

SCENARIO 5 INTERVISIBILITY ASSESSMENT FROM KEY OBSERVATION POINT

Maryland Offshore Wind Project, OCS-A 0490	10.8	938	Visible
Skipjack, OCS-A 0519	21.4	853	N/A
Garden State Offshore Wind, OCS-A 0482	21.8	853	N/A
Ocean Wind 2, OCS-A 0532	48.5	906	N/A
Ocean Wind 1, OCS-A 0498	60	906	N/A
Atlantic Shores South, OCS-A 0499	72.7	1049	N/A
Atlantic Shores North, OCS-A 0549	85.2	1049	N/A
Coastal Virginia Offshore Wind (C-Lease), OCS-A 0483	97.6	869	N/A
Coastal Virginia Offshore Wind (Research Lease), OCS-A 0497	106.6	607	Developed But Beyond Visible Distance
Atlantic Shores Offshore Wind Bight (NY Bight), OCS-A 0541	94.2	853	N/A
Invenergy Wind Offshore (NY Bight), OCS-A 0542	95.1	853	N/A

Information on the neighboring offshore development projects is based on the most current information available.

¹ "The Best Paper Format and Viewing Distance to Represent the Scope and Scale of Visual Impacts", Journal of Landscape Architecture, 4-2019, pp. 142-151, J. Palmer ² Sheppard, S. 1989. Visual Simulation: A User's Guide for Architects, Engineers, and Planners. New York: Van Nostrand Rheinhold.

The Maryland Offshore Wind Project will either use two large OSSs only at interior locations within the array or four small OSSs throughout the array. For the purpose of the simulations, the largest OSS that may be used at a particular location has been simulated.

Site Name: Location: Date: Time: Coordinate Landscape 2

Constructed

Scenario 5 depicts conditions that are anticipated for the Maryland Offshore Wind Project OCS-A 0490 once completed, including preexisting project construction for Coastal Virginia Offshore Wind (Research Lease) OCS-A 0497, but with no further changes or construction beyond that. The simulations produced for Scenario 5 visualize all such projects that are determined by the intervisibility assessment to be visible from KOP 22, 84th Street Beach.

All simulated WTGs use monopile foundation structures, and all are oriented in the same direction with the centermost WTG facing directly towards the camera. The simulated WTGs use RAL 9010 Pure White paint color and the same lighting scheme that was outlined in US Wind's Visual Impact Assessment. As a point of reference, a 1049' tall structure drops completely below the horizon at a distance of 47.5 statute miles from a 5.1' tall viewer at this KOP.

۲

To approximate the field of view represented by a 16.5" panorama it should be printed on an 11" x 17" sheet of paper and viewed from 8 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar matches what's instructed on the simulation sheet.

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55degrees vertical.

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

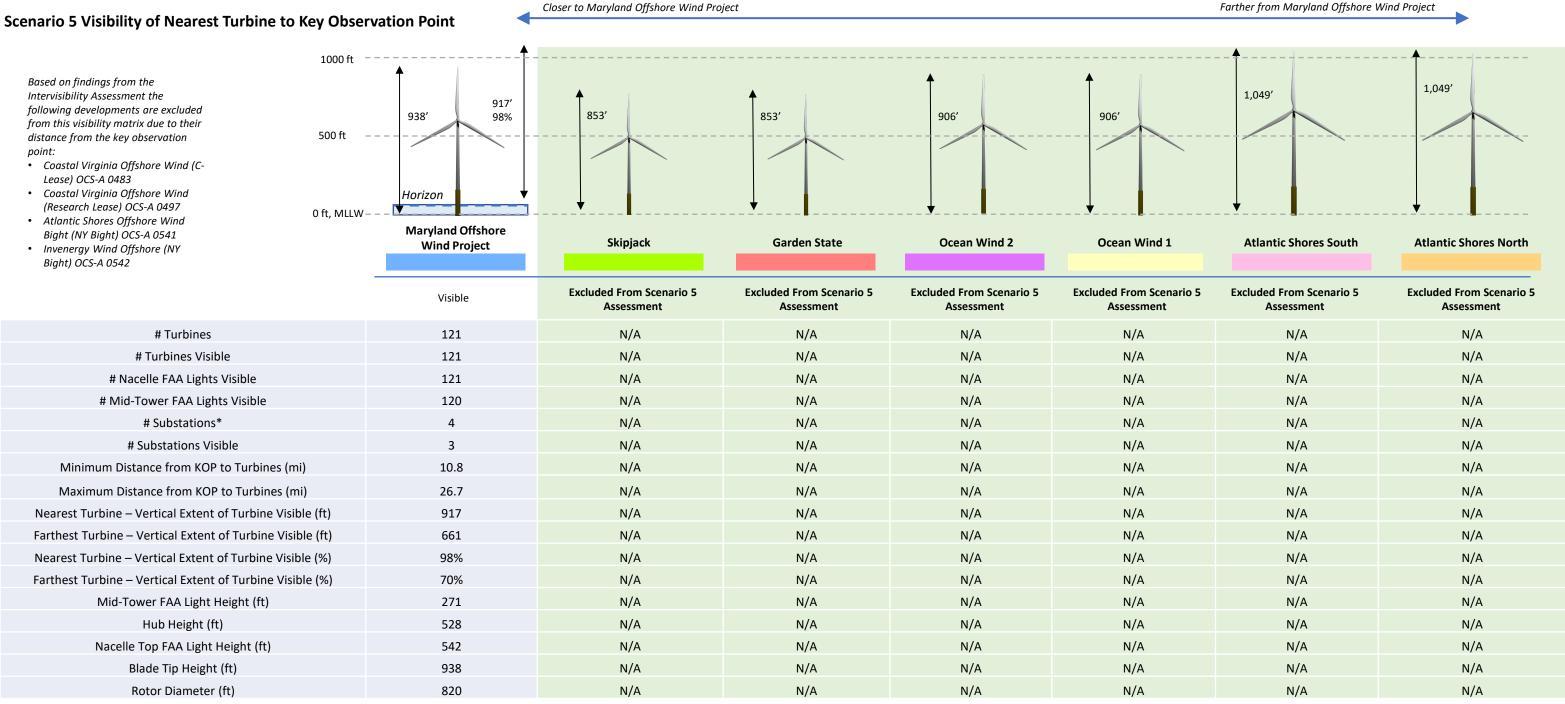
SITE INFORMATION

	84 th Street Beach
	Ocean City, MD
	7/26/2021
	6:22 AM (*1:00 PM)
es (Lat/Lon WGS84):	38.402, -75.059
Zone:	Barren Land (Rock/Sand/Clay) - Beach

Scenario 1, Pre-Buildout of Maryland Offshore Wind Project

Scenario 2, Maryland Offshore Wind Project and Projects Already or Considered

Scenario 3, Project Construction by 2030

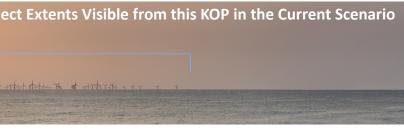

Scenario 4, Project Construction by 2030 Without Maryland Offshore Wind Project Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

Sheet 1 – Simulation Context and Intervisibility Assessment Sheet 2 – Project Development and Visibility Summary Sheet 3 – Existing Conditions Panorama View (124°) Sheet 4 – Panorama View (124°) with Simulations without Project Extents Sheet 5 – Panorama View (124°) with Simulations and Project Extents Sheet 6 – Single Frame (50-mm Lens) Simulation, Left View and Project Extents Sheet 7 – Single Frame (50-mm Lens) Simulation, Right View and Project Extents Sheet 8 – Supplemental Single Frame (40°) Left View (1:00 PM)* Sheet 9 – Supplemental Single Frame (40°) Right View (1:00 PM)*

KOP 22 84TH STREET BEACH, MARYLAND

SHEET 1 - SIMULATION CONTEXT AND INTERVISIBILITY ASSESSMENT

					Proje
			Mary	land Offshore Wind Project	
+ T T	+ $+$ $+$ $+$ $+$ $+$ $+$	+++++++++	*		*****



*The Maryland Offshore Wind Project will either use two large OSSs only at interior locations within the array or four small OSSs throughout the array. For the purpose of the simulations, the largest OSS that may be used at a particular location has been simulated.

Information on the neighboring offshore development projects is based on the most current information available.

Shaded green defines projects excluded from current scenario.

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

Farther from Maryland Offshore Wind Project

KOP 22 84TH STREET BEACH, MARYLAND

SHEET 2 - PROJECT DEVELOPMENT AND VISIBILITY SUMMARY

	Ca	ipe May Lighthouse 🛆	· · · · · · · · · · · · · · · · · · ·		Ocean
		àn .		Garden State Wind: OCS-A	
61	Delaw	are Seashore State Park	• .]	· · · · ·	1,1
Y		ethany Beach	1. N	Skipjack: OC	S-A 0519
Soul	2 month		Maryla	nd Offshore	
	84th	Street Beach	Win	d Project:	
E	Ocean City	y Boardwalk ▲ 5 th	oc	S-A 0490	- j
in the	Assateagu National S		on		1
☆	Current KOP Simulation	 Blades Visible 	25 mi 30 mi	1.1.1	/
A	KOP Location	 Blades and Nacelle Visible 	30.	1 11	
	Horizontal Field of View (HFOV)	 Blades, Nacelle, and Tower Visible 	30 35 mi	11	
	(124°)	 OSS Visible 			
	 Limit of Visibility 	 WTG Not Visible 	LA LA	5mi	
		 OSS Not Visible 	0 5 1	0 20	

ENVIRONMENT	
Weather Conditions:	Slight Haze
Temperature:	66° F
Humidity:	79%
Lighting Conditions:	Lit from SE
Visibility:	10 Miles
VIEW AND CAMERA DETAILS	
Ground Elevation (ft msl):	9.1
Camera/Viewing Elevation (ft msl):	5.1
Camera Used for Simulation Photography:	Nikon D850
Camera Lens Brand, Type, Focal Length:	Nikon Fixed 50 mm
Photo Resolution:	1200 DPI
Horizontal Field of View (Panoramas):	124°
Horizontal Field of View (Single Frame 50	
mm Lens):	39.6°
Atmospheric Refraction Coefficient (k):	0.143

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 16.5" panorama simulation, it should be printed on an 11" x 17" sheet of paper and viewed from 8 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.

1" Measured On Screen – View from 20" Away

KOP 22 84TH STREET BEACH, MARYLAND

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

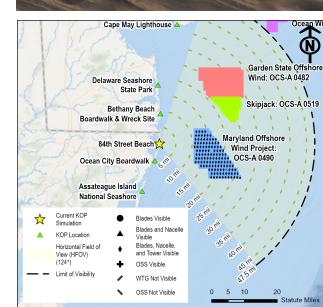
SHEET 3 - EXISTING CONDITIONS PANORAMA VIEW (124°)

1 1	1500	The may maintened -			
1		in .			D
S		vare Seashore ▲ State Park ▲ Bethany Beach Ik & Wreck Site ▲		Garden State Offsh Wind: OCS-A 0482 Skipjack: OCS-A 05	
			onit	and Offshore nd Project: CS-A 0490	
☆ ▲	Current KOP Simulation KOP Location Horizontal Field of View (HFOV) (124*) Limit of Visibility	 Blades Visible Blades and Nacelle Visible Blades, Nacelle, and Tower Visible OSS Visible WTG Not Visible 	25 mi 30 mi 35 mi	and Sm	
		OSS Not Visible	0 5	10 20	

ENVIRONMENT	
Weather Conditions:	Slight Haze
Temperature:	66° F
Humidity:	79%
Lighting Conditions:	Lit from SE
Visibility:	10 Miles
VIEW AND CAMERA DETAILS	
Ground Elevation (ft msl):	9.1
Camera/Viewing Elevation (ft msl):	5.1
Camera Used for Simulation Photography:	Nikon D850
Camera Lens Brand, Type, Focal Length:	Nikon Fixed 50 mm
Photo Resolution:	1200 DPI
Horizontal Field of View (Panoramas):	124°
Horizontal Field of View (Single Frame 50	
mm Lens):	39.6°
Atmospheric Refraction Coefficient (k):	0.143

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 16.5" panorama simulation, it should be printed on an 11" x 17" sheet of paper and viewed from 8 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.


1" Measured On Screen – View from 20" Away

KOP 22 84TH STREET BEACH, MARYLAND

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

SHEET 4 - PANORAMA VIEW (124°) WITH SIMULATIONS WITHOUT **PROJECT EXTENTS**

ENVIRONMENT	
Weather Conditions:	Slight Haze
Temperature:	66° F
Humidity:	79%
Lighting Conditions:	Lit from SE
Visibility:	10 Miles
VIEW AND CAMERA DETAILS	
Ground Elevation (ft msl):	9.1
Camera/Viewing Elevation (ft msl):	5.1
Camera Used for Simulation Photography:	Nikon D850
Camera Lens Brand, Type, Focal Length:	Nikon Fixed 50 mm
Photo Resolution:	1200 DPI
Horizontal Field of View (Panoramas):	124°
Horizontal Field of View (Single Frame 50	
mm Lens):	39.6°
Atmospheric Refraction Coefficient (k):	0.143

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 16.5" panorama simulation, it should be printed on an 11" x 17" sheet of paper and viewed from 8 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.

1" Measured On Screen – View from 20" Away

KOP 22 84TH STREET BEACH, MARYLAND

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

SHEET 5 - PANORAMA VIEW (124°) WITH SIMULATIONS AND **PROJECT EXTENTS**

Graphic shows which specific portion of the human field of view (124°) is visible in this single frame (40°) photo.

1" Measured On Screen - View from 20" Away

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 15.7" single frame simulation captured with a 50-mm lens it should be printed on an 11" x 17" sheet of paper and viewed from 22 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.

SHEET 6 - SINGLE FRAME (50-mm LENS) SIMULATION, LEFT VIEW AND PROJECT EXTENTS

KOP 22 84th STREET BEACH, MARYLAND

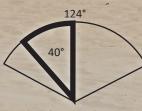
Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

人子子子 计不开来 奉 大中市 赤 林子 大中市 赤 大中市 赤 十 十 十 十

Graphic shows which specific portion of the human field of view (124°) is visible in this single frame (40°) photo.

1" Measured On Screen – View from 20" Away

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 15.7" single frame simulation captured with a 50-mm lens it should be printed on an 11" x 17" sheet of paper and viewed from 22 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:


In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of

view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.

SHEET 7 - SINGLE FRAME (50-mm LENS) SIMULATION, RIGHT VIEW AND PROJECT EXTENTS

KOP 22 84th STREET BEACH, MARYLAND Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations

Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

Graphic shows which specific portion of the human field of view (124°) is visible in this single frame (40°) photo.

VIEWING INSTRUCTIONS: To approximate the field of view represented by a 15.7" single frame simulation captured with a 50-mm lens it should be printed on an 11" x 17" sheet of paper and viewed from 22 inches away¹. For the most realistic experience when viewing in a digital format, position your computer screen 20" away and adjust the PDF viewing software's zoom so that the calibration bar is 1 inch long:

1" Measured On Screen – View from 20" Away

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citations.

Maryland Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes

KOP 22 84th STREET BEACH, MARYLAND

ANT THAT THE ANT A TO THE

SHEET 8 – SUPPLEMENTAL SINGLE FRAME (40°) LEFT VIEW (1:00 PM) **TRC**

Graphic shows which specific portion of the human field of view (124°) is visible in this single frame (40°) photo.

120" awa

he field of view represented by a 15.7" single frame an 11" x 17" sheet of paper and viewed from 22 i I format, position your computer viewing software's zoor ation bar is 1 inch long

In all cases care must be taken to not over or underrepresent the visual contrasts². Typical binocular human field of view is assumed to be 124-degrees horizontal and 55-degrees vertical. See Sheet 1 for citation

1" Measured On Screen

KOP 22 84th STREET BEACH, MARYLAND

4.00

Offshore Wind Project Cumulative Visual Effects Assessment Simulations Scenario 5, Maryland Wind Without Other Foreseeable Future Changes Maryland Offshore

SHEET 9 - SUPPLEMENTAL SINGLE FRAME (40°) RIGHT VIEW (1:00 PM) **TRC**