Rigs-to-Reefs Structures and Coral Community Development in the N. Gulf of Mexico: A First View

Paul W. Sammarco
Louisiana Universities Marine Consortium (LUMCON) and
Department of Oceanography & Coastal Sciences
Louisiana State University

G.S. Boland
Environmental Section, U.S. Department of the Interior
Minerals Management Service

A. Lirette
Louisiana Universities Marine Consortium (LUMCON)

Y.H. Tung
Louisiana Universities Marine Consortium (LUMCON) and
Department of Oceanography & Coastal Sciences
Louisiana State University
N. Gulf of Mexico
Artificial Reef and Rigs-to-Reefs Zones

Options for Rigs to Reefs Program

- Cut, topple, and tow to R2R site
- Cut and topple in place
- Sever at ≥ 85 ft depth, remove top, and place on bottom
Questions

- Are toppled R2R structures facilitating coral community development in the N. Gulf of Mexico?

- Are there differences between coral communities on the Rigs-to-Reefs (R2R) structures vs. the standing oil/gas platforms?

- What are the genetic affinities of these populations? (in progress)
Phases I & II

SCUBA and Video Surveys

Re-drawn from - California Dept. Conservation

http://www.consrv.ca.gov/dog/picture_a_well/offshore_platform.htm
Phase III

Control:
SCUBA Video Surveys,
R2R Structures and Platforms

ROV Video Surveys
(same)

Re-drawn from - California Dept. Conservation
http://www.consrv.ca.gov/dog/picture_a_well/offshore_platform.htm
SeaBotix LBV-300 ROV

- MMS
- ARACAR

http://www.wfl.fhwa.dot.gov/td/images/seabot.jpg
Structures sampled and assessed for –

- Species distribution and abundance
- Depth distribution
- Coral tissue – DNA samples
 - For population genetic differentiation/affinities
 - Technique - AFLPs
 - Collected by hand and ROV
 - In progress
Coral Tissue Sample Collection by ROV
Delivering Coral Samples to Collection Basket
Madracis decactis
Oculina diffusa

http://www.reeftalk.com/reviews/showproduct.php/product/1027/sort/7/cat/49/page/1
Phyllangia americana
Coral density in no./10m²

Total Coral Density
Standing Platforms vs. Rigs-to-Reefs

- Standing Platforms
- Rigs-to-Reefs Structures

n.s., p > 0.05, Mann-Whitney U-test
Tubastrea coccinea Density

Standing Platforms vs. Rigs-to-Reefs

<table>
<thead>
<tr>
<th></th>
<th>Standing Platforms</th>
<th>Rigs-to-Reefs Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coral density in no./10m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Y+0.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p < 0.05, Mann-Whitney U-test
Madracis decactis

Total Coral Density

![Graph showing coral density in no./10 m²](attachment:graph.png)

- **Standing Platforms**
- **Rigs-to-Reefs Structures**

Coral density in no./10 m² $(Y+0.5)$

*** $p < 0.001$, Mann-Whitney U-test
. Total coral density – same on Rigs-to-Reefs structures vs. platforms

. *Tubastrea coccinea* (ahermatypic) – density higher on R2R

. *Madracis decactis* (hermatypic; reef-building coral) – density higher on R2R
Phyllangia americana Density
Standing Platforms vs. Rigs-to-Reefs

*** p < 0.001
Mann-Whitney U-Test
Oculina diffusa Density
Standing Platforms vs. Rigs-to-Reefs

Non-significant (n.s.), \(p > 0.05 \)
Kruskal-Wallis Test
- *Phyllangia americana* – higher on standing platforms

- *Oculina diffusa* – equivalent densities on both types of structures

- Species-specific responses caused lack of density differences when considering all corals; averaged out
Depth Distribution of Corals
Depth Distribution
All Corals

Relative Abundance (Proportion)

Rigs-to-Reefs Structures

Standing Platforms

Depth (m)

Depth Distribution Chart

All Corals

Relative Abundance

Depth (m)

0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5
Depth Distribution

Madracis decactis

Relative Abundance (Proportion)

Rigs-to-Reefs Structures

Standing Platforms

Depth (m)
Depth Distribution

Oculina diffusa

- **Rigs-to-Reefs Structures**
 - Relative Abundance (Proportion)
 - Depth (m)
 - 20, 30, 40, 50, 60, 70, 80, 90, 100

- **Standing Platforms**
 - Depth (m)
Conclusions

. Total coral density – same on Rigs-to-Reefs and standing platforms
 - Due to opposing species-specific abundance patterns

. *Tubastrea coccinea* – higher on R2R structures

. *Madracis decactis* – hermatype – also thriving on R2R structures
Conclusions (cont.)

- *Phyllangia americana* – opposing pattern – higher on standing platforms

- *Oculina diffusa* – same on R2R and standing platforms

- Depth distributions
 - All corals shallower on R2R
 - Madracis decactis limited to shallows on R2R and standing platforms
 - Oculina diffusa – deep distribution on standing platforms
Acknowledgments

Funding and Logistic Support

US Department of the Interior - Minerals Management Service

Dave Ball
Chris Horrell
Greg Kozlowski
James Sinclair
Paul Sjordal

Louisiana State University A&M College – MMS-Coastal Marine Institute

Larry Rouse
Logistic Support

Aquarium of the Americas
Les Dauterive

Apache Oil
Jerry Bordelon
Ronnie Barras
Wayne Cormier
Billy Ebarb
Michelle Hebert

ARACAR
John Blitch
Alex Campbell
Jack Vice

Chevron-Texaco
Stephen Ulm
Deanna Lucas
Kerry Mire
Floyd Sanders

EcoLogic
Scott Porter

Louisiana Wildlife and Fisheries Department
Karen Foote
Rick Kasprzak
Douglas Peters

LUMCON
Christian Chauvin
Kai Fiand
Max Wike

ARACAR
M/V Fling
Ken Bush
Bud Shurtliff
Phil Degenais
Bland Ellen
Gerald Harding
Neal Baltz
Kelly Bearden
James Dibble
Steve Heuer
Ken Kimney
Chuck Kozio
Jamie Koobles
Mike McReynolds
George Philips
John Prentice

Texas A&M University – Corpus Christi
Kevin B. Strychar
Heather Butler
Amber Miller

Texas A&M University – Galveston
Jan Culbertson
Anja Schultze

Texas Parks and Wildlife Department
John Embesi

US Air Force/NASA
Doug Perrenod

Nicholls State University
Jeremy Dunn

Additional Divers
Mike Boatwright
Cary Chauffe
Kelly Collins
Craig Gentry
Amanda Thronson
Reference