Infrastructure to Support Offshore Floating Wind

Focus on California

Aaron Porter, P.E., & Shane Phillips, P.E., Mott MacDonald Seattle, WA

BOEM Project Manager: Mark Eckenrode

11/1/2016

Objectives

- Estimate navigation, vessel, and port infrastructure requirements to support Offshore Floating Wind (OFW) development
- Focus on US Pacific West Coast and Hawaii
 - Today: California focus ____
- Assess existing and potential future capability to support large-scale and demonstrationscale OFW

MOT

Why?

- "All ports on the Pacific Coast shall be studied that have available or planned infrastructure to support the offshore renewable industry"
- Environmental reviews and evaluations
- Inform policy decisions

<u>Few examples of floating wind \rightarrow No commercial prototypes</u>

Basis of Analysis - Devices

Μ

MOTT MACDONALD

Μ

Methods

• Data Collection:

- Marine Contractors, Ports, Developers
- − Key \rightarrow Literature Review.

• Port role Classification

- Assembly/Installation, Fabrication, Quick Response, Cluster
- Conceptual-Level Engineering Analysis
- Vessel Requirements and Operational Limitations
- Prototype Analysis
 - Europe, Demonstration-Scale Floating, Oil and Gas
- Case Studies
- Assessment of Regional Port Characteristics

Considerations

M MOTT MACDONALD

Transport

- Nav. Channel Width
- Nav. Channel Depth
- Height Restrictions
- Device Type

- Metocean Conditions
- Vessel Availability
- Component Size
- Safe Harbor

<u>Infrastructure</u>

- Skilled Labor Force
- Quayside Space
- Road/Rail Connection
- Component Size
- Device Type

- Crane Capacity
- Quayside Bearing Capacity
- Dry-dock/Shipyard
- Vessel Availability
- Vessel Berths

Offshore Wind Turbine Size

Component	Land-based 1.5-2MW*	Offshore 6-8MW	Transport	Blades	
Tower				A380	
Height	~180ft220 ft.	250ft450ft.	May be transported in pieces.	79.8 meters	Nacelle/Hub
Weight	~150-230 tons	~400 tons			Tower
Nacelle & Hub					154 meters
Length	~35 ft.	~50ft.	May be transported in pieces.	Foundation Source: Siemens	SWT-6.0-154
Weight	~75 tons	~300-400 tons			Hub
Blades					
Length	~ 130 ft.	~250ft.	Single piece only	CONDOR	
Weight	<10 tons	25-35 tons each		Nacelle	Tower

Μ

MOTT MACDONALD

Μ

* E.g., Wild Horse Windfarm, WA

PORT LOCATIONS

<u>CA - Large Ports</u>

Northern

• Humboldt Bay

Central

- SF Bay ~ 7 Deep Draft
 Southern
- Hueneme
- LA/Long Beach
- San Diego

M MOTT MACDONALD

8

Port Classification Functions

Μ

MOTT

MACDONALD

Fabrication & Construction Port (FCP)

Quick Reaction Port (QRP)

- QRP
 - Crew Transfer, O&M, Pre-installation
- FCP
 - Construction staging, pre assembly, transport of hub ٠ and devices, fabrication of nacelle, blades, etc..
- AP
 - Final assembly, marine tow to final location, large staging/storage
- Combinations

Assembly Port (AP)

Prototype – Assembly & Installation

Assembled upright at Port. E.g., Semi-Submersible

Towed to sea for assembly. E.g., Spar

Prototype Port - Assembly

Lisnave Shipyard

Wide Dry-dock: 250 ft. (76m) Heavy-lift Crane: 500 tons Support Cranes: 100 tons **Air-draft Restriction: None** Draft: 25ft. (7.6m)

Μ

MOTT MACDONALD

Μ

M MOTT MACDONALD

Metoce	ean C	ond	itior	ns -	Ope	n Ocean	
PACIFIC OCEAN		the ways way			WASHINGT	ON E MONTANA	
WA, OR, CA, HI Average, Typ.	Winter	nter Summer		CALIFORI			
Hs (ft.)	9-10ft.	10ft. 6-7ft.		Sacramento	12.1	BASIN UTAH NEVADA	
Tp (sec)	11-12 sec	9-10 9	sec	Sa	n Francisco	Harsh Environment:	
Block Island ¹ , Winter (Atlantic) Typ.		r	Summer		 At-sea construction Assembly location Installation mathed 		
Hs (ft.)	5-6ft.		~3ft.		San D	 Installation method Long waves 	
Tp (sec)	7-8 see	7-8 sec					

1. NOAA Buoy 40097

Hermosillo

M MOTT MACDONALD

Case Study – Conceptual Example

GREEN – POTENTIALLY FEASIBLE

- FURTHER INVESTIGATION

ORANGE- NOT LIKELY FEASIBLE

Μ

Μ

Key Findings – Prototype

- Utilize Existing Equipment, Vessels, Infrastructure
 - Minimize capital expense
- Combination of locations
 - Broad geographic reach (Within and beyond CA)

Μ

MACDONALD

- Large tow distances possible
 - Common in energy sector
 - Block Island prototype

Key Findings – Commercial Production

- 3 Port Classification Types
 - Fabrication
 - Medium to large Ports
 - Good transportation connections
 - Inland or coastal

• Assembly

- Most Restricted
- Navigation Requirements (Channel & Air Draft)

• Quick Reaction

- Coastal Ports
- Proximity to installation
- Min 12' depth channel

Incentive for Infrastructure investments

Key Findings - Infrastructure

<u>Commercial Scale Infrastructure</u>

• Limited wide (200') dry dock facilities and marine railways

Μ

MACDONALD

• Wind-specific assembly facilities don't exist

Navigation

- Air Draft restricts final assembly location
- Limited choices of ports with large quayside & deep draft channel

Ocean Navigation

- Tow Distance less critical than infrastructure; demonstration
- Safe Harbor Distance

Key Findings - Infrastructure

Ocean Conditions

- Wave height, length
- Operability Limitations
- Downtime
- Specialty Equipment

Transportation

- Overland connections for smaller component
- Large components fabricated at Port

Port Infrastructure

- Few Large Heavy Lift Cranes (>500 ton)
- High capacity wharf
- Quayside upland area
- Throughput

FABRICATION PORTS: California

Long-Term Commitment - May Require Purpose-Built Facilities Quayside Space Limited - May Require Land (Re)development

- Navigation
 - Good channel access & berth facilities
 - Air draft considerations
- Upland Infrastructure
 - Large upland space; limited availability
 - Good transportation & supply chain connectivity
 - High Capacity Wharf; limited availability
- Port Network
 - Good regional and inland network
 - Good access to supply chain
 - Marine Port Dependent
- Dry Dock Facilities
 - Currently Exist ~ Air draft restrictions; width optimized for vessels; marine rail system?
- Workforce
 - Large skilled workforce for fabrication

Yellow: Investments Likely Required

Μ

MOTT

MACDONALD

м

ASSEMBLY PORTS: California

Port Facilities Require Upgrades

- Navigation
 - Deep draft channels available
 - Air draft limit considerations
 - Assembly & Installation method dependent
- Met Ocean Conditions
 - N. Coast restrictions on vessel & assembly operations; downtime
 - Protected Harbor or alternative installation scheme
- Port
 - Largest West Coast Ports
 - Upland space exists; limited appropriate dedicated laydown areas
 - Good experience handling wind farm components
 - Single facility w/ attributes for large scale project not currently avail.

Μ

MOTT

Thank You

Contact: shane.phillips@mottmac.com Detailed Report: www.boem.gov/BOEM-2016-011/

This study performed under BOEM Contract M15PD00019 (Prime: ICF International). BOEM Contact: Mark Eckenrode.

Aaron Porter, P.E. & Shane Phillips, P.E. Mott MacDonald 425-977-2585 Seattle, WA

