Carbon Sequestration on the Outer Continental Shelf

DOE National Energy Technology Laboratory
2022 Carbon Management Project Review Meeting
Pittsburgh, PA
August 17, 2022

Melissa Batum, Office of Renewable Energy Programs
Melissa.Batum@boem.gov
Section 40307 of Bipartisan Infrastructure Law (BIL) amended the Outer Continental Shelf Lands Act (OCSLA) to authorize the Secretary of the Interior to grant a lease, easement, or right-of-way on the Outer Continental Shelf for activities that “provide for, support, or are directly related to the injection of a carbon dioxide stream into sub-seabed geologic formations for the purpose of long-term carbon sequestration.”

Additionally, the law directs, “Not later than 1 year after the date of enactment of this Act [November 14, 2022], the Secretary of the Interior shall promulgate regulations to carry out the amendments made by this section.”
Joint Bureau of Ocean Energy Management (BOEM) – Bureau of Safety and Environmental Enforcement (BSEE) rulemaking is underway

Rulemaking team established relying on existing expertise throughout the bureaus

Extensive outreach underway

Topics under consideration for the rulemaking include:

- Financial and economic considerations
- Pre-lease exploration
- Leasing
- Site characterization
- Plans
- Environmental considerations
- Risk assessment and management
- Monitoring and reporting
- Liability
- Well and infrastructure qualification
- Operations, facilities, and pipelines
- Emergency response and mitigation
- Decommissioning
Leasing Considerations

- **Leasing Considerations:**
 - BOEM will conduct pre-leasing analyses to determine lease areas
 - Lease spacing and correlative rights
 - Conservation of pore space
 - Long-Term Liability
 - What are the market drivers?

- **Potential Research:**
 - Lease spacing considerations on the OCS:
 - How much buffer is appropriate between lease areas to prevent pressure front overlap/interference across leases?
Geologic Considerations – GOM Depleted O&G Reservoirs vs. Saline Reservoirs

Depleted Reservoirs

- Potential for greater available pressure margins
- Abundant geologic, geophysical, engineering and production data
- Proven trap and seal
- Numerous legacy wells
- Smaller storage capacity

Saline Aquiferas

- Large potential storage capacity
- Fewer legacy wells
- Abundant geologic, geophysical, engineering and production data
- Multiple Stacked Reservoirs
- Unknown seal integrity
- Smaller available pressure margin
Geologic Considerations

- GOM extensive, world-class data
- High porosity and permeability
- Over 23,000 depleted reservoirs

Analysis identified 100 largest producing reservoirs

Distance to shore and water depth refined the list to 21 Reservoirs in 9 fields.
GOM – 21 Depleted Reservoirs / 9 Fields

https://www.boem.gov/about-boem/regulations-guidance/carbon-sequestration

21 Tier 1 depleted reservoirs in the Gulf of Mexico based on:
- Production (>25MMBOE)
- Distance to Shore (<25 miles)
- Water Depth (<100ft)
Geologic Considerations cont’d

- **Geologic Considerations:**
 - Depleted O&G Reservoirs vs. Saline Reservoirs vs. Basaltic Reservoirs
 - Legacy Wells:
 - Potential leakage pathways? Can there be too many? Re-entry?

- **Potential Research:**
 - Injection Pilot Project to full-scale Demonstration Project
 - Consider starting with a depleted O&G reservoir
 - Environmental Monitoring
 - CO₂ Release Project/Modeling
Environmental Considerations

- Environmental Considerations:
 - Environmental Impacts from CO₂ Leakage – Risk Assessments, CO₂ Blowouts, Legacy Wells, Pipeline Ruptures, Geologic Leakage
 - “Baseline” Environmental Conditions
 - Cumulative Impacts?
 - Transportation – Vessel vs. Pipeline

- Potential Research:
 - What are the important considerations for establishing “baseline” conditions in the OCS environment?
 - What needs to be monitored and what are the appropriate monitoring protocols and frequency?
 - Transportation