

Sea Ice Trends and Variability

US-Canada Northern Oil & Gas Research Forum 2017

Anchorage Alaska

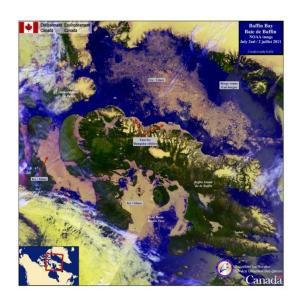
Darlene Langlois – Canadian Ice Service, ECCC

Stephen Howell - Climate Research Division, Environment and Climate Change Canada

Oct 11-13, 2017

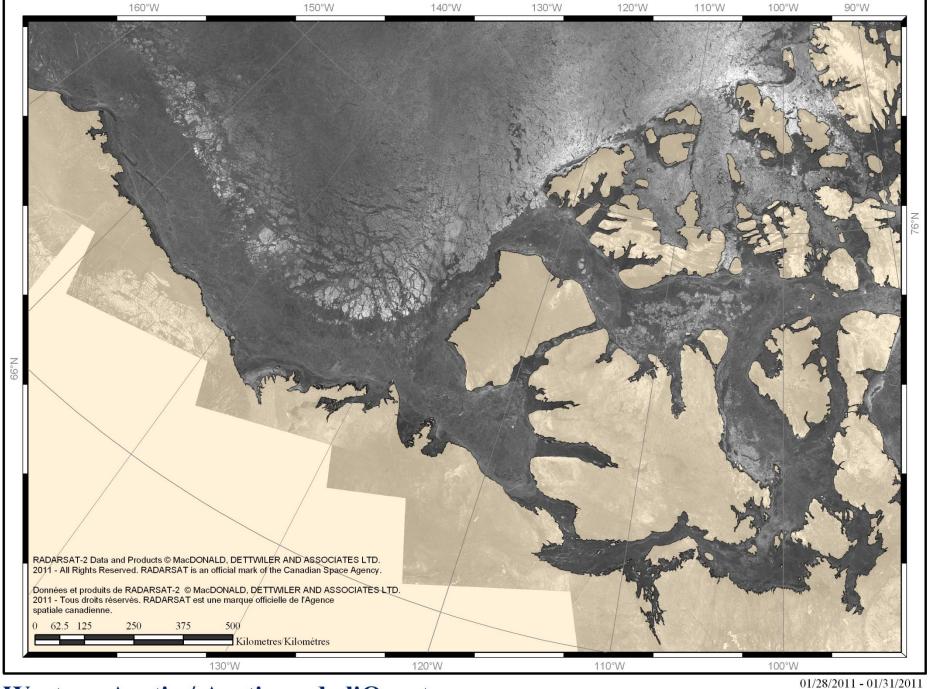
Contents

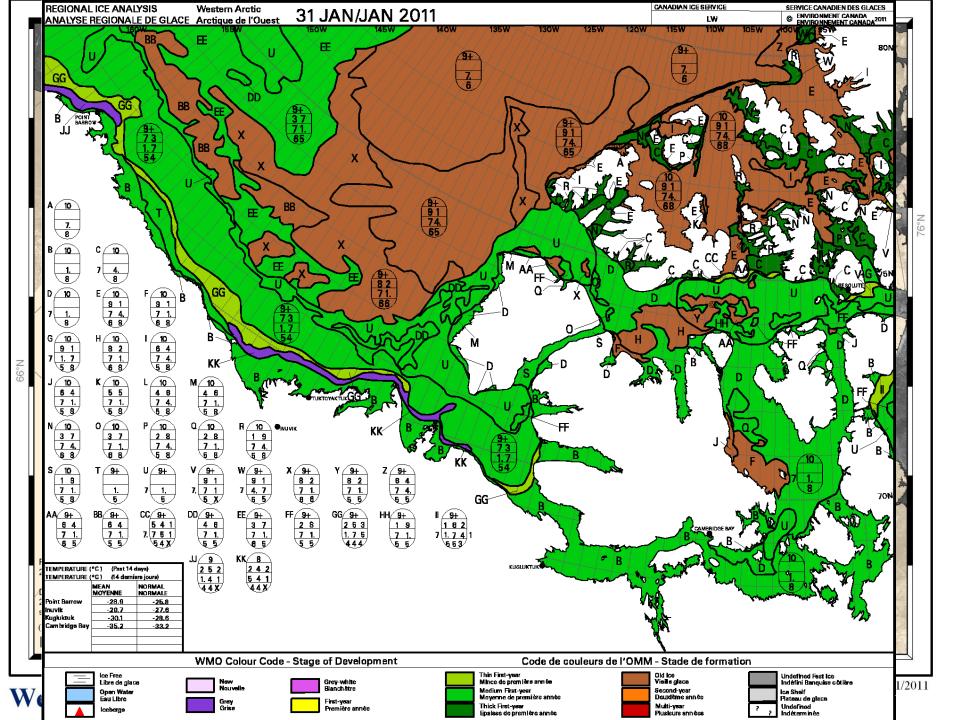
- Overview
 - Ice concentration trends and variations
 - Ice thickness trends and variations
 - Forecasts
- Results
 - Implications for Oil and Gas operations
- Future work

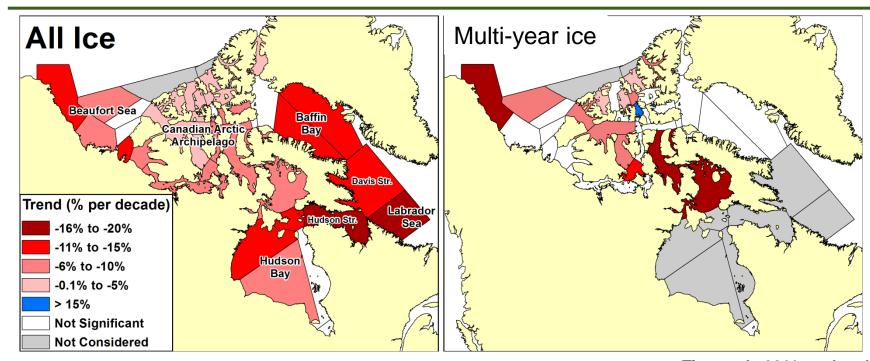


Data Sources - Concentration

Data sources

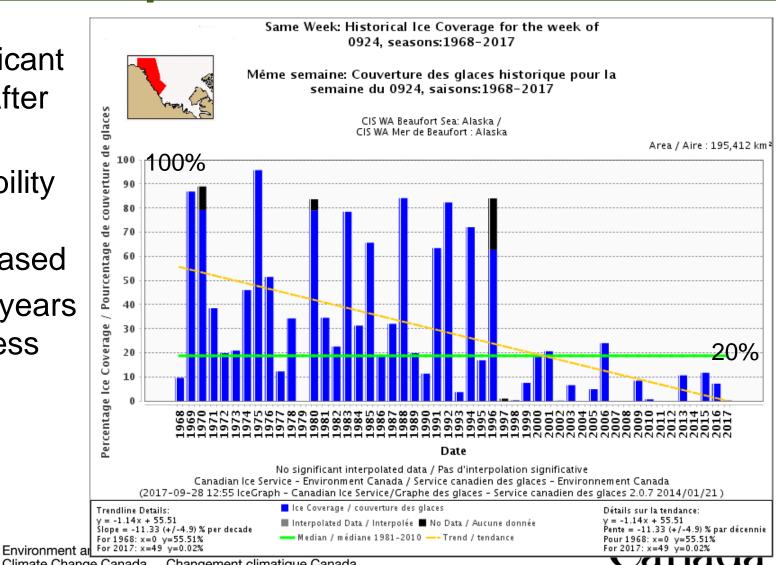

- CIS human interpretation of ice conditions
 - 1968 to 1996
 - NOAA AVHRR satellites
 - Aircraft patrols
 - 1996 to present
 - Addition of Synthetic Aperture Radar satellites
 - » RADARSAT-1, Envisat, RADARSAT-2, Sentinel



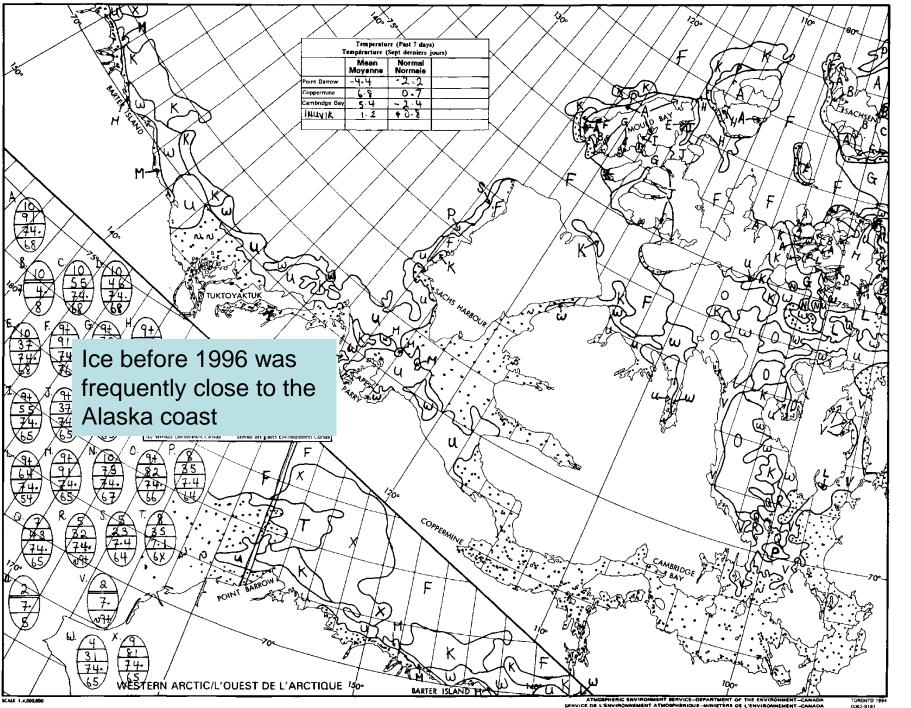


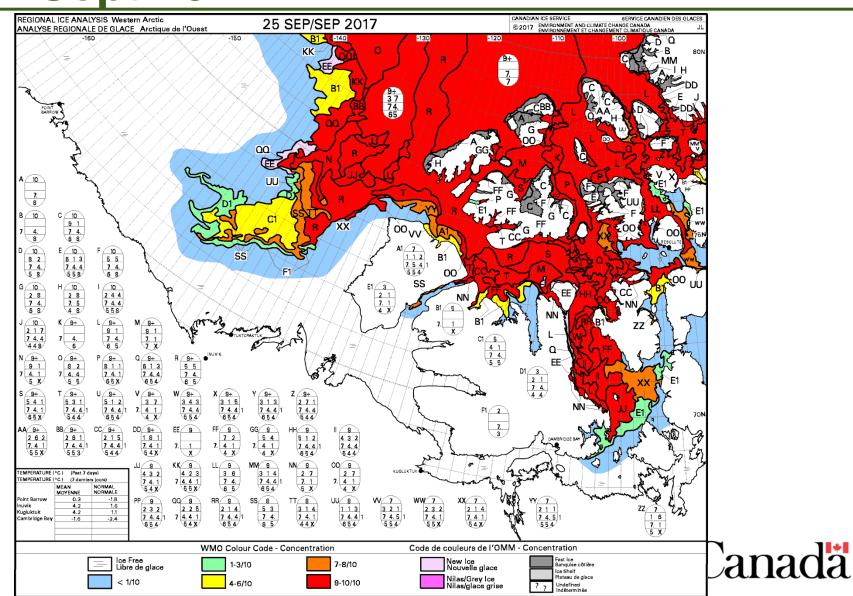
Summer sea ice trends- 1968-2016

Tivy et al., 2011, updated

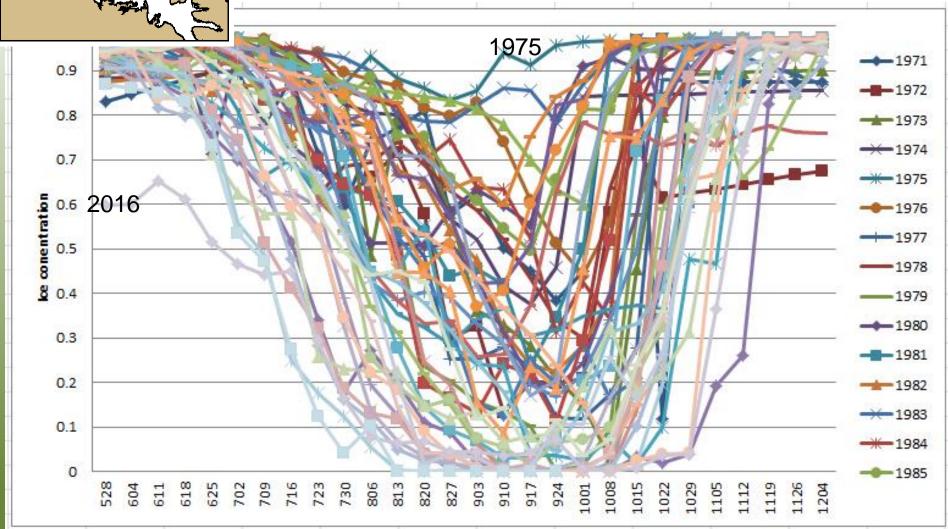

- Almost all regions in the US and Canadian Arctic had decreases in total ice concentration
- Multi-year ice (MYI) concentration decreases are not as widespread as total ice
 - in the last 10 years the MYI trend has doubled

Alaska Coast – Ice Concentration Week of Sept 24

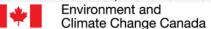

- Significant shift after 1996
- Variability has decreased
- More years with less ice



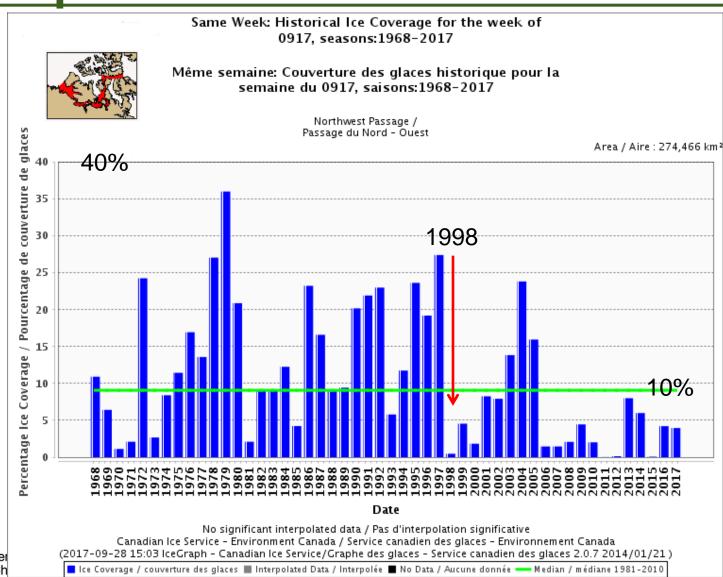
Climate Change Canada


Changement climatique Canada

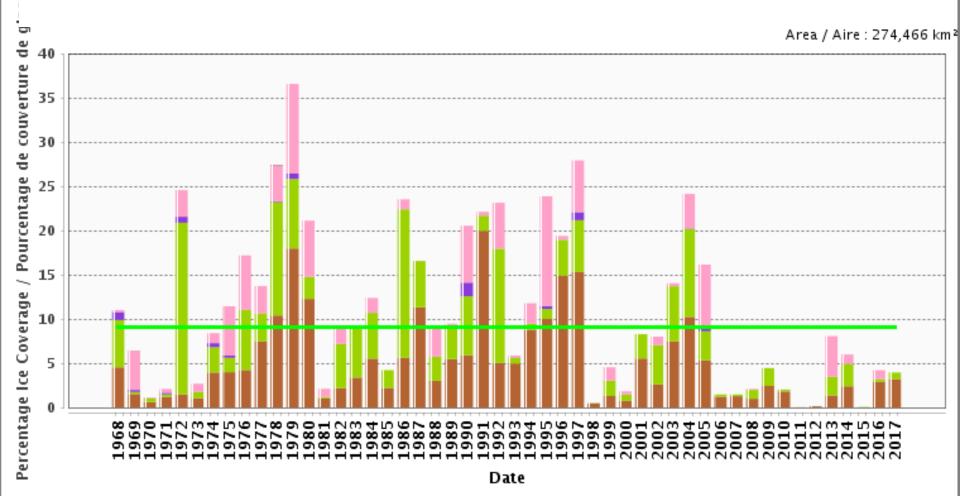
Western Arctic – Ice Concentration 24 Sept 2017



THAT DANCE DANCE DANCE DANCE DANCE DANCE

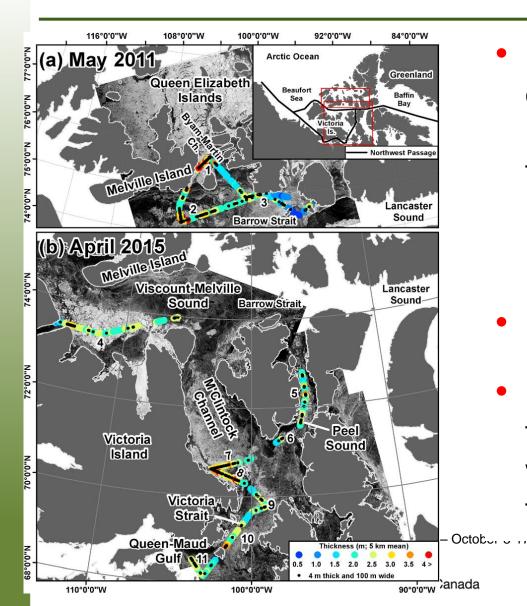

Alaskan Coast 3/10 or less of ice

					3		X																					
						<u> </u>	09	716	723	730	806	813	820	827	903	910	917	924	1001	1008	1015	1022	1029	1105	1112	1119	1126	1204
19/1	0.8322		0.865	0.8814	0.8978	0.8984	0.7/78	0.8831	0.7139	0.5943	0.7417	0.7714	0.8117	0.5794	0.621	0.501	0.4506	0.3844	0.4507	0.9499	0.9524	0.1189	0.8736	0.874	0.8743	0.8747	0.875	0.8754
1972	V 00VV	U 0010	^ 8851	0.8855	0.8963	0.9428	0.9528	0.9133	0.8964	0.6175	0.6601	0.7146	0.5802	0.2982	0.3265	0.1326	0.2024	0.1978	0.2103	0.582	0.7358	0.6146	0.6248	0.6349	0.6451	0.6552	0.6654	0.6756
1973	10	71	9499	0.96	0.9702	0.97	0.95	0.92	0.8981	0.859	0.4855	0.7 67	0.7271	0.5826	0.3613	0.329	0.2825	0.2085	0.1526	0.0292	0.4543	0.7991	0.8916	0.8938	0.896	0.8981	0.9003	0.9025
1974	15	974										>	0.6999	0.5684	0.5215	0.417	0.3751	0.4593	0.8418	0.8434	0.8451	0.8467	0.8483	0.85	0.8516	0.8533	0.8549	0.8565
1975			9175	0.9359	0.9372	0.9348	0.9384	0.9165	0.8975	0.8694	0.9321	0.8637	0.8608	0.8339	0.8555	0.9414	0.9141	0.9567	0.9646	0.9677	0.9564	0.9716	0.9714	0.9714	0.9713	0.9713	0.9712	0.9712
1976	0.97	0.97	u.9699	0.9699	0.9729	0.9724	0.9716	0.9439	0.9393	0.896	0.8802	0.8664	0.8178	0.7976	0.8277	0.7406	0.6104	0.5141	0.4406	0.5592	0.9474	0.9472	0.9647	0.9643	0.964	0.9636	0.9632	0.9629
1977	0.9537	0.9534	0.953	0.9248	0.9838	0.9714	0.937	0.8884	0.8355	0.7764	0.781	0.5554	0.4837	0.2521	0.2527	0.2807	0.2318	0.122	0.1194	0.1744	0.2772	0.8813	0.8778	0.9534	0.9323	0.9112	0.8902	0.8691
1978	0.9587	0.9474	0.9587	0.9474	0.9508	0.9733	0.9396	0.8781	0.6198	0.6855	0.6953	0.7416	0.6877	0.6316	0.5867	0.5207	0.435	0.3419	0.2988	0.6364	0.8094	0.9402	0.9699	0.9713	0.9718	0.9708	0.9715	0.9751
1979	0.9557	0.9576	0.9557	0.9576	0.9466	0.9571	0.9274	0.9075	0.8664	0.7788	0.6597	0.538	0.2359	0.205	0.1577	0.1344	0.1036	0	0.0154	0.093	0.5762	0.8076	0.9538	0.9656	0.972	0.9716	0.9679	0.9701
1980	0.9009	0.909	0.9571	0.94	0.7145	0.9469	0.8762	0.7333	0.687	0.6184	0.5135	0.5127	0.5072	0.5859	0.6345	0.5973	0.5533	0.7902	0.911	0.9285	0.9058	0.9022	0.9022	0.9708	0.9718	0.9716	0.9719	0.9717
1981	0.9642	0.9635	0.9626	0.9745	0.9182	0.9392	0.9505	0.8753	0.891	0.6356	0.6188	0.6065	0.5384	0.4401	0.4564	0.4199	0.2403	0.3449	0.4991	0.9381	0.9689	0.9706	0.9576	0.9652	0.9683	0.9716	0.9664	0.9671
1982	0.8749	0.8793	0.8836	0.8879	0.8543	0.8702	0.8633	0.7573	0.8035	0.7998	0.7704	0.6779	0.6489	0.5434	0.4738	0.3158	0.2404	0.2252	0.2826	0.3924	0.9681	0.9691	0.9718	0.9724	0.9725	0.9731	0.9734	0.9735
1983	0.9639	0.9641	0.9642	0.9618	0.9626	0.9584	0.9477	0.943	0.9417	0.9299	0.8992	0.8015	0.7863	0.7839	0.822	0.8613	0.8554	0.7842	0.8693	0.9284	0.9698	0.9704	0.9717	0.9757	0.9668	0.9697	0.966	0.9639
1984	0.9722	0.9662	0.9602	0.967	0.9469	0.9496	0.9523	0.9516	0.9357	0.8597	0.8372	0.82	0.7	0.7465	0.639	0.6333	0.5229	0.3119	0.4267	0.3425	0.8639	0.9183	0.9619	0.9717	0.9679	0.9697	0.9723	0.9703
1985	0.9656	0.9614	0.9571	0.9671	0.9739	0.9734	0.9665	0.9291	0.8985	0.8377	0.8866	0.7539	0.7523	0.6576	0.6086	0.5473	0.4954	0.6558	0.8149	0.811	0.9489	0.9408	0.9716	0.9744	0.9517	0.9687	0.9718	0.9725
1986	0.9741	0.948	0.922	0.9284	0.935	0.9693	0.9466	0.9201	0.8505	0.7599	0.6109	0.5829	0.5	0.5157	0.4341	0.3145	0.2053	0.1861	0.2448	0.4021	0.5799	0.9551	0.9452	0.9621	0.9561	0.972	0.9719	0.9692
1987	0.8877	0.9213	0.955	0.9436	0.9066	0.8116	0.663	0.7026	0.6171	0.6592	0.4298	0.3534	0.3255	0.2865	0.3428	0.369	0.3059	0.3197	0.3477	0.3659	0.3731	0.365	0.5941	0.8822	0.9435	0.9639	0.9716	0.9717
1988	0.8938	0.9241	0.9361	0.9244	0.9713	0.9128	0.9067	0.904	0.9009	0.8604	0.8406	0.8294	0.7334	0.6325	0.6581	0.5974	0.751	0.8407	0.8773	0.9496	0.969	0.9706	0.9707	0.9712	0.9716	0.9723	0.9724	0.9724
1989	0.9385	0.9297	0.9352	0.9261	0.9366	0.9255	0.8588	0.8227	0.771	0.7466	0.629	0.5286	0.4514	0.3302	0.1556	0.1262	0.2507	0.1978	0.2898	0.1652	0.2081	0.4283	0.965	0.9591	0.9719	0.9722	0.9729	0.9725
1990	0.9387	0.9493	0.9598	0.9661	0.9586	0.9247	0.8324	0.7938	0.6983	0.6443	0.6211	0.4853	0.1988	0.1659	0.1334	0.2419	0.2168	0.1131	0.2952	0.5192	0.8596	0.8084	0.8802	0.9574	0.9345	0.9715	0.9724	0.9724
1991	0.9226	0.9198	0.8904	0.9237	0.9418	0.9028	0.9319	0.9225	0.9032	0.8722	0.8575	0.8494	0.8433	0.8342	0.8148	0.7796	0.6992	0.6335	0.6007	0.8342	0.9476	0.9717	0.9725	0.9723	0.9725	0.9725	0.9727	0.9727
1992	0.9735	0.9718	0.9701	0.9685	0.9687	0.9738	0.8945	0.7975	0.7857	0.7864	0.8052	0.6628	0.6572	0.5738	0.4226	0.4252	0.5074	0.8229	0.8358	0.9352	0.9673	0.8108	0.9287	0.9567	0.9665	0.9699	0.9728	0.967
1993	0.9388	0.9114	0.884	0.8565	0.8293	0.7838	0.7272	0.6875	0.6412	0.547	0.4339	0.4538	0.5519	0.2868	0.2409	0.2359	0.0357	0.0362	0.0248	0.0739	0.0186	0.0983	0.4764	0.4672	0.9254	0.9713	0.9708	0.9711
1994	0.9563	0.9579	0.9511	0.9635	0.9612	0.9539	0.9434	0.8818	0.8577	0.8485	0.7767	0.564	0.4592	0.5106	0.3707	0.4077	0.6011	0.7201	0.8199	0.9612	0.9671	0.9719	0.9403	0.9594	0.9721	0.9722	0.9724	0.9724
1995	0.951	0.9626	0.9743	0.9723	0.9738	0.9351	0.8372	0.785	0.7715	0.5696	0.4268	0.3853	0.4047	0.3928	0.3329	0.2852	0.1953	0.1685	0.2192	0.341	0.4986	0.8272	0.9727	0.9712	0.9713	0.9692	0.9674	0.9695
1996	n u / z	11072	0.96	0.94 0.9031	0.92 0.9387	0.9127	0.8515	0.8623	0.6086	0.5548	0.4568	0.3842	0.3322	0.3377	0.2577	0.2636	0.3747	0.6274	0.7836	0.7583	0.7665	0.7312	0.7426	0.7311	0.7603	0.7757	0.7632	0.7597
1997	10	00	19701	0.9031	0.9387	0.9093	0.8415	0 7349	0.6304	0.54	0.3694	0.3132	0.2198	0.1507	0.0646	0.0081	0	0.0017	0.0007	0	0.2093	0.5912	0.6985	0.831	0.6572	0.7231	0.8399	0.9567
1998 1999	13	98),9692	0.9626	0.9688	0.9715	0.9375	0.9065	0.3405	0.1803	0.2717	0.2007	0.1108 0.1448	0.0874	0.0195 0.0691	0.0029	0.0021	0.0017	0.0007	0.2376	0.0328	0.0206	0.0405	0.1939	0.2617	0.8248	0.9694	0.9632 0.9726
2000			0.9717	0.9626	0.9688	0.9717	0.9375	0.8778	0.9022	0.7078	0.4474	0.2784	0.4466	0.4072	0.0691	0.0319	0.0324	0.0745	0.2035	0.7541	0.72	0.835	0.9328	0.9707	0.9719	0.9721	0.9724	0.9726
2000	0.9736	0.9735	0.9668	0.9656	0.9637	0.9717	0.9417	0.8585	0.8585	0.8071	0.8318	0.7112	0.7081	0.4072	0.157	0.285	0.2555	0.1882	0.4366	0.7541	0.7487	0.855	0.9646	0.9709	0.9709	0.971	0.9675	0.9711
2001	0.9149	0.8963	0.9396	0.9656	0.9582	0.9313	0.894	0.8732	0.8149	0.8719	0.8318	0.4906	0.7081	0.0346	0.0635	0.283	0.1098	0.2033	0.0108	0.0004	0.1368	0.7386	0.7709	0.7319	0.9724	0.9724	0.9724	0.9724
2002	0.969	0.9664	0.9193	0.8722	0.9382	0.9322	0.8456	0.8269	0.6343	0.5727	0.7242	0.1919	0.2475	0.1547	0.0033	0.0012	0.0024	0.0653	0.0724	0.0992	0.1308	0.7380	0.7709	0.7319	0.9187	0.9697	0.9328	0.9655
2004	0.9099	0.3004	0.8937	0.886	0.8713	0.7733	0.7704	0.6286	0.5946	0.3727	0.1958	0.1256	0.0464	0.1032	0.0008	0.0019	0.0133	0.0055	0.0002	0.0332	0.1925	0.5026	0.8965	0.9714	0.9538	0.9639	0.9328	0.9356
2005	0.9291	0.9094	0.9096	0.8895	0.8626	0.7733	0.7704	0.6863	0.6629	0.5558	0.4522	0.4262	0.378	0.3177	0.2471	0.0019	0.0024	0.0484	0.1445	0.313	0.3325	0.4061	0.7183	0.7869	0.9338	0.9655	0.9711	0.9713
2005	0.9725	0.9734	0.9733	0.9621	0.9687	0.9402	0.9136	0.895	0.8813	0.7721	0.7437	0.5537	0.5313	0.4942	0.4326	0.3671	0.3074	0.2392	0.1535	0.0515	0.3523	0.2271	0.6553	0.6663	0.8561	0.9003	0.9505	0.9436
2007	0.9582	0.9147	0.8169	0.7984	0.7967	0.7089	0.6621	0.4782	0.2837	0.1622	0.7457	0.0503	0.0254	0.4342	0.4320	0.3071	0.3074	0.2332	0.1555	0.0010	0.1027	0.2623	0.6063	0.86	0.9139	0.9003	0.8479	0.9185
2008	0.9416	0.9432	0.9243	0.9156	0.8126	0.7445	0.5129	0.4119	0.3217	0.1859	0.1133	0.1198	0.0234	0.0349	0.0359	0.0072	0.0161	0	0.0082	0.0405	0.1027	0.4601	0.8854	0.8449	0.9506	0.961	0.9713	0.9715
2009	0.9611	0.9699	0.9203	0.8694	0.7132	0.6243	0.5787	0.5797	0.2592	0.2311	0.2259	0.2246	0.1484	0.1193	0.1354	0.0663	0.0807	0.0841	0.1924	0.3244	0.1313	0.4001	0.3144	0.6574	0.7449	0.916	0.9549	0.9495
2010	0.9148	0.8807	0.8784	0.8174	0.7796	0.7368	0.6294	0.6196	0.5519	0.3257	0.1379	0.0698	0.0349	0.0202	0.0091	0.0101	0.0057	0.0063	0.029	0.166	0.274	0.3647	0.6384	0.8488	0.9688	0.9661	0.9709	0.9698
2011	0.9038	0.9086	0.9019	0.8933	0.7795	0.7508	0.4862	0.2514	0.1767	0.1236	0.0563	0.0038	0.0003	0.0202	0.0031	0.0101	0.0037	0.0003	0.0025	0.0129	0.019	0.1941	0.6816	0.8204	0.9436	0.9704	0.9715	0.9709
2012	0.9376	0.9492	0.8405	0.8355	0.8679	0.8462	0.664	0.5945	0.5444	0.3452	0.2222	0.1843	0.0003	0.0379	0.0098	0.0025	0.001	0.0001	0.0023	0.0125	0.0265	0.0396	0.041	0.5923	0.9632	0.9707	0.9708	0.9708
2012	0.9494	0.9555	0.9671	0.9626	0.966	0.9412	0.8799	0.7236	0.6639	0.5324	0.4254	0.2082	0.0321	0.0379	0.0305	0.0023	0.001	0.106	0.1082	0.2595	0.1598	0.2639	0.5822	0.877	0.7309	0.9424	0.9556	0.9654
2013	0.9494	0.9593	0.9515	0.9569	0.8941	0.8546	0.7729	0.6308	0.5263	0.451	0.4234	0.2082	0.0107	0.0429	0.0303	0.0013	0.0093	0.100	0.1002	0.2333	0.1338	0.2033	0.6184	0.94	0.7503	0.9648	0.9352	0.9712
2015	0.0000	0.5555	0.3313	0.961	0.9226	0.8757	0.8021	0.7008	0.5788	0.4928	0.4412	0.451	0.4242	0.2759	0.1194	0.1429	0.0396	0.1164	0.0353	0.0726	0.2404	0.3599	0.6174	0.792	0.8262	0.9581	0.9501	0.9665
2016			5529	0.6128	0.5160	0.4675	0.4425	0.4493	0.2928	0.1643	0.0777	0.0646	0.0706	0.0455	0.0440	0.0364	0.0425	0.0715	0.0077	0.0013	0.0091	0.0366	0.0392	0.3644	0.7191	0.8923	0.9612	0.9477
2017	20	017	34	3.0223	2.2200	5. 15. 5	724	0.2749	0.124	0.0411	0.101	0.002	0.0016	0.0455	0.0440	0.0003	0.0423	0.0012	0.00.7	5.5525	3.0031	3.0000	3.0022	3.55.1	222	3.0323		2.2
2027	_(<i>J</i> 1 <i>I</i>	- 1					5.27.5	0.227	0.0121	0.101	0.002	2.0010			2.0003		2.0012										
						viron	y				viron		-1 -1											-	_	-	\sim	4


Northwest Passage – Ice Concentration Week of Sept 17

Since 1998
 more years
 with less
 ice

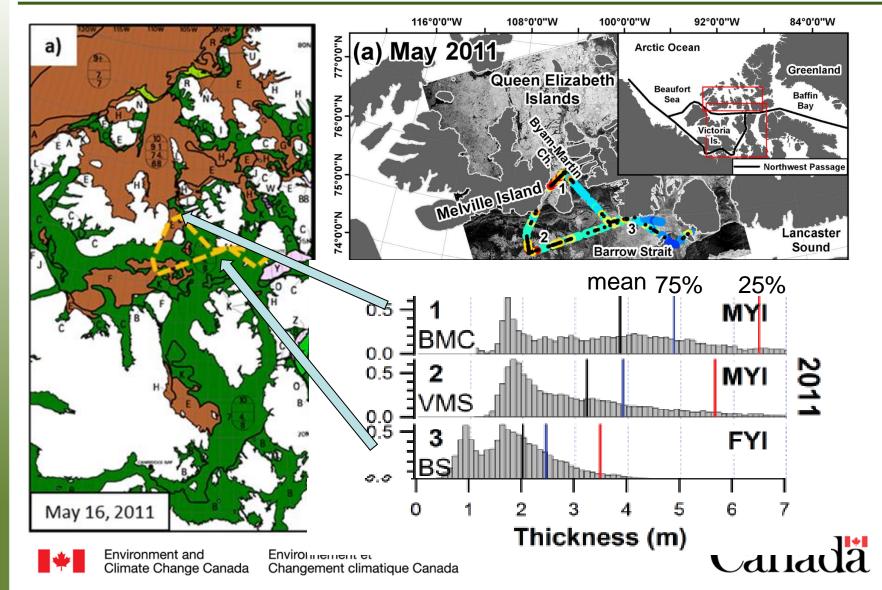
Northwest Passage – Stage of Development - Week of Sept 17

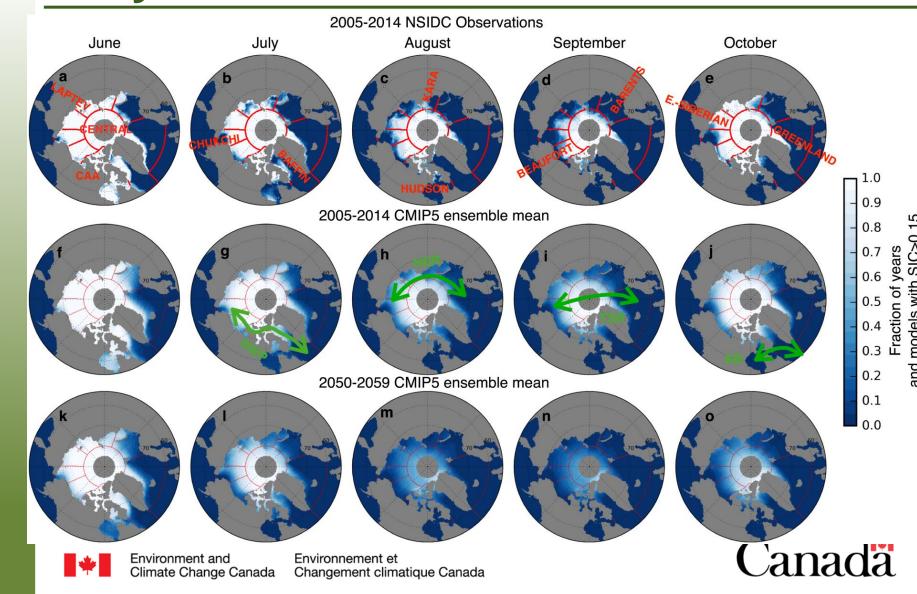

No significant interpolated data / Pas d'interpolation significative

Canadian Ice Service - Environment Canada / Service canadien des glaces - Environnement Canada
(2017-09-28 15:04 IceGraph - Canadian Ice Service/Graphe des glaces - Service canadien des glaces 2.0.7 2014/01/21)

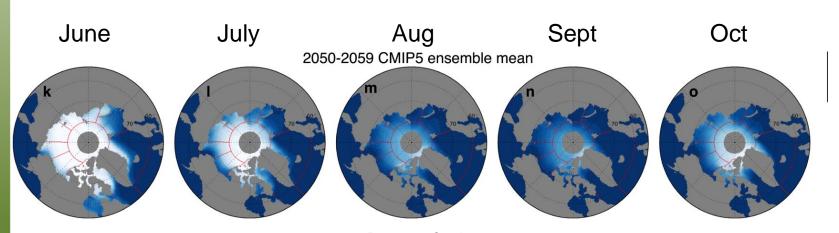
■ Old Ice / vieille glace ■ First-Year Ice / glace de première année ■ Young Ice / jeune glace ■ New Ice / nouvelle glace ■ Interpolated Data / Interpolée

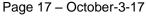
No Data / Aucune donnée — Median / médiane 1981-2010


Ice Thickness - Northwest Passage


- First ever airborne electromagnetic induction (AEM) ice thickness surveys
 - April and May
 - 2011 and 2015
- Ice very thick (3-4 m)
- Frequently observed ice floes more than 100 m wide and more than 4 m thick

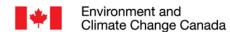
Arctic Ocean Multi-Year Ice – drifting southward




Sea Ice still a hazard for most of the year

Decadal average forecast – 2050's

- 2050 to 2059
 - Ice could start to clear in Hudson Bay in June
 - Alaska Coast clearing in July
 - Low concentrations of sea ice over the northern hemisphere in August and September.
 - Expect significant variations from year-to-year



Implications for Marine Operations

- Sea ice concentration has diminished over time but variability means that conditions are not consistent from one year to the next.
- Multi-year ice drifting southward from the Arctic Ocean contains ice floes with significant thickness. These floes drift through the Arctic islands as well as past the Alaskan coast
- Reliable climatological data is available for concentration and stage of development but not for ridges, pressure or measured thickness

Plans and Partners

- Timelines
 - Ongoing work to monitor ice conditions by satellite
 - Use of more detailed data sources
- Partners
 - Other ice services
 - Researchers
- Future work
 - Forecasting improvements
 - More detailed observations
- Potential synergies between USA and Canada
 - Ice modelling groups connect to share results and validation

