Environmental Studies Program: Studies Development Plan | FY 2022–2023

Title
Offshore Air Quality (AQ) from NASA’s Satellites and Related Experiments (NT-22-02)

Administered by
Headquarters

BOEM Contact(s)
Holli Wecht (holli.ensz@boem.gov)

Procurement Type(s)
Inter-agency Agreement

Conducting Organization(s)
NASA Goddard Space Flight Center

Total BOEM Cost
TBD

Performance Period
FY 2022–2026

Final Report Due
TBD

Date Revised
March 14, 2021

PICOC Summary

Problem	No air quality (AQ) monitors exist in the offshore areas of the Gulf of Mexico (GOM), Atlantic, or Pacific Regions to aid BOEM in the management of AQ impacts as required under the Outer Continental Shelf Lands Act (OCSLA) and/or the National Environmental Policy Act (NEPA).
Intervention	NASA’s measurements from SCOAPE-I & TROPOMI with TRACER-AQ Experiment data will support TEMPO satellite algorithm development. NASA will also provide nitrogen dioxide (NO₂) pollutant validation post-launch. These estimates will allow BOEM to potentially monitor and track offshore pollutants using the TEMPO satellite leading to better management of impacts in the future.
Comparison	NASA will compare NO₂ data in GOM during TRACER-AQ with TROPOMI & SCOAPE-I, followed by TEMPO validation to ensure accuracy of TEMPO data.
Outcome	NASA will provide BOEM a Standard Operating Procedure for use of TROPOMI and TEMPO data in their management of air quality pollutants.
Context	Development measurements are provided by SCOAPE-I and TRACER-AQ measurements using OMI and TROPOMI with prototype over the GOM. All satellite data will also be available in the Pacific and Atlantic Regions.

BOEM Information Need(s): BOEM has no air quality (AQ) monitors over the waters in the Gulf of Mexico (GOM), Atlantic, or Pacific Regions, making it difficult to measure and track pollutants, which may impact the air quality of states. Two of BOEM’s responsibilities under the Outer Continental Shelf Lands Act (OCSLA 1334(a)(8)) is to ensure activities authorized do not significantly impact the state’s air quality compliance with the National Ambient Air Quality Standards (NAAQS) in the GOM and to draft National Environmental Policy Act (NEPA) documents in the Atlantic and Pacific Regions assessing impacts from our authorized activities. Using NASA’s 2021 TRACER-AQ field measurements and the upcoming TEMPO (Tropospheric Emissions: Monitoring of Pollution) satellite mission’s hourly, high resolution pollutant data offshore, will allow BOEM to better manage air quality from energy resources, including oil and gas, renewables, and sand/gravel projects. This study would build on the previous NASA’s Satellite Coastal Oceanic and Atmospheric Pollution Experiment (SCOAPE) in 2019 in the GOM (Thompson 2020).
Background: A 3-year Interagency Agreement between BOEM and NASA’s Goddard Space Flight Center successfully addressed two questions:

1. Can satellite data be used to inform BOEM about AQ over the OCS (Outer Continental Shelf)? Yes, NASA provided examples of pollutants over GOM, including TROPOMI satellite NO₂.
2. How accurate are the NO₂ satellite data over the GOM and Atlantic Regions? TROPOMI Total Column (TC) NO₂ satellite data agreed with both coastal and shipboard Pandora spectrometers that provided independent ground-truth. Under clean air conditions, satellite-Pandora agreement was 2-3%; for more polluted conditions, agreement was 15-20%.

Objectives:

1. The NO₂ impact of ONG emissions will be studied in TRACER-AQ with GCAS.
2. Prepare for TEMPO by developing a Standard Operating Procedure (SOP) for BOEM air subject matter experts to use for air management using OMI/TROPOMI satellite TROPC NO₂ routinely over GOM OCS (publicly available data), then extending to Atlantic and Pacific coasts.
3. Optional: Post-TEMPO launch. Conduct a SCOAPE-II in central GOM, revisiting SCOAPE-I region with a dedicated oceanographic cruise during NASA aircraft operations to be conducted, as TRACER-AQ with GV and GCAS, possibly other platforms, e.g. NASA’s P-3B aircraft?
4. Optional: Add TEMPO sampling SOP for BOEM to TROPOMI SOP to monitor future air quality impacts of ONG.

Methods:

1. The NO₂ impact of ONG emissions will be studied in TRACER-AQ. Because the current GV aircraft sampling does not extend to the central GOM, NASA will augment the 2021 TRACER-AQ field measurements with 1-3 flights that (a) transect western and central GOM; (b) sample central GOM NO₂ with “racecar track” sampling over the SCOAPE-I region (blue line in Figure 1). Figure 1 also shows the annual average TROPOMI TROPC NO₂ and platforms with greater than 250tpy of NOx emissions (Wilson 2019). The measurements also includes two permanently placed Pandoras to measure TC NO₂ in the coastal GOM.

![Figure 1: Using the Annual Average TROPOMI TROPC column NO₂ to determine the Draft G-V Flight Path](image_url)
2. To prepare a SOP, a nominal sampling protocol will range from weekly to rolling 2-3-week averages. Assume Pandora spectrometers are aligned on GOM coast (have been deployed in Houston for several years); Pandoras are currently operating along mid-Atlantic coast from Long Island-NJ-MD-VA-NC.

Specific Research Question(s):

1. Although SCOAPE-I gave a snapshot of OCS AQ in May 2019, what is the distribution of TC NO₂ and tropospheric column (TROPC) NO₂ over the GOM year-round? NASA will develop a climatology for BOEM that discriminates land and ONG sources using TROPOMI satellite data.

2. How do TROPOMI and Pandora TC NO₂ measurements during NASA’s 2021 TRACER-AQ aircraft and ground campaign in the Houston area and western GOM compare to SCOAPE-I measurements? BOEM will derive the answer from NASA’s Gulfstream V (GV) aircraft operating a TROPC NO₂ instrument “GCAS” (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator) during TRACER-AQ over ONG platforms near Houston and Galveston. GCAS will also evaluate TROPOMI and fly over a Pandora and in-situ NO₂ analyzer network operating in TRACER-AQ. A second remote sensor on the GV, the UV-Differential Absorption Lidar (UV-DIAL) will provide vertical profiles of ozone and aerosols to track plumes that are transported downwind from emissions sources.

3. How can SCOAPE-I and TRACER-AQ be linked when they are not in the same part of GOM? BOEM will support collection of NASA’s GCAS TROPC NO₂ and UV-DIAL data over the central GOM (off Louisiana) by augmenting GV flights, re-sampling the SCOAPE-I region, thus connecting SCOAPE-I measurements to TRACER-AQ. This requires Pandora(s) along the Louisiana coast to further connect TRACER-AQ and SCOAPE-I and to prepare for the hourly air quality measurements from TEMPO.

Current Status: N/A

Publications Completed: N/A

Affiliated WWW Sites:

References:

