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Chapter 1 Overview

The Arctic Nearshore Impact Miaring in Development Area 11l (ANIMIDA 111) Project was
designed to update previous evaluations of impacts that may have resulted from offshore oil and gas
exploration and production in the coastal Beaufort Sea. The Bureau of Ocean Energy Management
(BOEM), Alaska Outer Continental Shelf (OCS) Region previously sponsored the following three major
environmental monitoring programs in the Development Area: (1) the Beaufort Sea Monitoring Program
(BSMP, 19841989), (2) the ANIMIDA Project (1992002) and (3 the continuation of the Arctic
Nearshore Impact Monitoring in thgrilling Area (CANIMIDA) Project (20042007).As part of this
four-year ANIMIDA lII, Olgoonik Fairweather (OF), in conjunction with a teansoientistsconducted
two seasons of offshore open wateand one season of spring sampling field colledtiice programs.

A team of scientists from the University of Alaskairbanks (UAF)The University of Texas at Austin
(UTA), Florida Institute of Technology (FIT), Battelle Memorial Ins&({Battelle), Kinnetic
Laboratories Inc. (KLI), and OF comprise the project team.

Sampling was undertaken during the ometer periods in 2014 and 2015 (late July through
early August in both years) and during the 2015 sgirieghet.This report descrigs observations of (1)
physical oceanography, (2) the distributions of trace metals in bottom sediments, suspended sediments
and biota, (3) the characteristics of petroleum hydrocarbons in the sediments and benthic organisms, (4)
benthic infauna, carboresources, and trophic structuaed (5) epibenthic communities and demersal
fish communities in the central portion of theS. Beaufort Sea.

Most of the metals and hydrocarbons found in sediments and biota from the ANIMIDA Il study
are introduced natally by river runoff and coastal erosion (Boehm et al., 2001; Trefry et al., 2003;
Rember and Trefry, 2004; Neff et al., 2009; Brown et al., 2010, Ping et al., 2011; Neff and Durell, 2011,
Trefry et al., 2013). Very few instances of metal or hydrocarbateatination have been identified in the
coastal Beaufort Sea (e.g., ANIMIIDA Il Final Report plus all previous remdsreferences listed
abovg because most of the 2.7 x'alers (L, 17 billion barrels) of oil produced in the Alaskan Arctic
have ben recovered from land or nearshore gravel islands (Alyeska, 2017). When limited instances of
contamination have been identified, sources include the following: (1) discharged drilling mud and
cuttings within 25100 neters (m)of exploratory drilling site$~30 Federal or Federal/State lease sites in
the ANIMIDA 11l study area), (2) activities at coastal locations including West Dock, Endicott, Kaktovik,
Northstar,andLiberty, and (3) a few other unidentified sources.

1.1 Field Sampling Summary
1.1.1 2014 Offshore Field Season Summary

The team conducted aday sampling cruise in the Beaufort Sea during Auipist2014. The
cruise originally intended to use two vessels, an offshore vesseN&tBéman I for water depths
between ~ 150 m and a nearshovessel (R/M.aunch 1273 for water depths less than ~20 m, in the
immediate vicinity of the coastline. However, due to mechanical difficulties and foul weather, the
nearshore vessel was not able to conduct any sampling this year.

Forty-three stations wereriginally slated for sampling as per the ANIMIDA sampling plan.
Forty-three stations were sampled, in addition to 13 (totaling 56 stations) other secondary and /or
opportunistic stations where various samples were collected, depending on the paiticiplared
(Figurel). Some of the intended stations were replaced by secondary or opportunistic stations as a result



of challenges experienced with the nearshore vessel. Samples collected include sediment for physical,
chemical, ad biological analysis, water for physical and chemical analysis, biota for chemical and
taxonomic analysis, and water column sensor data for physical oceanographic analysis (e.g., conductivity,
temperature, current velocity; an Acouddioppler Current Rifiler [ADCP] was used only on the

offshore vessel).

014 ANIMIDA It1 Sampling Stationas Rt Dogte |mererel

f

Figure 1. Map indicating ANIMIDA 2014 station locations and type.
1.1.3 2015 Spring Sampling Field Season Summary

A team of scientists from KLI, UAF, and FIT sampled and dcented the under ice spreading of
the Colville River spring freshet from May 29, 215. The study was designeddelineate and quantify
the offshore dispersion of river runoff and suspene@elihsents during the spring melt as welltrase the
dispersiorof suspended sedimerntgo deeper, outer shelf wat@figure?2).

The following tasks were completed:

A Collected water samples for dived and particulate organic carbon (P@@J metals daily
from the ColvilleRiver, Kuparukand SagavanirktolRivers over a ~3veek period starting
with the onset of thepring meltwater event; a subset of the samples has been submitted for
hydrocarbon analysis. Daftar river stage, conductivity, pH, total suspended solids, and other
properties were obtained.

A Collected undeice water samples at multiple stations from1®offshore sites in Harrison
Bay.

A Installed temporary moorings for temperature (T) and salinity (S) at as manyiceder
locationsas possibleMade water velocity measurementiizing through ice moored
ADCPs (4) and point current meters (2).
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Figure 2. Spring Sampling Through-Ice Locations.
1.1.3 2015 Offshore Field Season Summary

The second and final ANIMIDA Il cruise began on July 31, 2015 witrattempted recovery of
a physical oceanography mooring and ended on August 8, 2015 with the completion of all sampling
activities.Sampling was only conducted from thiéshore vesselR/V Norseman [}, as the nearshore
vessel R/V Launch 1273not used ire015.

Stations were selected following numerous t&aimnciple InvestigatorKI) discussions and were
iteratively modified based on availability and content of historic data at specific locations (e.g., BSMP
and Camden Bay stations) as well as extensiperéise of the Pls, study area geospatial spread (east to
west across the coastal Beaufort Sea), locations relative to current BOEM lease blocks, and transit timing
aspect of the research vessel. The breakdown of the sampling included four main Igpasio(i})
historic BSMP, (2) historic Camden Bay, (3) Random Tessellated (RDW) stai@haew 8 stations
from areas identified as lacking in dékagure3).
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Figure 3. Map indicating ANIMIDA 2015 station locations and type.
1.1 Physical Oceanography

The central and eastern portions of th&. Beaufort Seaare essentially estuarine in character
and are characterized by the presence of low nutrient;inffeenced water masses at the surface.
Nutriernt concentrations and salinities increase with increasing distance from the coast and with depth.
Temperatures vary with winds and depth; strong stratification can result in surface water temperatures up
to 7 °C.The presence of ice that accompanies persgistownwelling favorable winds (winds from the
West) generally leads to temperatures <2 °C and the concentration of fresh water against the coast. The
trend toward increasing nutrient concentrations with depth and distance from the coast is a result of th
influence of shelfbreak water masses. These water masses are advected in an eastward flowing shelfbreak
jet, a narrow and swift, bottom intensified current that forms the northern boundary of this shelf. Many of
these shelfbreak water masses are defiwed Pacific waters which are modified as they flow northward
on the ChukchBeashelf and eventually form the core of the Beaufort Sea shelfbreak jet. Frequent
upwelling favorable winds (winds from the East) in the region reverse the eastward flovéing jet
upwell these water masses onto the Beaufort shelf along the bottom. As a result, nutrient concentrations
along the outer Beaufort Sea shelf are comparable to values from theaserthChukchiSeashelf. At
the surfacethe presence of numerous sewsly frozen rivers along the coast means that during the
summer, surface waters are typically very fresh with salinities seasonally ranging from Olede30.
salinity, derived from conductivity is unitless so no units are reported for measured salayibeted
herein.Because surface waters can be strongly stratified, temperatures can exceed 6 °C and winds readily
move these surface water masses across and along the shelf.



As a result of differences in winds during the two ANIMIDA field seassundace water
properties and sea ice conditions were very different between years. A moored record of water level
(pressure), temperatyr@nd salinity from ~13 m of watewithin Harrison Baycaptures the extremes in
hydrographic conditions that characterilze shelf, especially the nearshore, where temperatures at the
bottom ranged from the freezing point to 5 °C. Salinities at the mooring ranged from 25 to >35. The latter
occurred during an episode in midnter when brine rejection from freezing was liké&hking place near
the mooring. Density currents that result from such extreme events are one mechanism nearshore water
masses and their dissolved and suspended materials can be transported across the shelf and eventually
into the shelfbreak jet. The psese record from the mooring shows extremes in water levels due to
differences in winds: water level deviations of +0.71 m (storm surge due to downwelling favorable
winds) and-2.85 m (sea level set down due to upwelling favorable winds) were recorded thaiyear
long record. In addition to illustrating the strong effect of winds on the shelf, such large fluctuations in sea
level mean that lovlying coastal ecosystems, which support numerous bird species, are subject to
extremes in conditiongs well.Measurements from the Colville Delta during the spring freshet in 2015
showed that surface waters in the nearshore are essentiallySreg}hT(hus conditions in the nearshore
are extreme with salinities ranging from 0 to periods of hypersaline wate Swa5.

1.2 Trace Metals in Bottom Sediments, Suspended Sediments and Biota

Data for trace metals in bottom sediments, suspended pardictesarine biota were used to
identify any recent spatial or temporal changes in concentrations of potentiadlyrtetéls in the coastal
Beaufort Sea. Concentrations of 17 trace mesdigef [Ag], arsenic As], Barium [Ba], beryllium [Be],
cadmium [Cd], chromium [Cr], copper u], mercury Hg], magnesiumNn], nickel [Ni], lead [PY,
antimony B, selenium §4, tin [Sn], thallium [T1], vanadium Y], andzinc [Zn]) in 63 surface sediment
and 300 sediment core samples collected during 2014 anch2QqiEst oANIMIDA Il were essentially
all at natural, baseline values. Previoussfablished background ratios oftalealuminum Al] in
sediments were used to identify any sediment metal values that were anomalous. Four anomalies
(concentrations above baseline) were observed for Ba and single anomalies were identified for Be, Hg,
Sbh, V, and Zn during ANIMIDA IlI. All concentrations of the potentially toxic metals Ag, Cd, Hg, Pb
and Zn were below published sediment quality criteria. At offshore locations (water depths >200 m),
concentrations of As, Mrand Hg were very high in some surface sediments from offshoraext wa
depths of ~20@B00 m; these deviations were linked to subsurface, diagenetic remobilization of these
metals with subsequent reprecipitation and enrichment in surface sediments. Concentrations of total
suspended solids during August 2014 ranged fro+®.1milligrams per liter (ng/L) and averaged 1.1
mg/L. Particulate Ba/Al ratios in these particles were within 2% of values for bottom sediments and
provide a weldefined marker for tracing dispersion of discharged drilling fluids in the water colamn. |
contrast with Ba, particulaieon [F€/Al ratios were ~80% greater than in bottom sediments in support of
sorption of iron oxides and scavenged metals on suspended particles. Concentrations of the same 19
metals were determined for clanfsstartesp.) and amphipodsAnonyxsp.) collected during 2014 and
2015. Results showed a variety of patterns and are presented and discussed here to provide a baseline for
future assessments.



1.3 Characteristics of Petroleum Hydrocarbons in the Sediments and Benthic
Organisms

Hydrocarbonsgolycyclic aromatic hydrocarbofiBPAH], saturated hydrocarbofSHC, and
sterane and triterpefi§/T] petroleum biomarkersyere measured in sediment and marine animal
samples collecteftom the nearshore environment to the comtaéshelf 50 milegmi) offshore.Most of
the nearshore stations had been sampled in earlier phases of ANI&HD#e offshore stations were
new.The methods that were used were the same as those used in earlier phases of ANIMIDA.

Thoughseveral classes hydrocarbons were measured, PAH are the class that are of greatest
environmental interesthe surface sediment Total PAH concentragienerally ranged frorh0O0 to
1,000 nanograms per gram (ng/g), dry weightwt.), and averaged 532 (2014) and 7231(5) ng/g for
the two survey year3.hese concentrations were comparable to what had been measured in ANIMIDA |
and Il; the mean concentration for each yaahose programsanged from 380 to 570 ng/@he
hydrocarbon concentrations were also similavbat has been measured in the sediments in other studies
in the Beaufort and Chukchi Seas, and other marine regions of Aldskaurface sediment
concentrations were slightly higher at the offshore stations than nearsbgsiblyas a result of transpt
of fine-grained material that tends to have higher hydrocarbon concentrations than coarser faterial.
sediment core, collected wellfehore, had uniform hydrocarbon concentrations at all depths, also in
sediments representing deposition from manyuw@s ago; the amount and source of the hydrocarbons
has remained constant for a long time and does not seem to have been altered by humanTdetivities.
hydrocarbons in the Beaufort Sea sediments are primarily froroihpetrogenic and biogenic sous;e
with smallamounts of pyrogenic hydrocarboMost of the hydrocarbons are carried to the Beaufort Sea
through coastal erosion and river input of hydrocarbon rich materials, such as peat arichehale.
concentrations of PAH in the sediments are lowmadtiral background levels, below concentrations that
could cause harm to marine animals.

The concentrations of PAH, and other hydrocarbons, were more variable in the tissue of marine
animals than in the sediment; there are seasonal and annual fluctuationsh aspects of t he
and feedingThe mean Total PAH concentration ranged from 25 to 30 dgigt., in the amphipods
collected in 2014 and 2015, from 44 to 380 ng/g in the clams (a few values above 100 ng/g were
attributed to analytical chHahnges, and do not represent actual field concentrations), and from 24 to 94
ng/g in the Arctic codThe concentrations did not correlate well with the lipid content of the animals,
demonstrating that many factors influence the accumulatibgdybcarbon®y marine animalsThere
was no clear geographic pattern in the hydrocarbon concentrations of these marine @haneisue
hydrocarbon concentrations were comparable to what had been measured during ANIMIDA | and Il, and
in other studies in the Arctid@he concentrations of the PAH that have accumulated in the marine animals
are low, at natural background levels, and well below concentrations that could cause toxic effects or
other harm to those animals.

1.4 Benthic Infauna, Carbon Resources, and Trophic Structure

A quantitative assessment of the biomass, abundance, and community structure of benthic
populations of the Beaufort Sea Shelf along with a detailed characterization of food web dynamics were
carried out as part of ANIMIDA lll. Our analysis douented a benthic species inventory of 353 taxa
collected from 126 individual van Veen grab samplesiftefers squaredif’]) at 42 stations. Infaunal
abundance was dominated by polychaetes, bivalves, and amplipadizes, echinoderms, and



polychaetesanstituted the greatest fractions by biomass. Shannon Diversity Index values of the infaunal
community at different stations (by abundance) was between 1.5 and 4.1 (meanstaBcatd deviation

[SD] 0.02), out of a possible range eb0Thirty of the £ stations had high diversity valuégtween 3.1
and39and two stations had higher values, 4.0 and 4.
to 0.98 (mean = 0.96 + SD 0.52) out of a range-bf @emonstrating balanced contributions from all

collected species at many but not all stations.

We used a Biota and Environment matching routine to examine the relationships between
infaunal distributions of all collected taxa with the physical environmrdentmbination of water depth,
TOC,andsalint y correlated with i nf auWadlsomoteditmatstatoese di st
exhibiting the highest levels of both pyropheophorbide and pheophearfitiorophyll degradation
products that are markers for metazoan grazing) were charadteyizee highest infaunal abundance.
These stations contained polychaetes and crustaceans that constituted >75% of all organisms present and
were | ocated in three Ahotspotsd al osheflocations Beauf o
in the western Beaufort in Harrison Bay, the central Beaufort, including Stefansson Sound, and the
eastern Beaufort from Barter Island east to Icy Reef. Our results imply a strong correlation between
infaunal abundance arddeposited sediment pool that may inclitdealgae, bacteria, and other benthic
microalgae Preliminary data on the stable nitrogen isotopic composition of benthic organisms reveal
complex food webs dominated by decidedly omnivorous consumers that occupy up to four trophic levels.
Stable carboisotopic composition of these benthic organisms, along with isotopic analyses of suspended
particulate organic matt¢8POM)and zooplankton, reveal a primary mixture of terrestrial and
phytoplankton carbon, but an additional benthic microalgal subsicBeappo play a role at moderate
depths that correspond to the three hotspots of infaunal abuntfaiicéhe genera examined also
di splayed a di st i A°C values that likehereflects theiflleace of theyMackenziéi
and other sourced treshwater runoff in the EastethS. BeaufortSea which transport allochthonous
inputs of terrestrial organic carbon that become available as a food source to the benthos. These results
provide compelling evidence for the important role of terrestedbon in Beaufort Sea food webs. Aside
from the nearshore Sagavanirktok and Coh\Rlieers deltas, the).S.Beaufort Sea shelf overall
supports a rich benthic infauna community, particularly in the region around Kgkidnake repeated
upwelling eventhiave been reported.

1.5 Epibenthic Communities and Demersal Fish Communities

The dynamic physical and biological gradieotshe Beaufort Sea shéiave a distinctive
influence on epibenthic and demersal fish standing stocks. Epibenthos and demersairfisimity
structure vary both along and across shelf. Epifaunal communities shallowapgrarimately20 m,
sampled primarily in the western part of the study area near the ColvillRagiadanirktolRivers, were
relatively depauperate in species rieks and abundaneadbiomass, likely related to a combination of
bottom fast ice, scour by de€paft ice, and extreme salinity changes during spring bugalbominant
epibenthos in this zone included mobile crustaceans. Shelf areas outsidersadtperturbations were
more species rich with largely overlapping character species in several community clusters. Shelf break
and upper slope fauna formed distinct clustei) typical deepwater species were only found at the
deepest stations. Dominant feuon the shelf and upper slope included echinoderms and mo\liisis.
demersal fish were less abundant and diverse than epibenthic invertebrates, fish communities were also
distinct between nearshore and offshore areas, though less bound to the 2&timaisd grouped in
fewer clusters. Sculpin€6ttidag generally dominated by abundanedile snail fishesl(iparidae),



cods (Gadidag, andeel pouts Zoarcidag also contributed almost equally to the species inventory. Along
theshelf, the decreasingflnence of Pacifieorigin water along the continental slope resulted in lower
epibenthic stocks east approximatelyl 50°W compared to previous studies conducted further west. A
shift in taxonomic composition also aligned with this longitude.

In summarythe ANIMIDA Il results document that epibenthic communities reflected the
physically very dynamic nature of the Beaufort Sea shelf, characterized by stromgdamiinteractions
in its nearshore zone, and its interaction across a steep slope thasneae Atlantieorigin waters. The
areas off the Colville anfagavanirktolRivers contained less rich epibenthic communities than the
Chukchtinfluenced western Beaufort Sea and also somewhat less rich communities than the shelf region
off Barter Island
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Chapter 2 Physical Oceanography

Abstract

The central and eastern portions of th&. Beaufort Sea are characterized by the presence of low
nutrient, riverinfluenced water masses at the surface. Nutrient concentrations and salinities increase with
increasing distancieom the coast and with depth. Temperatures vary with winds and depth; strong
stratification can result in surface water temperatures up to ThCpresence of ice that accompanies
persistent downwelling favorable winds (winds from the West) geneeallislto temperatures <2 °C and
the concentration of fresh water against the coast. The trend toward increasing nutrient concentrations
with depth and distance from the coast is a result of the influence of shelfbreak water masses. These water
masses are adcted in an eastward flowing shelfbreak jet, a narrow and swift, bottom intensified current
that forms the northern boundary of this shelf. Many of these shelfbreak water masses are derived from
Pacific waters which are modified as they flow northwardhenChukchiSeashelf and eventually form
the core of the Beaufort Sea shelfbreak jet. Frequent upwelling favorable winds (winds from the East) in
the region reverse the eastward flowing jet and upwell these water masses onto the Beaufort shelf along
the mttom. As a result, nutrient concentrations along the outer Beaufort Sea shelf are comparable to
values from the nortfasern ChukchiSeashelf. At the surfageghe presence of numerous seasonally
frozen rivers along the coast means that during the susurfaice waters are typically very fresh with
salinities seasonally ranging from O to Blaite, salinity, derived from conductivity is unitless so no units
are reported for measured salinities reported heBeicause surface waters can be strongly stlitifi
temperatures can exceed 6 °C and winds readily move these surface water masses across and along the
shelf.

As a result of differences in winds during the two ANIMIDA field seasendace water
properties and sea ice conditions were very differemiden years. A moored record of water level
(pressure), temperature and salinity from #18f water captures the extremes in hydrographic
conditions that characterize the shelf, especially the nearshore, where temperatures at the bottom ranged
from the fleezing point to 5 °C. Salinities at the mooring ranged from 25 to >35. The latter occurred
during an episode in miglinter when brine rejection from freezing was likely taking place near the
mooring. Density currents that result from such extreme evemntsn@ mechanism nearshore water
masses and their dissolved and suspended materials can be transported across the shelf and eventually
into the shelfbreak jet. The pressure record from the mooring shows extremes in water levels due to
differences in windswater level deviations of +0.71 m (storm surge due to downwelling favorable
winds) and-2.85 m (sea level set down due to upwelling favorable winds) were recorded during the year
long record. In addition to illustrating the strong effect of winds on tbE, tuch large fluctuations in sea
level mean that low lying coastal ecosystems, which support numerous bird species, are subject to
extremes in conditions as well. Measurements from the Colville Delta during the spring freshet in 2015
(discussed in a sapate section) showed that surface waters in the nearshore are essential§~esh (
Thus,conditions in the nearshore are extreme with salinities ranging from 0 to periods of hypersaline
water with S>35.



2.1 Introduction

In the westertJ.S.Beaufort 8a high nutrient Pacific origin water masses are upwelled onto the
outer shelf and influence the planktonic, benthitd pelagic food web communities here (¢rgnd and
Logerwell, 2011; Pickart et al., 2013; Ravelo et al., 2015). Upwelling peaks dufing A par t i al i ce
coverageo season (Schulze and Pickart, 2012) and
replenished during the stormy, partial ice season (Pickart et al., 2013). In the central andledstern
Beaufort Seahelf where biomass drspecies diversity are comparatively low (Ravelo et al., 2015), the
connections between seasonal water masses, upwelling and productivity are currently an area of active
research (e.gLogerwell et al.2011; Kasper et al2012; Bell et al.2013). Oveall, because there are so
few physical oceanographic measurements from the central and eaSeBeaufort Se@/NVeingartner
et al., 209; Kasper et al., 2012), it is difficult to assess the fidelity of numerical model results in these
regions and thus is difficult to understand the possible impacts of drilling in the red@cause
offshore activities can precipitate increases in suspended sediments and decreases in light penetration,
such activities have the potential to impact biological produgtarid disperse contaminants across the
shelf.

The objectives of this component of the ANIMIDA 11l Project were to provide information to the
other disciplines about hydrographic conditions (evgter mass presenaedabsence, characteristics of
water mases, temporal variability in hydrography) with the goal of improving our understanding of how
the hydrography impacts distributions of species diversity, biomass, trace metals, etc. The hydrographic
data can also be used to improve regional modelingtefiised in regional spill modeling and prediction.

2.2 Methods
2. 2.1 Data Collection

TheNorseman lwas equipped with a Teledyne Workhorse Mariner @tiiHertz (kHz) ADCP
for measuring water column velocityelocities were averaged ov&m bins. Withthese settings, the
uncertainty in the ADCP velocities 6.7 centimeters per secondn(/s).

TheNorseman lwas also equipped with Seabird Electronics SBEpumped flow through,
thermosalinograph (TSG) for measuring conductivity and temperature tithd m of the water
column.TheNorseman IITSG systenwas equipped with an additional, remote SBE 38 temperature
sensor to eliminate thermal contamination due to
measurement. Comparison with paad postcruise calibration values indicate that the temperature data
were accurate to better than 0.1 °C and that the salinity data were accurate to 0.01.

In addition tosupplyingthe vessel mounted sensors, U&lBosupplied each vessel with a SBE
25 ConductivityTemperaturéDepth CTD) system. Each CTD package was equipped with external
photosynthetically available radiatiRAR; Biospherical Instruments QSP 2300), Transmissivity (WET
Labs ECO FLNTURT)Fluorometry (WET Labs ECO FLNTURTand Altimetry sensors fanaking
water column measurements of conductivity (Salinity), temperature, pressure as well as PAR,
transmissivity and chlorophylb (fluorometer) and elevation above the bottom (altimeter). The CTD
used ortheNorseman Iwas equipped with-Bottle capbusel equipped with-& bottles (an SBE 55a
deck unit (SBE 33)and an electronics control module (ECM, SBE 55) to allow for real time read out of
the measurements. Bottles were used for taking discrete water column samples for nutrients and trace
metak as well as other parameters of interest.
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Samples for nutrient analysis were collected imilliter (mL) polyethylene bottles. Bottles
were triple rinsed with seawater before the sampbrecollected. Samples were immediately frozen for
later procssingat UAF. Concentrations of phosphate @@Gilicate (SiQ), ammonium (NH), Nitrite
(NOy), and Nitrate (NG) were determined using colorimetric techniques on Technicon AutoAnalyzer Il
and Alpkem model 300 continuous nutrient analyzers (Whitledde 4981)

The SBE25 sampled at 1B8ertz (Hz) and was lowered through the water column at acftS
m/sso that 5 samples/mere collected. Measured variables include pressure, temperature, conductivity,
beam transmission, fluorescenaad PAR. Derivedariables include depth, salinity, potential
temperature, density, and speed of sound. The data were processed according to the manufacturer's
recommended procedures (provided in the SBE Data Processing Manual) and were screened further for
anomalous sp#s, dropouts, and density inversions. Festson calibrations of the temperature and
conductivity cells were conducted at theanmhanuf act
postcalibration values indicate that the temperature data atgae to better than 0.05 °C and that the
salinity data are accurate to 0.005.

2014: Approximately 57 CTD stationg-{gure 1) were occupied between July 30 and Asty,
2014 on the eastern and central sections of/tBe Beaufat Seashelf. The stations included a mix of
full, partial, and physical oceanography only stations. The latter generally consisted of a CTD cast with
no water sampleg-{gurel, Tablel). The physical ceanograpmpnly stations were carried out in rapid
succession along a $yacphticoaes ¢ ollbane a@Eslt)auliigonasi.
CTD stations included bottle samples collected at discrete depths (surface, bottarhlorophly max)
andsampled for nutrients, chlorophw) as well as chemical analysis.

A total of 101 samples were collected for analysis of major and trace nutrients (Whitledge et al.,
1981). An additional 45 samples were collecfitred, and analyzed for ater column Ba (e.gRember
and Trefry, 2004). Samples were vacuum filtered through polycarbonate filters (Poretidiim&ter
[mm] diameter, 0.4nicrometer im] pore size) in a laminar flow hood aboard ship immediately after
collection. Filters hadden prewashed imitricacid GNHNO;)and ri nsed t hr esn ti mes
deionized water (DIW) and then weighed three times to the neai@sigrams |(g) under cleanroom
conditions afFIT. Fifty mL polyethylene bottles were triple rinsed with filtered seawater before the
sample was cappe8amples were refrigerated for analysis at UAF.

Bais an effective tracer for the presence of Mackenzie River water@eigy and Falkner,
1998).The ollection ofBasamples was concentrated on the eastern portion bf $:eBeaufort Seand
near theshelfbreak where we expect MackenRiger water to be present. In addition to the CTD
stations, data from the vessel mound&ICP werelogged for the duration of the cruise as welthas
Afl ow tTEBGthmtsgnipled at approximatelyribelow the suace at 1 Hz during the cruise.
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Table 1. Summary of stations occupied during the 2014 ANIMIDA cruise.

Station ID Station Type | Latitude @) Longitude (1) ’S\l:rtr:lpelgts Waéea[rf‘zl]umn
6D B/C 70.749 150.475 3
4C C 70672 150.155
B/C 70.850 150.061 3
B/C 70.757 149.440
10 B/C 70.713 148.765
5E C 70.638 149.272
5(5) B/C 70.437 147.344 3
HEX1 C 70.422 146.182
L2565 B/C 70.365 146.118 3
HEX17 C 70.316 146.081
HEX12 C 70.360 145.906
HH15 C 70.363 146.018
SXA C 70.382 145.985
T3 B/C 70.451 145.837 3
T-XA C 70.456 145.810
M4 C 70.537 145.710
18 C 70.332 145.336
20 B/C 70.358 144.495 3 3
21 B/C 70.275 143.910 3 3
22 B/C 70.192 142.905 3 3
23 B/C 70.004 141.963 3 3
24 B/C 70.260 141.763 3 3
25 B/C 69.851 141.718 3 3
1B C 70.065 144.778
1C B/C 70.158 144.805 3 3
2C C 70.159 145.322
16 B/C 70.734 145.992
15 B/C 70.646 146.661
12 B/C 70.672 147.591 3 3

1BC = Biology and Chemistry, C = ChemistrTOI Bensor only (no bottles)
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Table 2. Summary of stations occupied during the 2015 ANIMIDA cruise.

Station ID Station Type | Latitude (°N) | Longitude (&) | Depth
152W0 ACWPVTB4  71.0042 152.38 15.9
152W1 ACWPVTB4  71.1939 152.25 33
71:150 CWPVT 70.9404 151.03 18.2
AQOS C 70.6331 150.23 13
5A ACWPVTB]  70.4947 148.76 11.8
NO6 cVv 40.4924 148.72 11.9
NO3 DV 70.4991 148.69 13.0
3A1 C 70.2829 147.09 6.4
3A2a ACWPVTB4  70.2824 147.09 6.4
143W1L ACWPVTB4  70.2573 143.61 388
143W2A ACWPVTB4  70.4425 143.6 480
143W3 CTD only 70.7714 14361 198
143W6 CWPGT 70.7445 143.59 502
14305 CWPVGT 70.6260 143.59 303
143W4 CWPVT 70.5691 143.60 154
143WBA CWPVT 70.5482 143.54 103
70142 ACWPVTB/  70.4658 142.40 65.5
70143 ACWPVTBA  70.3614 142.85 57
70145 ACWPVTB/  70.4912 144.97 45.8
71145 ACWPVTB/  70.6753 144.92 103
71146 CWPVGT 70.9569 145.80 395
71-147A G 71.0181 147.09 -
71147 CWPVTB 70.9716 147.38 104
71149 ACWPVTB4  71.1525 148.41 68.4
149350 CVG 71.2236 140.33 325
149250 C 71.2199 149.33 265
149200 CWPVT 71.2123 149.34 207
149100 CW 71.2058 149.35 108
14946 CW 71.1340 149.47 48.1

1A=amphipod, C = CTD, W = Niskin water samples, P = plankton net, V = van V¢
trawl, B = Bivalve rake
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2015: A total of 29 CTD casts were takefigure3, Table2) between July 31 and Augt8,
2015 on the eastern and central sections of/tBe Beaufort Seahelf. Stations include a mix of full,
partial ard physical oceanography only stations. The latter generally consisted of a CTD cast with no
water samples. Full CTD stations included bottle samples collectistette depths (surface, bottom
and chlorophyll maxandsampled for nutrients, chlorophwylas well as chemical analysis.
Approximately 110 samples were collected for analysis of nutrients.

CTD casts provide a snapshot of the hydrographic conditions. The analysis of salinity and
potential temperature from these transects provides informatioi@n masses on the shelf including
whet her nutrient rich APacific Water MassesoOo are
generally long because of long sampling times and the sampling was spatially random by design,
hydrographic sectionsan only be constructed for a limited number of transects: the Kakbastiktbuted
Biological Observatory@BO) line in 2015 and a physical oceanograjoimyy transect occupied along
~152°% in 2014 are the only quasi synoptic crshelf transects occumlaluring the program.

In addition, a bottom mounted mooring was deployed on the first day of the 2014 cruise on July
30. The mooring consisted of a bott omAlaska@aeaned A Se
Observing Systemd009)-fundedADCP & well as a Seabird 16+ CTD and transmissome&igu(e4).
The Sea Spider, CT[&nd transmissometer were contributed to the project from the UAF equipment pool.
The ADCP failed two days after deployment so no ADCP dagavaileble for the deployment. The
CTD recorded temperature, conductiyiyd pressure for the entire year long deployment. Salinity,
depth and density are derived from the mooring data. The mooring was recoverddihy2€cientists
aboardathe Norseman lifor the Arctic Marine Biodiversity Observing NetworRMBON) project.
Finally, hourly surface winds from the Prudhoe Bay airport were used in this study.

Figure 4. Physical oceanographic mooring deployed in Harrison Bay.
2.3 Results
2.3.1 Sample Data

Maps of surface salinity and temperature from the flow through thermosalinograph are shown in
Figure5 throughFigure10. Potential Temperature (°C) versus S for 2014 and 2015 areshéigure
11 There are several features of note in the S and T maps: in 2014 offshore of the Colville River Delta
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(~150°W) there is distinct band of warm water nearshore that extends west of thendeliaible in

Figure7. This plume of warm river water is present in 2015 as Wwhlbugh nh contrast to 2014, in 2015

this band of fresh, river influenced water is not continuous along the coast and is likely characterized by
strong frontal systems (rems where density varies over short distances). The presence of a strong front
is suggested by distinct bands of temperature and salinity visible néaVX&Rjure5 andFigure8) as

well as in the eastern portion of the survey region whéeés@ is present. This nearshore water is part of
riverine coast al domain described by Carmack et
of river influenced water varies consideratligh winds and freshwater input (e.@kkonen et al., 2016).

Also, note that in both years, there is very warm water, Mackenzie River influenced water, present in the
eastern reaches of the survey regioAQY. This water mass is advected into the stamha from the
Mackenzieshelf of theBeaufortSeaby easterlywinds. There are also differences visible in the property
property plots: in 2014 surface waters largely consisted of a narrow rategeparaturesalinity (TS)

between1 and 5°C with mixingtaking place along two lines originating-at°C and S of ~27.5 and 30.

The source water masses in both cases are river influenced shelf water. In contrast, in 2015, there are
three mixing lines originating at® and 26, C and 29and 1°C and 30. Whe the water mass for

these first two mixing lines is river influenced shelf water, the water mass for the third line is a shelfbreak
water mass: Bering Sea Water (evon Appen and Pickart, 2012).

Though not showrwinds during the two cruise years igamarkedly different: in 2014 winds
were upwelling favorable (easterly). Upwelling winds distribute river influenced shelf water masses
westward and offshore. As a result, the ice was concentrated seaward of the shelfbreak during the 2014
cruise. In contst, in 2015Prudhoe Bay winds during the cruise were downwelling favorable (westerly)
with the result that pack ice covered the shelf in 2015 and shelfbreak water masses were moved onto the
shelf via Ekman transport. Note that the cruise took placegithinfirst week of August in both years.

Plots of salinity, temperaturand nutrient concentrations at the bottom in 2014 are shown in
Figurel2throughFigure18. Plots of these same variables in 2@i®& shown ifFigure19 throughFigure
24. In both years, nutrient concentrations generally increase with increasing depth as a result of the
upwelling of nutrient rich shelfbreak water masses in thebohioundary layer. As a consequence, at the
bottom, nutrient concentrations increase with salinity and temperature towards the shelfbreak. Grebmeier
and Cooper (2014) report RP@etween 1.111.6 microMolar (uM) andNH4 between 1.62.8 uM on the
northern Chlchi shelf andNOs+NO; of 5.5uM andSiO, values of 15.uM. Concentrations of these
same nutrients on the outer Beaufort Sea shelf are comparable in magnitude to &asgror@hukchi
Sea shelfln contrast, nearshore water masses are depleted iamsitbmpared to these offshore water
masses.
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Figure 13. Concentration of phosphate (PO, uM) at the bottom from 2014.
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Figure 14. Concentration of silicate (SiO4, uM) at the bottom from 2014.
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Figure 15. Concentration of ammonium (NH., uM) at the bottom from 2014.
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Figure 16. Concentration of nitrite (NO2, uM) at the bottom from 2014.
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Figure 17. Concentration of nitrate (NOs, uM) at the bottom from 2014.
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Figure 18. Salinity at the bottom 2015.
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Figure 19. Temperature (°C) at the bottom 2015.
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Figure 20. Phosphate (PO4, uM) at the bottom from 2015.
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Figure 21. Concentration of silicate (SiO4, uM) at the bottom from 2015.
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Figure 22. Concentration of nitrite plus nitrate (NO2 + NOs, uM) at the bottom 2015.
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Figure 23. Concentration of ammonium (NH4, uM) at the bottom 2015.
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TS plots at the bottom for 28%and 2015 are shown kigure24 throughFigure25. The color
scale indicates the concentration of the nutrients. Black dots are the full temperature and salinity values
from all the CTD casts. Major regional water masses are labeled. The bottom water masses are clustered
around the Bering summer water and remnant winter water masses that originate in the Bering Sea, are
modified over the Chukchi and that are then adveayettie Beaufort Sea shelfbreak jet (evon Appen
and Pickart, 2012; Gong and Pickart, 2015).

Figure26 throughFigure 38 show the salinity, temperatyrnd nutrient cocentrations at the
chlorophyll max for 2014 and 2015. Salinities range from 13 in the very nearshore to 34 in 2014. In 2015,
the salinity range is slightly smaller and lies between ~19 and 34. Temperatures in both years are less than
2 °C except at the slowest stations. Nutrients concentrations are slightly less than at the bottom at all
stations.

TS plots from the chlorophyll max are shownRigure39 for 2014 andrigure40for 2015.
Compared to the bottom TS plots, the water at the chlorophyll max is fresher and slightly warmer with
more variability in temperature and salinity than at the bottom. The water masses at the chlorophyll max
are mixture of river influencedater and shelfbreak water masses (Bering summer water and remnant
winter water).

Salinity, temperatureand nutrient concentrations at the surface (~2 m) for 2014 are shown in
Figure4lthroughFigure47 and for 2015 irFigure48throughFigure53. Salinities in 2014 strongly
reflect the presence of river water with salinities in the nesesi®low as 10. Surface temperatures in
2014 ranged from 7 td °C with higher temperatures generally associated with strongly stratified river
influenced water. In 2015, salinities are markedly different and they ranged between 19 and 22. Surface
tempeatures in 2015 are also less variable than in 2014 and they geneea8/°C and show less
variability than in 2014.

TS plots from the surface for 2014 and 2015 are showigimre54 andFigure55. The TS plots
show that nutrients are depleted compared to lower depths at these same sites. Also, in 2015 the salinity
range is much smaller than in 2014 and temperature and salinity in 2015 is clustered around over a
smallerrange than in 2014.

The differences in surface salinity and temperature are likely a result of differences in winds
between the two years. In 2015, the downwelling favorable winds during the cruise meant that the shelf
remained ice covered for the entirelise and pushed shelfbreak, surface water masses onto the shelf. In
contrastupwelling favorable winds in 2014 meant there was no ice on the shelf during the cruise and
strongly stratified, river influenced coastal waters were spread-adodgpftshae.

A TS plot that includes all the data from the CTD casts for both 2014 and 2015 is shown in
Figure56. 2014 data are shown in blue and 2015 data are shown in refigditegllustrates the
differences betweethe years: in 2014 river influenced water is much more prevalent than in 2015 and
salinities in 2014 are markedly fresher than 2015.
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Figure 24. Barium and nutrients at the bottom from 2014.
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