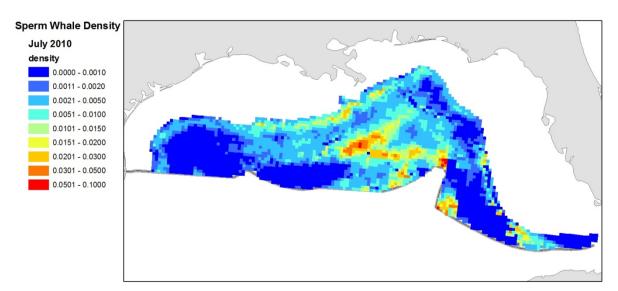


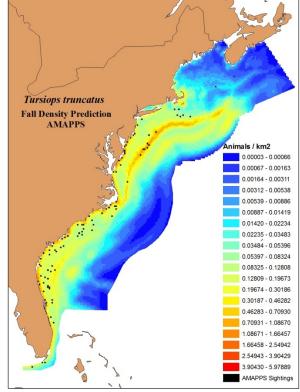
NOAA FISHERIES

Southeast Fisheries Science Center Gulf of Mexico Marine Assessment Program for Protected Species -GoMMAPPS-

Marine Mammals

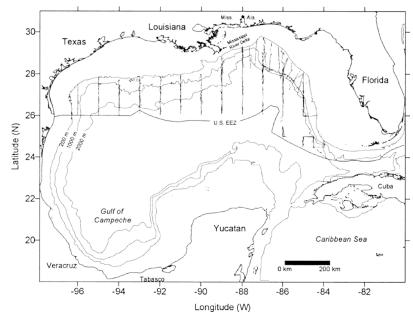


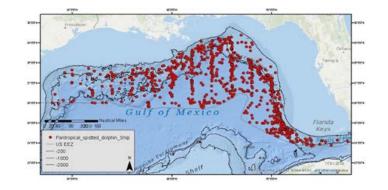

Keith D. Mullin 06 February 2017 New Orleans, Louisiana GoMMAPPS Marine Mammals Primary Objective

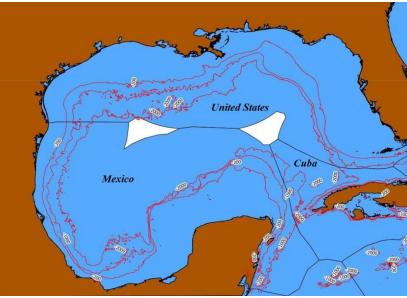

Gulf of Mexico cetacean species:

<u>Up-to-date</u> seasonal Spatially Explicit Density Maps

- inform stock assessments
- assist with management decisions related to energy development

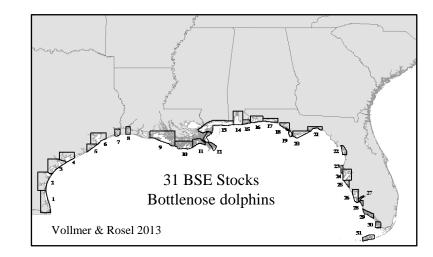


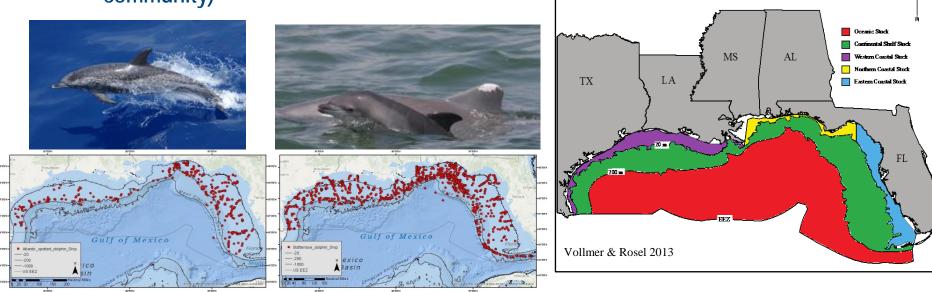




Gulf-wide Approach (future funding)

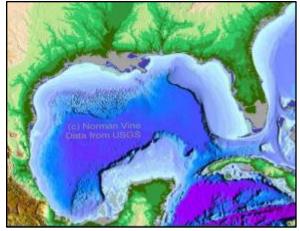
- GOMx small relative to cetaceans' ability to travel
- >50% of GOMx non-U.S.: Mexico & Cuba
- Southern Gulf not assessed by any country with broad scale surveys
- Changes in abundances & distributions difficult to interpret without GOMx-wide perspective





Gulf of Mexico Habitats and Cetacean Species & Stocks

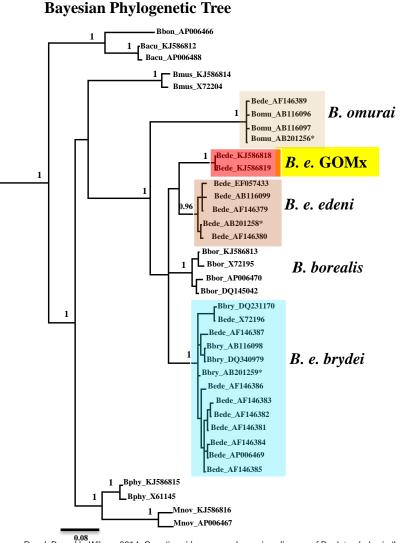
- Bays, Sounds & Estuaries (BSE)
 - Bottlenose dolphins 31 stocks
- Coastal Waters (0 20 m)
 - Bottlenose dolphins 3 stocks
- Continental Shelf (20 200 m)
 - Atlantic spotted dolphins 1 stock
 - Bottlenose dolphins 1 stock
- Oceanic Waters (≥ 200 m)
 - 21 species 21 stocks (tropical cetacean community)



Gulf of Mexico Oceanic Cetaceans

21 species routinely inhabit oceanic waters; currently – 21 stocks

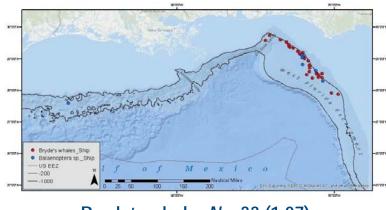
- Bryde's whale (ESA listing proposed)
- Sperm whale (ESA-listed)
- Dwarf sperm whale
- Pygmy sperm whale
- Cuvier's beaked whale
- Blainville's beaked whale
- Gervais' beaked whale
- Short-finned pilot whale
- Killer whale
- Pygmy killer whale
- Melon-headed whale
- False killer whale
- Risso's dolphin
- Bottlenose dolphin
- Rough-toothed dolphin
- Fraser's dolphin
- Atlantic spotted dolphin
- Pantropical spotted dolphin
- Striped dolphin
- Clymene dolphin
- Spinner dolphin


Bryde's Whales in the Gulf of Mexico

Egla_KJ586817

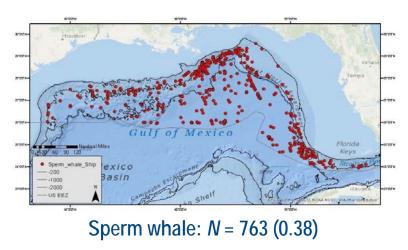
Eaus AP7006473

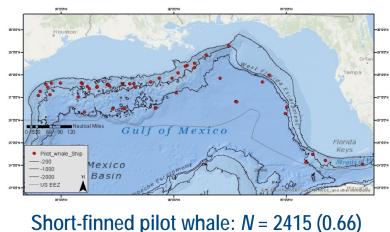
- Genetic analyses
 - Significantly different from Bryde's whales worldwide
 - Unique evolutionary lineage
 - Extremely low genetic diversity



Rosel, P. and L. Wilcox. 2014. Genetic evidence reveals a unique lineage of Bryde's whales in the northern Gulf of Mexico. Endangered Species Research 25:19-34.

Examples of Oceanic GOMx Abundance & Distribution Results


Group sightings from 1992-2009; abundances from Waring et al. (2012)



Bryde's whale: *N* = 33 (1.07)

Pantropical spotted dolphin : N = 50,880 (0.27)

GoMMAPPS Marine Mammal Objectives

Broad-scale multi-year seasonal abundance & distribution data

- 1. Continental shelf (0-200 m) Seasonal aerial surveys
- 2. Oceanic waters (> 200 m) Seasonal ship surveys

Data Analyses

- 1. Assemble and evaluate historical aerial and ship surveys
- 2. Assess bias-corrected population size of species/stocks
- 3. Develop models that incorporate habitat characteristics to translate current and past surveys into spatially-explicit maps of species density & uncertainty

stock/species abundance

spatially explicit density

Program Management

Data Management

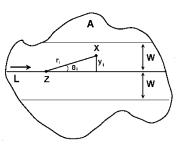
GoMMAPPS Marine Mammal Fieldwork Schedule									
Month/year	FY 2017		FY 2018		FY 2019				
Oct					Fall Aerial				
Nov					Survey				
Dec									
Jan			Line Transect						
Feb			Vessel Survey	Winter Aerial					
Mar				Survey					
Apr									
May									
Jun									
Jul			**Line Transect						
Aug	Vessel Survey	Survey	Vessel Survey						
Sep									

** The timing of the proposed summer 2018 survey may change to a more optimal season if needed based upon a seasonal environmental variability analysis and availability of ship time.

Line-transect Surveys

Abundance estimates negatively biased for oceanic GOMx species

g(0) = probability of detecting an animal group/animal directly on the transect line

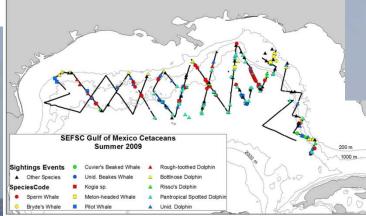

g(0) = 1: assumed for GOMx oceanic species but not always true

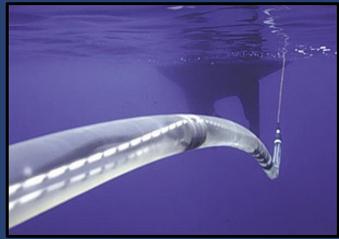
Perception bias – missed by observers (varies by survey conditions) Availability bias – below surface

e.g., Barlow et al. (2015) (North Pacific Ocean): $g(0) \approx 1$ for large schools of delphinids g(0) < 1 (0.40 – 0.70) for large whales g(0) << 1 (0.25 – 0.45) for *Kogia* and beaked whales

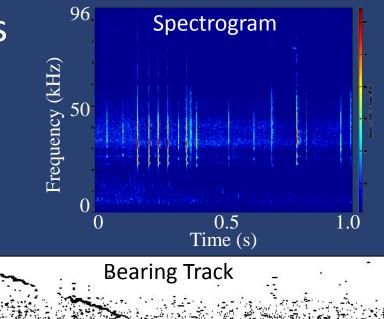
 $N_i = \sum_{i=1}^{3} \frac{A_i \cdot n_{i, j} \cdot S_{i, j} \cdot f_i(0)}{2 \cdot L_i \cdot g(0)}$

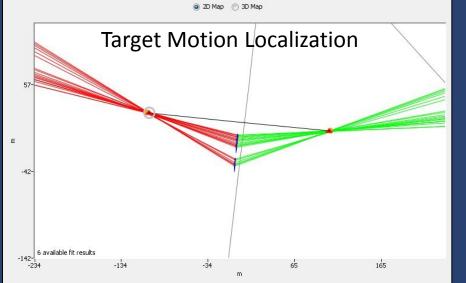
Ship-based Surveys


- Seasonal line-transect survey (60 days duration)
 - Two-teams to account for perception bias
- Biopsy samples
 - Stock structure
- Oceanographic data
 - CTD, XBT, EK60, Thermosalinograph
- Passive acoustic sampling
 - towed array
- Seabird survey



GoMMAPPS Passive Acoustics


Towed Hydrophone Array

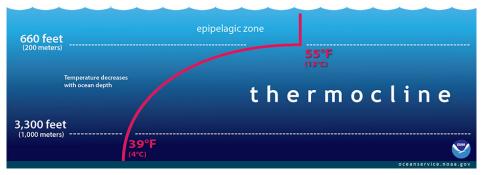


In-situ Oceanographic Sampling

XBT Stations

EK60 at night

CTD Stations

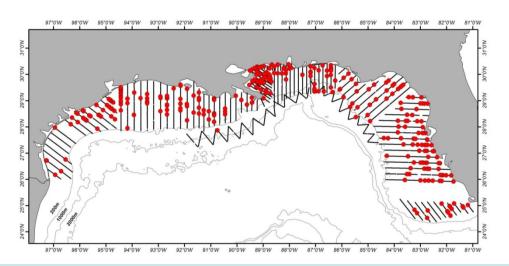


24 hour Thermosalinograph

(left) Overall view of the SBE 21 SEACAT Thermosalinograph model. (right) Thermosalinograph installed onboard the NOAA ship Ronald H. Brown.

Stock Structure – Sample Collection

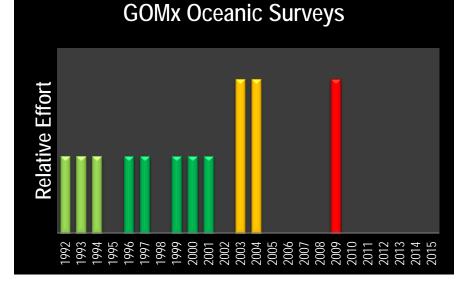
- Large vessel surveys shelf and oceanic species
- Skin samples for genetics
 - From the bow bowriding species (small delphinids)
 - Deploy RHIB for large whales & larger delphinids



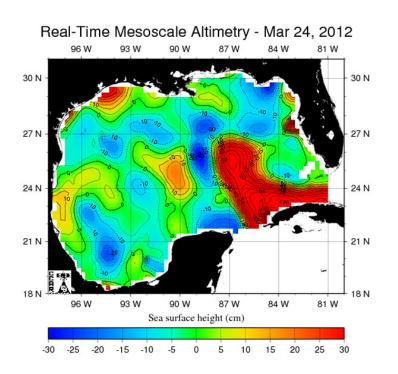
Typical biopsy sample which is subsampled for multiple analyses

Continental Shelf: Aerial Surveys

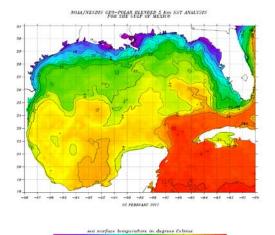
- Visual line-transect surveys (60 days duration)
- Two-team method to account for perception bias
- Seasonal surveys
- Bottlenose dolphins, Atlantic spotted dolphins & sea turtles

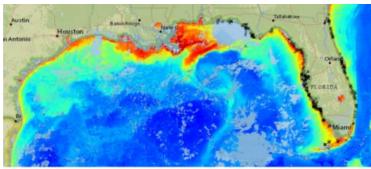


Historical Data: GOMx Oceanic Cetacean Abundance Surveys


Estimates	Years	Season	Туре	Partners
Hansen et al. 1995	1992-1994	Spring	"piggyback"	SEFSC/BOEM
Mullin & Fulling 2004	1996-2001	Spring	"piggyback"	SEFSC/BOEM
Mullin 2007	2003-2004	Spring/Summer	Dedicated	SEFSC/US Navy
Waring et al. 2012	2009	Summer	Dedicated	BOEM

• "Piggyback" – conducted during spring bluefin tuna plankton surveys



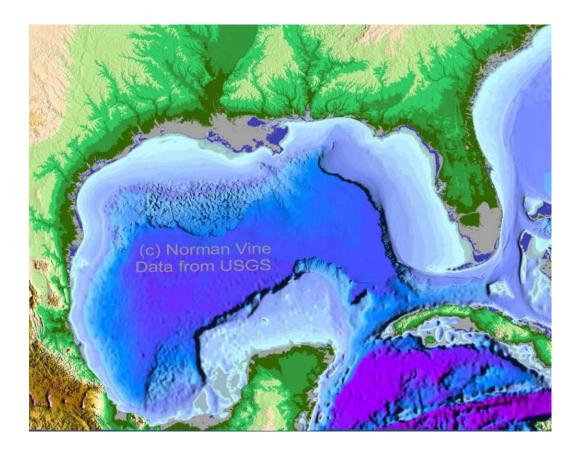

Remotely-sensed Data

Sea surface height anomaly

Sea surface temperature

CoastWatch chlorophyll 3-day composite viewed on NOAA's HABSOS.

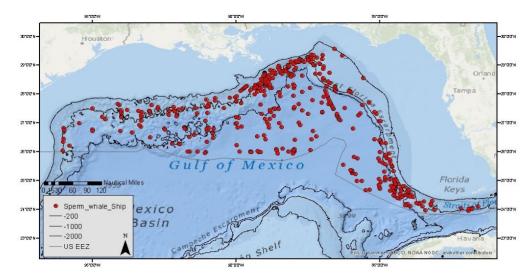
Ocean color - chlorophyll


Topographic Data

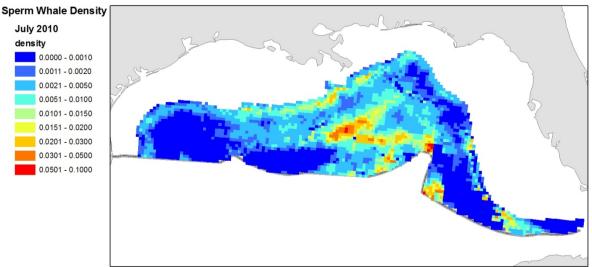
Water depth

Bottom slope

Distance from features -MS River Delta -Shelf break -Canyons

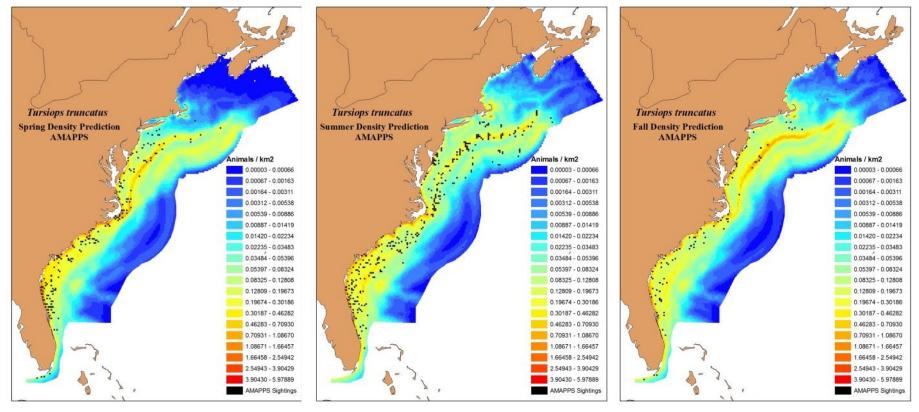


Outcomes: Spatially Explicit Density Maps


Integrate

- -Historical data
- -Seasonal survey data
- -In situ oceanographic data -Remote sensing data -Topographic data

July 2010 density



Outcomes: Spatially Explicit Density Maps

AMAPPS example: Bottlenose dolphin density and spatial distribution

- AMAPPS seasonal maps of density from vessel and aerial survey data (SEFSC and NEFSC)
- A major GoMMAPPS objective is to produce and disseminate operational mapping products

