

New England Wind Project

Project Design Envelope

A project design envelope is a permitting approach that allows a lessee to define a range of design parameters within a Construction and Operations Plan. BOEM then analyzes the maximum impacts that could occur within the range of the design parameters — referred to as the "maximum design scenario".

Representative design parameters for the New England Wind Phase 2 project are outlined below. Refer to New England Wind's Construction and Operations Plan for a detailed explanation of the project design envelope.

Figure not to scale.

MLLW

Seabed

Phase 2 SWDA

Water Depths

48-62 m

(157-203 ft)

Maximum

85 m

(279 ft)

Penetration

WTG Tower

Maximum Total

Length

177 m

(581 ft)

Maximum

Jacket

Height

92 m

Maximum

Diameter

Pile

4 m

(13 ft)

(302 ft)

Wind Turbine Generators

Maximum

Tower

10 m

Maximum

Transition

Piece

Width

(82 ft)

Maximum Scour

Protection Height

3 m

(9.8 ft)

3D Jacket Rendering

Maximum Pile

Figure not to scale.

Length

(295 ft)

90 m

25 m

(33 ft) _ _ _

Diameter

Monopile Foundation

Jacket Foundation with Pin Piles

Maximum

Scour

4,624 m²

(1.1 acres)

Maximum Distance Between Legs

40 m

(131 ft)

Protection Area

Bottom Frame Foundation with Suction Buckets (Phase 2 only)

Project Component	Representative Project Design Parameters
Wind Turbine Generators (WTG)	 Up to 129 WTGs with rotor diameter up to 937 feet. Upper blade tip height up to 1,171 feet above MLLW; lowest blade tip height 89 feet above MLLW.
Turbine Foundations	 Phase 1: Monopile or jacket foundations. Phase 2: monopile, jacket, or bottom-frame foundations with scour protection. Installation with jack-up vessel, anchored vessel, or DP vessel and components potentially supplied by feeder vessels.
Electric Service Platforms (ESP)/Offshore Substations	 Phase 1: one or two ESPs. Phase 2, up to 3 Up to three on monopile or jacket foundations. Installation with jack-up vessel, anchored vessel, or DP vessel. Maximum 345 kV inter-link cables with target burial depth of 5 to 8 feet, and options for cable protection.
Inter-Array Cables	 Maximum 132 kV inter-array cables with target burial depth of 5 to 8 feet. Cable protection (rock, gabion rock bags, concrete mattresses, half-shell pipes [or similar]) in areaswith minimal cable burial.
Offshore Export Cables	 Phase 1: Two 220-275 kV HVAC cables. Phase 2: three 220-345 kV HVAC cables. Target burial depth of 5 to 8 feet. One export cable route corridor to landfall site(s) in the Town of Barnstable. Cable protection (rock, gabion rock bags, concrete mattresses, half-shell pipes or similar) in areas with minimal cable burial.
Landfalls and Onshore Export Cable System	 Separate Phase 1 and Phase 2 landfall and onshore export cable route options within the Town of Barnstable. Onshore export cable routes primarily within road layouts or existing utility rights of way.
Onshore Substations and Interconnector Cable	 A total of up to two new onshore substations with associated infrastructure for both Phases 1 and 2. Underground cable options to connect onshore substations to the existing grid.

DP = dynamic positioning; HDD = horizontal directional drilling; HVAC = high voltage alternating current; HVDC = high voltage direct current; kV = kilovolt; MLLW = mean lower low water.

For more information on BOEM's Renewable Energy Program, visit <u>www.boem.gov/Renewable-Energy</u>