The image above is a +/- 124° panorama photograph from the Great Bay Boulevard Wildlife Management Area (WMA)/Rutgers Field Station, panning clockwise from east-southeast (left) to southwest (right). The yellow rectangle within the photo represents the extent of the photosimulation photo(s).

Environmental Information
- Date Taken: 09/22/2020
- Time: 8:32 AM
- Temperature: 59°F
- Humidity: 49%
- Visibility: 10 miles
- Wind Direction: North-northwest
- Wind Speed: 12 mph
- Conditions Observed: Fair

Simulation Information
- Coordinates: 39.51937°N, 74.32038°W
- Character Area: Dredged Lagoon, Salt Marsh (LCA)
- User Group: Residents/Tourists, Fishermen
- Distance to Nearest Visible Turbine: 11.91 miles
- Great Bay Boulevard Wildlife Management Area, Little Egg Harbor US Life Saving Station #23

Photograph Information
- Camera: Canon EOS 5D Mark IV
- Resolution: 30.4 Megapixels
- Focal Length: 50mm
- Camera Height: 10.00 feet AMSL
- Notes: Printed at 100%, the photosimulations are 15 inches wide by 10 inches high. At this size, the photosimulation(s) should be viewed from a distance of 21 inches.
This view is from the Rutgers University Marine Field Station (RUMFS) at Great Bay Boulevard Wildlife Management Area (WMA) in Little Egg Harbor Township, New Jersey. The WMA, a 5,346-acre state-owned property located on the 4-mile-long peninsula that separates Great Bay and Little Egg Harbor at the mouth of the Mullica River where it meets the Little Egg Inlet to the Atlantic Ocean. It is a popular area for birding in all seasons and is also used by hunters and kayakers. The Boulevard is a narrow two-lane road that traverses this spit of land, offering vistas over the salt marsh on both sides of the road. Narrow, sandy beaches at the end of the peninsula provide additional opportunities for birding, beach combing and nature study.

The view to the southeast from this location looks off across a large bay that is fringed by stands of marsh grass at the shoreline that interweaves the water and land features and adds interest to the view. Low vegetated dunes with narrow bands of sand on the opposite side of the bay define the majority of the horizon. The high-rise buildings of Atlantic City are also visible across the bay in the distance, but out of the selected field of view. The angle of the sun darkens the view, with the foreground grass appearing black and the water of the bay gray with dark ripples. The sky transitions from rosy pink on the left to rich blue on the right and is uninterrupted by overhead obstructions. Other than the distant buildings of Atlantic City, the only visible man-made features are some small buoys in the bay.

Ratings panel members indicated that the existing view is dominated by the open water of the bay. Although this KOP would likely be used for bird watching within the WMA, the horizon line holds the viewer’s attention. The distant landforms frame the edges of the view along the horizon where the water meets the sky. The lack of developed features and the broad expanse of open water and sky gives this view a serene, unspoiled character. Rating panel scores for the existing conditions photographs ranged from 11.7 to 16.0 (average SQC score = 13.6). The SQC Score for this KOP indicates that this KOP has moderate to high scenic quality.

Viewshed analysis suggests that Project visibility could be widely available from the bay and adjacent open marsh. However, nearby areas with even modest woody vegetation will generally be well screened.

With the proposed Project in place, the view is dominated by a large and highly visible array of WTGs that extend across a large portion of the view to the southeast from this location. At this location only 48 degrees of relatively unobstructed ocean horizon is available with 312 degrees of the visible horizon obstructed by distant barrier islands or shrub/scrub vegetation of the WMA. The Project occupies approximately 43 degrees of the view (see Field of View Image, left). Project visibility is enhanced by the relative proximity of the WTGs (11.9 miles) and their back-lighting by the early morning sun, which makes the WTGs appear dark against the sky. Rating panel members had a variable range of reactions to the impact resulting from the Project WTGs, with the VIA scores ranging from 6.7 to 12.0 (average score = 9.3). These scores indicate an average reduction of 4.3 points in comparison to the existing view suggesting the Project would result in high magnitude impacts. Individual rating panel members indicated reductions that ranged from 1.4 to 7.0 and stated that the presence of the WTGs will change the experience for visitors to the WMA. Although viewer attention may still be focused on viewing wildlife in the foreground, the WTGs introduce new man-made forms into this formerly wild setting. Due to their relative proximity to the viewer, the WTGs appear large and become focal points of view. The movement of the rotor blades will also attract viewer attention. Although the visibility and visual dominance of the WTGs is likely to be reduced under more hazy sky conditions, and later in the day when lighting conditions reduce back-lighting and contrast with the sky. One member noted that the presence of the WTGs on the horizon serves to visually connect the distant landforms on the horizon and enclose the view. WTGs on the left and right sides of the array have less color contrast with the sky, while those in the center appear stacked on top of each other, which increases their visual mass. With the Project in place, the KOP SQC score suggests that the proposed view has low to moderate scenic quality.

Panel members assigned the Project visibility an average VTL of 6 from this KOP. Considering the scale, compatibility, and spatial dominance factors that influenced this VTL score, panel ratings indicated that the WTGs present severe scale contrast with water resources and viewer activity. They also indicated that the WTGs are not compatible with the water resources and the viewer activity. Additionally, the WTGs were considered dominant over the water resources, viewer activity, and landform present in the view.
This scale is designed to insure the photosimulation images are printed at the intended size.

Printed at 100%, the resulting photosimulation size is 15 inches wide by 10 inches high. At this size and focal length, the photosimulation should be viewed from a distance of 21 inches.

Existing Conditions
This scale is designed to ensure the photosimulation images are printed at the intended size.

Printed at 100%, the resulting photosimulation size is 15 inches wide by 10 inches high. At this size and focal length, the photosimulation should be viewed from a distance of 21 inches.
This scale is designed to insures the photosimulation images are printed at the intended size.
This scale is designed to insure the photosimulation images are printed at the intended size. Printed at 100% the resulting photosimulation size is 15 inches wide by 10 inches high. At this size and focal length, the photosimulation should be viewed from a distance of 21 inches.