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ABSTRACT 

Predicting sea ice motion in the Beaufort and Chukchi Seas is important for facilitating marine 
commercial operations and rescue activities when sea ice is present. This project developed an 
open-source computational framework and software library for discrete element modeling of sea 
ice mechanics (“Siku”). Siku uses a global (spherical) reference frame, employing regional ice 
sheet coverage and local (planar) reference frames, to calculate interactions between ice elements. 
It incorporates reanalysis surface winds from the National Center for Environmental 
Prediction/National Center for Atmospheric Research (NCEP/NCAR) as driving forces, but it 
can also use and combine other sources for wind and current data. Siku modeling allows ice to 
fail in tension and, when provided appropriate along-shore boundary conditions, can reproduce 
the locations where leads have been observed to form along the coast. The spacing of large-scale 
leads originating at the coast can be simulated by defining the along-shore boundary as the 
minimum observed landfast ice edge in any month. Siku output products are independent of the 
size of discrete element method (DEM) elements (resolution independence). Comparison of Siku 
simulations with satellite images indicated good correspondence of the locations and patterns of 
ice openings in the leads that Siku predicted with the satellite observations for the same wind 
field. Siku simulations indicated that initiation of arching leads occurs at promontories along the 
coastline and landfast ice edge and that the pattern of leads is a strong function of wind direction 
and confinement along the shore boundary. These arches occur in tensile failure, and their 
initiation is well represented with a linear elastic-viscous-plastic (EVP) representation of 
contacts between ice elements. Future improvement to Siku will include fine-tuning 
implementation of shear failure criteria to reproduce shear failure at Point Barrow and the 
Beaufort Sea shore lead.  
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INTRODUCTION 

Offshore oil and gas exploration, production, and shipping activities in the Beaufort and Chukchi 

Seas can be significantly and adversely affected by sea ice. For example, in the event of an oil 

spill, the presence of mobile sea ice complicates the problem of tracking ice/oil trajectories and 

conducting cleanup operations. In such an incident, it would be useful to forecast the trajectory 

and dispersion of contaminated ice and to simulate the location of pressured ice (which can 

hinder transportation and jeopardize marine structures).  

In brittle failure, sea ice develops cracks that open into leads and may close forming ridges. In 

winter, the motion of the ice pack is strongly modified by this ice interaction. The plastic failure 

dissipates energy from wind and ocean forcing. This is especially true along the coast where ice-

coast interactions are known to modify the ice pack drift, which, compared to the interior ice 

pack, is further away from free drift (Thorndike and Colony 1982). The winter ice drift and 

dispersion is increased through shear and divergence at leads and shear zones. To simulate ice 

trajectories and dispersion, we needed to reproduce realistic lead distributions (opening, closing, 

and shearing rates), the associated horizontal ice deformation (the localization of divergence, 

convergence, and shear), ice velocity, and ice stress. 

Modeling Background 

The current state-of-the-art for coupled ocean-ice-atmosphere modeling makes use of a 

continuum model of sea ice kinematics originally developed by Hibler (1979). Coupled ice-

ocean models have not performed well in reproducing observed sea ice strain rates (Kwok and 

Cunningham 2008). Representations of sea ice in regional, pan-Arctic, and global models that 

simulate the coupled ice-ocean system (e.g., Regional Arctic System Model, RASM; Wang and 

Shen 2010) or attempt ice forecasting (e.g., Arctic Cap Now-cast Forecast System) do not 

account for the brittle failure behavior of the ice pack on the spatial scales these models attempt 

to resolve (Coon et. al. 2007). The continuum elastic-viscous-plastic ( EVP) models used to 

describe ice constitutive properties do not represent observed internal ice stresses and strain rates 

(opening and shearing), nor do they reproduce realistic patterns of localized shear zones (Kwok 

and Cunningham 2008). Therefore, these models cannot simulate the dispersion of sea ice 

correctly, which limits their utility in forecasting or hind-casting the trajectories of ice. 

This project was motivated by the results of Wilchinsky et. al. (2010), who demonstrated the 

ability of a discrete element method (DEM) sea ice model, under idealized conditions, to 

simulate fracture patterns with intersection angles and spacing characteristics similar to those 

observed in Arctic pack ice. Although, to date, no regional model of sea ice has reproduced 

realistic deformation patterns (Kwok and Cunningham 2008), the DEM approach has been 

successful in simulating the density of fractures expected in the Beaufort Sea (see Figure 1). The 

DEM approach directly accounts for discontinuities in the ice pack where failure can occur and 

stresses concentrate to form cracks. Continuum approaches using an isotropic rheology (such as 
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the CICE ice model, which uses the EVP model) require artificial seeding of stress 

discontinuities in order to simulate cracks (Hutchings et. al. 2005). As the DEM approach 

specifies the failure stress of weaknesses (defined as joints or contacts between grains or unit cell 

floes), control of fracture characteristics is more physically-based in a DEM model. Other 

approaches developed include anisotropic models that assume embedded failures in the 

continuum (Wilchinsky and Feltham 2006, Taylor and Feltham 2004) and the elastic de-cohesion 

model (Schreyer et. al. 2006). There are three particular benefits in using DEM as a base for 

development of Siku simulations:  

 (1) High resolution can be achieved around structures or spill sites for direct calculation in the 

model, avoiding the need for nesting.  

(2) Brittle failure of the pack ice can be based on similar physical representations used in 

continuum models. This allows improvements in continuum models as high-resolution DEM 

models can be tuned to reproduce observed deformation. 

(3) 3-D models would allow development of a landfast component in the regional model through 

direct simulation of ridge-sediment interaction.  

The known deficiencies of EVP models were overcome by using a DEM approach, which has 

been shown to reproduce the discontinuous dynamics of sea ice that are responsible for shear 

patterns (Hopkins et. al. 2004, Wilchinsky et. al. 2010). These discontinuous dynamics are not 

well described using continuum models. Siku model development focused on winter ice, when 

the ice pack is confined by the Canadian and Alaskan coasts and experiences repeating patterns 

in its deformation (Eicken et. al. 2006, Mahoney et. al. 2012). Such repeating patterns indicate 

that the pack ice has preferred modes of failure, which, to date, have not been reproduced in a 

sea ice model. Since repeating patterns of deformation exist and are observable, it should be 

possible to constrain a mechanical DEM model to accurately simulate sea ice kinematics 

(including dispersion) in the Beaufort and Chukchi Seas. A DEM model has the ability to capture 

modes of discontinuous deformation. For example, Wilchinsky et. al. (2010) demonstrated that 

lead patterns with realistic intersection angles could be achieved with an idealized DEM model. 

In their work, they used idealized simulations of the formation of conjugate fault pairs under 

confining stress, which is one of the types of shear failure observed in the ice pack interior. Siku 

extends the capabilities of the DEM approach to model ice-coast interaction and the resulting 

arching and shear zones. 

Siku Model 

The DEM approach to sea ice modeling was originally developed by Hopkins et. al. (2004) and 

improved with shear stress local force criteria by Wilchinsky et. al. (2010). This report describes 

“Siku” (after the Iñupiaq word for sea ice), a new discrete element method (DEM) model of 

polar sea ice intended to improve the forecasting of ice drift and dispersion.  
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Siku is the first sea ice DEM model that accounts for the spherical geometry of the Earth and 

allows simulation ranging from global and basin scale to meter scale. In addition to improved 

accuracy and compatibility with the inputs from other global models, Siku can solve a much 

wider range of problems than earlier models including analysis of ice-infrastructure interaction, 

ice movement on a variety of scales, and ice dynamics of paleo-Earth or other ice covered 

planets.  

Siku was developed to have improved sea ice interaction mechanics compared to previous DEM 

models. For example, it incorporates a landfast ice boundary condition that ensures modeling of 

stress build up and ice pack failure (such as promontories along the Alaskan coast where this is 

observed). It can also reproduce the tensile failure in arches that is observed for many of the 

repeating lead patterns along the coasts of the Beaufort and Chukchi Seas.  

The Siku model is not a computational kernel. Rather, it is a complex system that includes 

preprocessing, data interpolation, model management, visualization, coordinate system 

transformations, and other features required for successful simulations and analysis. It includes 

automatic import of initial ice coverage, coastlines, landfast ice, winds, and currents. Siku is an 

open source, GPL-licensed model with embedded Python scripting language for setting up 

simulation scenarios. 
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METHODS 

Basic Concepts 

The Siku sea ice DEM model simulates the media using small rigid bodies, the ice elements, 

which we described as convex polygons. The size of the ice elements determines the resolution 

of the model in a particular area. The adjacent polygons can be fully or partially coalesced along 

a frozen joint. The ice elements cover the ice area determined by initial conditions for the sea ice. 

In simulation, the ice elements experience external contact forces from their neighboring ice 

elements and external driving forces from air and water motion, gravity, Coriolis, and any other 

mass forces. The boundary conditions are determined by the coastline and, when applicable, by 

landfast ice (ice anchored near the coastline). 

The ice element positions and the states of coalesced joints change as initial conditions evolve 

under external forces that act upon the elements according to the basic laws of physics. Leads 

and ridges form, and the stress condition in the ice changes. The accuracy of the final pattern of 

leads and ridges is determined by the accuracy of the external forcing representation, the contact 

physics model, resolution, and boundary conditions. The model can be validated by comparing 

the DEM simulated state of the ice, particularly locations of leads and shear zones, with the 

satellite observations of ice pack deformation. 

Coordinates and Reference Frames 

Siku uses two types of reference points or “frames” to describe values such as positions or 

vectors: 

 Global frame – connected to the Earth and rotating with the Earth  

 Local frames – connected to a particular ice element  

Four coordinate systems are used to describe elements in global frame:  

 Geographical coordinates (latitude 𝜑 and longitude λ) – used only for import or export 

elements and never used internally. We provide transformation from, and to, 

geographical coordinates.  

 Spherical coordinates (𝜙 = 𝜆, 𝜃 = 𝜋/2 – 𝜑).  

 3D extrinsic Cartesian coordinates (x', y', z') with the center of coordinates coinciding 

with the center of the Earth, O; z' directed along Earth’s axis of rotation towards the 

north; x' directed to the 0° meridian, and a y' direction chosen perpendicular to x' and z' to 

form a right coordinate system. These coordinates satisfy the constraint 𝑥′2 + 𝑦′2 +

𝑧′2 = 𝑅2. 

 3D normalized (dimensionless) extrinsic Cartesian coordinates (x, y, z) defined 

identically to (x', y', z') but projected onto a unit sphere such that 𝑥2 + 𝑦2 + 𝑧2 = 1. 
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These are the main global coordinates used internally in the computational kernel for all 

computations.  

We use the global frame to transform global coordinates into a local frame for subsequent 

computations. Global frame is also used for output. 

The transformations between extrinsic coordinates and geographic/spherical coordinates are 

performed using the following formulas: 

 𝜃 =
𝜋

2
− 𝜑, 𝜙 = 𝜆, 𝑥 = sin 𝜃 cos 𝜙, 𝑦 = sin 𝜃 sin 𝜙, 𝑧 = cos 𝜃 (1) 

Local coordinates (X, Y, Z) are centered in the center of mass of the ice element. The axes are 

directed such that they would coincide with global-frame normalized extrinsic coordinates 

(x, y, z) after an application of the rotation described by the quaternion q linked to the ice element. 

Global extrinsic coordinates for any point p are restored from the local coordinates P by 

applying the rotation matrix restored from the following quaternion: 

 𝑝 = 𝑅(𝑞) ⋅ 𝑃 (2) 

The rotation matrix, R, can be recovered from the quaternion as described in Eberly (2002) and 

in many other places. 

Position and Kinematics of Ice Elements  

In Siku, an ice element is a flat, two-dimensional rigid body in the form of a convex polygon 

moving on a spherical surface. The rigid body motion on a sphere can be described as a motion 

about a point in three-dimensional (3D) space – the center of the sphere. The position of the rigid 

body rotating around a fixed point can be described by a single quaternion q or, equivalently, by 

a rotation matrix R (see theoretical background in Arribas 2006). The formulae for the 

quaternion description are very compact and convenient for computer simulations. The 

quaternion equations have no singularities compared to more traditional spherical coordinates, 

and the computations usually do not involve time-consuming trigonometric operations. The 

quaternion representation of ice element position is our novel contribution to DEM modeling of 

sea ice.  

The coordinate system used for polygon position and dynamics description is shown in Figure 1. 

The quaternion q describes a rotation (around some axis e that passes through the center of the 

sphere O) that would move the polygon and match local coordinate lines x', y’, z’ with global-

frame coordinate lines x, y, z.  
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Figure 1. Coordinates and projection. 

The position update is described by a standard differential equation for rigid body rotation as  

 
𝑑𝑞

𝑑𝑡
=

1

2
𝑞 ∘ 𝛺, (3) 

where 𝛺 is the 3D angular velocity in the local ice element frame. The efficient integration 

scheme used for these placement equations (as first described in Kulchitsky and Hutchings 2014) 

provides a significant improvement over integration formulas derived by Walton and Braun 

(1993) and trigonometric approaches similar to those described in Harada (2008). 

Let  𝑞𝑛 = 𝑞(𝑡),   𝑞𝑛+1 = 𝑞(𝑡 + 𝛥𝑡), then the 2
nd

 order scheme for Eq. (1) takes the form 

 𝑞𝑛+1 = 𝑞𝑛 +
𝛥𝑡

4
(𝑞𝑛 + 𝑞𝑛+1) ∘ 𝛺, (4) 

where vector 𝛺 is taken from the previous time step. Collecting all values calculated at (n+1) 

step on the left, and taking into account that quaternion product is not commutative, we have 

 𝑞𝑛+1 ∘ (1 −
𝛥𝑡

4
𝛺) = 𝑞𝑛 ∘ (1 +

𝛥𝑡

4
𝛺). (5) 

Using relation 𝑞 ∘ 𝑞∗ = |𝑞|2, we can multiply both sides of Eq. (5) by (1 +
𝛥𝑡

4
𝛺) and, after 

trivial mathematical operations, we get 

 

𝑞𝑛+1 = 𝑞𝑛 ∘
(1 −

𝛺2𝛥𝑡
16 +

𝛥𝑡
2 𝛺)

1 +
𝛺2𝛥𝑡2

16

= 𝑞𝑛 ∘ 𝑝. (6) 

It is easy to see that |𝑝| = 1; therefore, the formula does not change the absolute value of the unit 

quaternion. 
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Dynamics of Ice Elements 

The dynamics equations define a 3D “pendulum” with angular velocity 𝛺 in the ice element 

reference frame. This vector can be calculated exactly using 3D dynamics of a rigid body with 

constraints. While the rigid ice element on a sphere is curved, a simple, yet precise approach is to 

assume the ice element is flat, since its size is much smaller than the radius of the Earth. The 

reference frame for an ice element is a standard Cartesian coordinate system, so the velocity and 

rotation rate of a flat (2D) rigid body can easily be calculated by the following dynamics 

equations: 

 𝑑𝑉𝑥

𝑑𝑡
=

𝐹𝑥

𝑚
,

𝑑𝑉𝑦

𝑑𝑡
=

𝐹𝑦

𝑚
,

𝑑𝛺𝑧

𝑑𝑡
=

𝑁

𝐼
, (7) 

where (𝐹𝑥, 𝐹𝑦) are external forces that include all driving forces, integral forces from interactions 

with other ice-elements, and Earth Coriolis force; m is the total mass of the ice element; I is a 

moment of inertia around the Z axis; and N is the total torque calculated in the center of mass C, 

which includes a torque from interaction with other ice elements and a possible torque that can 

be calculated from the driving forces. 

𝑉𝑥 is directed normal to Z, thereby, “rotating” the body around Y axis with a rate of 𝑉𝑥/𝑅. This 

gives us exactly 𝛺𝑦. Using the same consideration for the x-axis, 𝛺𝑥 = −𝑉𝑦/𝑅. Thus, the 

dynamics equations are described by evolution of the 3D angular velocity as follows: 

 𝑑𝛺

𝑑𝑡
= 𝐻 = (−

𝐹𝑦

𝑚𝑅
,

𝐹𝑥

𝑚𝑅
,
𝑁

𝐼
), (8) 

where R is the radius of the Earth. The integration scheme for this equation is a straightforward 

linear integration scheme. 

Ice Generation 

Ice element generation defines the resolution of the model. The size of ice elements is varied 

depending on their location and the need to have different resolutions in different areas. For sea 

ice DEM models, it is conventional to use Voronoi tessellation of a semi-random point set to 

build the set of elements. The Voronoi diagram provides the set of convex polygons suitable for 

sea ice modeling. 

Generation of the initial ice elements describing the sea ice sheet is done in the following stages:  

1. Generate points on a sphere with different distances between the points depending on the 

desired resolution in particular areas as shown in Figure 2 (B). The points are generated 

randomly with a blue-noise condition that constrains the distance between any two points such 

that it cannot be less than some minimum value. 



 8 

2. Generate Voronoi tessellation of the point set or “seed” from stage 1. The Voronoi area for a 

particular seed is a region consisting of all points on a sphere closer to that seed than to any other 

seed in the predefined set. These areas form a set of convex polygons as shown in Figure 2 (C). 

3. Mark as boundary polygons those polygons that intersect the coastline provided by the Global 

Self-consistent, Hierarchical, High-resolution Geography (GSHHG) database (described by 

Wessel and Smith 1996) or landfast ice (detailed below). All polygons that are inside the land or 

are landfast are removed from the system. The final set of polygons (representing sea ice) used 

for our case studies testing Siku is shown in Figure 2 (D). Boundary polygons from the coastline 

and landfast ice do not move. Rather, they interact with sea ice using different contact mechanics 

to prevent sea ice elements from crossing the shoreline. 

The described functionality in the Siku model is implemented in Python 3 as a library that is 

called from a “scenario” simulation script. The STRIPACK library by Renka (1997) was adopted 

for Voronoi tessellation on a sphere. 

 
Figure 2. Ice elements creation stages: (A) initial contours, (B) blue noise ice element kernels generation 

with resolution depending on the area, (C) Voronoi tessellation on a sphere based on the kernels, and (D) 

ice and boundary elements ready to be imported to the computational kernel. 
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Contact Detection 

The key feature that distinguishes a discrete system from a continuum system is that any pair of 

elements in contact in the discrete system may separate and a separated pair of particles may 

connect. Thus, discrete element models need to keep track of all contacts and their evolution. 

Searching for contacting particles occupies a significant portion of simulation time. Checking the 

distance between every pair of discrete objects in the model is a straightforward but naive 

approach to this problem. It would require comparison of every pair and poses a 𝑂(𝑁2) time 

complexity problem, where N is the number of elements in the system. It becomes a 

computationally prohibitive algorithm for applications with many elements.  

To avoid excessive computations for finding neighboring elements, a broad-phase contact 

detection stage is used to avoid comparisons between objects located far apart from each other. 

At this stage, every element in the model is surrounded by a bounding circle. Since intersection 

of bounding circles is a necessary condition for intersection of the elements, it can be used to 

filter out the majority of impossible contacts. The model utilizes a sweep and prune contact 

detection algorithm (Ericson 2004). The model makes projections of the bounding circles on x 

direction in the global frame Cartesian coordinates, forming a set of intersecting segments. The 

one dimensional array of these segments is then sorted by the segment starting point coordinate 

and the sorted list traversed to find all projected segment intersections. Projected intersections 

are checked to determine if they are actual intersections before adding to the contact list. 

Contact Physics 

Contact physics is an essential part of the model. There are two principle modes of contacts, one 

for coalesced elements and one for independent elements. The coalesced elements have a single 

frozen joint and are “glued” to each other along it. Depending on the stresses or deformation it 

experiences, the frozen joint may accumulate damage with time and break. If the frozen joint 

breaks, the elements become independent and may still collide and interact with each other 

(Figure 3). The Siku code implements two physical models for coalesced elements, a distributed 

spring model and a modification of the Hopkins-Frankenstein (HF, Hopkins et. al. 2004) and 

Wilchinsky-Feltham-Hopkins (WFH, Wilchinsky et. al. 2010) models. 

 

Figure 3. Polygon intersection and interaction in the case of independent polygons. 
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Coalesced elements: distributed spring model 

The forces in the deformed ice region are being calculated as pairwise contact forces between 

elements that are connected with joints. The basic assumption of the distributed springs model is 

that the ice behaves like a homogeneous viscous-elastic substance for small deformations, but it 

breaks if the deformation exceeds some threshold. The interaction force is calculated for each 

pair of elements that either overlap or were previously marked as a joint by a “freezing” function. 

This freezing function is commonly called immediately after the polygons are loaded for 

identifying joints that are coalesced. Joints may also be manually added in the Python script.  

The interaction force is calculated as a composition of two different mechanisms. The first 

mechanism (“Collision” in code) is a basic repulsion of overlapping elements. It works for any 

pair of overlapping elements, whether jointed or independent. As with any other force, collision 

has elastic and viscous components. The elastic component is a simple linear spring where the 

stiffness of homogeneous spring depends on its size and elastic modulus, and the force is 

stiffness multiplied by deformation. 

 
𝐹 = 𝐾𝐴𝑛, 𝐾 =

ℎ1𝐸1ℎ2𝐸2

ℎ1𝐸1𝑟2 + ℎ2𝐸2𝑟1
 , (9) 

where K is the effective stiffness of material, A is the area of the overlap, and n is the direction of 

force. Effective stiffness is a general property of each pair of elements. Area is the product of 

spring's width and deformation. The direction of the force is either the perpendicular vector to 

the interaction segment 𝑃1𝑃2 in a regular case (Figure 4a) or a vector (Figure 4b) in more 

complicated interactions.  

Figure 4. Normal vector computation for intersecting polygons for two basic cases: (a) side to side 

intersection and (b) corner to corner intersection. 

 𝑠 = (𝑃1𝑦 − 𝑃2𝑦, 𝑃2𝑥 − 𝑃1𝑥), 𝑛 = 𝑠/|𝑠| (10) 
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Viscous component is a simple liquid viscosity of two surfaces moving relatively to each other: 

 𝐹𝑖 = −𝐴𝜂(𝑣𝑂1 − 𝑣𝑂2),  (11) 

where A is the overlap area, 𝜂 is a global viscosity parameter, and (𝑣𝑂1 − 𝑣𝑂2) is the vector of 

relative velocity of overlapping zones. The torque caused by viscosity due to relative angular 

velocity of elements is ignored. 

The second mechanism is the traction of jointed edges. At the beginning of the modeling process, 

the elements are “frozen” together as described in section “Freezing joints.” For each frozen pair, 

both elements have four points (two points for each element in its local coordinates) that mark 

the ends of the interaction front along the joint. This joint represents the edge between two 

(potentially separate) floes, regardless of actual polygons shapes. At the same time, the joint 

determines the behavior of the “distributed spring.” In an equilibrium position, the joints of both 

elements have the same global position (the spring is not deformed). When the elements have 

some relative displacement, the segments become shifted and a force appears. The mechanical 

properties of the spring are determined in the same way as the Collision mechanism. 

The width of the spring (w) is the length of the interacting joint rather than some multiplier of the 

overlap area because there may be no overlap. The effective stiffness is calculated in the same 

way as in Eq. (9) and viscosity is the same global parameter as before. 

The force and torque calculation mechanism is more complicated than in the “Collision” 

mechanism. When the elements are not in an equilibrium position, the interaction segments do 

not match. The displacements of the corresponding points, which are the ends of joints, form two 

displacement vectors. These vectors carry all of the information needed to calculate the force and 

the torque generated by the distributed spring. The total influence of the spring may be 

decomposed into two effects as shown in Figure 5.  

  

Figure 5. Distributed spring force model decomposition. 

The arithmetic mean of the displacement vectors gives the raw traction force applied to a single 

point – the middle of the interaction segment. The cross-product of this force and the vector to 

the corresponding element's mass center gives a “traction torque.” The force acts in any direction 

and works for both compression and tangential displacement. The second effect is a stress-torque.  
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The cross-product of the directed interaction segment and arithmetical difference of 

displacement vectors with the proper coefficient gives the torque produced by the distributed 

spring. The force, 𝐹𝑛, and the torque, 𝑁, can be written as  

 
𝐹𝑛 =

𝐾𝑤(𝑠1 + 𝑠2)

12
 , 𝑁 =

𝐾((𝑠1 − 𝑠2) × 𝑤)

12
, (12) 

Coalesced elements: modification of HF and WFH stress models 

The first DEM constitutive model for regional pack ice was developed by Hopkins (1996) and 

used in subsequent work (Hopkins et. al. 2004, Hopkins and Thorndike 2006). Hopkins later 

model allows contact stresses between elements to increase as the displacement at the contacts 

increase. When the contact stress reaches the failure criteria for compression and tension failure, 

the contact between elements starts to fail (i.e., the elastic modulus is decreased) with further 

displacement at the contact. The stress at the contact decreases (weakening of ice strength) 

linearly until it reaches zero to create a local crack. The crack is allowed to grow to 95% of the 

contact length and then fails completely to form a lead (in tension) or a ridge (compression). 

Wilchinsky et. al. (2010) updated this model to allow shear deformation. This is achieved by 

applying a velocity-dependent Mohr-Coulomb shear-strength failure criterion along the contact 

between ice elements to determine when rupture of the contact occurs.  

where 𝑠1 and 𝑠2 are the displacement vectors at end points of the joints as shown in Figure 5, and 

𝑤 is the directed interaction segment or “width” vector defined as a mean value of both 

interacting edge vectors. 

In addition to the elastic spring, we add viscous damping force similar to the Eq. (11). As the 

viscous force depends on the relative velocity of the elementary area, and the velocity depends 

on the distance from the rotation axis, then the integration by the area of interaction gives a 

formula similar to the moment of inertia as follows: 

 𝐹𝑖 = −𝐴𝜂(𝑣𝑂1 − 𝑣𝑂2) , 𝑁𝑖 = 𝜂𝐴2(𝛺1 − 𝛺2) (13) 

Ice elements are rigid such that deformation at the contacts is determined by the normal and 

tangential displacement along the length of the contact as shown in Figure 6. The contacts 

between the DEM ice elements support both normal (compressive and tensile) and shear 

(tangential) stresses and fail when the stresses exceed specified failure conditions.  
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Figure 6. Coalesced ice element interaction with compressive and tensile areas along the frozen joint and 

with shear deformation.  

Note that, without the Wilchinsky et. al. 2010 update, models only considered tensile and 

compressive rupture, resulting in unrealistic rectilinear lead patterns in cases where the mode of 

failure should be predominantly shear. The Mohr-Coulomb criteria allows the ratio of shear 

strength to compressive strength of the ice to be varied through a friction angle parameter, 𝜙, 

which can be used to control intersection angles between active leads. Wilchinsky et. al. 2010 

assume that joints between ice elements maintain some tensile strength and have a large 

compressive strength. We will consider a Mohr-Coulomb failure criterion, following Wilchinsky 

et. al. 2010 or its modifications as shown in Figure 7. Unlike the Hopkins group, neither Siku nor 

Wilchinsky et. al. 2010 include stress weakening in their model; rather, they assume that a crack 

forms once stresses reach the failure stress. 

 

Figure 7. Mohr-Coulomb failure criteria. 

The normal, 𝜎𝑛, and shear stresses, 𝜎𝑠, are calculated as 

 
𝜎𝑛 =

ℎ𝐸

𝐿
𝛿𝑛,          𝜎𝑠 =

ℎ𝐺

𝐿
𝛿𝑠, (14) 

where h is the mean ice thickness, L is the length of contact, and the normal and tangential 

displacement along the contact are 𝛿𝑛 and 𝛿𝑠, respectively, as shown in Figure 6. Failure occurs 

when normal stress exceeds the compressive/tensile failure criteria or the shear failure criteria 

(see Table 1) are met. 
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Where only existing connections contribute to the contact forces, Siku computes the local forces 

on the contacts as 

 
𝐹𝑛 = 𝐿 ∫ 𝜎𝑛 𝜃(𝜎𝑛, 𝜎𝑠) 𝑑𝜁 𝑛

1

0

,          𝐹𝑠 = ∫ 𝜎𝑠 𝜃(𝜎𝑛, 𝜎𝑠) 𝑑𝜁 𝜏,
1

0

 (15) 

where 𝜃(𝜎𝑛, 𝜎𝑠) = 1 if (𝜎𝑛, 𝜎𝑠) are inside the yield curve and 0 if the failure criteria is locally 

met, and 𝜁 is a parameter along the joint between two polygons equal to 0 at one vertex and 

equal to 1 at another (0 < 𝜁 < 1).  

For each pair of polygons, the torques at a contact have the form 

 
𝑁𝑗 = 𝐿 ∫ 𝑟𝑗  ×  (𝜎𝑛𝑛 + 𝜎𝑠𝜏) 𝜃(𝜎𝑛, 𝜎𝑠) 𝑑𝜁

1

0

, 𝑗 = 1,2 (16) 

where 𝑟𝑗 is the vector from the center of mass of a polygon to the point at the edge that depends 

on 𝜁. The edges are split in segments and integrals are approximated by sums. Each sub-polygon 

contributes to the total forces if the stress is inside the yield curve. 

Table 1. Material properties required in calculating contact stress and failure criteria. Sources of excepted 

values or ranges are provided. 

Young’s modulus E = 1 GPa 

0.25 < E < 4 GPa 

Hopkins and Thorndike (2006) 

Shear modulus 
𝐺 =

𝐸

2(1 + 𝜈)
 

Elastic model 

Poisson’s ratio 𝜈 = 0.3 Wilchinsky et. al. (2010) 

Compression failure criteria   𝜎𝑐 = 1285 ℎ
2

3min kPa/m 
Kovacs and Sodhi (1980) 

Tensile failure criteria (cohesion) 𝜎𝑡 = 0.1𝜎𝑐 Wilchinsky et. al. (2010) 

Shear failure criteria 𝜏𝑓 = tan 𝜙 |𝜎𝑡 − 𝜎𝑛| Coulomb (1776) 

Friction angle 13𝑜 < 𝜙 < 18𝑜 

 (0 < 𝜙 < 53𝑜) 

Erlingsson (1991), Wang (2007) 

discuss the larger range, but most 

observational studies cluster 

around Erlingsson’s results. 

Independent elements 

When elements are independent, they can either collide as two rigid bodies or slide one above 

another. The Hopkins et. al. 2004 model does not restrict the ice elements in intersecting. We 

added an option to allow the ice elements to collide and resist at the contact point. This physics 

can be turned off or freely adjusted during the simulations.  
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For elements that are not coalesced we assume interactions are viscous elastic with a normal 

force linearly dependent on the square root of the overlap area between the polygons similar to 

Matuttis et.al (2000). The damping part of the force depends on local velocities over the contact 

area. The independent element interaction is essentially the same as repulsive mechanics in 

coalesced distributed spring model described above. 

Frozen Joints Description (Initialization) 

The continual ice force model requires a list of ice elements coalesced along the common frozen 

joint. These joints contain the information about the original relative position of the interacting 

elements, physical and geometrical parameters of the ice in the area at the contact, and some 

additional information required for the force computations. 

Different physical models require different sets of parameters so joints need to be generated with 

respect to the selected physical model. The user can also determine that only some ice elements 

remain connected with each other while the rest become separate floes, despite their initial 

position and properties. This can be done, for example, for modeling the marginal ice zones. In 

order to fulfill that requirement, Siku implements a mechanism that allows the different options. 

The user may place the list of required contacts into the Python script in variable 

'siku.settings.links' (the format is a list of pairs of tuples of two elements indexes, implemented 

as a list of Python). When such a list of contacts exists at the beginning of calculations, Siku will 

load it to be the initial list of contacts. If the user does not provide the predefined contacts list, or 

the list length equals to zero, then Siku uses its own method to form the list of pairs of elements 

potentially close enough to be connected along a common side. 

The user selects a joint model and Siku generates a list of actual joints with sufficient 

information for the subsequent force calculations. There are two different joint models that 

satisfy existing force models. 

The first function is a single spring. To apply this, polygons are temporally enlarged by a 

'tolerance' (1% for a predefined links list, 10% for an auto-defined links list) before searching for 

each polygon’s intersection area. If such an area is not zero,  its center becomes a point of the 

spring connection. Joint width and the size of joined elements define the stiffness of the spring. 

The second function uses a distributed spring and our modification of HF and WFH methods. It 

enlarges the polygons and finds intersections in the same way. The only difference in this 

function is that, after the intersection is found, Siku defines the vertices of the original polygons 

that match the ends of the common edges. As these vertices may be slightly displaced relative to 

each other, Siku calculates mean positions for each pair of the vertices, respectively, and the 

resulting length of the common edge. These points are saved as the ends of distributed spring or 

interaction segment as required for the selected physical model.  
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After all frozen joints are identified and a joint model assigned to each, the list of these joints 

becomes the list of contacts that is updated and used each time step. 

Driving Forces 

In the summer, when arctic ice concentration is low, long-term mean ice motion results from the 

balance of four forces on the ice (Arctic Ice Dynamics Joint Experiment AIDJEX; Hunkins 

1975; McPhee 1979). In free drift, the significant forces on the ice are wind stress, ocean stress, 

the Coriolis force, and acceleration down the sea surface tilt. Inertial terms, found to be an order 

of magnitude smaller than these on daily or longer time scales (Thorndike 1986) are, however, 

important on shorter time scales, and the accumulative impact of the inertial motion of the ocean 

and ice may be significant in the sea ice mass balance (Heil and Hibler 2002). The residual term 

in the measured force balance is found to be comparable to the Coriolis force and an order of 

magnitude smaller than the wind stress (McPhee 1979). This residual is attributed to interactions 

between ice floes. In areas of ice convergence, resistance to compression becomes important and 

ice can no longer be considered to be in free drift. For climatological studies, small time scale 

forcing may be ignored. Contributions to the force balance from tidal motion, pressure gradients, 

and inertial terms are considered to be small when averaged over time scales greater than a day 

(McPhee 1979). For short-term ice drift estimation, and in regions with strong tides, the tidal and 

inertial terms may be important and included in our future work. For this model development, we 

focused on the largest driving forces: wind, ocean drag, and ice interaction. 

In Siku, the external forces acting on the ice element and used in Eq. (17) are given as 

 𝐹 = 𝑆(𝜏𝑎 + 𝜏𝑤 − 𝑚𝑓𝑘 ×  𝑈) + 𝐹𝑖, (18) 

where S is the surface area of the ice element, 𝜏𝑎 and 𝜏𝑤 are the wind stress (“air”) and ocean 

stress (“water”) on the ice, respectively, f is the Coriolis parameter, k is a unit vector normal to 

the surface, and Fi is the net force from interaction with other ice elements. 

The wind stress 𝜏𝑎 and ocean stress 𝜏𝑤 are calculated by the air velocity 𝑈𝑎 at a known height in 

the atmosphere and by the ocean current velocity 𝑈𝑤, usually below the surface Ekman layer. 

They can be calculated as   

 τa = 𝜌𝑎𝐶𝑎|𝑈𝑎|(𝑈𝑎 cos 𝜃𝑎 + 𝑘 ×  𝑈𝑎 cos 𝜃𝑎)  and (19) 

 𝜏𝑤 = 𝜌𝑤𝐶𝑤|𝑈𝑤 − 𝑈|((𝑈𝑤 − 𝑈) cos 𝜃𝑤 + 𝑘 × (𝑈𝑤 − 𝑈) sin 𝜃𝑤), (20) 

where 𝜌𝑎 is the density of air, 𝜌𝑤 is the density of water, 𝐶𝑎 and 𝐶𝑤 are the drag coefficients for 

the air and water interfaces, respectively, and 𝜃𝑎 and 𝜃𝑤 are the turning angles across the 

boundary layers. The magnitudes of the drag parameters and turning angle are dependent on the 

height (depth) that winds (currents) are assigned. We used the following drag coefficients and 

turning angles for our model testing: 

 Cw = 0.0045, 𝜃𝑤 = 0, 𝐶𝑎 = 0.0016, 𝜃𝑎 = 0.  (21) 
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Winds Import and Interpolation 

Currently, Siku uses the National Centers for Environmental Prediction and National Center for 

Atmospheric Research (NCEP/NCAR) reanalysis data for winds (Kalnay et. al. 1996). 

Alternatively, winds can be provided from a text file. NetCDF4 files provided by NOAA need to 

be manually downloaded from the www.esrl.noaa.gov website for the select time period of 

computations. The model verifies data dates and extracts only data that match the selected 

computation period. The data is represented as latitude and longitude physical components of the 

wind in a regular grid. 

Ice elements are not generally located at the wind grid point and are higher density than wind 

data. Therefore, the wind data needs to be interpolated at the position of ice elements. As the grid 

is regular, we use the simplest method of bilinear interpolation at each ice element. The 

following simple procedure is currently implemented: 

1. Find a grid cell that includes the current position. 

2. Find the projections of the current element position on the borders of the cell. 

3. Use linear interpolation to receive wind data in the projection points. 

4. Find the weighted linear average using the projection points. 

For more accurate interpolation, which takes into account differential properties of the wind field 

such as divergence and curl, a gradient-preserving, yet accurate procedure needs to be used. For 

example, Fuselier and Wright (2009) described the method to reconstruct the vector field into 

divergence-free and curl-free parts and accurately preserve differential properties of interpolated 

vector fields. However, for the ice sheet stress representation, a simple bilinear interpolation 

suffices in most cases, especially when taking into account uncertainties in the input data. 

The architecture and inner representation of the grids were created for NCEP/NCAR reanalysis 

data format, although any actual source format may be processed with some modifications. 

The data is imported in the following order: 

1. The data is loaded and preprocessed by the Python scenario. The scenario uses the utility 

module 'nmc.py' to load the raw gridded data from the specified .nc files: East and North 

components of the velocity field. That module is designed for the NCEP/NCAR 

reanalysis surface winds. 

2. The 'wnd.py' module initiates actual surface velocity grid from two 'nmc' instances. The 

data is being processed and adapted to match the kernel input format. 

3. The Siku variable 'wind' is assigned to the wind grid prepared in step 2. The kernel will 

attempt to read the vector field from that variable.  

4. The flag 'settings.wind_source_type' is assigned to the type of imported data source. For 

example, “siku.settings.wind_source_type = siku.GRID_SOURCES['NMC'] ” is used for 

the standard NCEP/NCAR reanalysis field.  
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5. The kernel requests the scenario if it is time to update the grid before each simulation 

time step (in 'pretimestep' callback function). The kernel tries to load the grid from the 

'wind' variable and use it in calculations if the wind was updated. 

If no grid is given, the kernel loads an empty grid with all the values set to 0.  

The grid itself may either cover the entire globe or a particular area. Excessive data is ignored, 

and the areas with no data are set to 0 if the grid covers a region that is smaller than the globe. In 

the future, when the data are lacking, the forces in the regions will be adjusted to avoid artificial 

gradients. 

The Python utility libraries allow some reasonable testing values to be placed in the grid by 

loading the grid from a file and using the 'make_test_field' method. 

The ocean currents are processed in the same way as the winds but with different flag and 

variable names: 

 siku.settings.water_source_type = siku.GRID_SOURCES['NONE'] 

 siku.water = wnd.NMCSurfaceVField(…) 

Coastal and Landfast Ice Boundary Conditions 

Ice element interaction is controlled by the force balance on elements, which includes interaction 

with the coastal boundary. The winter ice pack is confined by landfast ice and the coastline. 

Therefore, to properly model ice-coast interaction and the coastal shear zone, we need to 

represent the landfast ice edge as a fixed boundary in our model. This ice edge can be identified 

as the extent of stationary ice contingent with the coast; however, this edge varies depending on 

the time scales considered. A more robust definition of the landfast ice edge is the ice that is held 

in place by grounded ridges, or the strength of the ice pack bridging between islands or shoals 

with grounded ridges. We identify a landfast ice mask for the Beaufort Sea as the minimum 

landfast ice extent observed in any month (Mahoney et. al. 2007). In the absence of landfast ice, 

Siku uses the GSHHG database from NOAA for coastline representation. We confined our 

experiments to the Chukchi and Beaufort Seas because landfast ice products are not currently 

available for the entire Arctic. We will be able to expand the scope of Siku simulations to the 

pan-Arctic if landfast ice extent datasets become available for other Arctic regions.  

Visualization and Post-processing 

Siku provides maps of the ice elements. All visualization is performed in the Generic Mapping 

Tools (Wessel et. al. 2013). This is a powerful command-line controlled package that uses 

shapefiles to process, visualize, and export a wide range of different external data.  

The command line and complex syntax of the GMT interface make it difficult to use or embed it. 

Siku provides utility modules to automate the visualization. The 'gmt_Plotter' Python module 
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contains a class that processes scenario settings and generates a file with simplified command 

strings for further usage. At each step of simulation, various callback functions export required 

data from the kernel into the files. As soon as the files and the command strings are prepared, 

‘gmt_Plotter’ calls 'gmt_Drawer' module. The 'gmt_Drawer' module reads previously prepared 

command strings, extends them to full GMT commands, and calls the GMT to execute those 

commands one by one. 

Most of the settings required to draw the picture are set in '…conFigurepy' files. 

The Siku automates the following output features: 

 .nc wind grids: external or dumped from the kernel 

 various surface grids: ocean currents, directions, polygons (regardless of their actual 

source) 

 interpolated winds: interpolation may be performed internally by gmt_Plotter module 

 polygons: dumped from the core with optional coloring (for example stress coloring); 

 shapefiles: as the GMT work with shapefiles, drawing of several layers in one picture is 

straightforward. 

The format of the output files is encapsulated postscript vector format (eps) by default. However, 

that can be changed with minor adjustments of the code. These eps files may be converted to gif, 

pdf or any other format by calling an external utility like “convert” from ImageMagick package. 

Program Structure and Workflow 

 

Figure 8. Data flow and Siku DEM model structure. 

Python Interface 

The model incorporates the Python 3 interpreter to set up numerical experiments. The Python 

interface allows a user to define the domain, time range, and sources and to monitor the runs. 

The Siku kernel is running the simulations and interacts with user’s script to exchange the data, 
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create plots, and diagnose problems if they occur. A sample Python 3 Siku script can be found in 

the Appendix. 

Simulation Preparation and Run 

Any particular case simulation consists of a pre-processing stage, computational stage, and post-

processing stage. The following workflow describes a typical simulation in Siku: 

1. Coastline boundary preparation. A special Siku Python module (border_gen) is created to 

accumulate user data and provide boundary creation. The module creates a list of 

contours by different inputs. The inputs can be shape files from GSHHG, user text files, 

or a list of latitude and longitude pairs. After all contour points are added, the minimal 

angular distance between them can also be used to filter them. 

2. Adding vertices. Randomly generated high-density points close to desired high-resolution 

borders need to be added. Points are generated using the same boarder generation module. 

3. Borders generation. As soon as all contours and vertices are ready, the borders need to be 

generated. The border points are labeled to form boundary ice elements in the future. 

4. Sea ice points generation. The globe needs to be covered with another set of randomly 

generated points. The points are generated using Siku tools used for border vertices 

generation or by using user’s file with latitude and longitude pairs of points generated 

elsewhere. Different parts of the globe can be covered with different resolution and 

different patches of points using a built-in Siku module. 

5. Filtering and merging. When the border and covering files are ready, they have to be 

cleared to avoid conflicts between close points in patches overlapping areas. This step is 

required for the Voronoi diagram generator to work properly on the whole point set. 

6. Points file finalizing. When all borders are merged and all point coverings are filtered, all 

points are saved in one file for Voronoi point processing and ice element generation. 

7. Voronoi tessellation. The merged file is passed to a Fortran Voronoi tessellation program 

that produces two files containing the data of generated polygons. 

8. Polygons upload and marking. The polygon files are loaded into Siku Python scenario 

file by Siku poly_voronoi module. Polygons can be marked; for example, to form 

landfast ice or marginal ice zones or to filter by some mask such as whether generated in 

open water or on the land. 

9. Scenario file creation and debugging. Siku Python scenario file also contains the time 

period, time step, wind or currents source location, material properties, and call back 

functions that define output and other parameters. The Python script can be debugged 

first by passing to a Python 3 interpreter. 

10. Model run. Siku kernel runs with the created scenario. 

11. Post-processing. The HDF5 files with output can be processed at this stage using built-in 

Siku Python 3 scripts that use GMT for visualization. 
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Model Verification 

We first verified that the physical model Siku uses worked as we expected. We checked that the 

physical laws were satisfied and equations were solved correctly. We started with free drift of an 

ice element and independence of the results on the model resolution. 

Free drift 

The free drift test is the initial simulation that verifies that ice elements move as expected 

according to the force balance imposed on them. This is in the absence of any contact physics. 

We created a set of tests with a separate ice floe moving along a meridian, equator, or any other 

big circle on the globe, with or without rotation. Accurate checks showed the correctness of the 

dynamic derivation and implementation. 

Forcing and ice pack failure tests 

We performed a series of ice pack failure experiments as demonstrated in Figure 9. The ice pack 

was created using rectangular ice elements and then a wind pattern was applied. The deformation 

and failure process was observed and compared to that qualitatively expected due to the stresses 

in the ice pack. These verification tests only checked for the correctness of the model 

implementation and are not validation of the ice mechanics. 

 
Figure 9. Wind tearing test of a rectangular ice pack with elastic bonds. The boundary shoreline is shown 

on the left with brown polygons. Panels (A-B) demonstrate the pack with all bonds unbroken. Panels (C-D) 

show the evolution of the ice pack with some ice elements disconnected when the local damage exceeds a 

threshold. 
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Resolution independence 

We verified that our mathematical and computational model is resolution-independent up to the 

model resolution accuracy. It is important to ensure that ice representation and discretization in 

DEM does not change the physical outcome except to improve the accuracy of results. A series 

of tests with a 1500 km by 450 km ice pack built from different sized ice floes were performed. 

An ice pack was stretched or compressed, or a sheared deformation was applied to an edge of the 

pack as shown in Figure 10. Stress maps were compared to ensure that results did not depend on 

the representation of the ice pack. 

 
Figure 10. Resolution independence test with shearing deformation applied to a large 1500 km by 450 km 

ice pack with distributed spring model. The tests verified that the model does not change the integral 

behavior depending on the size of its ice elements. 
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RESULTS 

Lead Formation 

Lead patterns in the Beaufort and Chukchi Seas are observed to have repeating patterns 

(Mahoney et. al. 2012). The coastal-originating leads form in the same locations and take a 

couple of forms. They can be formed in tensile failure as arches, originating from promontories 

along the landfast and coast edges, with shear stress or cohesion defining the arch shape (Sohdi 

1977). They can also follow shear zones that also originate at these promontories, but at more 

acute angles to the wind. We have extended the classification of lead patterns offered by 

Mahoney et. al. (2012) (Lewis in prep.). Several of the lead patterns were used to test the ability 

of Siku to simulate failure of the ice pack into leads under different failure mechanisms and 

confining stresses. As of all these patterns occur in the consolidated ice pack between late 

December and May, we confined our validation simulations to winter.  

Our first test was to constrain the time period over which lead formation occurs. The simulation 

area was initialized with a 100% consolidated ice cover and resulted in the leads forming while 

the ice is breaking under the stresses produced by wind pushing the ice along the coast. Figure 11 

shows how leads initiate along the shoreline and propagate into the ice pack at locations where 

land protrudes. The full pattern forms within about 15-18 hours of the model time and then 

evolves depending on the wind pattern. This is within the time period of satellite images that 

bound the actual lead formation observed on the day of this case study. 

 
Figure 11. The evolution of the sea ice from unbroken ice to a fully formed lead pattern within 24 hours. 

This case study is for February 9, 2000.  
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The protruding features of the shoreline, or landfast ice, produce stress concentrations that 

initialize ice failure. The crack grows into the ice pack and it fails under tension, forming a lead. 

As the leads form, the stress is localized around the opening crack tip and they continue to grow 

and open as winds blow ice away from the arch.  

Case Studies 

Leads with widths greater than 250 m (Mahoney et. al. 2012) are identifiable in cloud-free 

Advanced Very High Resolution Radiometer (AVHRR) thermal images, which have been 

collected on the polar pathfinder satellites since 1979. Cloud-free AVHRR satellite images from 

1994-2010 were collated (one per day) for the case study region of the Beaufort Sea. With 

consecutive cloud free images, it is possible to identify lead formation times to within the 

bracketing time of the images. For the case study model initial validation, we chose a set of daily 

AVHRR images that showed significant and distinct lead patterns. The following series of cases 

were used to validate and tune the current model. 
 

1. February 17, 1994. This particular lead formation pattern was studied by Lewis et. al. 

(2016) and simulated in the Siku DEM model by Kulchitsky et. al. (2016). The case study 

period considered by Lewis et. al. (2016) is from 00:00 UTC on February 16, 1994 until 

18:00 UTC on February 21 1994, during which time a high-pressure system forms and 

moves across the Beaufort Sea from the NW towards the SE. As the anticyclone transits 

the region, associated leads, are observed. Cloud free satellite images during this time-

frame allow for opening leads to be identified within the constraint of satellite overpass 

timing. February 17, 1994 is a convenient day to compare the results of the model and 

observations. 
 

2. February 8-9, 2000. Similar to the case 1, but with an almost perfectly parabolic shape of 

the lead. Both case study 1 and 2 are leads that terminate in the center of a high-pressure 

weather system (anticyclone) that is zonally aligned with Point Barrow. This weather is 

associated with easterly winds along the Beaufort coast, and the promontory of Point 

Barrow is where stress can accumulate in the ice pack. Hence a crack can initiate here 

and an arch forms as the ice breaks in tensile failure. The radius of the arch is related to 

the cohesion of the ice pack (Sodhi 1977), which can be adjusted through the stiffness of 

springs in the spring based contact physics models or by the cohesion in the Wilchinsky 

et. al. (2010) model. 
 

3. March 6-7, 2000. This is a clear example of an arch forming off Point Barrow, which is 

related to an anticyclone centered above Point Barrow. 
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4. April 6, 2001. This is a tangent lead, formed at more an easterly angle from Point Barrow 

than the previous arch examples. The anticyclone associated with this lead is in a location 

that has also been found to be associated with arches forming off Point Barrow, Richards 

Island and Hershel Island as it traverses west to east. Further research is required to 

identify why on some occasions a tangent lead forms and on other occasions arches.  
 

5. March 17, 1996. This is one of the inverse leads that instead of forming from a high 

pressure system with winds blowing clockwise, results from a low pressure with counter 

clockwise winds. However, it still forms a typical arch shape, but with the opposite 

concavity of the anticyclone associated . This is a good test for the model as it is 

representing fundamentally the same physics as other cases but in reverse and potentially 

with stronger winds due to the steeper pressure gradient in cyclones. 
 

6. April 2, 2003. This pattern is very common, and occurs when the ice pack is moving 

clockwise around the entire Beaufort Sea. It is related to an anticyclone that is centered 

above the eastern Beaufort Sea. The anticyclone associated with this lead opening formed 

on March 30, and persisted until April 2
nd

 after which it moved over land.  

All of the following simulations were performed with the distributed spring model, with spring 

stiffness K calculated by ice Young’s modulus of 0.8 GPa and global viscosity parameter 

𝜂 = 0.001, see Eqs. (9)-(11). 

February 17, 1994 

 
Figure 12. Observations and simulation comparison for February 17, 1994 lead formation. 
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February 8-9, 2000 
 

 
Figure 13. Observations and simulation comparison for February 8, 2000 lead formation. 

 

 

 

 
Figure 14. Observations and simulation comparison for February 9, 2000 lead formation. 
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March 6-7, 2000 

 
Figure 15. Observations and simulation comparison for March 6, 2000 lead formation. 

 

 

 

 

 

 
Figure 16. Observations and simulation comparison for March 7, 2000 lead formation. 
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April 6, 2001 

 
Figure 17. Observations and simulation comparison for April 6, 2001 lead formation. 

 

 

March 17, 1996 

 
Figure 18. Observations and simulation comparison for March 17, 1996 lead formation. 
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April 2, 2003 

 
Figure 19. Observations and simulation comparison for April 2, 2003 lead formation. 

 

Initial results from the first set of realistic simulations performed by Siku demonstrate that the 

model is capable of reproducing the nucleation of cracks along the Beaufort Sea landfast ice 

edge. These simulations are an improvement on earlier simulations without landfast ice, where 

the coastal boundary included all the spatial heterogeneity of the actual coastline. We found 

leads nucleated at many locations along the coast that are not associated with known lead 

patterns. 

Improvements to the contact physics will improve these simulations. With the distributed spring 

model, arches are not simulated with sufficient curvature as the model does not allow for 

cohesion. The extension fractures that formed off point Barrow fractures in the March 6-7, 2001, 

and April 6, 2001, case studies cannot be simulated. In these cases, second arches form at a 

promontory to the east of Point Barrow. Both of these failings suggest that cohesion needs to be 

represented in the contact physics. In the case of arch curvature, increased cohesion of the ice 

pack will increase the curvature. In the case of the extension (or tangent leads following 

Mahoney et. al. (2012) naming convention) to the Barrow fracture pattern, cohesion of the ice 

pack with the landfast ice, which can essentially be viewed as extensions of the landfast ice, 

would create a boundary along which these leads form. For this reason, we have not pursued 

further sensitivity study and validation of the spring model. Instead, we have focused on 

developing a contact physics model that includes cohesion and shear failure. Future work will 

include running the case studies with the new contact physics.   
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DISCUSSION 

The Siku model is a new framework for DEM sea ice modeling with a powerful ability to add 

extensions. It can be used for any area of the Earth (at any time of its history) or any other 

spherical planet. Although the current physical model is immature, as shown in validation 

section, improving the contact models and input quality will significantly improve the predictive 

power of the model. 

Siku is implemented in C++ but has a built-in Python 3 interpreter and a set of Python modules 

that allow users to prepare the case studies without recompiling or changing the kernel code. 

Python interface provides the features of a powerful, all-purpose programming language to 

extend the model, do pre- and post-processing, and write interfaces with other software. The 

Python scripting language makes the model accessible to specialists who are not very familiar 

with programming and allows the community to write extensions. 

CONCLUSION 

Including landfast ice is important for accurate simulation of the deformation of the ice pack 

located within 500 miles of the coast. It is not possible to model the correct location of coastal-

originating leads without defining the pinning points against which the ice pack is constrained 

and stress concentrates. We found that the stable landfast ice edge needs to be represented for 

accurate simulation of lead spacing. This can be defined as the minimum observed landfast ice 

edge in any month (following Mahoney et. al. 2012).  

We found that a simple elastic-brittle model is suitable for modeling the propagation and extent 

of these leads; however, it does not adequately simulate the curvature of arches. We will address 

this in future efforts by including cohesion in the model. Shear leads cannot be simulated with 

these contact physics and, in the future, these cases can be used to constrain a version of Siku 

that includes Mohr-Coulomb contact physics. 

Our simulations are the first time that these coastal leads have been simulated in a numerical 

model. Further improvements to the contact physics will result in a model that is better 

constrained for tracking ice drift, deformation, and dispersion along the Alaskan coast in winter.  
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STUDY PRODUCTS 

This project supported graduate student, Ben Lewis, whose Master’s thesis explores the role of 

repeating lead patterns in the Beaufort Sea in the mean Beaufort Gyre motion. Mr. Lewis 

identified the case studies for testing Siku. 

The web site http://siku.ceoas.oregonstate.edu describes the model and contains the links to the 

open source program code. The source code repository is hosted at Bitbucket: 

https://bitbucket.org/coupi/siku with wiki page and bug tracker. 

Kulchitsky, A. V., Hutchings, J. K., & Johnson, J. B. (2014, December). Siku: A Sea Ice 

Discrete Element Method Model on a Spherical Earth. In: AGU Fall Meeting Abstracts (Vol. 1, p. 

0358). 

Kulchitsky, A. V., Hutchings, J. K., Johnson, J. B., & Velikhovskiy, G. (2016) Siku Discrete 

Element Method Sea Ice Model. In: Proceedings of the 23d IAHR International Symposium on 

Ice, Ann Arbor, Michigan, USA. 

Kulchitsky, A. V., Hutchings, J. K., Johnson, J. B., & Velikhovskiy, G. (2016, December). Siku 

DEM Simulations of Beaufort Sea ice Fracture Pattern. In: AGU Fall Meeting Abstracts. 

http://siku.ceoas.oregonstate.edu/
https://bitbucket.org/coupi/siku
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APPENDIX 

Example of Siku scenario script  

Below is an example of a Siku scenario script written in Python. It includes an example of 

February 16, 1994 case study run. This scenario uses previously generated ice elements and uses 

built-in plotting functions to visualize the results during the runs using GMT library. This 

example script is located in Siku model code in “samples” directory together with many other 

examples that can be used with the model. The script shows how a Python program allows the 

user to initialize the model with the data, program the output, and monitor the runs. The scripts 

interact with the Siku kernel by Siku Callback functions defined in the script and provide the 

input using Siku namespace. 

'''Siku scenario 

 

   Sea ice Beaufort sea ice high resolution example  

   for February 16, 1994 case study 

 

   Be sure that siku module is in your PYTHONPATH. 

   Use python3 for checking. It is not compatible with python2.x 

 

   (c)2014-2017 UAF 

   GPLv3 or later license (same as siku) 

 

''' 

 

import subprocess 

import os 

import math 

import sys 

import datetime 

import mathutils 

import numpy 

 

# Siku modules import 

import siku 

from   siku import polygon 

from   siku import element 

from   siku import material 

from   siku import geocoords 

from   siku import regrid 

from   siku import gmt_Plotter 

GMT_Plotter = gmt_Plotter.GMT_Plotter 

from   siku import poly_voronoi 

PolyVor = poly_voronoi.PolyVor 

from   siku import h5load 

hload = h5load.Loader 

from   siku import wnd 

  

def main(): 

 

    # --------------------------------------------------------------------- 
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    # Define material 

    # --------------------------------------------------------------------- 

 

    ice = material.Material()       # default ice values, 10 thicknesses 

    ice.name = 'ice'                # prefer to use our own name instead 

                                    # of default 

     

    siku.materials.append( ice )    # list of all materials 

 

    # table of material names for convenience 

    matnames = { 

        'ice': 0, 

    } 

     

    # --------------------------------------------------------------------- 

    #  Wind initializations (NMC grid example) 

    # --------------------------------------------------------------------- 

     

    siku.uw = wnd.NMCVar( 'u1994.nc', 'uwnd' ) 

    siku.vw = wnd.NMCVar( 'v1994.nc', 'vwnd' ) 

 

    start =  datetime.datetime  ( 1994, 2, 16, 00, 00, 00 ) 

    for i in range(len( siku.uw.times )): 

        if siku.uw.times[i] >= start: 

            break 

    st_t_ind = i 

    siku.time.update_index = i - 1 

    print( 'start time: ' + str( start ) + ' at position: ' + str( i ) + \ 

           ' of ' + str( len( siku.uw.times ) ) + '\n\n' ) 

     

    siku.wind = wnd.NMCSurfaceVField( siku.uw, siku.vw, st_t_ind ) 

 

    siku.settings.wind_source_type = siku.WIND_SOURCES['NMC'] 

    siku.settings.wind_source_names = [ 'u1994.nc', 'v1994.nc' ] 

 

    # --------------------------------------------------------------------- 

    # date/time settings 

    # --------------------------------------------------------------------- 

 

    siku.time.dts      = datetime.timedelta ( seconds = 600 ) 

    hour = datetime.timedelta ( minutes = 60 ) 

 

    ## time inits by NMC grid times 

    siku.time.start = siku.uw.times[st_t_ind] 

    siku.time.last = siku.uw.times[st_t_ind] 

    siku.time.last_update = siku.time.last 

    siku.time.finish = siku.uw.times[st_t_ind] + hour * 90 

    #siku.time.dt = datetime.timedelta ( milliseconds = 1 ) 

    siku.time.dt = ( siku.time.finish - siku.time.start ) / 3600 

    

    # --------------------------------------------------------------------- 

    # elements 

    # --------------------------------------------------------------------- 

     

    coords = [] 
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    siku.elements = [] 

 

    # ---------------------- voronoi initialization ------------------------ 

    print('\nLoading polygons') 

    ## North cap 

    PV = PolyVor( 'alaska.voronoi.xyz', 'alaska.voronoi.xyzf' ) 

    ## Channel (handmade) 

##    PC = PolyVor( 'alaska.voronoi.xyz', 'alaska.voronoi.xyzf' ) 

     

    PV.filter_( 0, 360, 60, 90 ) 

##    PC.filter_( 179, 187, 54, 60 ) 

    print('Deleting land polygons') 

    PV.clear_the_land() 

 

    coords = PV.coords 

 

    siku.tempc = coords # for debug 

 

    ### Initializing elements with polygon vertices 

    for c in coords: 

        siku.P.update( c ) 

      

        # Element declaration 

        E = element.Element( polygon = siku.P, imat = matnames['ice'] ) 

        E.monitor = "drift_monitor" 

        gh = [ 0.2, 0.2, 0.4, 0.2, 0.0,  

               0.0, 0.0, 0.0, 0.0, 0.0 ] 

        E.set_gh( gh, ice ) 

         

        # all elements in the list 

        siku.elements.append( E ) 

 

    ## Core will mark polygons, those contain at leas one point from next 

    ## file as 'static' 

    siku.settings.border_mark = 1 

    siku.settings.borders = 'contours.ll' 

 

    print('Marking borders with GMT') 

    bor = PV.get_border_by_gmt() 

    for b in bor: 

        siku.elements[ b ].flag_state = element.Element.f_static 

    print('Done\n\n') 

 

    ## Plotter initialization 

    siku.plotter = GMT_Plotter( 'beaufort94_plot.py' ) 

 

    ### period of picturing 

    siku.diagnostics.monitor_period = 30 

    siku.drift_monitor = drift_monitor 

    siku.diagnostics.step_count = 0 

 

    siku.settings.contact_method = siku.CONTACT_METHODS['sweep'] 

    siku.settings.force_model = \ 

                    siku.CONTACT_FORCE_MODEL['distributed_spring'] 
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    # name of file to load from 

    siku.settings.loadfile = 'save_test.h5' 

 

    siku.settings.phys_consts = { 'rigidity' : 10.0,#10, 

                                  'viscosity' : 1.0,#1.0,#1 

                                  'rotatability' : 0.750,#0.75 

                                  'tangency' : -0.00003,#-0.00003 

                                   

                                  'elasticity' :-50000000.0,#-5000000.0, 

                                  'bendability' : 1.0,#1.0, 

                                  'solidity' : 0.05,#0.05, 

                                  'tensility' : 0.30,#0.615, 

 

                                  'anchority' : 0.0005, 

                                  'windage': 0.05, #0.05 

                                  'fastency' : 0.50, #0.5 

 

                                  'sigma' : 1.0,        # -//- rigidity 

                                  'etha' : 1.0          # -//- viscosity 

                                  } 

 

    # --------------------------------------------------------------------- 

    #  Diagnostics function for the winds 

    # ------------------------------abs2( e.V )---------------------------- 

##    # We create a grid and append it to monitor grids 

##    siku.diagnostics.wind_counter = 0 

##    rg = regrid.Regrid() 

##    mesh_01 = rg.globe_coverage( 5.0 ) 

##    siku.diagnostics.meshes.append( mesh_01 ) 

##    siku.diagnostics.wind.append(  

##        ( winds_diag, 0, siku.time.start, 2*siku.time.dt ) ) 

 

    # --------------------------------------------------------------------- 

    #  Settings 

    # --------------------------------------------------------------------- 

 

    # --------------------------------------------------------------------- 

    #  Callback flag-mask generator 

    # --------------------------------------------------------------------- 

 

    siku.callback.pretimestep = pretimestep 

    siku.callback.aftertimestep = aftertimestep 

    siku.callback.conclusions = conclusions 

    siku.callback.initializations = initializations 

    siku.callback.updatewind = updatewind 

 

    ## 

    siku.callback.presave = presave 

 

    siku.err_test = {} 

     

    return 0 

 

def presave( t, n, ns ): 

    '''no saving at all''' 
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    return 

 

# -------------------------------------------------------------------------- 

 

def initializations( siku, t ): 

    subprocess.call(["gmtset", "PS_MEDIA=Custom_24cx20c"]) 

 

# -------------------------------------------------------------------------- 

 

def conclusions( siku, t ): 

     

    with open("err_time.txt", 'w') as erf: 

        for i in siku.err_test: 

            erf.write( str(i) + ' : ' )#+ ':\n' ) 

            erf.write( str( len( siku.err_test[i] ) ) ) 

            erf.write( '\n' ) 

 

    print('creating .gif') 

    subprocess.call( "nice convert -density 300 -delay 10 beaufort*.eps beaufort.gif", 

\ 

                     shell=True ) 

 

# -------------------------------------------------------------------------- 

 

def pretimestep( t, n, ns ): 

    status = siku.MASK['NONE'] 

    siku.diagnostics.step_count = n 

 

    siku.local.poly_f = open( 'Polygons.txt', 'w' ) 

 

    # step by NMC own time step 

    if t >= siku.uw.times[siku.time.update_index + 1]: # siku.time.last: # 

        status += siku.MASK['WINDS'] 

        siku.time.last = t# siku.time.finish#  

 

    # and change the winds here 

    # ~!wind is changed with another call 

 

    # and save the current time in a structure 

    # ~!current time is saved in siku.time.last 

    return status 

 

# -------------------------------------------------------------------------- 

 

def updatewind( siku, t ): 

    siku.time.update_index += 1 

    siku.time.last_update = t 

    siku.wind = \ 

              wnd.NMCSurfaceVField(siku.uw, siku.vw, siku.time.update_index) 

    print( str( t ) + '\n' ) 

    pass 

 

# -------------------------------------------------------------------------- 

 

def aftertimestep( t, n, ns ): 
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    siku.local.poly_f.close() 

    if siku.diagnostics.step_count % siku.diagnostics.monitor_period == 0: 

        pic_name = 'beaufort%03d.eps' % \ 

            (siku.diagnostics.step_count / siku.diagnostics.monitor_period) 

        print('drawing ' + str( pic_name ) ) 

 

        siku.plotter.plot( pic_name, siku.time.update_index, siku.wind ) 

 

    #siku.local.poly_f.close() 

    return 0 

 

# -------------------------------------------------------------------------- 

 

def drift_monitor( t, Q, Ps, st, index, ID, W, F, N, m, I, i, A, a_f, w_f ): 

 

    # create actual quaternion 

    q = mathutils.Quaternion( Q ) 

    C = mathutils.Vector( (0,0,1) ) 

 

    # get latitude and longitude of center of mass (0,0,1) 

    R = q.to_matrix() 

    c = R * C 

 

    # appending vertices to plotting list 

    if siku.diagnostics.step_count % siku.diagnostics.monitor_period == 0:         

        Pglob = [ R*mathutils.Vector( p ) for p in Ps ] 

        vert = [ geocoords.lonlat_deg(mathutils.Vector( p ) ) for p in Pglob ] 

 

        poly = siku.local.poly_f 

 

    return 

 

# ---------------------------------------------------------------------- 

def winds_diag( t, winds ): 

 

    mesh = siku.diagnostics.meshes[0] 

    ez = mathutils.Vector( (0,0,1) ) 

 

    return 

 

# --------------------------------------------------------------------- 

# Calling main function at the end 

# --------------------------------------------------------------------- 

 

siku.main = main() 

 

if __name__ == '__main__': 

    sys.exit( siku.main ) 

 

 



As the Nation’s principal conservation agency, the Department of the Interior has 
responsibility for most of our nationally owned public lands and natural 
resources. This includes fostering the sound use of our land and water 
resources, protecting our fish, wildlife and biological diversity; preserving the 
environmental and cultural values of our national parks and historical places; and 
providing for the enjoyment of life through outdoor recreation.The Department 
assesses our energy and mineral resources andworks to ensure that their 
development is in the best interests of all our people by encouraging stewardship 
and citizen participation in their care. The Department also has a major 
responsibility for American Indian reservation communities and for people who 
live in island communities.

The Bureau of Ocean Energy Management 
The Bureau of Ocean Energy Management (BOEM) works to manage the 
exploration and development of the nation's offshore resources in a way that 
appropriately balances economic development, energy independence, and 
environmental protection through oil and gas leases, renewable energy 
development and environmental reviews and studies.

The Department of the Interior Mission 
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