimal altitude of the attached magnetometer. The side scan towfish altitude was about 10% of the slant range which is within the optimal range for the data acquisition.

Data Processing

During data processing, the individual sonar data files, each comprised of one sonar survey trackline, were reviewed and corrected for towfish altitude. Navigation data for each file were edited for errant position fixes and velocity errors. Finally, the resulting files were processed to construct a side scan mosaic of the site utilizing Chesapeake Technology's SonarWiz. The system's mosaics' multiple overlapping survey lines used different blending options: direct overlay, shine through, or weighted selection. The mosaic provides a view of the seafloor in black and white similar to an aerial photograph. Final contrast adjustments, filtering, and line editing were performed before the final mosaic image was produced. The complete mosaic image was georeferenced to the real-world coordinate system for the final maps. A total field sonar mosaic is exported as a geo-registered tagged image file format (TIFF) at a resolution of 0.25 m. Individual survey lines were also exported as geo-registered TIFF files at a resolution of 0.25 m.

MAGNETOMETER SURVEY

Original, Fall 2009 Data Collection

A magnetometer survey was conducted to detect ferrous or other magnetically susceptible objects at the seafloor or shallowly buried. A Marine Magnetic Corporation SeaSPY model marine magnetometer was used for the survey to measure the ambient magnetic field.

A Marine Magnetics' magnetometer measures the ambient magnetic field using a specialized branch of nuclear magnetic resonance technology applied specifically to hydrogen nuclei producing very high sensitivity and accuracy. The sensor is reported to have an absolute accuracy of $0.2\eta T$ and a counter sensitivity of $0.001\eta T$. The tow sensor was further equipped with a pressure/depth sensor and an altimeter to maintain optimum towing altitude. Total field readings were logged together with the sensor altitude and depth data to the navigation computer through the SeaSPY's communications transceiver.

The magnetometer was towed from the center stern with about 30 to 70 meters of tow cable to achieve an altitude of about 5 to 7 meters above the seafloor. On the penultimate day of the original, fall 2009 data collection, the magnetometer was snagged on an obstruction off the seafloor in the vicinity of survey line 126 between fixes 115 & 114 (Chart 1 Figure 4). Although we successfully grappled for and recovered the magnetometer (along with a piece of floating Polypropylene line attached to a medium sized grapple hook that it had snagged), the armor tow cable for the magnetometer was damaged. Thus, on the last day of the survey, the magnetometer was towed using a soft Kevlar line, which resulted in its altitude being overly high

off the bottom. Thus for the outermost primary lines, at the northwest and southeast limits of the survey area, the original magnetometer data were collected at altitudes greater than the maximum altitudes recommended in the MMS' *Archaeological Resources: Recommended Guidelines for Field Surveys and Reporting.*

Ambient magnetic field measurements were recorded at a rate of 1 hertz (Hz). Data were recorded using Starfix.Seis where measurements were attributed with measurement position coordinates.

Supplemental, Fall 2010 Data Collection

The supplemental magnetometer data collected in fall 2010 also was collected with a Marine Magnetic Corporation SeaSPY model marine magnetometer. The magnetometer was deployed 10 meters behind and in line with the Klein 3000 side-scan towfish using a special Kevlar bridal. This configuration allows the magnetometer to fly at sustainable attitudes meeting the guidelines of the NTL / BOEMRE. Using this tow configuration, the data from the magnetometer were transmitted through the Klein 3000 and directly interfaced to the navigation PC.

Ambient magnetic field measurements were recorded at a rate of 2 hertz (Hz). Communication and control to the SeaSPY Magnetometer were sent via command line prompts through Klein SonarPro Data acquisition program. Data were recorded using Starfix.Seis where measurements were attributed with measurement position coordinates. Methods for QA/QC were monitored by the use of Starfix Real Time Graphics. Graphics were displayed at a rate of 1 Hz.

The magnetometer altitude varied from a minimum of 1.5 to 6.5 meters during the supplemental data collection. The average altitude was 4.6 meters.

Data Processing

The magnetometer sensor noise levels used for this survey are negligible when considering system noise. The average change in intensity between data points is less than 1 gamma. Numerous strong gradient changes that occur over long distances are not considered magnetic anomalies derived from iron objects. Over a distance of several hundred meters, these changes can be as high as ± 50 gammas.

The magnetometer data were directly imported into Chesapeake Technology's SonarWiz. No total-field data correction or trend lines were applied to the data. Each survey line was evaluated independently. Even though several lines were re-shot because of spikes, all magnetometer records (including the spiky ones that were later re-shot) were evaluated; this helps confirm the validity of an anomaly.

A recording base station was not used to measure the changes in earth's magnetic field over the duration of the survey. Assuming the Earth's magnetic field will change only slightly and at a nearly constant rate over the time interval of a survey line, a simple way to correct for

its influence on magnetometer data is to fit them with a linear regression. Once calculated, the equation can be used to recalculate the magnetometer readings as a function of travel distance at the location of each measurement. Subtracting these calculated values from the original data set produces a new data set, wherein the values represent deviations from the (assumed) magnetic field of Earth. This method was employed on a line-by-line basis for the entire dataset using specific software written by Geo-Marine Technology, Inc. The resulting data are magnetic fluctuations relative to the survey line's baseline.

In order to produce a contour plot of the magnetic intensity, it is necessary to remove the noise spikes. This task is not easy as several attempts were made to auto-despike the data. The main problem with auto-de-spiking was that actual anomalies were removed. All individual magnetometer data files were individually de-spiked by manually identifying and correcting spikes. Long and intermediate period noise along individual lines was observed on several lines. A swell filter algorithm was used to reduce those artifacts and the noise was not considered to degrade the ability to identify and characterize anomalies.

Once all the line data were corrected, they were combined them into a single data file and then gridded in ArcGIS v9.3 with 3D Analyst. To generate a contour map, we used an inverse distance weighting calculation with a bin interval of 5 meters and a search radius of 40 meters. The resulting contour map is depicted in Figures 11 and 12 and Chart 5; a good correlation exists between the localized anomalies and the hand-picked anomalies derived from the individual line charts.

Figure A-4 presents the magnetic anomalies and pertinent characteristics. The handpicked anomaly locations are presented on Chart 5, Figures 11 and 12, and in the table at the end of the main body of text. The contour interval on the maps is five gammas. The variations among uncorrected total field data, geomagnetic corrected data, and relative field data for the fall 2010 data are included as insets on Chart 5b. These depictions illustrate the contoured data through the various processing steps described previously.

CHIRP SUB-BOTTOM PROFILER

Data Collection

An EdgeTech X-Star Full Spectrum Sub-bottom Profiler (Chirp) system was employed to obtain shallow seismic reflection data of the sediment layers immediately beneath the seafloor. These shallow data provide information on the spatial distribution and thickness of surficial sediments. The EdgeTech X-Star system included the SB-216S towfish, the Model 3200 topside processor, and EdgeTech's Discover acquisition software.

The towfish was deployed and towed from the port side stern of the Samantha Miller. The system was triggered at a 6 Hz pulse rate with a swept frequency range between 2 to 15 kHz over 20 ms. Navigation fix marks were sent to the systems' printer every 100 m (328 feet) along the survey line. All navigation information and sub-bottom data were time tagged and logged to a hard drive. The reflection profiles were also simultaneously displayed on the EPC thermal plotter.

Data Processing

Processing for the Chirp sub-bottom data included checking and de-spiking all navigation points using Starfix.Proc, an application for automated (batch) processing of navigation data. After the data are cleaned, verification was made that the corrected navigation files were referenced from the towed position (where the sub-bottom was towed from the vessel). The corrected navigation data were then inserted into a raw JSF file (Edgetech's Proprietary format) using Starfix.Gplot (Addxyz). The JSF files were replayed through the Discover software for TVG, swell filtering, and direct arrival removal. Following the data filtering, the JSF files were then converted to SEG-Y format and loaded into Kingdom Suite for interpretation. An example of the Chirp data is shown on Figure 25.

MULTICHANNEL SEISMIC REFLECTION SURVEY

Data Collection

High-resolution, shallow seismic reflection data were concurrently collected with the subbottom profiler data for later processing and interpretation. The seismic reflection system consisted of a double-plate "boomer" seismic source, power and tow cable, two power supplies, two 24-channel hydrophone streamers, shipboard electronics, and recording instruments. The *Samantha Miller* towing configuration and system-offset values are shown on Figure A-2.

Two Applied Acoustics Engineering CSP seismic energy sources were used to power the double-plate "boomer" system. The boomer plate is an electromechanical transducer made of an insulated metal plate and a rubber diaphragm adjacent to a flat wound electrical coil. A short-duration, high-energy pulse is discharged from the energy source into the coil and the resulting magnetic field repels the metal plate in the transducer. The plate motion is transferred to the water by the rubber diaphragm, generating a broadband acoustic pulse that does not have strong cavitations or ringing. Each transducer was triggered simultaneously at an energy level of 300 joules.

The reflected acoustic signal was received by two separate multichannel, Ethernetbased GeoEel digital hydrophone arrays. One of the arrays used 8 channels and had a group interval of 1.56 meters. The other 16-channel array had a group interval of 3.125 meters. The streamers were towed approximately 0.3 meters below the sea surface. Raw data from the digital streamers were recorded using a Geometrics CNT PC-based acquisition system. Data were stored on hard disk in SEG-Y format for later postprocessing. Data were also backed up on DVD and an external hard drive. A near trace record for the streamer was displayed and printed in real-time using a Pentax Pocketjet 3-Plus plotter.

Data Processing

Data processing of the multichannel seismic reflection data followed the basic premise of the wavelet processing method used in the petroleum exploration industry. A double-plate boomer source type was used combined with two different hydrophone streamer configurations,

with the objective of deeper penetration for the 3.125-meter group interval (mgi), 24-channel streamer and higher resolution at lesser penetration for the 1.56-mgi, 24-channel mini-streamer.

Basic seismic data processing consists of filtering in time and space, deconvolution to provide a sharper and more consistent seismic wavelet for interpretation, correction of normal moveout due to varying subsurface velocity structure, stacking of data traces to increase the signal-to-noise ratio, and migration to put the reflecting horizons back into their proper lateral positions. Seismic data processing included the following steps:

- FK filter to reduce boat noise,
- Spiking deconvolution,
- Spherical divergence (ExpG) correction,
- Trace scaling,
- Normal move-out (NMO) correction and stacking, and
- Post-stack FK migration and acquisition geometry for common mid-point (CMP) binning.

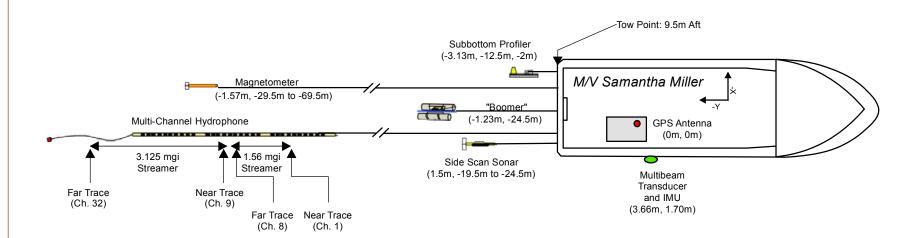
Velocity analyses were performed for four lines of the 3.125-mgi streamer data and the average results were then used to processes the 3.125-mgi streamer data. A constant stacking velocity of 5,000 feet per second (ft/sec) provided comparable results and was used for processing the 1.56-mgi streamer lines. For migration, a constant velocity of 4,800 ft/sec was used for both steamer output data. Output files were saved in SEG-Y format for the stacked and migrated data.

The 1.56-mgi streamer acquired good data for approximately 0.080 seconds (two-way travel time [TWT]) or ~200 feet below sea surface (BSS) and provided high-resolution data of the shallow geologic structure. The 3.125-mgi streamer acquired good data for the full record length (TWT of 0.5 seconds or ~1,250 feet BML).

SURVEY LINE LOGS

Survey line logs for the bottom-charting and seismic reflection systems are provided as Figures A-5 and A-6, respectively. Figure A-5a provides the line logs from the original, fall 2009 data collection. Figure A-5b provides the line logs from the supplemental, fall 2010 data collection. The line logs provide various information documenting equipment used and configuration, date, time, vessel heading and speed, and commentary regarding equipment issues for each survey line.

Vessel Description	
Vessel Name	Samantha Miller
Coast Guard Registry Number	D641114
Owner/Operator	Miller's Launch
Home Port	Pier 7 1/2 Staten Island, NY
24-hr Contact #:	718-727-7303
Vessel Monitors VHF Channels:	13 & 16
Vessel Length	65 feet
Vessel Beam	26 feet
Vessel Draft	7.5 feet
Cruising Speed	10 knots
Planned Survey Operations	Daylight Hours
Planned Hours on Site	Daylight Hours


SURVEY VESSEL SAMANTHA MILLER Bluewater Wind Delaware Meteorological Tower Delaware Continental Shelf

SURVEY VESSEL *R/V CHINOOK* Fall 2010 Survey Bluewater Wind Meteorological Tower

Delaware Continental Shelf

Notes:

- 1) Diagram not to scale.
- 2) Equipment (X, Y)X and Y are the offset and layback, respectively, from the GPS antenna.
- 3) Not all systems were operated simultaneously for the G&G survey lines. In general, seismic reflection (Boomer and streamer) and Chirp systems were operated during one line run and the sidescan sonar, magnetometer and multibeam echosounder were operated during a separate line run. Refer to the survey line logs in Appendix A for details.

Streamer	Offset and Layback (X,Y)		
Suediner	October 11, 2009	2009	
1.56-mgi Streamer			
Near Trace (Channel 1)	1 m,-29.69 m	1 m, -31.25 m	
Far Trace (Channel 8)	1 m, -45.32 m	1 m, -48.44 m	
3.125-mgi Streamer			
Near Trace (Channel 9)	1 m, -47.63 m	1 m, -49.94 m	
Far Trace (Channel 32)	1 m, -119.5 m	1 m, -122.63 m	

EQUIPMENT CONFIGURATION Fall 2009 Survey

Bluewater Wind Meteorological Tower Delaware Continental Shelf

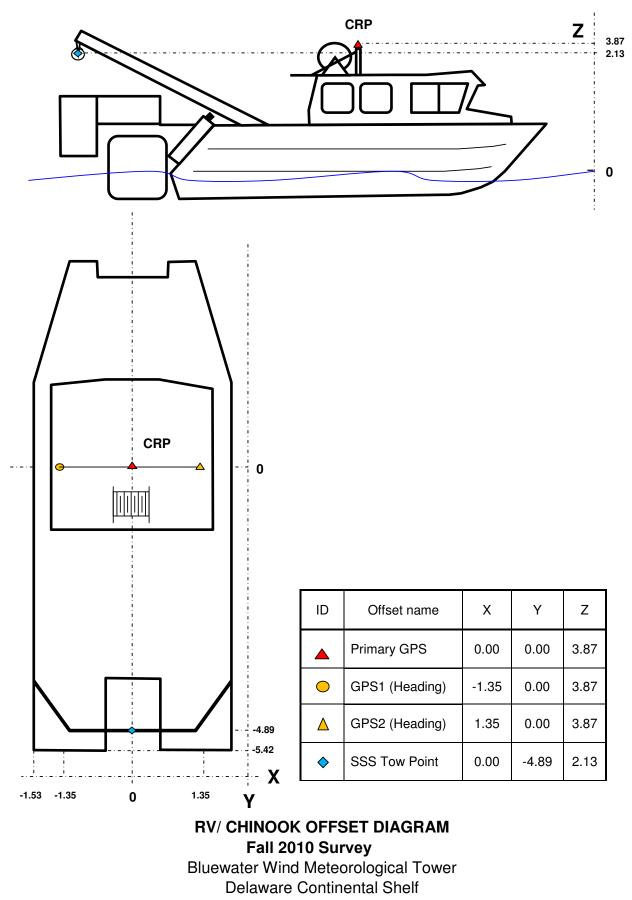
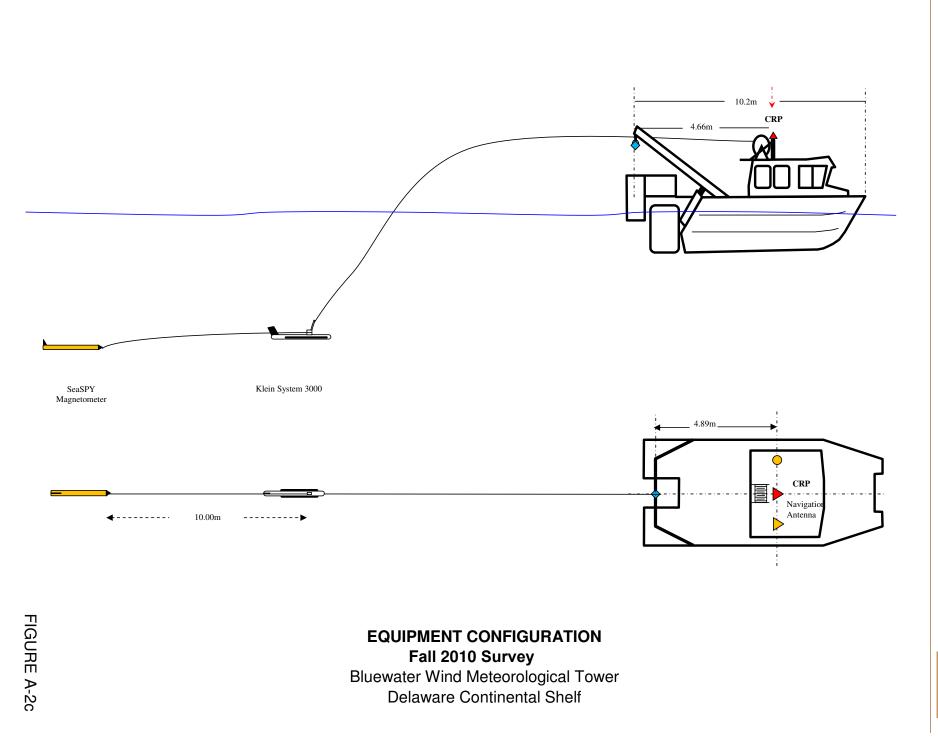
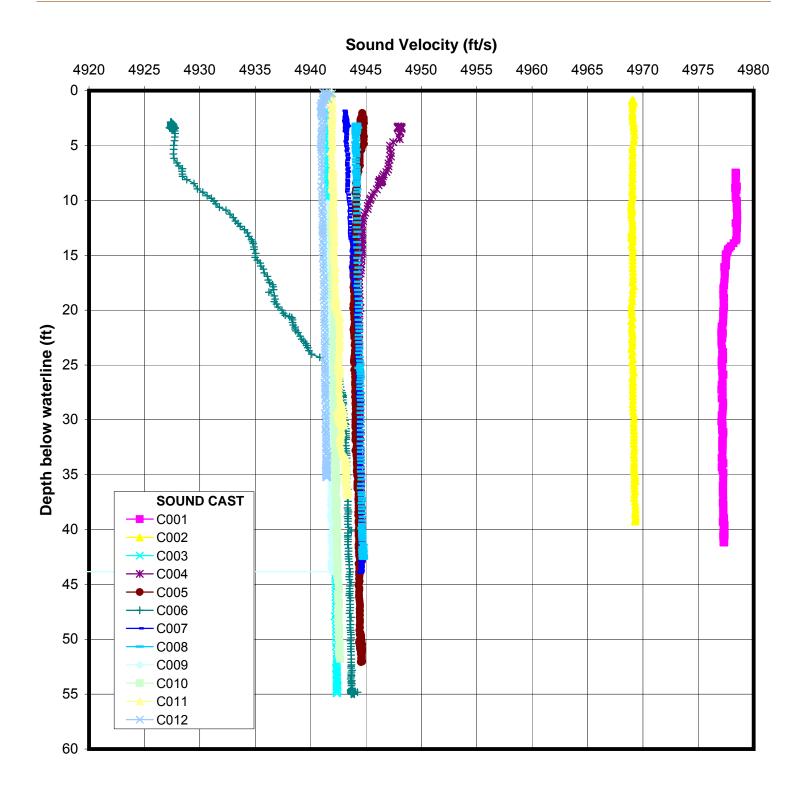
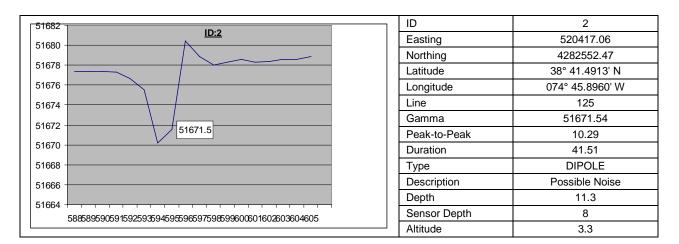




FIGURE A-2b

NRG Bluewater Wind Project No. 3671.004


SOUND VELOCITY PROFILES

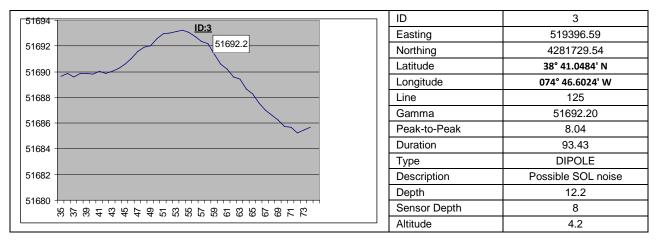
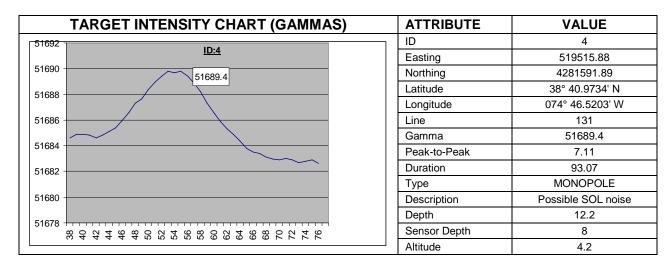
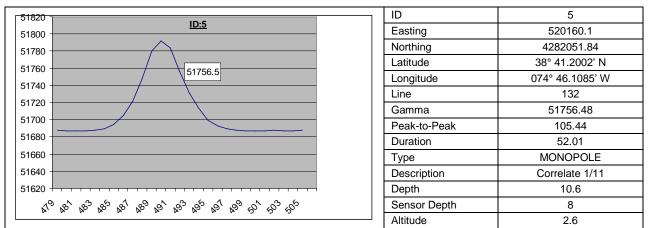
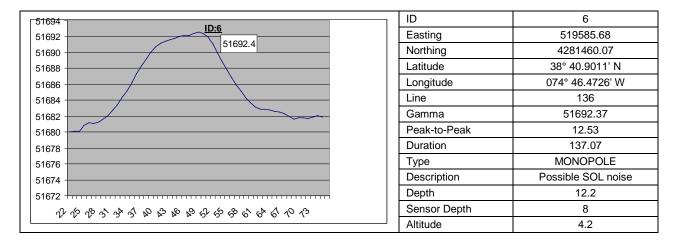

Bluewater Wind Meteorological Tower Delaware Contintential Shelf

FIGURE A-3

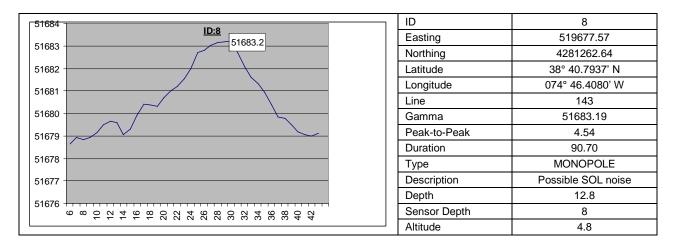
UGRO

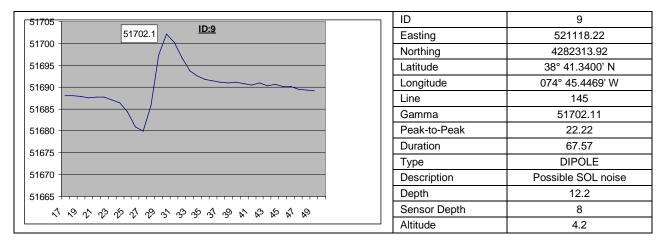

TARGET INTENSITY CHART (GAMMAS)	ATTRIBUTE	VALUE
51705 -	ID	1
<u>ID:1</u>	Easting	520148.21
51695	Northing	4282075.05
51690	Latitude	38° 41.2357' N
51685	Longitude	074° 46.1148' W
51680	Line	207
51675	Gamma	51666.90
51670	Peak-to-Peak	31.05
5166551666.9	Duration	85.81
51660	Туре	COMPLEX
51655	Description	Correlate 5/11
51650 +	Depth	10.6
දා දේ	Sensor Depth	8
	Altitude	2.6





UGRO





	TARGET INTENSITY CHART (GAMMAS)	ATTRIBUTE	VALUE
51700 -		ID	7
	<u>1D:7</u> 51697.7	Easting	520390.41
51695 -		Northing	4281858.17
51690 -		Latitude	38° 41.0942' N
		Longitude	074° 45.9486' W
51685 -		Line	142
51680 -		Gamma	51697.70
		Peak-to-Peak	19.54
51675 -		Duration	45.55
51670 -		Туре	DIPOLE
01070		Description	Debris
51665 -		Depth	12.2
104	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sensor Depth	8
		Altitude	4.2

UGRO

51100

51000

50900 -

COMPLEX

Correlate 1/5

10.6

8

2.6

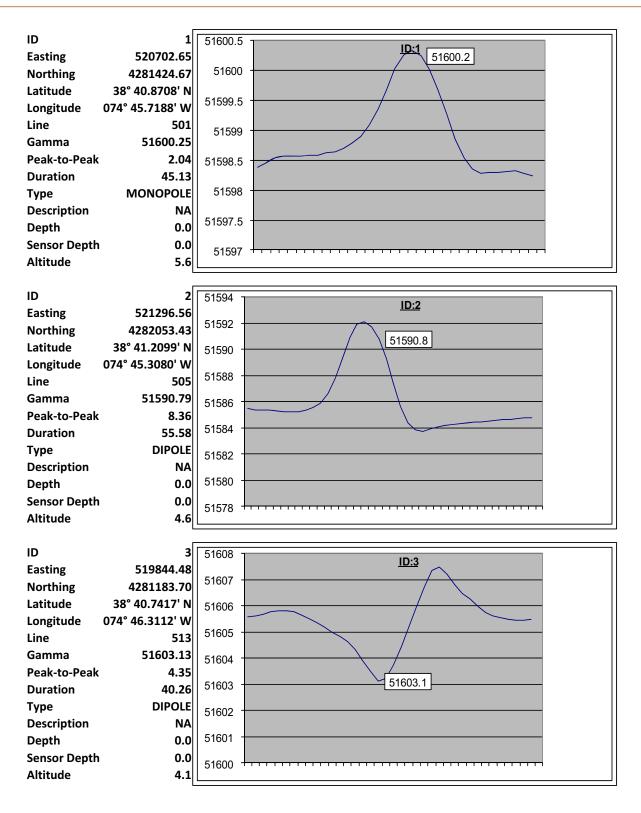
51698 51698.3 51697 51698.3 51696 1 51695 1 51694 1 S1694 1 S1694 1 S1694 1 S1695 1 S1694 1 S1694 1	10 0786.21 1155.46 0.7360' N 66.3328' W
51698 51698.3 51697 51698.3 51696 Latitude 51695 38° 40 Longitude 074° 4 Line Gamma Gamma 510	1155.46 0.7360' N 6.3328' W
51698.3 Northing 428 Latitude 38° 44 Longitude 074° 4 Line Gamma	0.7360' N 6.3328' W
1696Latitude38° 401695Longitude074° 41695Gamma510	6.3328' W
1695 1694 Gamma 510	
Gamma 510	
1094	148
	698.25
1693	5.44
Duration 7	75.41
1692 Type MON	NOPOLE
1691 Description Possible	e SOL noise
1690 Depth	13
∿ዮዮዮዮዮጵያ ትንድራራራራ best Sensor Depth	8
Altitude	5
1900 - ID	11
ID:11)196.99
	2056.16
	1.1996' N
Longitude 074° 4	6.0546' W
	207
	221.29
E4004.0	13.14
1200 51221.3 Duration 7	'3.12

Туре

Depth

Altitude

Description


Sensor Depth

MAGNETIC ANOMALIES

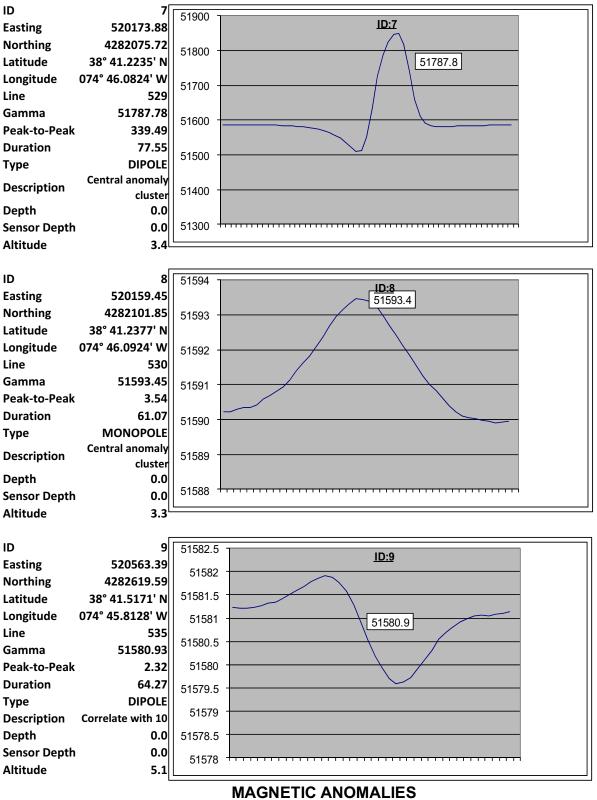
Bluewater Wind Meteorological Tower Delaware Continental Shelf



MAGNETIC ANOMALIES

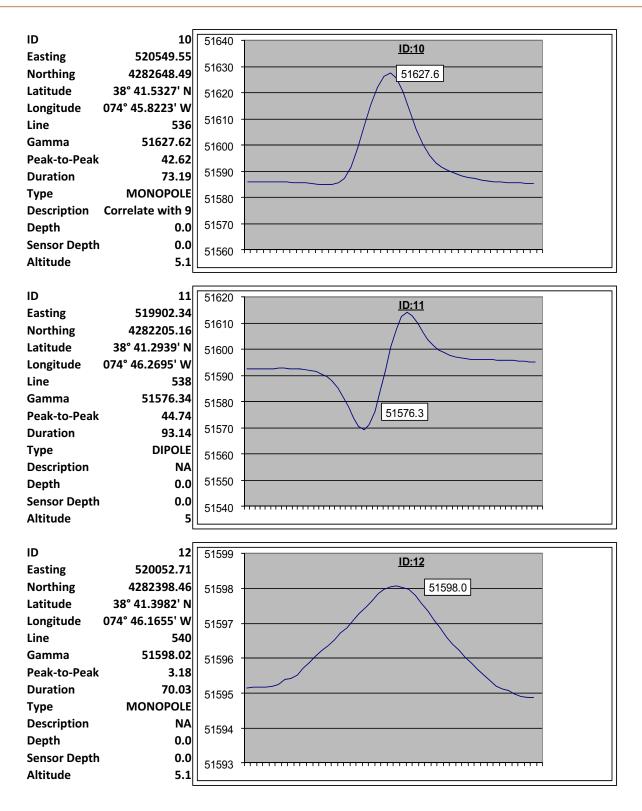
Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE A-4e



MAGNETIC ANOMALIES Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE A-4f



Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE A-4g

FIGURE A-4h

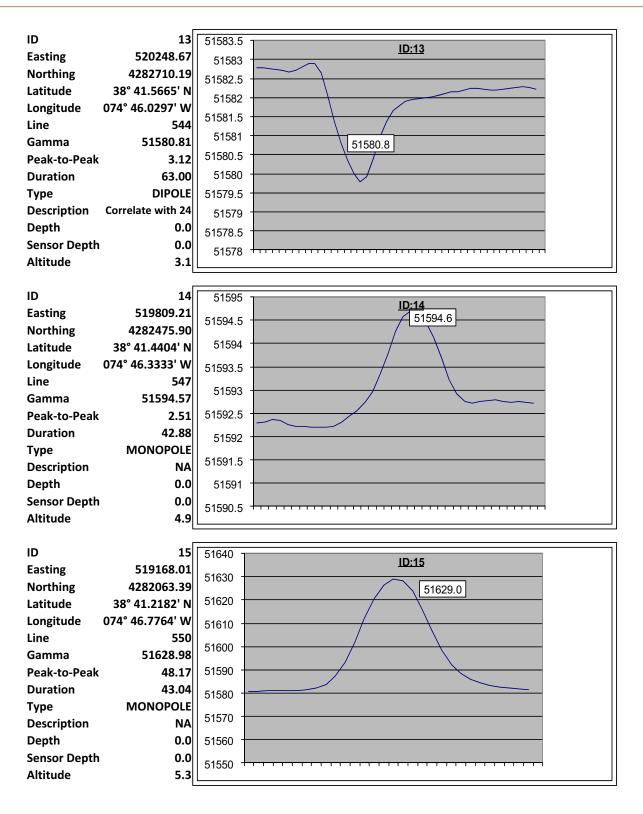
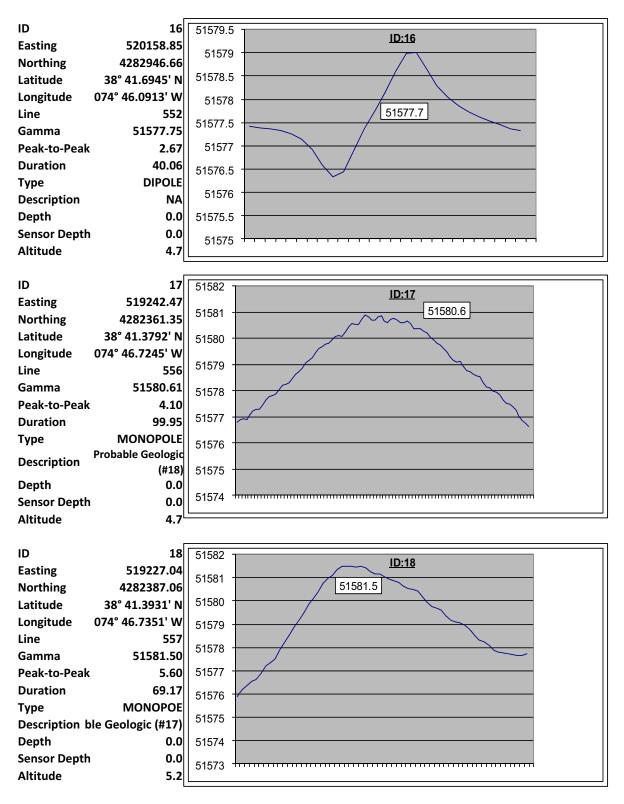
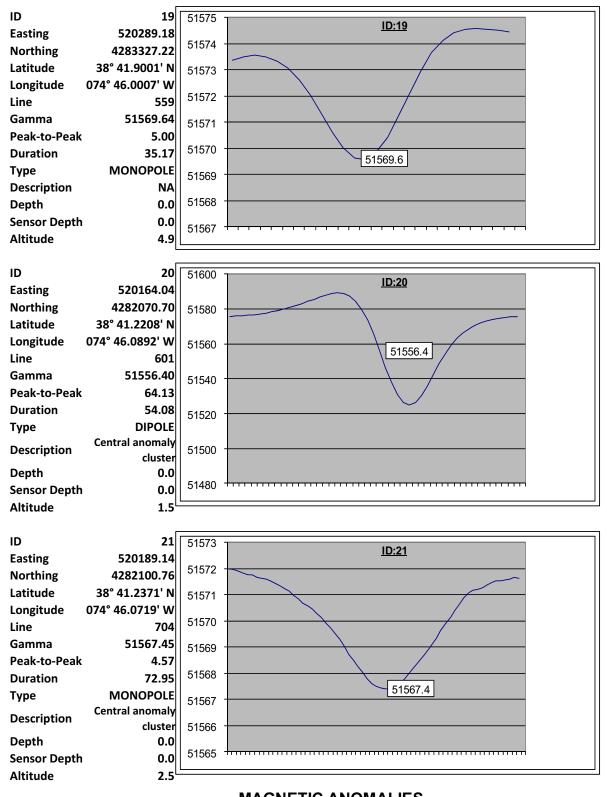


FIGURE A-4i

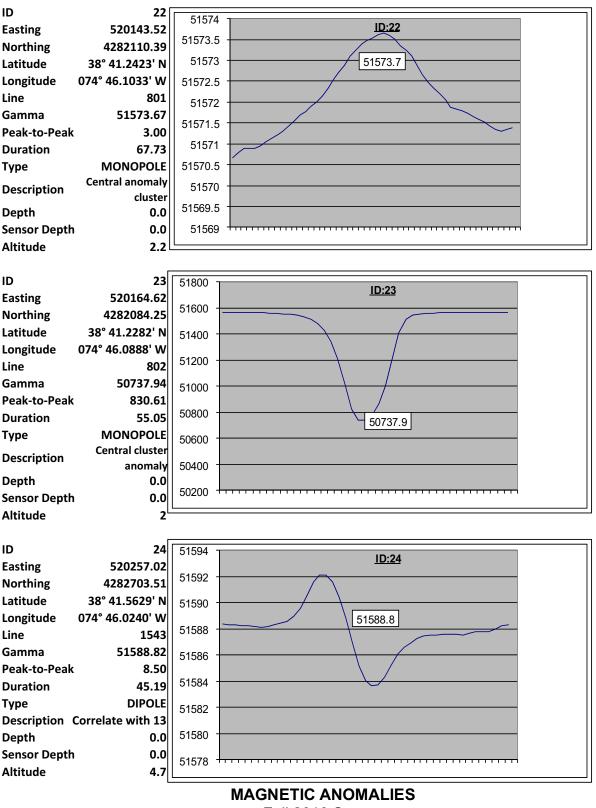
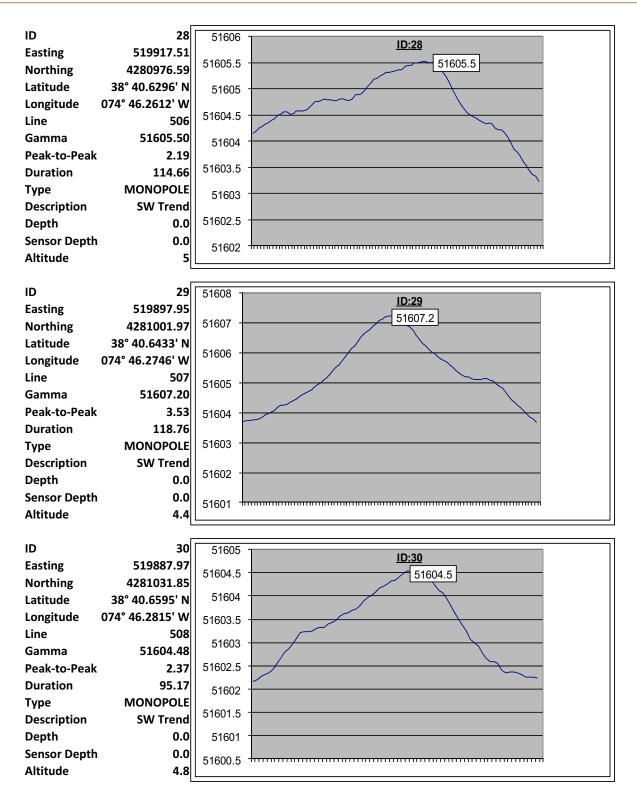
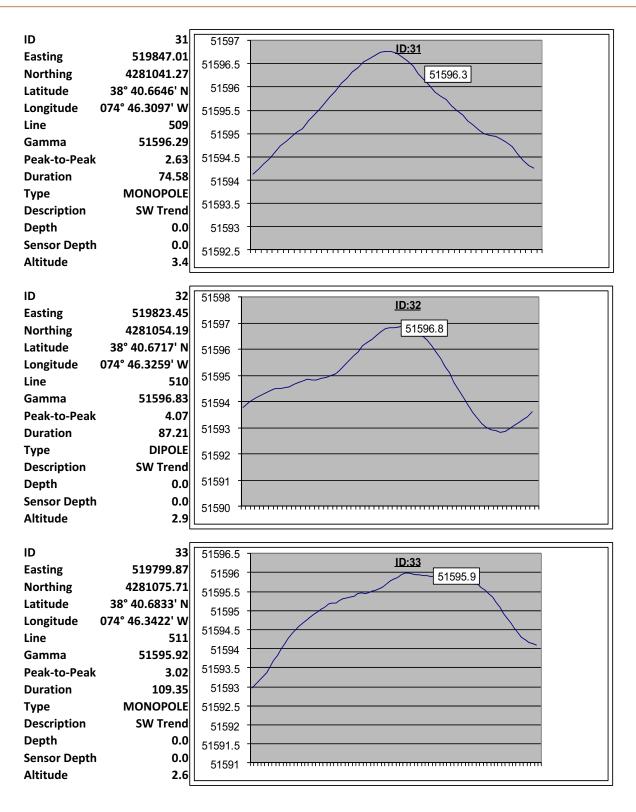

FIGURE A-4j

FIGURE A-4k

Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf


FIGURE A-4I


FIGURE A-4m

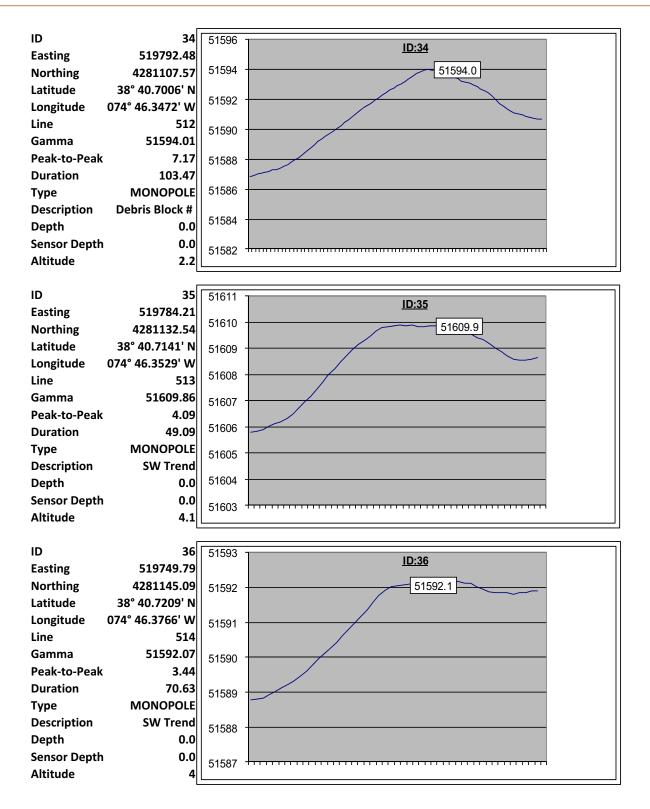

FIGURE A-4n

FIGURE A-40

FIGURE A-4p

]جد ما		
ID 37	51590.5 <u>ID:37</u>	
Easting 519722.50	51590	
Northing 4281167.02	51589.5	
Latitude 38° 40.7328' N	51589	
Longitude 074° 46.3954' W		
Line 515 Gamma 51589.71	51588.5	
Peak-to-Peak 2.82	51588	
Duration 62.08	51587.5	
Type MONOPOLE	51587	
Description SW Trend	51586.5	
Depth 0.0		
Sensor Depth 0.0	51586	
Altitude 4.7	51585.5	
ID 38	51588	
Easting 519706.22	<u>ID:38</u>	
Northing 4281190.25	51587.5 51587.7	
Latitude 38° 40.7454' N	51587	
Longitude 074° 46.4066' W	51586.5	
Line 516		
Gamma 51587.68	51586	
Peak-to-Peak 2.58	51585.5	
Duration 64.53	51585	
Type MONOPOLE	54504.5	
Description SW Trend	51584.5	
Depth 0.0	51584	
Sensor Depth 0.0	51583.5	
Altitude 4.7		
F		
ID 39	51591.5 <u>ID:39</u>	
Easting 519655.83	51591	
Northing 4281188.75 Latitude 38° 40.7446' N		
	51590.5	
Longitude 074° 46.4413' W Line 517	51590	
Gamma 51591.04		
Peak-to-Peak 2.31	51589.5	
Duration 99.31	51589	
Type MONOPOLE		
Description SW Trend	51588.5	
Depth 0.0	51588	
Sensor Depth 0.0		
Altitude 4.3	51587.5	

MAGNETIC ANOMALIES Fall 2010 Survey

Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE A-4q

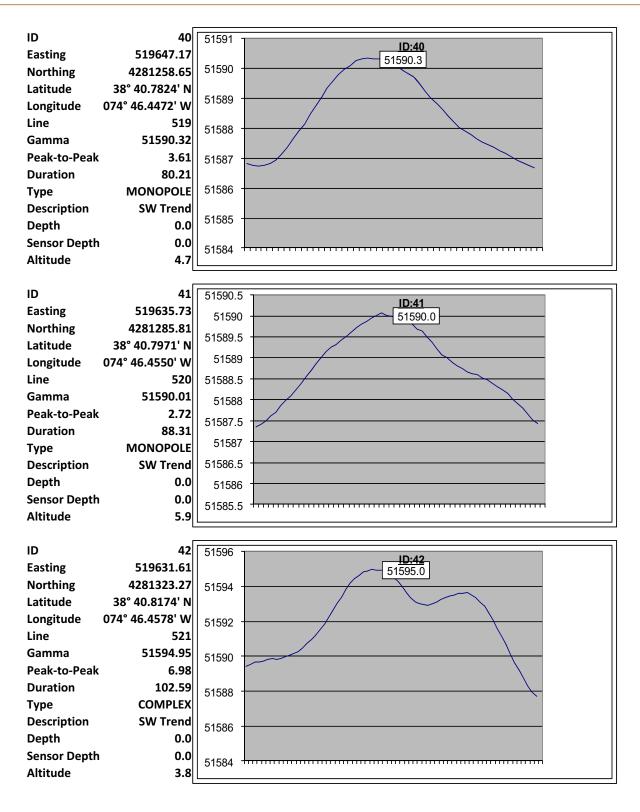


FIGURE A-4r

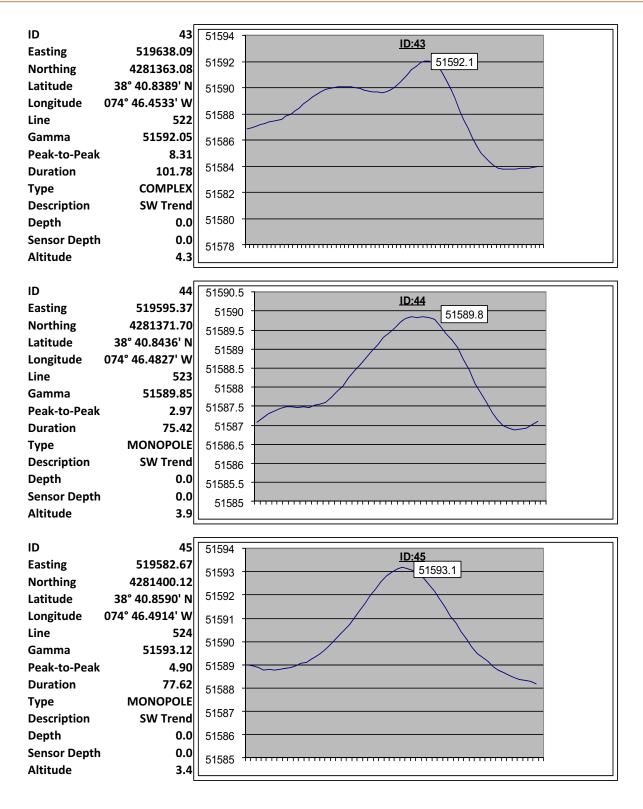


FIGURE A-4s

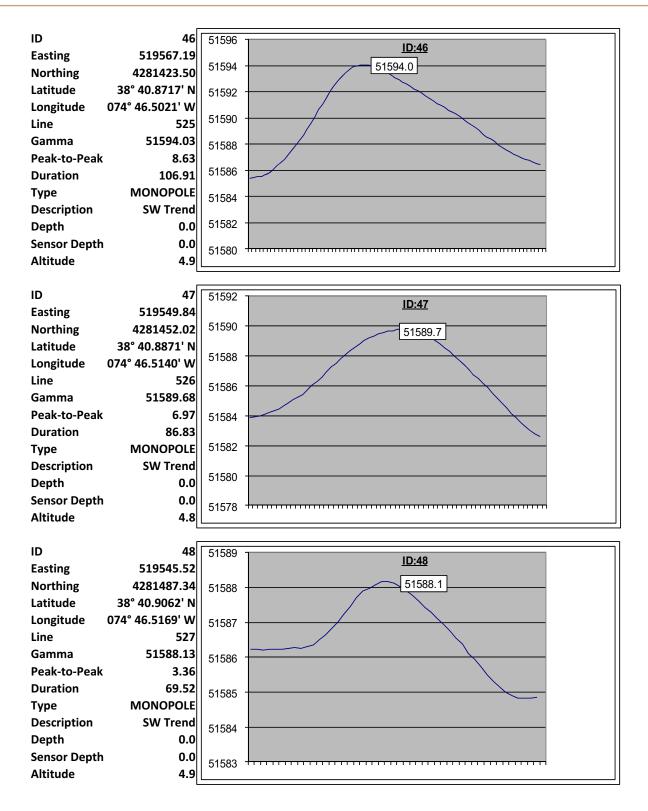
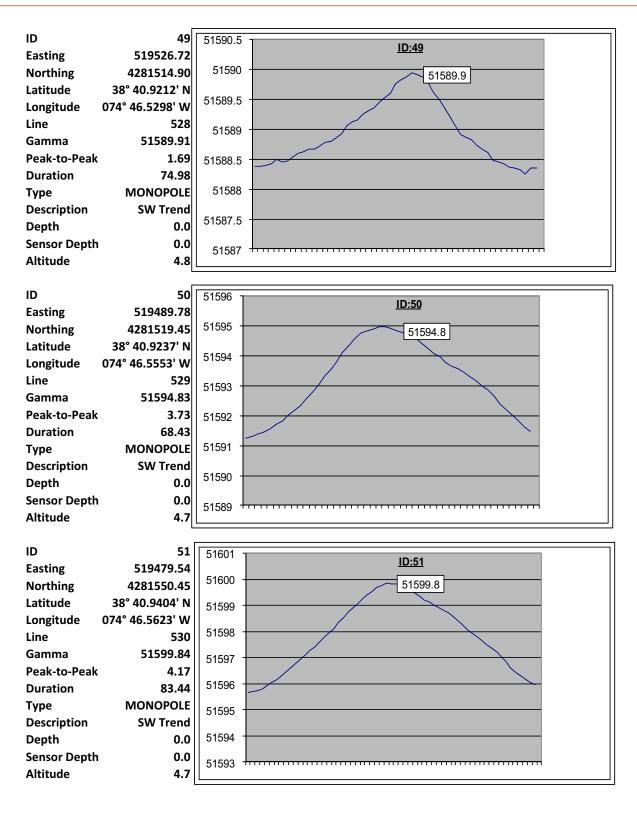
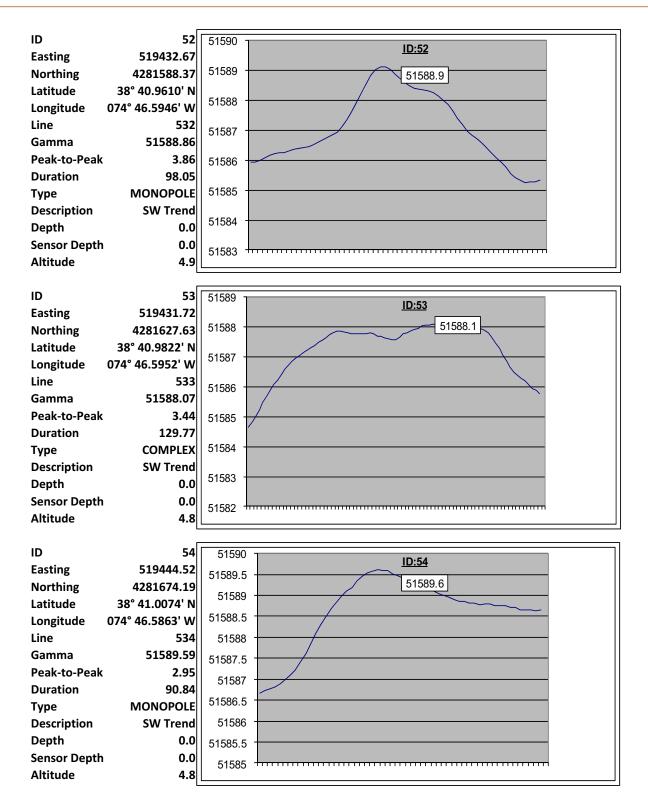
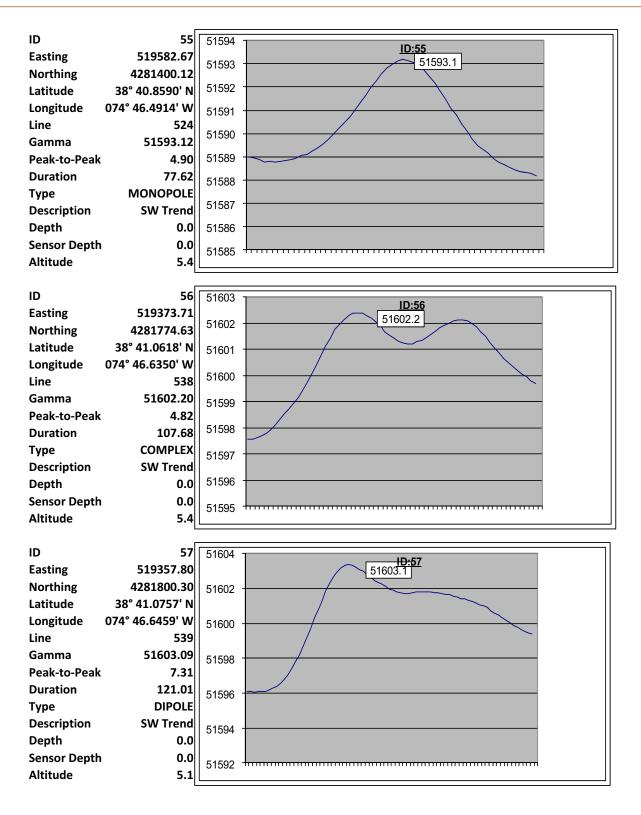
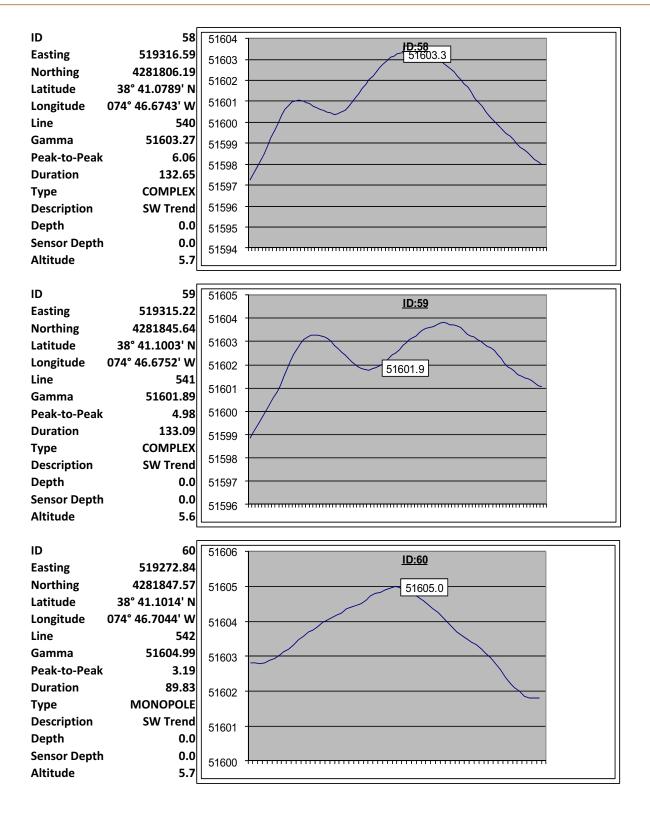
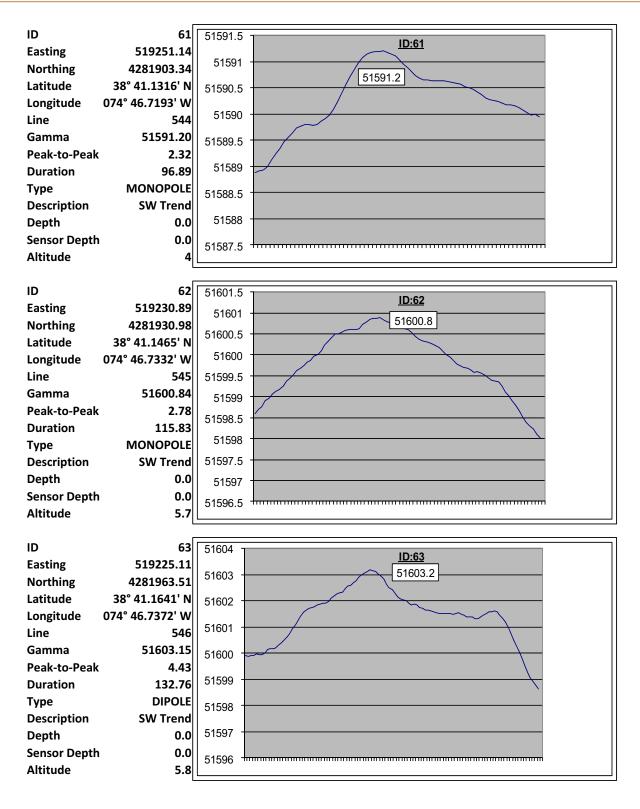


FIGURE A-4t


FIGURE A-4u


FIGURE A-4v


FIGURE A-4w

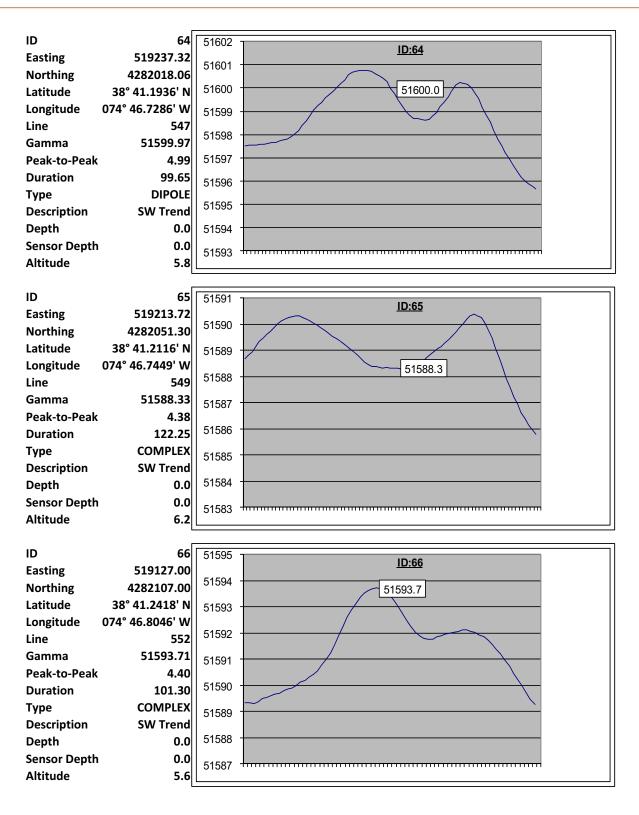
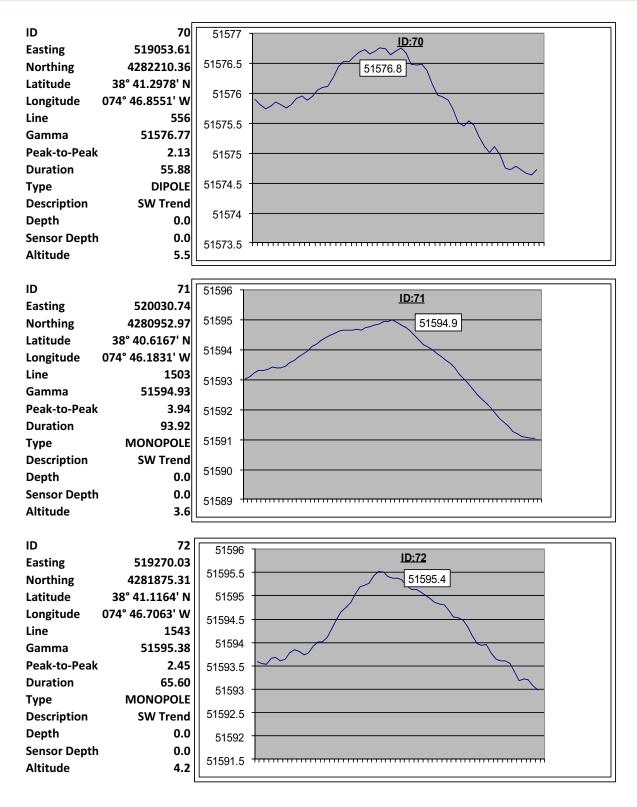

FIGURE A-4x

FIGURE A-4y


FIGURE A-4z

ID 67	51590	
Easting 519113.22	51590	<u>ID:67</u>
Northing 4282148.21		
Latitude 38° 41.2641' N	51589.5 -	51589.6
Longitude 074° 46.8140' W		
Line 553	51589 -	
Gamma 51589.55		
Peak-to-Peak 1.49	51588.5 -	
Duration 59.20		\sim
Type MONOPOLE		
Description SW Trend	51588 -	
Depth 0.0		
Sensor Depth 0.0	51587.5 -	
Altitude 5.7		
L		
ID 68	51586	10.00
Easting 519107.39	51585.5 -	<u>ID:68</u>
Northing 4282169.34	51585 -	51585.0
Latitude 38° 41.2756' N		01000.0
Longitude 074° 46.8180' W	51584.5 -	
Line 554	51584 -	
Gamma 51585.04	51583.5 -	
Peak-to-Peak 2.86	51583 -	
Duration 65.92	51582.5 -	
Type DIPOLE	51582 -	
Description SW Trend	51581.5	
Depth 0.0		
Sensor Depth 0.0	51581 -	
Altitude 5.8	51580.5	
5.0		
ID 69	51585.5	
Easting 519070.33		<u>ID:69</u>
Northing 4282190.85	51585 -	51585.1
Latitude 38° 41.2873' N		
Longitude 074° 46.8436' W	51584.5 -	
Line 555		\sim
Gamma 51585.10	51584 -	\sim
Peak-to-Peak 1.79	51583.5 -	
Duration 66.47	01003.0	
Type DIPOLE	51583 -	
Diroce Description SW Trend		
Depth 0.0	51582.5 -	
•		
	51582 -	
Altitude 6.2		

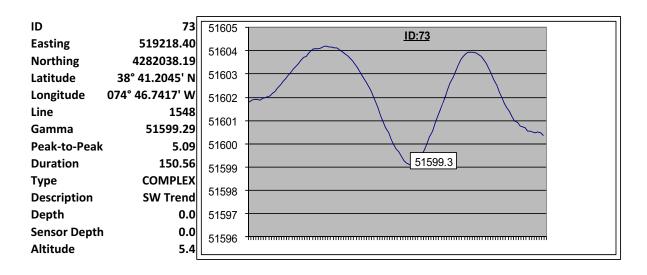

FIGURE A-4aa

FIGURE A-4ab

MAGNETIC ANOMALIES

Fall 2010 Survey Bluewater Wind Meteorological Tower Delaware Continental Shelf

FIGURE A-4ac

Client: Bluewater Wind	Project No.: 3671.004	Page: 1 of 5
Surveyor: PN, MB, RD, HT	Vessel: Samantha Miller	Date: October 20, 2009
Client Rep: n/a	Location: Offshore Delaware	Devices: SBP, SSS, MAG, Chirp

ey Date	No.	ing	Fi Shot	Point	Shot	ast Point	Laybac	k SSS	Laybac	kMag	Remarks	Bottom Roll	Bottom CD	altitude (m)	altitude (m)	Range (m)	scan sonar de SOL (m)	Side scan sonar altitude EOL (m)
Survey	Line No	Heading	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time		Sub E No.	Sub E	Mag a SOL (Mag a EOL (SSS	Side sc altitude	Side a
20-Oct	213	141	200	1330	202	1355	15		50		Abort line, bad heading input.							
20-Oct	213	141	200	1343	220	1358	15		50		Boomer interferes with Mag and MBES.			5.2	7.4	75	10.0	12.4
20-Oct	212	321	220	1404	200	1418	15		50					7.1	4.5	75	11.6	8.6
20-Oct	211	141	200	1425	220	1441	15		50					5.2	6.5	75	10.8	10.8
20-Oct	210	321	220	1446	200	1501	15		50					7.4	4.4	75	10.8	9.3
20-Oct	209	141	200	1509	220	1522	15		50					5.3	5.8	75	9.4	10.0
20-Oct	208	321	220	1527	200	1543	15		50					6.2	4.9	75	7.3	8.9
20-Oct	207	141	200	1551	220	1605	15		50					4.8	5.5	75	6.1	9.3
20-Oct	206	321	220	1612	200	1628	15		50					5.1	5.1	75	9.1	8.7
20-Oct	205	141	200	1633	180	1646	15		50					5.5	5.4	75	9.0	8.8
20-Oct	204	321	220	1652	200	1709	15		50					4.6	5.4	75	7.6	8.6
20-Oct	203	141	200	1714	220	1727	15		50					5.9	4.9	75	9.0	7.9
20-Oct	202	321	220	1732	200	1750	15		50		Possible SSS contact.			4.8	6.0	75	8.3	9.5
20-Oct	101	51	120	1800	100	1813	15		50		Boomer re-shoot			6.2	5.2	75	9.8	7.6
20-Oct	104	231	100	1819	120		15		50		G&G with SSS.			4.9	5.9	75	8.1	9.0
20-Oct	201	141	200	1900	220	1913	15		50		Tie line, boomer interference with mag.			5.7	5.5	75	7.5	8.6

Client: Bluewater Wind	Project No.: 3671.004	Page: 2 of 5	
Surveyor: PN, MB, RD, HT	Vessel: Samantha Miller	Date: October 21, 2009	
Client Rep: n/a	Location: Offshore Delaware	Devices: SBP, SSS, MAG, Chirp	

Survey Date	No.	Heading	Fii Shot	Point	Shot	ast t Point	Laybac	k SSS	Laybad	ckMag	Remarks	Bottom No.	Sub Bottom CD	altitude . (m)	Mag altitude EOL (m)	SSS Range (m)	Side scan sonar altitude SOL (m)	Side scan sonar altitude EOL (m)
Surv	Line No.	Hea	Event No.	Time (UTC)	Event No.	(UTC)	Cable Out (M)	Time	Cable Out (M)	Time		Sub Roll	Sub	Mag	Mag EOL	SSS	Side altitu (m)	Side altitu (m)
21-Oct	110	51	120	1327	100	1341					Boomer/Chirp lines							
21-Oct	116	231	100	1347	120	1401					Boomer/Chirp lines							
21-Oct	122	51	121	1406	141	1420					Boomer/Chirp lines							
21-Oct	128	231	100	1424	120	1438					Boomer/Chirp lines							
21-Oct	134	51	120	1442	100	1456					Boomer/Chirp lines							
21-Oct	140	231	100	1501	120	1515					Boomer/Chirp lines							
21-Oct	161	51	-	1548	-	1600	15		55		MBES, Mag, SSS, Chirp			6.9	9.4	75	10.3	11.8
21-Oct	157	231	-	1604		1618	15		60		MBES, Mag, SSS, Chirp			6.8	5.2	75	10.5	9.8
21-Oct	153	51	-	1621	-	1633	15		60		MBES, Mag, SSS, Chirp			4.2	6.7	75	10.3	11.0
21-Oct	150	231	-	1637	-	1651	15		60		MBES, Mag, SSS, Chirp			4.9	4.4	75	9.5	8.6
21-Oct	147	51	-	1655	-	1707	15		60		MBES, Mag, SSS, Chirp			4.4	4.8	75	8.6	9.1
21-Oct	144	231	-	1720	-	1734	15		65		MBES, Mag, SSS, Chirp			4.0	4.5	75	7.6	8.1
21-Oct	141	51	-	1737	-	11750			55		MBES, Mag, SSS, Chirp			4.6	3.5	75	6.8	6.7
21-Oct	145	231	-	1753	-	1806	15		50		MBES, Mag, SSS, Chirp			4.7	5.3	75	7.6	8.3
21-Oct	148	51	-	1827	-	1840	10		48		MBES, Mag, SSS, Chirp			6.0	6.7	75	8.1	8.5
21-Oct	151	231	-	1843	-	1857	10		48		MBES, Mag, SSS, Chirp			7.1	5.9	75	9.1	8.6
21-Oct	154	51	-	1901	-	1913	10		48		MBES, Mag, SSS, Chirp			6.4	8.6	75	10.8	10.6
			-		-													
			-															

Client: Bluewater Wind	Project No.: 3671.004	Page: 3 of 5
Surveyor: PN, MB, RD, HT	Vessel: Samantha Miller	Date: October 22, 2009
Client Rep: n/a	Location: Offshore Delaware	Devices: SBP, SSS, MAG, Chirp

Date		ğ	Fir Shot			ast Point	Layback	< SSS	Laybac	:kMag	Remarks	Bottom Roll	Bottom CD	altitude (m)	altitude (m)	Range (m)	scan sonar de SOL (m)	Side scan sonar altitude EOL (m)
Survey	Line No.	Heading	Event No.	(UTC)	Event No.		Cable Out (M)	Time	Cable Out (M)	Time		Sub Bc No.	Sub Bc	Mag altit SOL (m)	Mag ali EOL (m	SSS	Side sca altitude	Side sc altitude
22-Oct	116	231	-	1305	-	1318	10		55		MBES, Mag, SSS, Chirp			4.0	5.5	75	9.3	9.5
22-Oct	119	51	-	1322	-	1335	10		45		MBES, Mag, SSS, Chirp			5.3	5.1	75	8.8	9.1
22-Oct	122	231	-	1338	-	1352	10		45		MBES, Mag, SSS, Chirp			4.0	4.8	75	8.3	8.6
22-Oct	125	51	-	1355	-	1407	10		45		MBES, Mag, SSS, Chirp			4.8	5.4	75	7.6	8.6
22-Oct	128	231	-	1411	-	1425	10		45		MBES, Mag, SSS, Chirp			4.0	4.1	75	8.3	8.5
22-Oct	131	51	-	1428	-	1440	10		45		MBES, Mag, SSS, Chirp			4.9	5.5	75	8.4	8.6
22-Oct	135	231	-	1444	-	1458	10		45		MBES, Mag, SSS, Chirp			3.7	5.3	75	8.1	9.5
22-Oct	138	51	-	1512	-	1525	15		45		MBES, Mag, SSS, Chirp			4.3	4.6	75	7.8	7.5
22-Oct	142	231	-	1529	-	1543	15		45		MBES, Mag, SSS, Chirp			3.5	4.8	75	7.5	8.3
22-Oct	146	51	-	1546	-	1559	15		45		MBES, Mag, SSS, Chirp			5.3	5.5	75	8.5	9
22-Oct	149	231	-	1602	-	1617	15		45		MBES, Mag, SSS, Chirp			5.7	4.6	75	8.6	7.6
22-Oct	143	51	-	1619	-	1631	15		45		MBES, Mag, SSS, Chirp			5.2	4.5	75	8	8
22-Oct	140	231	-	1633	-	1649	15		45		MBES, Mag, SSS, Chirp			3.5	4.6	75	7.3	6.7
22-Oct	136	51	-	1659	-	1711	15		45		MBES, Mag, SSS, Chirp			5.7	4.8	75	6.6	7.3
22-Oct	132	231	-	1713	-	1729	15		45		MBES, Mag, SSS, Chirp			4.1	4.3	75	6.1	6.4
22-Oct	127	51	-	1732	-	1744	15		45		MBES, Mag, SSS, Chirp			4.0	5.7	75	7.2	7.6
22-Oct	123	231	-	1746	-	1803	15		45		MBES, Mag, SSS, Chirp			3.9	4.6	75	6.5	6.5
22-Oct	117	51	-	1805	-	1819	15		45		MBES, Mag, SSS, Chirp			5.4	4.4	75	7.3	6.7
22-Oct	121	231	-	1822	-	1841	15		45		MBES, Mag, SSS, Chirp			4.1	4.6	75	6.8	5.7
22-Oct	126	51	-	1845	-	1855	15		45		MBES, Mag, SSS, Chirp			4.1	3.6	75	6.7	6.7
22-Oct			-		-													
22-Oct			-		-													
22-Oct			-		-													
22-Oct			-		-													
22-Oct			-		-													
22-Oct			-		-													
22-Oct			-		-													

FIGURE A-5c

Client: Bluewater Wind	Project No.: 3671.004	Page: 4 of 5
Surveyor: PN, MB, RD, HT	Vessel: Samantha Miller	Date: October 30, 2009
Client Rep: n/a	Location: Offshore Delaware	Devices: SBP, SSS, MAG, Chirp

Survey Date	No.	ding	Shot		Shot	ast Point	Laybac	k SSS	Laybac	kMag	Remarks	Sub Bottom Roll No.	Sub Bottom CD	Mag altitude SOL (m)	Mag altitude EOL (m)	Range (m)	Side scan sonar altitude SOL (m)	Side scan sonar altitude EOL (m)
Surv	Line No.	Heading	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time		Sub Roll	Sub	Mag SOL	Mag EOL	SSS	Side altitu (m)	Side altitu (m)
30-Oct	101	231	-	1749	-	1801	15		20		MBES, Mag,Chirp			11.2	13.3			
30-Oct	106	51	-	1805	-	1819	15		20		MBES, Mag, SSS, Chirp			11.6	9.7	75	8.5	8.0
30-Oct	111	231	-	1823	-	1833	15		20		MBES, Mag, SSS, Chirp			10.0	11.4	75	9.1	9.8
30-Oct	104	51	-	1839	-	1853			20		MBES, Mag			12.8	10.5			
30-Oct	112	231	-	1856	-	1908	15		20		MBES, Mag, SSS, Chirp			10.5	11.5	75	8.6	9.8
30-Oct	107	51	-	1910	-	1923	15		20		MBES, Mag, SSS			11.9	9.9	75	9.0	8.8
30-Oct	102	231	-	1925	-	1936	15		20		MBES, Mag, SSS, Chirp			11.1	13.2	75	11.6	11.8
30-Oct	110	51	-	1940	-	1952	15		20		MBES, Mag, SSS			11.4	9.6	75	9.0	8.6
30-Oct	103	231	-	1955	-	2007	15		20		MBES, Mag, SSS, Chirp			11.0	12.9	75	11.8	11.8
30-Oct	113	51	-	2011	-	2023	15		20		MBES, Mag, SSS			10.5	9.7	75	9.8	8.6
30-Oct	105	231	-	2026	-	2037	15		20		MBES, Mag, SSS, Chirp			10.1	12.3	75	9.6	11.1
30-Oct	201	141	-	2046	-	2100			20		MBES, Mag			12.9	11.5			
30-Oct	204	321	-	2104	-	2114			20		MBES, Mag			11.7	12.5			

FIGURE A-5d

Client: Bluewater Wind	Project No.: 3671.004	Page: 5 of 5
Surveyor: PN, MB, RD, HT	Vessel: Samantha Miller	Date: November 1, 2009
Client Rep: n/a	Location: Offshore Delaware	Devices: SBP, SSS, MAG, Chirp

ey Date	No.	ling	Fi Shot	Point	Shot	ast Point	Laybac	k SSS	Laybac	kMag	Remarks	Sub Bottom Roll No.	Bottom CD	altitude (m)	altitude (m)	Range (m)	Side scan sonar altitude SOL (m)	Side scan sonar altitude EOL (m)
Survey	Line No.	Heading	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time		Sub I Roll 1	Sub I	Mag SOL	Mag EOL	SSS	Side sonal SOL	Side sonal EOL
1-Nov	108	231	100	1335	1346	120	15		30		MBES, Mag,Chirp, SSS			10.5	12.3	75	11.1	11.4
1-Nov	114	51	120	1349	1401	100	15		30		MBES, Mag, SSS, Chirp			10.4	9.8	75	8.5	9.1
1-Nov	109	231	100	1404	1413	120	15		30		MBES, Mag, SSS, Chirp			10.7	12.4	75	11.3	11.0
1-Nov	120	51	120	1416	1429	100	15		30		MBES, Mag, SSS, Chirp			9.7	9.3	75	8.3	7.6
1-Nov	115	231	100	1431	1441	120	15		30		MBES, Mag, SSS, Chirp			10	10.9	75	8.6	9.8
1-Nov	124	51	120	1445	1457	100	15		30		MBES, Mag, SSS, Chirp			9.6	8.9	75	6.1	7.7
1-Nov	118	231	100	1501	1511	120	15		30		MBES, Mag, SSS, Chirp			9.9	10.5	75	8.8	9.6
1-Nov	126	51	120	1514	1527	100	15		30		MBES, Mag, SSS, Chirp			9.1	9	75	7.7	7.0
1-Nov	137	231	100	1530	1540	120	15		30		MBES, Mag, SSS, Chirp			10	10.1	75	9.0	9.8
1-Nov	129	51	120	1544	1558	100	15		30		MBES, Mag, SSS, Chirp			8.9	9.1	75	8.3	7.8
1-Nov	133	231	100	1600	1610	120	15		30		MBES, Mag, SSS, Chirp			9.9	10.3	75	7.2	8.4
1-Nov	139	51	120	1614	1627	100	15		30		MBES, Mag, SSS, Chirp			9.1	8.7	75	6.8	6.7
1-Nov	130	231	100	1631	1641	120	15		30		MBES, Mag, SSS, Chirp			10		75	9.1	8.6
1-Nov	134	51	120	1644	1658	100	15		30		MBES, Mag, SSS, Chirp			10	9.4	75	6.8	7.2
1-Nov	152	231	100	1702	1712	120	15		30		MBES, Mag, SSS, Chirp			12.6	11.6	75	10.6	9.7
1-Nov	160	51	120	1715	1728	100	15		30		MBES, Mag, SSS, Chirp			11.2	13.4	75	11.3	11.0
1-Nov	155	231	100	1730	1740	120	15		30		MBES, Mag, SSS, Chirp			13.4	11.3	75	10.0	10.1
1-Nov	159	51	120	1743	1755	100	15		30		MBES, Mag, SSS, Chirp			11.9	13.7	75	11.0	11.1
1-Nov	156	231	100	1758	1807	120	15		30		MBES, Mag, SSS, Chirp			14.2	12	75	10.8	10.8
1-Nov	158	51	120	1811	1824	100	15		30		MBES, Mag, SSS, Chirp			11.6	13.7	75	10.8	11.1
1-Nov	213	321	220	1821	1840	200			30		MBES, Mag			13.7	11.5			
1-Nov	111	231	100	1844	1854	120					Chirp							
1-Nov	206	141	200	1921	1931	220			30		MBES, Mag			12.2	12.5			
1-Nov	207	231	220	1934	1945	200			30		MBES, Mag			12.3	11.7			
1-Nov	208	141	200	1947	1958	220			30		MBES, Mag			12.2	13.1			
1-Nov	210	231	220	2002		200			30		MBES, Mag			13.5	11.5			
1-Nov	138	51		2024					30		Mag			9.4	8.1			

Client: B	luewater	Wind					Project	No.: 3	3671.00	4		Page: 1	of	7			
Surveyor	: Kmorris						Vessel	: R/V C	hinook			Date: O	ctober	11, 20)10 (J[0284)	
Client Re	p: n/a						Locatio	n: Offs	hore De	elawar	e	Devices:	SSS,	MAG			
	•)L	EC)L	
Survey Date	e No.	Heading		First Shot Point	Event	Last Shot Point	Layback Cable	(SSS)	Layback Cable		Remarks		g Altitude	S Altitude	g Altitude	S Altitude	s Rng.
	Line	Hea	Event No.	Time (UTC)	No.	Time (UTC)	Out (M)	Time	Out (M)	Time			Mag	SSS	Mag	SSS	SSS
11-Oct-10		51	21	16:10:43	1	16:21:10	25m	SOL	25m	EOL	Reshoot Mag data		5.5	8.5	6	9	75m
	[500].504	231	1	16:26:14	21	16:41:19	25m	SOL	25m	EOL	Reshoot Mag data		5.1	8.1	4.7	7.7	75m
11-Oct-10		51	21	16:46:01	1	16:59:22	30m	SOL	30m	EOL	Reshoot Mag data		4.8	7.8	5.3	8.3	75m
	[500].512	231	1	17:01:59	21	17:14:27	33m	SOL	33m	EOL	Reshoot Mag data		5.5	8.5	4.8	7.8	75m
11-Oct-10		51	21	17:17:58	1	17:31:02	33m	SOL	33m	EOL	Reshoot Mag data		4.5	7.5	5.9	8.9	75m
11-Oct-10		231	1	17:33:59	21	17:47:36	33m	SOL	33m	EOL	Reshoot Mag data		5.8	8.8	4.5	7.5	75m
11-Oct-10		51	21	17:52:26	1	18:06:29	33m	SOL	33m	EOL	Reshoot Mag data		4.7	7.7	6	9	75m
11-Oct-10		231	1	18:09:37	21	18:24:19	33m	SOL	33m	EOL	Reshoot Mag data		5.9	8.9	5	8	75m
	[500].505	51	21	18:28:11	1	18:35:59	33m	SOL	33m	EOL	Reshoot Mag data		5	8	6	9	75m
	[500].1505		1	18:43:30	21	18:58:24	33m	SOL	33m	EOL	Reshoot Mag data		5.6	8.6	4.7	7.7	75m
	[500].502	51	21	19:07:07	1	19:19:45	33m	SOL	33m	EOL	Reshoot Mag data		4.8	7.8	6	9	75m
	[500].510	231	1	19:24:30	21	19:38:39	33m	SOL	33m	EOL	Reshoot Mag data		5.9	8.9	4.5	7.5	75m
	[500].506	51	21	19:40:04	1	19:53:15	33m	SOL	33m	EOL	Reshoot Mag data		4.5	7.5	6	9	75m
	[500].511	231	1	19:55:40	21	20:09:19	33m	SOL	33m	EOL	Reshoot Mag data		6	9	5.6	8.6	75m
11-Oct-10	[500].517	51	21	21:42:05	1	21:58:00	33m	SOL	33m	EOL	Reshoot Mag data	not valid	5.5	8.5	5.9	8.9	75m
								-									
			1		1												

Client: B	luewater	Wind					Project	No.: 3	3671.00	4		Page: 2	of	7			
Surveyor	: Kmorris						Vessel	R/V C	hinook			Date: O	ctober	12, 20)10 (J[D285)	
Client Re	p: n/a						Locatio	n: Offs	shore De	elawar	е	Devices:	SSS,	MAG			
									_					OL		DL	
Survey Date	Line No.	Heading	S Event	First Shot Point	Event	Last Shot Point	Layback Cable		Layback Cable		Remarks		Mag Altitude	S Altitude	Mag Altitude	S Altitude	s Rng.
			No.	Time (UTC)	No.	Time (UTC)	Out (M)	Time	Out (M)	Time			Maç	SSS	Mag	SSS	SSS
12-Oct-10	[500].513	231	21	20:42:15	1	20:58:04	27m	SOL	27m	EOL	Abort Mag Data ? \		6	9	5	9	75m
12-Oct-10	[500].518	51	1	21:01:04	21	21:14:08	27m	SOL	27m	EOL	Abort Mag Data ? \	Neather	5.5	9	6	9	75m

Client: B	luewater	Wind					Project	No.: 3	3671.00 [,]	4		Page: 3 of	7				
Surveyor	: Kmorris						Vessel:	R/V C	hinook			Date: October	14, 20)10 (JI	D287)		
Client Re	p: n/a						Locatio	n: Offs	hore De	elawar	e	Devices: SSS	, MAG				
			1		[S	OL	E	OL	
Survey Date	Line No.	Heading		First ot Point Time		Last ot Point Time	Laybac Cable		Laybac Cable	-	Remarks		Mag Altitude	SSS Altitude	Mag Altitude	SSS Altitude	SSS Rng.
		Не	nt	(UTC)	No.	(UTC)	Out (M)	Time	Out (M)	Time			Ma	SS	Ma	SS	SS
14-Oct-10	[500].506	51	1	12:27:41	21	12:41:17	27m	SOL	27m	EOL			5	7	6.3	8.42	75m
14-Oct-10	[500].500	231	21	12:43:16	1	12:55:31	27m	SOL	27m	EOL			6.2	8.2	5.4	7.52	75m
14-Oct-10 14-Oct-10	[500].507	51 231	1 21	12:58:15 13:15:22	21 1	13:11:59 13:27:37	27m 32m	SOL SOL	27m 32m	EOL EOL			4.8 5.8	6.8	6 4.5	8.12	75m
14-Oct-10 14-Oct-10	[500].501 [500] 508	<u>231</u> 51	1	13:30:49	21	13:43:38	32m 32m	SOL	32m	EOL			5.8 5.4	7.8 7.4	4.5 6.3	6.62 8.42	75m 75m
14-Oct-10	[500].500	231	21	13:46:06	1	13:57:20	32m	SOL	32m	EOL	Weather Sta	nd Down	6.2	8.2	6	8.12	75m
	[000].002						02	001	02				0.2	0.2	•		
			-														
3																	

Client: Blu	uewater W	ind					Project	No.: 3	3671.00	4		Page:	5 of	7		
Surveyor:	Kmorris						Vessel:	R/V C	hinook			Date:	Octob	ber 20	, 2010	(JD293)
Client Rep	o: n/a						Locatio	n: Offs	hore De	elawar	e	Devic	es: SS	SS, M/	٩G	
I I) DL	EC		
ey Date	No.	ding		First hot Point		Last Shot Point	Laybac	k SSS	Laybac	kMag	Remarks	Mag Altitude	Altitude	Altitude	Altitude	Rng.
Survey	Line No.	Heading	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time			SSS	Mag	SSS	SSS
20-Oct-10	[500].529	51	1	18:30:30	21	18:42:15	18m	SOL	18m	EOL		5.3	6.7	4.5	6.0	75m
20-Oct-10	[500].536	231	21	18:44:57	1	18:54:57	18m	SOL	18m	EOL		4.9	6.3	5.3	6.8	75m
20-Oct-10	[500].530	51	1	18:57:19	21	19:09:19	18m	SOL	18m	EOL		5.1	6.5	4.6	6.1	75m
20-Oct-10	[500].537	231	21	19:11:04	1	19:20:50	18m	SOL	18m	EOL		5.1	6.5	5.4	6.9	75m
20-Oct-10	[500].531	51	1	19:23:55	21	19:36:19	18m	SOL	18m	EOL		5.1	6.5	4.7	6.2	75m
20-Oct-10	[500].538	231	21	19:38:07	1	19:47:44	18m	SOL	18m	EOL		5.5	6.9	5.7	7.2	75m
20-Oct-10	[500].545	51	1	19:52:53	21	20:05:01	18m	SOL	18m	EOL		6	7.4	5	6.5	75m
20-Oct-10	[500].539	231	21	20:07:00	1	20:17:19	18m	SOL	18m	EOL		5.5	6.9	5.7	7.2	75m
20-Oct-10	[500].546	51	1	20:22:53	21	20:35:43	18m	SOL	18m	EOL		6.1	7.5	5	6.5	75m
20-Oct-10	[500].540	231	21	20:39:33	1	20:49:58	18m	SOL	18m	EOL		5.4	6.8	5.5	7.0	75m
20-Oct-10	[500].547	51	1	20:52:38	21	21:05:29	18m	SOL	18m	EOL		6	7.4	5.1	6.6	75m
20-Oct-10	[500].541	231	21	21:08:04	1	21:18:50	18m	SOL	18m	EOL		5.3	6.7	5.9	7.4	75m
20-Oct-10	[500].548	51	1	21:21:39	19	21:32:47	18m	SOL	18m	EOL	Abort Off line	5.9	7.3	5.6	7.1	75m
20-Oct-10	[500].542	231	21	21:40:03	1	21:51:03	18m	SOL	18m	EOL		5.3	6.7	6.2	7.7	75m
	[500].1548	51	1	21:53:19	21	22:05:46	18m	SOL	18m	EOL		6	7.4	4.9	6.4	75m
20-Oct-10	[500].543	231	21	22:08:28	17	22:10:57	18m	SOL	18m	EOL	Abort off line	5.6	7.0	5.5	7.0	75m
20-Oct-10	[500].1543	231	21	22:13:09	14	22:17:18	18m	SOL	18m	EOL	Abort Line	5.6	7.0	5.3	6.8	75m
;																

FIGURE A-5i

Client: Blu	uewater W	ind					Project	No.: 3	3671.00 [,]	4		Page: 4	l of	7			
Surveyor:	Kmorris						Vessel:	R/V C	hinook			Date: C)ctobe	er 20, 2	010 (.	JD293)
Client Rep	o: n/a						Locatio	n: Offs	hore De	elawar	e	Devices	: SSS	S. MAG	à		-
											-			OL) DL	
ey Date	No.	ding	Sho	First ot Point		Last Shot Point	Laybac	k SSS	Laybac	kMag	Remarks		Mag Altitude	Altitude	Altitude	Altitude	Rng.
Survey	Line	Heading	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time				SSS	Mag	SSS	SSS
20-Oct-10	[500].503	51	1	12:20:42	21	12:32:15	25m	SOL	25m	EOL	Abort SSS no Navi	gation	5.2	6.78	5	6.68	75m
20-Oct-10	[500].509	231	21	12:34:47	1	12:46:17	27m	SOL	27m	EOL			5.2	6.78	3.2	4.88	75m
20-Oct-10	[500].1503	51	1	12:48:54	21	13:00:25	27m	SOL	27m	EOL	Line 503 resho	ot	4	5.58	5.6	7.28	75m
20-Oct-10	[500].510	231	21	13:04:48	1	13:16:43	27m	SOL	27m	EOL			4.6	6.18	3.1	4.78	75m
20-Oct-10	[500].504	51	1	13:19:44	21	13:31:26	27m	SOL	27m	EOL			3.4	4.98	5.2	6.88	75m
20-Oct-10	[500].511	231	21	13:34:04	1	13:46:08	27m	SOL	27m	EOL			4.1	5.68	2.8	4.48	75m
20-Oct-10	[500].505	51	1	13:48:28	21	14:00:10	27m	SOL	27m	EOL			3.2	4.78	5	6.68	75m
20-Oct-10	[500].512	231	21	14:02:38	1	14:14:57	27m	SOL	27m	EOL			3	4.58	2.3	3.98	75m
20-Oct-10	[500].517	51	1	14:16:58	21	14:26:38	27m	SOL	27m	EOL			4	5.58	2.7	4.38	75m
20-Oct-10	[500].514	231	21	14:28:52	1	14:40:00	20m	SOL	20m	EOL			4.3	5.88	3.9	5.58	75m
20-Oct-10	[500].521	51	21	14:42:57	41	14:54:10	18m	SOL	18m	EOL			3.7	5.28	3.6	5.28	75m
20-Oct-10	[500].515	231	21	14:57:06	1	15:07:43	18m	SOL	18m	EOL			5.1	6.68	4.7	6.38	75m
20-Oct-10	[500].522	51	21	14:57:06	1	15:11:08	20m	SOL	20m	EOL	Abort No Nav	/	3	4.58	4	5.68	75m
20-Oct-10	[500].522	51	1	15:15:10	21	15:26:02	20m	SOL	20m	EOL			3.9	5.48	3	4.68	75m
20-Oct-10	[500].516	231	22	15:28:15	2	15:38:46	20m	SOL	20m	EOL			4.2	5.78	4.6	6.28	75m
20-Oct-10	[500].523	51	1	15:41:58	21	15:52:59	20m	SOL	20m	EOL			3.8	5.38	3	4.68	75m
20-Oct-10	[500].519	231	21	15:55:58	1	16:06:36	20m	SOL	20m	EOL			3.3	4.88	4.4	6.08	75m
20-Oct-10	[500].524	51	1	16:09:35	21	16:20:57	20m	SOL	20m	EOL			3.7	5.28	4.1	5.78	75m
20-Oct-10	[500].520	231	21	16:22:55	1	16:33:28	18m	SOL	18m	EOL			4.5	6.08	5.8	7.48	75m
20-Oct-10	[500].525	51	1	16:36:04	21	16:47:22	18m	SOL	18m	EOL			5	6.58	4.3	5.98	75m
20-Oct-10	[500].532	231	21	16:49:56	1	17:00:11	18m	SOL	18m	EOL			4.8	6.38	5.1	6.78	75m
20-Oct-10	[500].526	51	1	17:02:30	21	17:13:58	18m	SOL	18m	EOL			5.1	6.68	4.3	5.98	75m
20-Oct-10	[500].533	231	21	17:20:40	1	17:30:55	18m	SOL	18m	EOL			4.8	6.38	5.2	6.88	75m
20-Oct-10	[500].527	51	-1	17:35:41	-21	17:47:14	18m	SOL	18m	EOL			5.2	6.78	4.5	6.18	75m
20-Oct-10	[500].534	231	21	17:49:46	-1	18:00:21	18m	SOL	18m	EOL			4.8	6.38	5.6	7.28	75m
20-Oct-10	[500].528	51	1	18:03:43	21	18:15:17	18m	SOL	18m	EOL			5.1	6.68	4.6	6.28	75m
20-Oct-10	[500].535	231	21	18:17:44	1	18:27:44	18m	SOL	18m	EOL			5	6.58	5.1	6.78	75m

Client: Bl	uewater W	ind					Project	No.: 3	3671.00	4		Page: 6	of	7			
Surveyor:	PN, HT, R	D					Vessel:	Sama	intha Mi	ller		Date: Oc	tober 2	22, 200	9 (JD2	296)	
Client Rep	o: n/a						Locatio	n: Offs	shore De	elawar	е	Devices:	SSS, I	MAG			
·													S	OL	E	OL	
Survey Date	No.	Heading	Sho	First ot Point		Last not Point	Laybac	k SSS	Laybac	kMag	Remarks		Altitude	SSS Altitude	Mag Altitude	Altitude	Rng.
Surv	Line No.		Event No.	Time (UTC)	Eve nt	Time (UTC)	Cable Out (M)	Time	Cable Out (M)				Mag	SSS	Mag	SSS	SSS
23-Oct-10	[500].1543	231	21	11:54:44	1	12:10:12	27m	SOL	27m	EOL			3.6	5.35	4.3	6.05	75m
23-Oct-10	[500].549	51	1	12:12:52	21	12:23:50	25m	SOL	25m	EOL			6.1	7.85	5.1	6.85	75m
23-Oct-10	[500].555	231	21	12:27:05	1	12:41:32	25m	SOL	25m	EOL	Weather increa	asing	4.4	6.15	6.2	7.95	75m
23-Oct-10	[500].550	51	1	12:43:21	21	12:54:07	25m	SOL	25m	EOL			6.1	7.85	4.3	6.05	75m
23-Oct-10	[500].556	231	21	12:58:01	1	13:13:04	25m	SOL	25m	EOL			4.4	6.15	5.7	7.45	75m
23-Oct-10	[500].551	51	1	13:16:22	1	13:16:22	25m	SOL	25m	EOL	Abort		6.2	7.95	4.2	5.95	75m
23-Oct-10	[500].557	231	21	13:30:05	1	13:45:07	25m	SOL	25m	EOL			4.6	6.35	5.7	7.45	75m
23-Oct-10	[500].551	51	1	13:48:03	21	13:58:48	25m	SOL	25m	EOL			6.2	7.95	4.3	6.05	75m
23-Oct-10	[500].558	231	1	13:48:03	22	14:02:36	25m	SOL	25m	EOL	Abort		3	4.75	4	5.75	75m
23-Oct-10	[500].558	231	23	14:07:17	1	14:24:13	25m	SOL	25m	EOL			3	4.75	4	5.75	75m
23-Oct-10	[500].552	51	1	14:27:37	21	14:38:18	25m	SOL	25m	EOL			6	7.75	4.2	5.95	75m
ا لــــــــــــــــــــــــــــــــــــ																	

FIGURE A-5k

Client: Bl	luewater V	Wind					Project	No.: 3	3671.00	4		Page: 7 of	7				
Surveyor:	: Kmorris						Vessel:	R/V C	hinook			Date: Octobe	er 22, 2	2009 (JD307)	
Client Re	p: n/a						Locatio	n: Offs	hore De	elawar	е	Devices: SSS	5, MA	G			
· · · ·	•													OL	EC)L	
/ey Date	Line No.	Heading	Sho	First t Point	Sho	_ast ot Point	Laybac	k SSS	Laybac	kMag	Remarks		Jaltitude	S Altitude	Jaltitude	S Altitude	Bng.
Survey	Line	Hea	Event No.	Time (UTC)	Event No.	Time (UTC)	Cable Out (M)	Time	Cable Out (M)	Time			Mag	SSS	Mag	SSS	SSS
3 Nov 2010	[600].602	321	600	12:11:06	620	12:23:21	22m	SOL	22m	EOL			4.6	6.19	5.8	7.9	75m
3 Nov 2010		231	21	12:28:26	1	12:40:21	22m	SOL	22m	EOL			3.7	5.29	4.3	6.4	75m
3 Nov 2010	[500].553	51	1	12:43:28	21	12:54:59	22m	SOL	22m	EOL			6.2	7.79	4.2	6.3	75m
3 Nov 2010		231	21	12:58:22	1	13:10:03	22m	SOL	22m	EOL			4.9	6.49	6.9	9	75m
3 Nov 2010		51	1	13:12:24	21	13:23:40	22m	SOL	22m	EOL			5.9	7.49	4.3	6.4	75m
3 Nov 2010		231	22	13:26:10	42	13:38:02	22m	SOL	22m	EOL			4.9	6.49	6	8.1	75m
3 Nov 2010		141	620	13:43:59	600	13:54:23	22m	SOL	22m	EOL			4.8	6.39	6	8.1	75m
3 Nov 2010		321	600	14:00:46		14:14:40	22m	SOL	22m	EOL			5.1	6.69	5	7.1	75m
3 Nov 2010		141	620	14:17:24		14:21:08	22m	SOL	22m	EOL	Mag Fi		4.6	6.19	2.6	4.7	75m
3 Nov 2010		141.1	1	14:25:25	16	14:27:19	22m	SOL	22m	EOL	No SSS Ma	g Only	3.4	4.99	3.4	5.5	75m
3 Nov 2010	[700].703	321.1	15	14:29:23	-1	14:31:59	22m	SOL	22m	EOL	No SSS Ma		3.7	5.29	3.9	6	75m
3 Nov 2010			1	14:33:24	19	14:35:45	22m	SOL	22m	EOL	No SSS Ma		3	4.59	3.8	5.9	75m
3 Nov 2010	[700].702	321.1	17	14:38:11	-2	14:41:18	22m	SOL	22m	EOL	No SSS Ma		3.9	5.49	3.2	5.3	75m
3 Nov 2010	[700].705	141.1	1	14:42:55	17	14:45:01	22m	SOL	22m	EOL	No SSS Ma	g Only	3	4.59	3.2	5.3	75m
3 Nov 2010	[700].704	321.1	15	14:47:53	-1	14:50:30	22m	SOL	22m	EOL	No SSS Ma		3.5	5.09	2.9	5	75m
3 Nov 2010	[800].801	231.3	1	14:58:33	12	15:00:12	22m	SOL	22m	EOL	No SSS Ma	g Only	2.4	3.99	2.3	4.4	75m
3 Nov 2010	[800].802	51.3	12	15:01:51	2	15:03:20	22m	SOL	22m	EOL	No SSS Ma	g Only	2.6	4.19	2.2	4.3	75m
3																	

FIELD	LOG /	OBSE	RVER	S REPO	ORT					Page 1
Vessel: M	/V Samant	ha Miller						Client		Date
	Ster	m	Source Cent	er	Center Near		Center Far	BW	W	11 Oct, 2009
					Trace #1		Trace #32	Area and / or E	llock	
	,	↓						MMS BI	ock 632	25
		İ			. ↓		♦	Line number		
x	Nav. Ant.	← 15.5m	→ X ←	— 4.69 m	→x	- 71.88m -	→ X	see l	below	
		Stepback		Near Offset		Active Cable		Operator / Obs		
				Near Onset		Active Cable		Barth	erver	
-	— 9.5m—		4		. 80 81 m			Line Direction		
			1						below	
	Ant. Offset		Inchryppen		Far Offset			3661		
_	Γ_	I	Instrumer	1	I	·				
Source type	Source power	Preamp gain	Number	Plates	Source depth	Streamer Depth		Near Grou	p Layou	t
Boomer	600j	18 db	of	2	0.3 m	0.3m	Near TR No.	Near offset	4 0 0 0	
	Sample		Record L		No. of ch	annels	1		4.690	m.
Primary	0.25	ms.	500	ms.	32		Far TR No.	Far offset		
Secondary		ms.		ms.	¥	ip layouts	8		15.63	m.
Filte	r	Fil	ter	60 HZ	Notch	Other	Group Interval.	Shooting Interv		
Low	Slope	High	Slope				1.5625 m		1.56	
Out		Out		Ou	It			Far Group	Layout	
	Туре		Format		Tape Drives		Near TR No.	Near offset		
Instruments	Geo-Eel		SEG	Y(IBM)	Hard Disk	USB Disk	9		17.94	· m.
Navigation	Primary			Secondary			Far TR No.	Far offset		
System	Starfix-DG	SPS					32		89.81	m.
Boat speed		Navigation fix inte	rval				Group Interval.	Shooting Interv	ral	
~4.5	Knots				100m		3.125 m		1.56	m.
File	** S.P. (fix)	File	Speed	Cable depth			Remarks			
Name	Number	Number	Rep Rate	Meters	(Changes	in weather, sea	state, operator,	record delays	, problems	s, etc.)
					0530 Hrs:	Underway	from dock a	at Cape M	lay Hai	rbor
					0755 Hrs:	Deploy gea	ar, seas 1-2	ft, wind S	SE@ 5	kt
					0845 Hrs:	Gear deplo	yed			
17240.sgy	100	101	4.4/0.7		SOL	101	0921	HRS	HDG	231
17240.sgy		1117	4.4/0.7		EOL	101	0933	HRS		
						-		-		
107.sgy	119	107	3.3/0.88		SOL	107	0953	HRS	HDG	051
107.sgy	99	1438	3.3/0.88		EOL			HRS	_	
. er legy			0.0, 0.00							
113.sgy	100	113	4.4/0.7		SOL	113	1019	HRS	HDG	251
113.sgy	120	1371	4.4/0.7		EOL			HRS		
	0		, 611							
119.sgy	119	119	3.3/0.88		SOL	119	1041	HRS	HDG	051
119.sgy	99	1397	3.3/0.88		EOL			HRS	1100	
110.3gy		1001	0.0/0.00			110	101			
125.sgy	100	125	4.4/0.7		SOL	125	1100	HRS	HDG	251
125.sgy 125.sgy	120	125	4.4/0.7		EOL			HRS	UDG	201
120.5yy	120	1391	4.4/0.7			120	1124			
101	440	404	2 2/0 00		001	101	4400			051
131.sgy	119	131	3.3/0.88		SOL			HRS	HDG	ICU
131.sgy	99	1468	3.3/0.88		EOL	131	1150	HRS		
407	400	407	4 0/0 70			407	4460		1150	054
137.sgy	100	137	4.3/0.72		SOL			HRS	HDG	251
137.sgy	120	1392	4.3/0.72		EOL	137	1212	HRS		
143.sgy	119	143	3.2/0.92		SOL			HRS	HDG	051
143.sgy	99	1423	3.2/0.92		EOL	143	1239	HRS		
					Continue	d on Page	2			

Fugro Atlantic

FIELD	LUG /	OB2F	RVER	S REP	<u>JRI</u>					Page 2
	Date	Area and / or Blo		Operator / Observ	ver	Line number		Line Directio		
BWW	11 Oct 09	MMS Blog	ck 6325	Barth		see below		see k	below	
File	** S.P. (fix)	File	Speed	Cable depth			Remarks			
Name	Number	Number	Rep Rate	Meters		nges in weather, sea				
149.sgy	100	149	4.5/0.68		SOL			HRS	HDG	251
149.sgy	120	1367	4.5/0.68		EOL	149	1258	HRS		
155.sgy	119	155	3.3/0.92		SOL		1304	HRS	HDG	051
155.sgy		419	3.3/0.92		End 155.s					
420.sgy		420	3.3/0.92		Start 420.s	gy				
420.sgy		667	3.3/0.92		End 420.s	ду				
668.sgy		668	3.3/0.92		Start 668.s	gy				
155.sgy	99	1427	3.3/0.92		EOL	155	1323	HRS		
161.sgy	100	161	3.3/0.92		SOL	161	1328	HRS	HDG	251
161.sgy	120		3.3/0.92		EOL	161	1341	HRS		
					Note: Line	161 shot at i	ncorrect s	speed (t	oo slow)	
								. (/	
158.sgy	119	158	3.5/0.88		SOL	158	1347	HRS	HDG	051
158.sgy	99	1468	3.5/0.88		EOL		1406		_	
152.sgy	100	152	4.4/0.70		SOL	152	1411	HRS	HDG	251
152.sgy	120	1376	4.4/0.70		EOL		1426			201
102.099	120	1010	1. 1/ 0. / 0		202	102	1120	111.0		
146.sgy	119	146	3.6/0.85		SOL	146	1432	HRS	HDG	051
146.sgy	99	1523	3.6/0.85		EOL		1451		TIDO	001
140.Syy	33	1525	3.0/0.03		LOL	140	1431	1113		
					1455 Hre	Retrieve gea	or.			
						Gear aboard				
						Underway to		0.1		
						Arrive at Ca			vr dov	
						Annve al Ca	pe may, s		n uay	
	ļ	L			ļ					

FIELD	LOG /	OBSE	RVER	S REP	ORT					Page 1
Vessel: M	/V Samant	ha Miller						Client		Date
	Ster	'n	Source Cent	ter	Center Near		Center Far	BW	W	20 Oct, 2009
					Trace #1		Trace #32	Area and / or E	Block	
								MMS BI	ock 63	25
		ľ	↓		. ↓		. ↓	Line number		
×	Nav. Ant.	← 15.5m	> x ←	— 6.25m	→x	- 85 13m -	→ x	see l	below	,
× *	Nut An.	Stepback		Near Offset		Active Cable	Î	Operator / Obs		
				Near Onset		Active Cable		Barth	Server	
-	— 9.5m—				91.38m			Line Direction		
'									below	,
	Ant. Offset		les a faire and a s		Far Offset			5ee 1	Jeiow	
			Instrumer	1				<u> </u>		
Source type	Source power	Preamp gain	Number	Plates	Source depth	Streamer Depth		Near Grou	p Layou	t
Boomer	800j	18 db	of	2	0.3 m	0.3m	Near TR No.	Near offset	0.050	
	Sample		Record L		No. of ch	annels	1		6.250) m.
Primary	0.25	ms.	500	ms.	32	<u> </u>	Far TR No.	Far offset		
Secondary		ms.		ms.	See grou	ip layouts	8		17.19) m.
Filte	er	Fil	ter	60 HZ	Notch	Other	Group Interval.	Shooting Interv		
Low	Slope	High	Slope				1.5625 m		1.56	
Out		Out		Ou	It			Far Group	b Layout	
Recording	Туре		Format		Tape Drives		Near TR No.	Near offset		
Instruments	Geo-Eel		SEG	Y(IBM)	Hard Disk	USB Disk	9		18.69) m.
Navigation	Primary			Secondary			Far TR No.	Far offset		
System	Starfix-DG	iPS					32		91.38	8 m.
Boat speed	-	Navigation fix inte	rval	-			Group Interval.	Shooting Interv	/al	
~4.5	Knots				100m		3.125 m		1.56	im.
File	** S.P. (fix)	File	Speed	Cable depth			Remarks	•		
Name	Number	Number	Rep Rate	Meters	(Changes	in weather, sea	state, operator,	record delays	, problems	s, etc.)
					0600Hrs:	Jnderway f	rom dock a	t Cape M	av Har	bor
						,	ar, seas 2-3		2	
						Gear deplo		,		
					Note: Cha	inge of Off	sets/Powe	r since 1	1 Octo	ber
213.sgy	200	213	4.2/0.73		SOL			HRS	HDG	
213.sgy	220	1465	4.2/0.73		EOL			HRS	_	
212.sgy	220	212	4.6/0.68		SOL	212	1005	HRS	HDG	321
212.sgy	200	1497	4.6/0.68	1		212		HRS		~
2.2.3gy	200	1401	1.5/ 0.00				1013			
211.sgy	200	211	4.1/0.76		SOL	211	1026	HRS	HDG	141
211.sgy 211.sgy	200	1481	4.1/0.76		EOL			HRS	100	171
211.3yy	220		+. 1/0.70			<u> </u>	1042	1110		
210.sgy	220	210	4.4/0.70	}	SOL	210	10/0	HRS	HDG	321
210.sgy 210.sgy	220	1489	4.4/0.70		EOL			HRS	нDG	521
∠10.59y	200	1409	4.4/0.70			210	1102			
200	200	200	4 0/0 70			200	4400	ПРС		1 1 1
209.sgy	200	209	4.2/0.73		SOL			HRS	HDG	141
209.sgy	220	1457	4.2/0.73	ļ	EOL	209	1122	HRS		
000	000	000				000	4 4 6 -		115.0	004
208.sgy	220	208	4.2/0.74		SOL			HRS	HDG	321
208.sgy	200	1518	4.2/0.74		EOL	208	1144	HRS		
207.sgy	200	207	4.2/0.73		SOL			HRS	HDG	141
207.sgy	220	1410	4.2/0.73		EOL	207	1206	HRS		
206.sgy	220	206	3.9/0.78		SOL	206	1212	HRS	HDG	321
206.sgy	200	1514	3.9/0.78		EOL			HRS		
				Ì		d on Page				
	1		1			-3*				

Fugro Atlantic

FIELD	LOG /	OBSE	RVER	S REP	JRT					Page 2
Client	Date	Area and / or Blo		Operator / Observ	ver	Line number		Line Direction		
BWW	20 Oct 09	MMS Blog	ck 6325	Barth		see belov	V	see	below	
File	** S.P. (fix)	File	Speed	Cable depth			Remarks			
Name	Number	Number	Rep Rate	Meters		inges in weather, sea				
205.sgy	200	205	4.4/0.70		SOL			HRS	HDG	141
205.sgy	180	1375	4.4/0.70		EOL		1247	HRS		
						EOL = 4.8 kt				
204.sgy	220	204	3.7/0.82		SOL			HRS	HDG	321
204.sgy	200	1504	3.7/0.82		EOL	204	1310	HRS		
			4.0/0.05		0.01		4044			
203.sgy	200	203	4.8/0.65		SOL			HRS	HDG	141
203.sgy	220	1407	4.8/0.65		EOL	203	1327	HRS		
202	220	202	2 5/0 07			202	1000			204
202.sgy	220	202	3.5/0.87		SOL			HRS	HDG	321
202.sgy	200	1481	3.5/0.87		EOL	202	1351	HRS		
101.sgy	120	101	4.6/0.67		<u></u>	101A	1400	HRS	HDG	051
	120	1302				101A 101A		HRS	HDG	051
101.sgy	100	1302	4.6/0.67		EUL	IUIA	1414	1117.0		
104.sgy	100	104	3.4/0.89		SOL	104	1/20	HRS	HDG	221
104.sgy	120	1324	3.4/0.89		EOL			HRS	100	201
10 4 .5yy	120	1324	5.4/0.09		EUL	104	1400	1113		
201.sgy	200	201	4.2/0.74		SOL	201	1500	HRS	HDG	141
201.sgy	200	1309	4.2/0.74		EOL			HRS	TIDO	141
201.0gy	220	1000	4.2/0.14		202	201	1010	1110		
					1516 Hrs [.]	Retrieve Gea	ar			
						Equipment at				
						Arrive at Doc		Mav		
	1				h					
	1									
	1									
				İ						

FIELD	NV Samantha Miller Source Center Center Near Center Far Nev. Ant. 15.5m X 6.25m X 85.13m X Nev. Ant. 15.5m X 6.25m X 85.13m X Source depth Near Offset Ant. Offset Near Offset Active Cable See below Operator / Observer Barth Source opwer Preamp gain Number Pates Source depth O.3 m 0.3m Near Offset Near Offset Source opwer Preamp gain Number Pates Source depth Near TR No. Near Offset See below Source opwer Preamp gain Number Pates Source depth 0.3m 0.3m Near TR No. Near Offset 6.25f 0.25 ms. 500 ms. 32 Far TR No. Far Offset 1.6255 m 1.7.16 ter Filter 60 HZ Notch Other Group Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval. Shooting Interval.			Page 1						
Vessel: M	/V Samant	ha Miller						Client		Date
	Stern Source Center Center Near Center Far Trace #1 Trace #1 Trace #1 Trace #1 Anv. Ant. 15.5m 4.6.25m X.4.85.13m X.4.85.13m Ant. Offset Near Offset Active Cable Barth 9.5m 91.38m 91.38m MMS Bloc Ant. Offset Far Offset Active Cable Barth 0.95m 18 db of 2 0.3 m Nair TR No. Near Group L Source power Preamp gain Number Pates Source depth Streamer Depth Near Group L Source power Preamp gain No. Streamer Depth Near Group L 0.25 ms. 500 ms. 32 Far TR No. Near Offset 1 Stope Component Far Group La Stocting Interval 1 Stope Component Stope Component Far Group La 1 Yre Format Tape Drives Near offset 3 Geo-Eel SEG Y(IBM) Hard Disk/ USB Disk 9 1 1 Primary Secondary Far TR No. Far offset 3 Number Number Near Offset 32 Stope Interval 3 Secondary			21 Oct, 2009						
					Trace #1		Trace #32	Area and / or Bloc	k	
	,							MMS Bloc	k 632	25
		Ī	¥		₩		♦	Line number		
< x	Nav. Ant.	← 15.5m	→ X ←	— 6.25m	→x	- 85.13m -	→ X	see be	low	
		Stepback								
		<u>.</u>						•		
•	— 9.5m—	•	•		91.38m		→	Line Direction		
	Ant. Offset		'		Far Offset			see be	low	
			Instrume	ntation						
Source type	Source power	Preamp gain			Source depth	Streamer Depth		Near Group L	avout	1
Boomer	-						Near TR No.			
	· · · ·		-	enath					6.250	m.
Primary				0			Far TR No.			
Secondary				1			4		17.19	m.
Filte	er	-	ter	-	¥	r				
Low								-	1.56	m.
Out		Ĵ.	Cicho	Ou	t					
Q 1.1			Format				Near TR No.			
				Y(IBM)		USB Disk			18.69	m.
			010	, ,		002 2101				
System		iPS		coconally					91.38	m.
Boat speed	••••••		rval							
	Knots	i ta rigation include			100m			one change interval	1.56	m
File		File	Sneed	Cable depth	100111					
Name	. ,				(Changes	in weather, sea		record delays, pr	oblems	. etc.)
								-, -		
								r since 11	Octo	ber
110.sgy	120	110	4.2/0.73	1	SOL	110	0928	HRS F	IDG	051
110.sgy	100	1263	4.2/0.73	1	EOL	110	0942	HRS		
116.sgy	100	116	4.2/0.73		SOL	116	0948	HRS F	IDG	231
116.sgy		1260								
122.sgy	120	122	4.4/0.70				1006	HRS H	IDG	051
122.sgy	100	1301	4.4/0.70		EOL	122	1020	HRS		
128.sgy	100	128	4.5/0.69		SOL		1025	HRS H	IDG	231
128.sgy	120	1329	4.5/0.69		EOL	128	1038	HRS		
134.sgy	120	134	4.6/0.67		SOL				IDG	051
134.sgy	100	1339	4.6/0.67		EOL	134	1056	HRS		
140.sgy	100	140	4.4/0.70		SOL				IDG	231
140.sgy	120	1347	4.4/0.70		EOL	140	1115	HRS		
								Retrieve Ge	ar	
					Start Multi	beam/Side	scan/Mag s	urvey		

APPENDIX B GEOPHYSICAL MAPPING PROCEDURES

APPENDIX B - GEOPHYSICAL MAPPING PROCEDURES

CONTENTS

GEOPHYSICAL MAPPING PROCEDURES	1
Introduction	1
Data Sets	1
2D Seismic Data	1
Multibeam Echosounder	2
Side Scan Sonar - Original, Fall 2009 Data Collection	2
Side Scan Sonar - Supplemental, Fall 2010 Data Collection	2
Magnetometer	2
Chirp Sub-Bottom Profiler	3
Velocity Data	3
Water Column	3
Sediment Column	3
Charts and Figures	3
Navigation Post-Plot Chart (Chart 1 and Chart 2)	3
Bathymetry Chart (Chart 3)	3
Side Scan Sonar Mosaic Chart (Chart 4)	4
Magnetic Anomalies (Chart 5)	4
Isopach Charts, Unit 1 (Chart 6 and Figure 27) and	
Unit 2 (Chart 7 and Figure 28)	5
Event Structure Charts, Event 10 (Chart 8 and Figure 29) and	
Event 20 (Chart 9 and Figure 30)	5
Site Features Chart (Chart 10 and Figure 31)	5

ILLUSTRATIONS

Figure

1.56-mgi Hydrophone Streamer Power Spectrum Chart	B-1a
3.125-mgi Hydrophone Streamer Power Spectrum Chart	B-1b

Page

GEOPHYSICAL MAPPING PROCEDURES

INTRODUCTION

This appendix provides background information on the data analysis techniques and mapping procedures used in producing figures accompanying this report. The charts and data examples presented in this report reflect the interpretation of two-dimensional (2D) high-resolution seismic and bottom-charting data acquired for this project. Identification of all geologic features and stratigraphic variations is limited by the resolution of the available data.

DATA SETS

2D Seismic Data

The 2D seismic data were loaded onto a PC-based Seismic Micro-Technology (SMT) workstation where it was interpreted using the SMT Kingdom Suite 2D/3D Pak software module. The seismic data used for this study contains 0.25-millisecond sample rate data between 0.000 and 0.250 seconds two-way travel time (TWT), and 0.000 and 0.500 seconds TWT below sea surface (BSS) for the 1.56-meter group interval (mgi) and 3.125-mgi streamers, respectively.

The seismic wavelet follows the North American polarity convention and exhibits zerophase characteristics based on analysis of the seafloor reflector and impedance contrasts at Halcrow/HPA boring location B-102. The frequency content of the 2D seismic data was assessed by analyzing acoustic frequency spectra generated using the TracePak module of the SMT Kingdom Suite software package (Figures B-1a and B-1b). The spectra are generated for specified TWT time ranges within areas specified by primary and crossline ranges. Within the TWT window analyzed, the spectral analysis determines the frequency bandwidth of the specified data subset for acoustic frequencies between 0 hertz (Hz) and the Nyquist Frequency. The frequency spectra of the seismic data were analyzed between 0.0 and 0.150 seconds TWT for the 1.56-mgi streamer and 0.0 and 0.480 seconds TWT for the 3.125-mgi streamer.

The dominant frequency range in the shallow section is approximately 143 Hz for the 1.56-mgi streamer, and between 88 Hz to 215 Hz for the 3.125-mgi streamer. The dominant frequency can be used to calculate the characteristic "limit of separability" for the seismic data volume. The limit of separability, which is a function of vertical resolution, is defined as the minimum bed thickness for which the top and bottom of the bed can be fully resolved in the seismic data, and is based on the one-quarter acoustic wavelength approximation. Based on the dominant frequency, the limit of separability is about 8 feet for the 1.56-mgi streamer and 5 to 14 feet for the 3.125-mgi streamer, assuming an average velocity of approximately 5,000 feet per second (ft/s) in the shallow section. Individual strata or other geologic features thinner than the limit of separability, which varies locally, may be detected but not resolved in true thickness or lateral extent. Small-scale topographic features and man-made obstructions such as pipelines, shipwrecks, and seafloor debris cannot be resolved in this data set.

Multibeam Echosounder

- System: Reson SeaBat 8101
- Operating Frequency: 240 kHz
- Swath coverage: 45 meters
- Processed using the Caris HIPS/SIPS processing Suite 6.1
- Estimated vertical accuracy: 15 cm
- Data was processed at a 1-meter grid spacing

Side Scan Sonar - Original, Fall 2009 Data Collection

- System: Edgetech 272-TD Side Scan Sonar
- Operating Frequency: 100 and 500 kHz
- Range: towed at an altitude between 10% and 20% of the range and provided full coverage
- Processed using SonarWiz Side Scan Sonar
- Side Scan Sonar Mosaic processed at a 0.5-meter bin spacing (high-resolution, georeferenced individual swath lines at 0.25-meter bin spacing)

Side Scan Sonar - Supplemental, Fall 2010 Data Collection

- Klein System 3000 Dual frequency Digital Towfish
- Operating Frequency: 100 and 500 kHz
- Range: towed at an altitude between 10% and 20% of the range and provided full coverage
- Side Scan Sonar was acquired with SonarPro, a product of L-3 Communications Klein Associates Inc.
- Processed using Chesapeake Technology's SonarWiz
- Side Scan Sonar Mosaic processed at a 0.25-meter bin spacing (high-resolution, georeferenced individual swath lines at 0.25-meter bin spacing)

Magnetometer

- System: Marine Magnetic Corporation SeaSPY
- Operating Frequency: 2Hz
- Absolute accuracy: 0.2ηT
- Counter sensitivity: 0.001ηT
- Processed using Chesapeake Technology's SonarWiz

Chirp Sub-Bottom Profiler

- System: Integrated Edgetech Full Spectrum Chirp Sub-Bottom Profiler
- Operating Frequency: 2 to 15 kHz
- Depth of penetration: up to 200 feet
- Estimated vertical resolution: 4 inches (10 cm)
- SEG-Y data loaded into SMT Kingdom Suite for interpretation

VELOCITY DATA

Water Column

An Applied Microsystems Limited (AML) PA-10 sound velocity and pressure smart sensor profiler was used to conduct the sounding casts. The sensor records the sound velocity in meters per second (m/sec) while being deployed downward through the water column at a rate of 10 scans per second. The data are recorded using Hyper Terminal text acquisition, and then incorporated into Caris HIPS/SIPS during processing of the multibeam data.

Sediment Column

P-wave velocity profiles were estimated from the seismic data during processing stage using semblance picking. P-wave values did not significantly vary spatially across the site. Additionally, the P-wave velocity did not vary significantly with depth for the interval that was stratigraphically mapped. This is further supported by the similar amplitude reflections observed in the seismic records when viewed at true amplitudes (all seismic data were processed without using autogain and are considered to be true amplitudes). An average P-wave velocity of 5,000 ft/sec was judged to be reasonable for converting seismic data from time to depth.

CHARTS AND FIGURES

Navigation Post-Plot Chart (Chart 1 and Chart 2)

The Navigation Post-Plot Chart for the geological and geophysical (G&G) and marine archeology surveys shows vessel navigation tracklines for the GPS antenna position. Chart 1 shows the archeology tracklines. Chart 2 shows the G&G (seismic reflection) tracklines and regional seismic tracklines (OSI, 2006). The original, fall 2009 survey post-plot is shown on Chart 1a. The supplemental, fall 2010 survey post-plot is shown on Chart 1b. The tracklines are labeled with line numbers and indicated vessel heading. Navigation event fixes are displayed and labeled every 100 meters. The charts are provided at scales of 1:6,000 with the corresponding figures (Figure 4 and 5) at scales of 1:12,000.

Bathymetry Chart (Chart 3)

Bathymetry Chart 3 and Figure 6 illustrate water depths (expressed in feet below mean lower low water [MLLW]) at scales of 1:6,000 and 1:12,000, respectively. Multibeam echosounder data were binned at 1-meter bins. The data was gridded and contoured using

ESRI's ArcMap v9.3 3D Analyst software. Water depth contours in Chart 3 and Figure 6 are presented at 1-foot intervals within the multibeam survey area and at 5-foot intervals outside the surveyed area. Figure 7 presents a three-dimensional (3D) rendering of the seafloor within the survey area. Water depth data and discussion of seafloor conditions within the survey area are based on Fugro's 2009 multibeam survey data.

We augment the 2009 multibeam survey data with regional data from two sources. The regional bathymetric data are shown on Figure 3 as contours outside the survey area in Figure 6 and Chart 3. The regional bathymetry data are from a compilation of data from National Oceanographic Atmospheric Agency (NOAA) and the New Jersey Department of Environmental Protection (NJDEP). NOAA data are comprised of multibeam data acquired between 2002 and 2004 and are located at least 3 nautical miles (Nm) landward from the survey area. The NJDEP dataset (NJDEP, 2007) is comprised of a compilation of soundings located tens to hundreds of feet apart, and spans several decades.

Side Scan Sonar Mosaic Chart (Chart 4)

The seafloor side scan sonar mosaic (Chart 4 and Figure 9) was constructed after reviewing all side scan sonar lines acquired during the surveys. Chart 4a and Figure 9a provide the mosaic from the fall 2009 original data collection. Chart 4b and Figure 9b provide the mosaic from the supplemental fall 2010 data collection.

Lines were tiled together to form a single seafloor image over the entire study area and a mosaic was processed at a 0.5-meter bin spacing. The data display good resolution and are free from distortion and interference. In general, the mosaic shows a seafloor of relatively uniform reflectivity. Minor variations in reflectivity are documented by the seafloor grab samples to indicate slight variations in the grain size of the seafloor sediment.

The seafloor features identified from the side scan sonar mosaic were digitized and exported from Chesapeake Technology's SonarWiz final map presentation shown on Chart 4 and Figure 9. The final Side Scan Sonar Mosaic Chart was generated in ArcMap v9.3 and is presented at a scale of 1:6,000 (Chart 4) and 1:12,000 (Figure 9). Detailed images of the side scan sonar targets were exported and are presented on Figure 10.

Magnetic Anomalies (Chart 5)

A graphical chart was produced for every survey line (Chart 1) and individual anomalies were interpreted from these charts. These anomalies were tabulated and entered onto a base chart in AutoCAD to correlate with the side scan sonar data (see Chart 4 and Figure 9).

A recording base station was not used to measure the changes in earth's magnetic field over the short duration of the survey. Assuming the Earth's magnetic field will change only slightly and at a nearly constant rate over the time interval of a survey line, a simple way to correct for its influence on magnetometer data is to fit them with a linear regression. Once calculated, the equation can be used to recalculate the magnetometer readings as a function of travel distance at the location of each measurement. Subtracting these calculated values from

the original data set produces a new data set, wherein the values represent deviations from the (assumed) magnetic field of Earth. This method was employed on a line-by-line basis for the entire dataset. The resulting data are magnetic fluctuations relative to the survey line's baseline.

Once all the line data were corrected, they were merged into a single data file and then gridded in ArcGIS v9.3 3D Analyst. To generate a contour map, we used an inverse distance weighting calculation with a bin interval of 5.0 meters and a search radius of 35 meters. The resulting contour map is depicted on Chart 5 and Figure 11; a good correlation exists between the contoured anomalies and the hand-picked anomalies derived from the individual line charts. The colored contour image forms a background image for the Magnetic Anomalies chart (Chart 5 and Figure 11). The contour interval is five (5) gammas. Also included on this chart are the locations of the magnetic anomalies from the line-by-line interpretation.

Isopach Charts, Unit 1 (Chart 6 and Figure 27) and Unit 2 (Chart 7 and Figure 28)

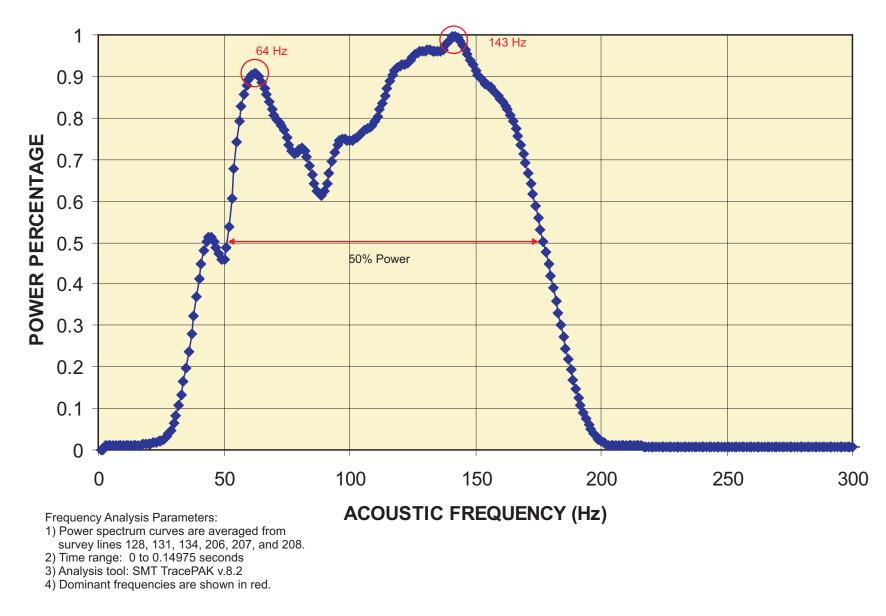
Isopach maps were constructed to show the thickness of Unit 1 and Unit 2. The bounding events for Unit 1 (Seafloor and Event 10) and Unit 2 (Events 10 and 20) were mapped from the 3.125-mgi-mgi seismic data. For Unit 1, arrival times for Seafloor were subtracted from Event 10 and for Unit 2, arrival times for Event 10 were subtracted from Event 20. For each unit, these time values were converted to thickness using a P-wave velocity of 5,000 ft/sec. The resulting estimated thickness values were then gridded and contoured using ArcMap v9.3's 3D Analyst Extension. The contour interval displayed on the chart and figure is 5 feet. The chart and figure are presented at scales of 1:6,000 and 1:12,000, respectively.

Event Structure Charts, Event 10 (Chart 8 and Figure 29) and Event 20 (Chart 9 and Figure 30)

Structure charts were constructed to show depth below sea surface to Events 10 and 20. The events were mapped by selecting the peak amplitude using the seismic interpretation software from the 3.125-mgi streamer data. Seafloor arrival times were subtracted from the arrival times for Event 10 and 20, respectively, to produce time values that are representative of the thickness of the sedimentary section between each of these horizons. These time values were converted to thickness values by applying the time to depth using a P-wave velocity of 5,000 ft/sec. The resultant sediment thickness was added to the corresponding water column depths to produce the structure maps for each of these events. The resultant structure depths for Events 10 and 20 were gridded and contoured at 5-foot intervals using ArcMap v9.3's 3D Analyst extension. The structure maps are displayed at scales of 1:6,000 (charts) and 1:12,000 (figures).

Site Features Chart (Chart 10 and Figure 31)

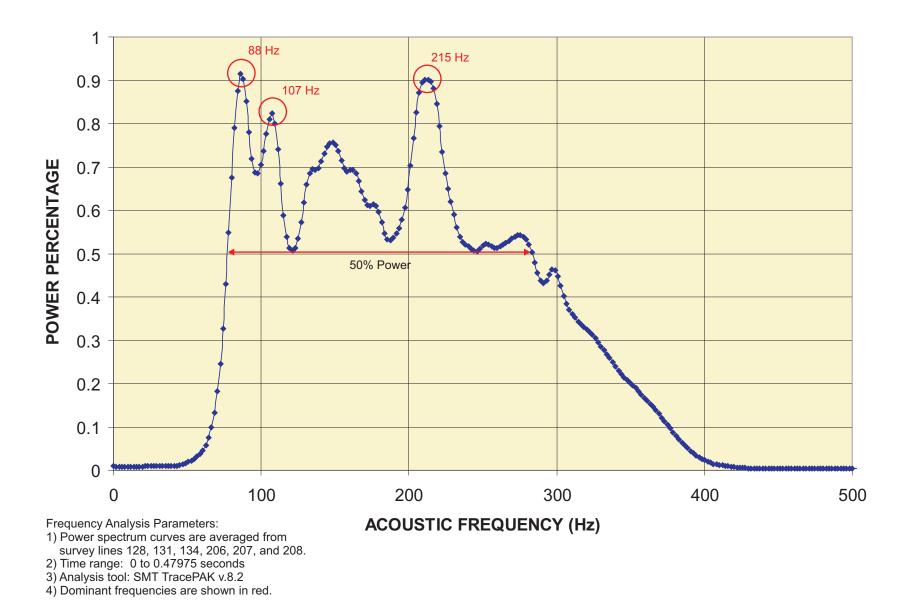
The Site Features Chart (Chart 10) presents features at the seafloor from the bottom charting survey and sub-seafloor features identified using the seismic reflection data. The chart and figure include side scan sonar targets, magnetic anomalies, and possible shallow free-phase gas accumulations, as interpreted from amplitude anomalies in the 1.56-mgi and


3.125-mgi seismic data, for seismic Unit 2 and Unit 3. The mapping of side scan sonar targets and magnetic anomalies is described in previous sections of this appendix.

The following evaluation was completed prior to delineation of possible shallow freephase gas accumulations. For these data, the seafloor, which produces a high-impedance acoustic response, was displayed as a peak (positive) reflector and represented by positiveamplitude numbers. Therefore, areas of possible shallow gas below the seafloor, which produce a low impedance acoustic response, are defined as negative, high-amplitude anomalies.

Geophysical indicators of possible gas accumulations include:

- Occurrence within geologic trends indicative of channel complexes
- Presence of structural or stratigraphic traps
- Acoustic wipeout zones or loss of frequency beneath high-amplitude anomalies
- Velocity pulldown of reflectors beneath high-amplitude anomalies
- Steep amplitude gradients at margins of high-amplitude anomalies
- Polarity response opposite that of the seafloor reflector
- Polarity reversal at downdip terminations of high-amplitude anomalies
- Evidence for internal fluid contact (flatspots)


An example of an amplitude anomaly is shown in Figure 26. Figure 24 shows a tophole prognosis identifying potential shallow gas hazards for each of the mapped seismic units. High-amplitude anomalies indicative of shallow gas accumulations were evident in Unit 2 and Unit 3 and were designated as having a moderate potential for this hazard. The anomalies in Unit 2 and Unit 3 are located approximately 100 meters and 50 meters from the proposed MDCF location, respectively.

1.56-mgi HYDROPHONE STREAMER POWER SPECTRUM CHART

Bluewater Wind Meteorological Tower Delaware Continental Shelf

NRG Bluewater Wind Project No. 3671.004

3.125-mgi HYDROPHONE STREAMER POWER SPECTRUM CHART

Bluewater Wind Meteorological Tower Delaware Continental Shelf

APPENDIX D

AIR EMISSIONS CALCULATIONS

Meteorological Buoy Air Emission Calculations

Vessels/Equipment	No. of	Dimensions (ft)	Propulsion	Emission	Activity	Engine	Fuel	· · ·		Operating Days	Operating	Total Vessel	Average	Fuel Usage	VOC	NOX	CO	PM10	PM2.5	SO2	HAPs	CO2	CH4	N20	CO2e
	Engines per vessel	length x breadth x depth (draft)		Factor Used (see EFs worksheet)		Rating (hp)	Туре		trip		Hours (hrs/day)	Operating Hours (hrs)	load (%)	Gallons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons
Tug Boat - main engines	1	120' x 30' x 25 (10)	2 propellers 6 ft diam.	1	Tug the work barge for installation of lidar buoy	4000	diese	10	4	10	20	240	31%	15,003.6	0.12	2.39	1.22	0.15	0.15	0.00	0.03	168.94	0.02	0.00	170.96
Aux. engines	1		1 bow thruster 34ft diam	2		100.0	diese	10	4	10	20	240	43%	520.3	0.00	0.08	0.04	0.00	0.00	0.00	0.00	5.86	0.00	0.00	5.93
Work boat - main engines	1	200' x 60' x 15' (7')	4 thrusters 6 ft diam	1	Installation of lidar buoy	4000	diese	10	4	10	20	240	43%	20,811.4	0.17	3.32	1.70	0.21	0.20	0.00	0.03	234.34	0.03	0.01	237.13
Aux. engines	1			2		200	diese	10	4	10	20	240	43%	1,040.6	0.00	0.17	0.08	0.00	0.00	0.00	0.00	11.72	0.00	0.00	11.86
Crane	1			111		250	diese	10	4	10	20	240	43%	1,331.7	0.01	0.12	0.02	0.00	0.00	0.00	0.00	15.07	0.00	0.00	15.20
Work boat (Maintenance) - main engines	2	47' x 14' x 8' (5')		2	Annual Maintenance of Met buoy	450	diese	8	4	8	8	96	43%	1,873.0	0.01	0.30	0.15	0.01	0.01	0.00	0.00	21.09	0.00	0.00	21.34
Aux. engines	1			2		13	diese	8	4	8	8	96	43%	27.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30	0.00	0.00	0.31
Tug Boat - main engines	1	120' x 30' x 25 (10)	2 propellers 6 ft diam.	1	Decomissioning	4000	diese	10	4	10	20	240	31%	15,003.6	0.12	2.39	1.22	0.15	0.15	0.00	0.03	168.94	0.02	0.00	170.96
Aux. engines	1		1 bow thruster 34ft diam	2		100.0	diese	10	4	10	20	240	43%	520.3	0.00	0.08	0.04	0.00	0.00	0.00	0.00	5.86	0.00	0.00	5.93
Work boat - main engines	1	200' x 60' x 15' (7')	4 thrusters 6 ft diam	1	Decomissioning	4000	diese	10	4	10	20	240	43%	20,811.4	0.17	3.32	1.70	0.21	0.20	0.00	0.03	234.34	0.03	0.01	237.13
Aux. engines	1			2		200	diese	10	4	10	20	240	43%	1,040.6	0.00	0.17	0.08	0.00	0.00	0.00	0.00	11.71	0.00	0.00	11.85
Crane	1			111		250	diese	10	4	10	20	240	43%	1,331.7	0.01	0.12	0.02	0.00	0.00	0.00	0.00	15.07	0.00	0.00	15.20
Generator on met buoy				222	Backup electric power	10	diese					500	100%	259.9	0.00	0.04	0.04	0.00	0.00	0.00	0.00	2.92	0.00	0.00	2.95
Total Emissions (over 6 year period)														79,315.3	0.61	12.49	6.29	0.74	0.73	0.01	0.12	893.25	0.11	0.03	903.81

Notes:

1. The installation and decommissioning of the floating lidar buoy is expected to occur over 2 days for each activity; however, to account for weather and other potential issues that may occur, the air emissions estimates are assuming 10 days, 24 hours per day (which accounts for time traveling to and from the installation area) to provide a conservative estimate. Annual maintenance activities will be performed and it is estimated that 8 vessel trips per year will be required.

2. Trip constitutes the round trip transit time to and from the project site. The number of hours per trip were estimated based on the vessel's transit speed and additional time required for maneuvering and berthing.

3. Emission factors for marine vessel engines are from Table 3-8 in the ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009. (See emission factors summary page)

Assumed all engines to be used are certified to meet EPA Tier 1 engine standards; therefore, the Tier 1 emission factors in Table 3-8 from the ICF International report was used to provide conservative estimate.

4. Emission factors for the land-based nonroad engines were estimated using USEPA report "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition", Report No. EPA-420-R-10-018 NR-009d, July 2010. (see emission factors summary page) 5.HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM 10, PM2.5, or VOC emissions from the CMVs.

The HAP emissions for nonroad engines were based on EPA's AP-42 Volume 1, Chapters 3.3 for small diesel engines. (see HAP emission factor summary pages). The HAP emissions for the generator engine were based on the same emission factor.

6.Average load factors for marine vessels were estimated based on load factors presented in Table 3-4 of the ICF International report and the average load factors for nonroad engines were based on factors presented in Appendix A of "Median Life, Annual Activity, and Load Factor Values for Nonroad Engine Emissions Modeling", EPA Office of Air and Radiation Report Number NR-005b, July 2010.

7.CO2e emission rates use the following carbon equivalence factors: 25 for CH4, and 298 for N2O.

8. For met buoy generator, operating hours assumed to be 500 hours/year. Fuel consumption based on 279 g/KW output, 85% efficiency, diesel specific gravity of 0.85

9. The estimate of maximum annual emissions assumes that the annual maintenance activities and either the installation or decommissioning activities occur in the same year.

Emission Factor Summary

Commercial Marine Vessels (CMVs)

		Commercial Marine Vessel Emission Factors (g/hp-hr) a/						Fuel Cons.			
					PM/ PM10						(gal/hp-hr) d/
					b/, c/						
EF type	Engine Type	voc	NO _x	со		PM2.5 b/	SO2 c/	CO2	CH4	N2O	
1	Category 2 engines	0.37	7.3	3.73	0.46	0.45	0.005	515	0.067	0.015	0.050
2	Category 1 engines < 1000 kW	0.20	7.3	3.73	0.19	0.19	0.005	515	0.067	0.015	0.050

a/ Emission factors for Category 1 and 2 engines are from Table 3-8 from ICF International report to the US EPA "Current Methodologies in Preparing Mobile Source Port-Related Emissions Inventories", April 2009 (converted from g/kW-hr to g/hp-hr by multiplying by 0.746 kW/hp). Assumed all Category 1and 2 engines to be used are certified to meet EPA Tier 1and 2 marine engine standards

respectively (providing conservative estimate for Category 1 engines); therefore the Tier 1 and 2 emission factors in Table 3-8 from the ICF International report was used. Note, the CO emission factor for Category 1 Tier 2 engines is higher than what is provided for Tier 1 engines, thus the Tier 2 emission factor for CO was used to provide a conservative estimate.

b/ All PM is assumed to less than 10 µm in diameter; therefore, PM emission factor is equivalent to PM10 emission factor. PM2.5 is estimated to be 97 % of PM10 per EPA guidance in "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling - Compression-Ignition." EPA420-R-10-018/NR-009d. July 2010.

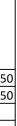
c/ Emission factors for Category 1and 2 engines for SO2 and PM10 presented in Table 3-8 of the ICF report (ICF International 2009) have been adjusted for the 15 ppmw sulfur content in ultra-low sulfur diesel fuel using the correction factors for ultra-low sulfur diesel as presented in Table 3-9 of the ICF Report. The emission factors for SO2 and PM10 were multiplied by 0.005 and 0.86, respectively, as recommended in Section 3.4.2 of the ICF Report. d/ Fuel consuption rate for category 1and 2 marine engines was estimated based on CO2 emission factor (g/hp-hr) and the emission factor for the mass of CO2 generated per gallon of fuel (10.21 kg CO2/gal fuel) as presented in the Table 13.1 of the "2014 Climate Registry Default Emission Factors".

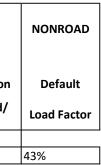
Land-based Nonroad Engines and Other Equipment

					NONROA	D Emissio	n Factors (g/	ˈhɒ-hour) a/			Climate	e Leaders	
					(g/hp-								
	_			Exhaust+									Fuel
	r i	NONROAD Source Category			Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Exhaust	Consumption
	scc	Description	Engine Size (hp)	voc	NO _x	со	PM10 c/	PM2.5 c/	SO2	CO2	CH4	N2O	gal/hp-hr d/
EF type	ype Construction & Mining Subcategory (*002*)												
111	2270002045	Diesel Cranes	175 < HP <= 300	0.31	4.34	0.75	0.13	0.13	0.005	530	0.030	0.013	0.052

a/ Emission factors for VOC, CO, NOx and PM10, are based on Tier 2 emission factors from Tables 4 to 7 in the USEPA report "Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling Compression-Ignition", Report No. EPA-420-R-10-018 NR-009d, July 2010. The emission factors for CO2 and SO2 were derived based on Equations 6 and 7 presented in the USEPA report, 2010. The PM2.5 emission factor is estimated to be 97 % of PM10 per guidance presented in the USEPA report, 2010.

b/ Emission factors for CH4 and N2O are based on Table A-6 from EPA's report "Direct Emissions from Mobile Combustion Sources." Climate Leaders: Greenhouse Gas Inventory Protocol, Core Module Guidance. EPA430-K-08-004. May 2008. (CH4 = 0.180 g/kg fuel and N20 = 0.080 g/kg fuel)


c/Fuel consumption for each type of equipment was estimated based on CO2 emission factor (g/hp-hr) and the emission factor for the mass of CO2 generated per gallon of fuel (10.21 kg CO2/gal fuel) as presented in the Table 13.1 of the USEPA report on "2014 Climate Registry Default Emission Factors".


Tier 4 Emission Factors (g/hp-hr) for engines <11 HP Backup electric generator on met buoy PM/ PM10 Fuel Description Engine Size (hp) СО b/ consumption N2O, CO2, c/ CH4, c/ EF type VOC, a/ NOx, a/ PM2.5 b/ SO2 c/ gal/hp-hr 6 KW generator with 2-cylinder engine 0.75 0.4 0.388 0.005 530 0.030 0.013 222 10 6.75 8 0.05

a/ Emission factors for VOC and NOx are assumed to be equal to 10% and 90% respectively of the standard for NMHC+NOx (7.5 g/hp-hr)

b/ All PM is assumed to less than 10 µm in diameter; therefore, PM emission factor is equivalent to PM10 emission factor. PM2.5 is estimated to be 97 % of PM10

c/ Emission factors for CO2, CH4 and N2O assumed to be the same as for the crane engine (111)

n	Load factor
	100%

EPA NEI HAP emission factors for Commercial Marine Vessels

HAP emission factors for commercial marine vessels were determined using the methodology identified by US EPA for the latest (2011) National Emissions Inventory (NEI); i.e., they are calculated as percentages of the PM10, PM2.5, or VOC emissions from the CMVs.

CMV fuel type			Diesel (di	stillate)		
Operating description		In Port Underway				
SCC code		2280002100	2280002200			
Туре			Maneuvering	Cruising		
Type Code			M	C		
Pollutant	HAP?	Fraction	ivi	C		
	*	of				
Ammonia	No	PM10	0.01	0.02		
Arsenic	Yes	PM10	0.0000170	0.00003		
Benzo[a]Pyrene	Yes	PM10	0.0000030	0.000005		
Benzo[b]Fluoranthene	Yes	PM10	0.000005	0.00001		
Benzo[k]Fluoranthene	Yes	PM10	0.0000030	0.000005		
Beryllium	Yes	PM10				
Cadmium	Yes	PM10	0.00000300	0.00000500		
Chromium (VI)	Yes	PM10	0.000080	0.000017		
Chromium III	Yes	PM10	0.0000170	0.000033		
Cobalt	Yes	PM10				
Hexachlorobenzene	Yes	PM10	0.00000000	0.0000000		
Indeno[1,2,3-c,d]Pyrene	Yes	PM10	0.000005	0.00001		
Lead	Yes	PM10	0.000075	0.00015		
Manganese	Yes	PM10	0.00000200	0.000001000		
Mercury	Yes	PM10	0.000000000	0.00000000		
Nickel	Yes	PM10	0.0005	0.001		
Phosphorus	Yes**	PM10				
Polychlorinated		51440	0.00000000			
Biphenyls	Yes	PM10	0.00000000	0.0000000		
Selenium	Yes	PM10	0.00E+00	0.00E+00		
Total HAP	(ratioed	l to PM10)	0.0006	0.0013		
Acenaphthene	Yes	PM2.5	0.000018	0.000015		
Acenaphthylene	Yes	PM2.5	0.00002800	0.000023000		
Anthracene	Yes	PM2.5	0.00002800	0.000023000		
Benz[a]Anthracene	Yes	PM2.5	0.00003	0.000025		
Benzo[g,h,i,]Perylene	Yes	PM2.5	0.00000700	0.00006000		
Chrysene	Yes	PM2.5	0.00000500	0.000004000		
Fluoranthene	Yes	PM2.5	0.0000170	0.00001400		
Fluorene	Yes	PM2.5	0.00003700	0.000031000		
Naphthalene	Yes	PM2.5	0.00105100	0.000876000		
Phenanthrene	Yes	PM2.5	0.000042	0.000035		
Pyrene	Yes	PM2.5	0.00002900	0.000024000		
Total HAP (ratioed	to PM2.5)	0.0013	0.0011		
2,2,4-Trimethylpentane	Yes	VOC	0.0003	0.00025		
Acetaldehyde	Yes	VOC	0.0557240	0.04643600		
Acrolein	Yes	VOC	0.002625	0.0021880		
Benzene	Yes	VOC	0.015258	0.012715		
Ethyl Benzene	Yes	VOC	0.0015	0.00125		
Formaldehyde	Yes	VOC	0.1122	0.0935		
Hexane	Yes	VOC	0.004125	0.0034380		
Propionaldehyde	Yes	VOC	0.004575	0.0038120		
Styrene	Yes	VOC	0.001575	0.0013130		
Toluene	Yes	VOC	0.0024	0.002		
Xylenes (Mixed Isomers)	Yes	VOC	0.0036	0.003		
Total HAI	P (ratio	ed to VOC)	0.2039	0.1699		

*For completeness, all of the pollutants in EPA's database are shown, but not all are HAP as defined in Section 112 of the Clean Air Act and as updated in 40 CFR 63 Subpart C.

**Only elemental phosphorus (CAS #7723140) is a HAP; phosphorus-containing compounds in general are not.

<u>Reference:</u> US EPA, "2011 National Emissions Inventory, version 1, Technical Support Document", draft, November 2013, available from http://www.epa.gov/ttn/chief/net/2011neiv1_tsd_draft.pdf; Table 104 on pp. 178-179 refers to the dataset "2011EPA_HAP-Augmentation" for HAP emissions, which is available from ftp://ftp.epa.gov/EmisInventory/2011/doc; the factors above are from that dataset.

	Emission Factor	Emission	Source
	(lb/MMBtu) ^a	Factor	(AP-42
Dellutert		Rating	Table)
Pollutant Organic Compounds			
Benzene ^b	9.33E-04	E	3.3-2
Toluene ^b	4.09E-04	E	3.3-2
		E	3.3-2
Xylene ^b 1,3 Butadiene	2.85E-04 < 3.91E-05	E	
Propylene	< 3.91E-03 2.58E-03	E	3.3-2 3.3-2
Formaldehyde ^b	1.18E-03	E	3.3-2
Acetaldehyde	7.67E-04	E	3.3-2
Acrolein ^b	< 9.25E-05	L	3.3-2
PAH	< 9.25E-05	E	3.3-2
Naphthalene ^b	8.50E-05	E	3.3-2
	< 5.06E-05	E	3.3-2
Acenaphthylene ^b			
Acenaphthene ^b	< 1.42E-06	E	3.3-2
Fluorene ^b	2.90E-05	E	3.3-2
Phenanthrene ^b	2.90E-05	E	3.3-2
Anthracene ^b	2.00E-06	E	3.3-2
Fluoranthene ^b	8.00E-06	E	3.3-2
Pyrene ^b	5.00E-06	E	3.3-2
Benzo(a)anthracene ^b	2.00E-06	E	3.3-2
Chrysene ^b	0.00E+00	E	3.3-2
Benzo(b)fluoranthene ^b	< 9.91E-08	E	3.3-2
Benzo(k)fluoranthene ^b	< 1.55E-07	E	3.3-2
Benzo(a)pyrene ^b	< 1.88E-07	E	3.3-2
Indeno(1,2,3-cd)pyrene ^b	< 3.75E-07	E	3.3-2
Dibenz(a,h)anthracene ^b	< 5.83E-07	E	3.3-2
Benzo(g,h,i)perylene ^b	< 4.89E-07	E	3.3-2
TOTAL PAH	1.68E-04	E	3.3-2
Metals and inorganics ^c			
Arsenic ^b	0.00E+00		
Cadmium ^b	0.00E+00		
Chromium ^b	1.20E-05		
Chromium VI ^b	2.00E-06		
Lead ^b	1.00E-06		
Mercury ^b	0.00E+00		
Nickel ^b	1.00E-06		
Selenium ^b	0.00E+00		
Total for substances identified as H	IAP ^e < 3.9E-03		

The emission factors for individual organic compounds shown above are from the U.S. Environmental Protection Agency (EPA), "Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources" (AP-42), Section 3.3 for "Gasoline and Diesel Industrial Engines", rev. 10/96.

APPENDIX E

MARINE ARCHEOLOGY REPORT

(CONFIDENTIAL – PROVIDED UNDER SEPARATE COVER)

Incident Report: Protected Species Injury or Mortality *Photographs should be taken of all injured or dead animals.*

Observer's full name:
Reporter's full name:
Species Identification:
Activity ongoing at time of observation (e.g., transit, survey, pile driving, etc.):
Date animal observed: Date animal collected: Time animal collected:
Environmental conditions at time of observation (i.e., tidal stage, weather):
Water temperature (°C) at site and time of observation: Describe location of animal and how it was documented (i.e., observer on boat):
Species
Fork length (or total length) Weight
Condition of specimen/description of animal
Fish Decomposed: NO SLIGHTLY MODERATELY SEVERELY Fish tagged: YES / NO Please record all tag numbers. Tag #
Photograph taken: YES / NO (please label <i>species, date, geographic site</i> and <i>vessel name</i> when transmitting photo)
Genetics Sample taken: YES / NO Genetics sample transmitted to: on//20

Sea Turtle Species Information: (please a Species	lesignate cm/m or inches.) _ Weight (kg or lbs)						
Sex (circle): Male Female Unknown	How was sex determined?						
Straight carapace length	_ Straight carapace width						
Curved carapace length	Curved carapace width						
Plastron length	Plastron width						
Tail length	Head width						
Condition of specimen/description of anima	al						
Existing Flipper Tag Information Left Right PIT Tag #							
mutilations, propeller damage, papillomas,							
MARINE MAMMAL INFORMATION: Species							
Injuries Observed							
Condition/Description of Animal							
Other Remarks							
Time Reported to NMFS Stranding Hotline	::						

APPENDIX F

INCIDENT REPORT- PROTECTED SPECIES