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SUMMARY

Sand deposits on the continental shelf of the western Gulf of Mexico are potential sources of
fill material to nourish recreational beaches in Texas. Demand for beach nourishment sand is
increasing as the combined effects of relative sea-level rise and reduced sediment supply cause
rapid erosion and accelerated loss of recreational beaches. Particularly promising for leasing and
commercialization in the near term are offshore deposits of sand that form shoals on the inner
continental shelf. Preliminary geological and engineering analyses indicate that these sand deposits
are suitable for beach replenishment because sediment textures of the shoals are generally
compatible with those of native beach sand. Also, offshore sand extraction may be economically
feasible if onshore or nearshore sources of beach-quality sand are volumetrically limited.

In Texas, Sabine and Heald Banks are two offshore sand deposits that have the greatest
economic potential for near-term exploitation because they are (1) suitable for beach replenishment,
(2) the largest sand deposits located offshore of some of the most rapidly eroding developed
shores, (3) relatively close to potential markets in both southeastern Texas and western Louisiana,
and (4) relatively close to major ports that can support offshore mining activities.

A prior geological investigation demonstrated that large volumes of sand-rich sediments are
associated with Sabine Bank and Heald Bank (Morton and Gibeaut, 1993). The total volume of
sandy sediments, estimated at more than 1.8 billion m3, constitutes a large hard-mineral resource.
Most of that material would be suitable for beach replenishment and other construction activities
that can use well-sorted fine sand with some shell and some sediments finer than sand. The
previous study also showed that the offshore sand deposits are located in water depths ranging
from 4.5 m to about 16 m and the greatest thicknesses of beach-quality sand generally coincide
with the shallowest water depths.

The second phase of this study was directed principally toward assessing the quality and
volume of Sabine and Heald Bank sediments. To accomplish this, the banks were cored, sediment
textures and mineralogy were determined, and sand volumes were estimated using bathymetry and
lithologic information. Geographic locations and attributes of all the pertinent offshore data
sources were incorporated into ARC/INFO, a widely used Geographic Information System (GIS).
An additional task of the second phase evaluated the potential environmental impact of mining the
sand deposits by examining the potential changes in wave refraction patterns if large volumes of
sand were removed from Sabine and Heald Banks. Another task analyzed the wave heights and
wind patterns near the Banks to estimate the maximum number of working days for shallow-draft
dredges working in the Gulf, and we also conducted a preliminary investigation of dredging costs
based on experience with the 1995 Galveston Beach replenishment project and two other beach
nourishment projects planned for the western Gulf of Mexico.



INTRODUCTION
Regional Overview

Potentially economic concentrations of sand and shell have been identified in the western Gulf
of Mexico during decades of exploration and research on the continental shelf. On the Texas
portion of the continental shelf, significant sand accumulations at or near the seafloor occur as
shore-aligned sand bodies and patchy accumulations of transgressive sands that were deposited
during the most recent rise in sea level (Paine et al., 1988). Fluvial sand and gravel occur within
late Wisconsin stream courses that extend across the continental shelf, but these valley-fill deposits
are typically covered by tens of meters of overburden and are not exploitable considering the
current economic constraints.

There are potential markets for offshore sand along the western Gulf of Mexico. Sand
contained in submerged shoreline and nearshore deposits has the greatest near-term economic
potential because it can be used for beach replenishment projects. Beach replenishment can be
justified where large recreational, residential, and industrial investments would be damaged or
destroyed by continued coastal erosion and storm impacts.

Long-term erosion of beaches and heavy beach use near population centers in the western Gulf
make beach replenishment an attractive alternative to other methods of shoreline stabilization. The
City of Galveston recently (spring 1995) completed a beach nourishment project using offshore
sand dredged from a borrow area on the adjacent shoreface. The Town of South Padre Island is
also planning for a beach nourishment project in the near future, and a feasibility plan and
environmental impact statement are being prepared for mining Ship Shoal in coastal Louisiana.
The history of coastal development in Texas and widespread beach erosion suggest that other
beach communities such as North Padre Island and Freeport will likely need beach nourishment in
the near future.

Objectives of the Study

The assessment study of Sabine and Heald Banks (Figure 1) accomplished several objectives.
First, it provided information that could stimulate interest in offshore sand resources, thus bringing
closer the time when leasing and commercial utilization in the western Gulf of Mexico are a reality.
Second, the study quantified the sediment textures of Heald Bank, which contains the largest sand
deposits that are closest to Galveston Island, a primary site for future beach replenishment. Third,
the study characterized the wave conditions that offshore mining equipment might encounter.
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Figure 1. Locations of vibracores collected from Sabine Bank and Heald Bank.



Fourth, the study examined if sand extraction will significantly alter wave propagation and thus
possibly accelerate erosion of beaches along the southeastern Texas coast. Finally, the study
provided a preliminary cost analysis of mining sand from Heald and Sabine Banks.

One of the primary objectives was to determine the suitability of offshore sand for
replenishment of beaches along the southeastern Texas coast. To reach this objective, the
following physical attributes were determined for Sabine and Heald Banks: (1) the three-
dimensional geometry of the deposits and their approximate volumes; (2) the textural characteristics
of the deposits, including composition, grain size, sorting, and lateral and vertical variations; and
(3) the degree to which the compositional and textural characteristics of the banks match
characteristics of nearby beaches. The detailed sedimentological data provided a basis for
calculating sand volume, determining its suitability for beach replenishment, and providing a basis
for evaluating the costs of extracting sand from these deposits. .

The second phase of the study was designed and organized to (1) obtain vibracores on Heald
Bank and to quantify textures of sediments associated with that poorly defined sand deposit,

(2) acquire meteorological and oceanographic data near the proposed mining sites as they relate to
the physical climate of mining activities and the potential problems that might be encountered
because of bad weather, high waves, or strong currents, (3) determine if sand extraction at Sabine
and Heald Banks might alter wave refraction patterns and possibly exacerbate erosion of nearby
beaches, and (4) estimate the cost of mining and transporting the sand to nearby beaches.

ADDITIONAL INVESTIGATION OF SABINE AND HEALD BANKS
Sources of Data
Vibracores

In addition to the eight vibracores collected during the first phase of study, 24 vibracores
(Figure 1) were collected to determine the quality and suitability of the bank deposits for beach
replenishment or other construction uses. Coring sites were selected by analyzing and integrating
the bathymetric, seismic, and lithologic data that were available from the first phase of the project.
Core site criteria included anticipated thicknesses of the sand deposits, seismic characteristics of the
sand bodies and underlying reflections, water depth, potential variable mining characteristics
(presence or absence of hardgrounds), and any limitations imposed by the vibracoring equipment.

Vibracores were collected using standard aluminum irrigation tubes, which are 6 m long and
7.6 cm in diameter. Each tube is fitted with a brass core catcher and is attached to a pneumatic
vibrator head that is part of a rigid steel frame. The frame is lowered by cable to the seafloor where



it rests on four pads. Compressed air rapidly vibrates the head, which drives the core tube into the
unconsolidated sediments. A track on the frame guides the vibrator head and keeps the core tube
vertical as it penetrates the sediments and is recovered. After the core is retrieved, it is sealed and
marked for later processing. Geographic coordinates of the vibracores (Appendix A) were
provided by a dual-channel GPS navigation receiver.

Considering both phases of the investigation, a total of 25 vibracores were collected from
Sabine Bank and 7 vibracores were taken from Heald Bank (Figure 1). Penetration depths of the
vibracores were controlled primarily by sediment composition. Soft mud with only a few scattered
and broken shells allowed complete penetration of an entire 6 m core tube. In contrast, well-sorted
sand or shelly sand was the most difficult sediment to penetrate. Core tubes encountering these
sediments penetrated less than 2 m below the seafloor.

The vibracores were transported to the Core Research Center of the Bureau of Economic
Geology in Austin, Texas, where they were inventoried, split into equal halves, trimmed with an
osmotic knife, and physically described using standard core description sheets (Appendices B
and C). Information recorded on the sheets included core depth, sediment color, sediment type,
nature of contacts, textural trends, sedimentary structures, and presence of accessories (organic
material, shells). The cores were then photographed (large format color prints and 35 mm slides)
and sampled for textural and compositional analyses. The photographed half and sampled half of
the core were wrapped in plastic and placed in separate core boxes and are stored in a climate-
controlled room. The archived core half serves as a permanent record of the sediment types
encountered and the types of material sampled.

Sediment Textures

To assess textural characteristics of the sand deposits and their compatibility with native beach
sediments, 120 sediment samples from 32 vibracores were analyzed for gravel, sand, silt, and clay
content. Because shell dominates the gravel fraction, the two classifications (size and composition)
are used interchangeably in the discussion.

Textural analyses of the cores collected in 1994 were conducted at the Soils and Physical
Geography Laboratory at the University of Wisconsin, Milwaukee. A set of standard sieves were
used to analyze the sand and gravel fractions, and hydrometer techniques were used to analyze the
clay and silt fractions. Numerical and graphical results of the textural analyses are presented in
Appendix D.



Data Management

Data generated in conjunction with the sand assessment project are being manipulated and
stored in a geographic information system (ARC/INFO) so that archiving and future retrieval will
be facilitated. Most Federal and State agencies use a GIS to store locational information and to
create maps that superimpose several layers of information. The GIS component of this study
anticipates the need for a digital data base so that information can be readily transferred to other
users.

Major components of the sand assessment GIS include a digital base map with shoreline
features and bathymetry, locations of seismic lines and shotpoints, values for the thickness
between the seafloor and ravinement surface, locations of pipelines and platforms, and locations of
subsurface lithologic information including foundation borings, cores, and rotary borings, which
were compiled from several sources (unpublished data; Nelson and Bray, 1970; Thomas, 1990;
this study). Maps showing the locations of seismic profiles, offshore petroleum facilities, and
other subsurface data for the Sabine Bank Heald Bank area were presented by Morton and Gibeaut
(1993).

SAND RESOURCE ASSESSMENT OF SABINE AND HEALD BANKS
Bank Morphologies

Sabine Bank is delineated by the 10 m isobath. The Bank extends 50 km in a
northeast-southwest orientation and is about 7.5 km wide (Figure 1). A few small shoals detached
from Sabine Bank exist to the east but are not considered in this study. The shallowest portions of
Sabine Bank are on the eastern end between the spoil areas and west of the ship channel. This
shoal area is marked by the Sabine Bank lighthouse. Depths are as shallow as 4.5 m but deepen to
more than 9 m to the southwest.

The bathymetric map (Morton and Gibeaut, 1993) shows that the 10 m and 8 m isobaths are
smooth on the landward side of Sabine Bank relative to the seaward side, and on the eastern part of
the bank, the landward side is steeper than the seaward side. On the seaward side, however, the
10 m and especially the 8 m isobaths display a digitate configuration oriented southeast-northwest,
which is normal to the alignment of the long axis of the Bank. The 6 m isobath outlines small
shoals, which are aligned normal to the axis of the Bank, on top of the eastern half of the Bank.

On the Louisiana inner shelf, near the filled former incised valley of the Calcasieu River, the
eastern extension of Sabine Bank trends almost 90° to the main axis of sand body. This abrupt



change in orientation is easy to explain in terms of former shoreline deposits when sea level was
lower, but it is difficult to explain using only alongshelf currents and a depositional model that
requires complete subtidal deposition.

Heald Bank (Figure 1) is 27 km southwest of Sabine Bank and 55 km southeast of the
Entrance to Galveston Harbor. Heald Bank is not as well defined as Sabine Bank and has a
relatively small area that is shallower than 10 m. The 14-m isobath encloses a much larger area
extending 30 km to the southwest from the eastern shallow areas. The 10 m isobath encloses two
irregularly shaped areas with no particular orientation.

Scour Depths

To understand sand bank evolution and the history of the bank deposits, it is necessary to
distinguish between sedimentary features that are related to modern processes and bank reworking
as compared to paleo sedimentary features that originated when the banks first formed. Many of
the cores from Sabine and Heald Banks exhibit upward-fining textures in the upper few meters
(Appendices B, C, and D). The upward-fining patterns are characterized by distinct erosional
bases overlain by gravel-size clasts of whole and broken shell that grade into shelly sand and sand
with only minor amounts of finely broken shell. These cyclical textural patterns are interpreted as
shelf storm deposits and the products of modern shelf processes.

The depth to the base of scour depends partly on water depth (Figure 2) and partly on lithology
of the underlying sediments. Position on the bank surface (crest or margins) is less important than
water depth in controlling scour depth. Wave and current scour greater than 1.5 m is observed
where the upper part of the bank is composed of sand, and water depths are less than 10 m. These
relatively shallow water depths also coincide with the bank crest. Where water depths exceed 11 m

and the sediments are muddy, scour is minimized and essentially no storm deposits are preserved.
Primary Bank Lithofacies

Our initial study (Morton and Gibeaut, 1993) identified six lithofacies that characterize
sediments within and around Sabine and Heald Banks (Appendices B and C). The lithofacies,
which were identified from detailed descriptions of the vibracores, are fine sand (A), shelly sand
and gravel (B), slightly muddy sand (C), muddy sand (D), sandy mud (E), and organic clay (F).
Each lithofacies exhibits different sediment compositions, sediment textures, and preserved fauna.
Also each lithofacies occupies a predictable stratigraphic position within the vertical succession of
lithofacies. The superposition of lithofacies describes an overall upward-coarsening facies
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Bank.



architecture with progressively more sand and less mud from bottom to top. The attributes of each
lithofacies are described in detail by Morton and Gibeaut (1993).

Overview of Sand Quality

Sand quality of the banks was evaluated using two methods that differed in detail and scale of
the analysis. The large-scale method considered the relationship between sedimentary facies of the
banks determined from the core descriptions and sediment textures derived from the grain-size
analyses. Quantitative textural analyses (Appendix D) were performed on 120 samples taken from
the 32 vibracores obtained for this study. There is good correspondence between the textural data
and the qualitative facies descriptions (Morton and Gibeaut, 1993). This agreement provided a
mechanism for extrapolating the textural data to sections of the cores that lacked textural analyses.
However, qualitative (visual) estimates of shell content based on core descriptions do not agree
closely with quantitative measurements from sieve analyses. In fact, the visual estimates of shell
content are consistently higher than the actual measurements. This discrepancy did not interfere
with evaluations of sand quality. The second method of evaluating sand quality relied just on
textural analyses from the upper 2 m of core. This small-scale, more detailed evaluation of sand
quality considered the depth of dredging that would likely occur on the banks in order to optimize
sand content in the dredged material.

The fine sand, shelly sand and gravel, and slightly muddy sand facies (facies A, B, and C)
generally contain less than 15% mud and range in mean grain size from 0.75 ¢ to 2.98 ¢ (0.13 mm
to 0.59 mm). The fine sand and slightly muddy sand facies are moderately well to poorly sorted,
whereas the shelly sand and gravel is poorly to very poorly sorted. These are the coarsest facies in
the Sabine Bank area, and mean grain size within and between these facies is primarily a function
of the relative amounts of coarse shell material and mud.

The muddy sand and sandy mud facies (facies D and E) contain considerably more mud than
overlying facies. The muddy sand averages 23% mud and ranges from 14 to 34% mud, whereas
the sandy mud facies averages 48% mud and ranges from 24 to 71% mud. The mud fraction in
both facies is dominated by clay-size material. The average mean grain sizes of the muddy sand
and sandy mud are 4.29 ¢ (0.05 mm) and 5.70 ¢ (0.02 mm), respectively. Both facies are very
poorly sorted partly because the sediments are highly bioturbated.

The finest grained facies is the organic clay (facies F), which occurs at the bottom of the
sedimentary sequence. Four samples from different cores (3 Sabine Bank, 1 Heald Bank)
analyzed for this facies yielded very similar textural values with 91 to 95% mud.

The available compositional and textural data indicate that the sand deposits associated with
Sabine Bank and Heald Bank are compatible with the beach sediments of the southeastern Texas



coast (Morton et al., 1995). Beach replenishment using the fine sand, shelly sand, slightly muddy
sand, and muddy sand facies (facies A, B, C, and D) would require only moderate overfill ratios.
The sandy mud and organic clay facies (facies E and F), however, are not appropriate for beach

replenishment.
Overview of Sand Quantity

Revised estimates of sand volume in Sabine and Heald Banks used the three-dimensional
geometry of the sand deposits as determined by nearsurface lithology and bathymetry.
Nearsurface lithology, provided primarily by the vibracores, delineated the lateral extent of sand as
well as the thickness of sand and any overburden (Table 1). Bathymetry also was used to help
define the lateral extent of sand in those areas where core control was not available.

Both Sabine and Heald Banks are lenticular sand bodies that cover large areas (Figures 3-10).
Revised estimates of sand volume based on all vibracores indicate that together the banks contain
about 1.8 billion m3 of sand, shelly sand, and muddy sand. Within the overall trends of sand
deposits are elongate lenses where sand and muddy sand deposits more than 3 m thick are
concentrated (Table 1). These elongate lenses would be the optimum sites for sand extraction
because sand concentrations are relatively high. The distribution of sand associated with Heald
Bank is not well defined, and it does not coincide just with the bathymetric highs but extends far
beyond the small irregular shoals defined by the 10-m isobath (Morton and Gibeaut, 1993).

Sediments of Sabine Bank
Sand Quality

Most of the vibracores collected for this study, and consequently most of the textural analyses,
are from Sabine Bank (Figure 1, Appendix D). Examination of sediment textures in the upper 2 m
of core from Sabine Bank shows that sediments generally are composed of more than 91% sand.
Shallow shelf sediments containing low concentrations of sand (high concentrations of mud) are
located in relatively deep water and around the margins of the banks at sites such as vibracore
locations 5, 10, 11, 13, and 15 (Figure 1).

Locally high concentrations of shell found in vibracores 2, 7, 12, 14, 16, 20, 21, and 25 range
from 26 to 71% of the sediment sample. These sites of high shell concentration also generally
coincide with physical settings that are subjected to relatively high wave energy such as the crest or
seaward flank of Sabine Bank. The shelly sand facies in Sabine Bank probably consists of lenses
representing less than 12 percent of the total sand facies (Table 1); therefore, locally high shell
concentrations should not limit the use of the sand resource for beach nourishment.
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Table 1. Thickness of sand facies in each vibracore from Heald

Bank (HB) and Sabine Bank (SB).
Core Sand Shelly Sand | Muddy Sand Total
(m) (m) (m) (m)
SBV -1 1.6 0.3 0.8 2.7
SBV -2 1.3 1.4 0.0 2.7
SBV -3 1.6 0.2 0.3 2.1
SBV - 4 1.7 0.2 1.6 3.5
SBV -5 0.0 0.0 2.9 2.9
SBV - 6 1.7 0.3 2.6 4.6
SBV -7 0.7 0.3 3.4 4.4
SBV -8 0.9 0.2 3.4 4.5
SBV -9 0.0 0.0 0.0 0.0
SBV - 10 0.0 0.0 2.1 2.1
SBV - 11 0.3 0.0 1.4 1.7
SBV - 12 2.8 0.8 1.2 4.8
SBV - 13 0.3 0.0 3.2 3.5
SBV - 14 1.1 0.0 1.5 2.6
SBV - 15 0.3 0.0 0.8 1.1
SBV - 16 0.4 0.8 1.5 2.7
SBV - 17 3.4 1.1 0.0 4.5
SBV - 18 3.0 0.0 2.6 5.6
SBV - 19 1.3 0.0 1.1 2.4
SBV - 20 1.4 0.2 0.0 1.6
SBV - 21 0.0 0.4 0.3 0.7
SBV - 22 1.3 0.1 3.5 4.9
SBV - 23 0.5 0.5 4.8 5.8
SBV - 24 0.0 0.5 2.4 2.9
SBV - 25 0.6 0.3 4.1 5.0
HBV -1 1.5 1.3 0.0 2.8
HBV -2 1.5 0.1 0.6 2.2
HBV -3 2.2 0.0 1.8 4.0
HBV - 4 0.8 0.0 0.9 1.7
HBV -5 4.3 1.8 0.0 6.1
HBV - 6 3.1 0.2 0.0 3.3
HBV -7 1.5 0.3 0.6 2.4
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Sand Quantity

The total volume of sand, shelly sand, and muddy sand estimated for Sabine Bank in Texas is
about 1.2 billion m3. This estimate is based on an average sand-body length of 50 km, an average
sand-body width of 7.5 km, and an average sand thickness of 3.3 m. Of this total sand facies that
makes up Sabine Bank, about 562 million m3 is sand and shelly sand with an average thickness of
about 1.5 m (Table 1). '

Sediments of Heald Bank
Sand Quality

Textural analyses of sediment samples from Heald Bank (Appendix D) indicate uniformly good
sand quality. Nearly all samples from the upper 2 m of the Bank contain more than 95% sand.
Most sediment samples contain less than 5% shell, and only one sample contained 11% shell.
When the thicknesses of sand facies (Table 1) are used to estimate shell concentrations in the Bank
deposits, the shelly sand facies represents from 0 to 46% of the total sand facies in Heald Bank
sediments. However, most of the vibracores from Heald Bank contain less than 12% shelly sand
facies compared to the total sand facies. Considering that the shell material is generally dispersed
in Heald Bank and not in thick concentrations (Appendix E), the shell content should not limit the
use of the sand resource for beach nourishment.

Sand Quantity

The total volume of sand, shelly sand, and muddy sand estimated for Heald Bank is
approximately 585 million m3. This estimate is based on an average sand-body length of 13.5 km,
an average sand-body width of 13.5 km, and an average sand thickness of 3.2 m. Of this total
sand facies that makes up Heald Bank, more than 458 million m3 is sand and shelly sand with an
average thickness of about 2.5 m (Table 1).

WAVE REFRACTION ANALYSIS, SABINE AND HEALD BANKS
A preliminary analysis was conducted of potential wave transformation that might occur if large

volumes of sand were dredged from the crest of Sabine and Heald Banks. Results of these
analyses were compared with extant wave conditions to determine if wave energy would be
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significantly altered as a result of sand mining. Nine cases of wave refraction were considered
(Table 2). Each case evaluated the differences in wave height between existing water depths and
altered water depths over Sabine Bank. The first seven cases analyzed average conditions for
waves propagating from easterly to southwesterly directions, the eighth case analyzed average
conditions for all onshore waves, and the ninth case was a special case that considered storm

waves generated by Hurricane Alicia.
Model Parameters and Input

The wave refraction analysis was designed to address environmental concerns regarding
possible increased erosion of beaches adjacent to the proposed mining sites. To accomplish this,
the Regional Coastal Processes Wave (RCPWAVE) Propagation Model (Ebersole et al., 1986)
was applied to the region offshore of the southeastern Texas coast (Figures 11-23). This is the
same model that was used by Byrnes and Patnaik (1991) to investigate potential wave
transformation over Ship Shoal. The Waterways Experiment Station of the U.S. Army Corps of
Engineers developed RCPWAVE to predict natural and human-induced coastal change across an
extensive length of shoreline. RCPWAVE can predict linear, plane wave propagation over a
coastal region with varying bathymetry. The model does not include nonlinear effects, and wave
input is monochromatic. RCPWAVE was modified to run on a SUN 1000 workstation. It was
also modified to provide output suitable for input into the CPS-3 mapping and contouring program
(Schlumberger GeoQuest 1994) for graphical display of the results.

RCPWAVE is well suited to measure the effects that mining Sabine and Heald Banks may
have on wave patterns. Because these banks are up to 50 km offshore, a large area must be
considered in the wave model. This analysis includes the southeastern Texas coast between the
Calcasieu River (Louisiana) on the east and Matagorda Peninsula on the west. Using CPS-3
mapping software, we developed a rectilinear bathymetric grid covering this area that is 300 km in
the alongshore direction and 100 km in the offshore direction out to depths of 30 m. The grid is
not smoothed, and cells measure 500 m alongshore and 125 m normal to shore forming a grid with
600 by 800 cells.

Two types of data are required for the wave transformation analysis: wave climate and
bathymetry. Digital bathymetric data used to construct the grid were obtained from the National
Geophysical Data Center through the U.S. Geological Survey in St. Petersburg, Florida.
Bathymetry data were compiled from a combination of surveys dating from the 1930’s to the
1970’s. Care was taken to use the latest data available from the National Oceanographic and
Atmospheric Administration for a particular area.
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Table 2. Wave parameters used in model runs displayed in figures 1 through 9. Hs= significant wave
height, WIS= Wave Information Study. Frequency is percent occurrence of all waves approaching from
78.75 to0 236.25 degrees. '

Height [Period| True
Case| (m) (s) |direction | Frequency Comments

1 1.2 54 90.0 12.1% [Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 90 degrees; WIS station #12
2 1.1 5.6 112.5 17.4% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 112.5 degrees; WIS station
#12
3 1.2 6.1 135.0 35.5% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 135 degrees; WIS station
#12
4 1.4 6.1 157.5 23.5% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 157.5 degrees; WIS station
#12
5 1.2 5.7 | 1380.0 8.1% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 180.0 degrees; WIS station
#12
6 1.1 5.3 202.5 2.4% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 202.5 degrees; WIS station
#12
7 1.0 5.1 225.0 1.1% |Mean Hs and mean period for wave directions in a 22.5
degree arc centered around 225 degrees; WIS station
#12
8 1.2 5.8 131.0 N/A  |Mean Hs and mean period for wave directions between
33.75 and 259.75 degrees true; WIS station #12
9 2.0 8.5 135.0 N/A  |Estimated Hurricane Alicia conditions from CERC-84-
6 Tech. Rpt. Data from Shell Oil platform (Vermillion
22, 25 ft deep). Hs and period are measured but
directions are absent other than statement of
predominantly southeast waves, therefore used
southeast compass direction for model.
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Figure 17. Bathymetry and wave heights for case 7 wave conditions: height= 1.0 m; period= 5.1 s;
direction= 225°.
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Figure 18. Bathymetry and wave heights for case 8 wave conditions: height= 1.2 m; period= 5.8 s;
direction= 131°.
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Figure 19. Bathymetry and wave heights for case 9 wave conditions: height= 2.0 m; period= 8.5 s;
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Figure 20. Wave-height difference map for excavated and nonexcavated conditions for modal wave
conditions of case 3: height= 1.2 m; period= 6.1 s; direction= 135°. Lighter shades indicate where
higher wave heights are predicted for excavated condition relative to nonexcavated condition.
Darker shades indicate the opposite.
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Figure 22. Wave-height difference map for excavated and nonexcavated conditions for storm wave
conditions of case 9. Lighter shades indicate where higher wave heights are predicted for excavated
condition relative to nonexcavated condition. Darker shades indicate the opposite.
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To measure the effects of mining sand, we used a dredging scenario that would result in the
maximum effects on wave propagation. Excavated conditions were simulated by subtracting two
rectangular solids from the bathymetric grid, thereby increasing water depths. Each solid
measured 4,000 m in the alongshore direction, 1,000 m in the shore normal direction, and 2.5 m
deep. The hypothetical sand volume was removed from the shallowest portions of Sabine and
Heald Banks to simulate dredging of 10 million m3 from each bank. The model was run with
excavated and non-excavated conditions for comparison.

Wave parameters are from the Coastal Engineering Research Center’s Wave Information
Study for the Gulf of Mexico (Hubertz and Brooks, 1989). This data set is a hindcast of wave
conditions for coastal and offshore locations for the period from 1956 to 1975. Tropical storm and
hurricane conditions are excluded from the hindcast. Data from station number 12, located 70 km
offshore of Bolivar Peninsula and in 20 m water, was used in this study. Station 12 is about
20 km seaward of Heald and Sabine Banks. The Wave Information Study provides 20 years of
hindcast wave conditions computed every three hours and compiled in percent occurrence tables
for specified directions of wave propagation. For wave cases one through seven in this study, the
mean significant wave height (Hs) and period were used for each onshore wave direction interval
spanning an arc of 22.5° (Table 2). Case eight uses a mean Hs, period, and direction for all
onshore directions, and case nine estimates Hurricane Alicia conditions in 1983 based on data
presented in Garcia and Flor (1984).

Results of Wave Refraction Analysis

The influence of offshore shoals on wave refraction is readily apparent when contour maps of
wave height are viewed (Figures 11-19). Minimum water depths are 6 to 10 m over Heald and
Sabine Banks and related smaller shoals. Waves focus landward of the shoals causing zones of
relatively high and low wave heights along the shoreline (Figures 11-19). These zones of
constructive and destructive interference shift along the coast as wave directions change. For the
more common wave directions (Figures 12-16 and 18-19), the variance in alongshore wave
heights caused by the shoals only occurs east of Bolivar Roads. West of Bolivar Roads
(Galveston Island, Follets Island, and Matagorda Peninsula), wave heights are relatively constant
except for local variations caused by ebb-tidal deltas at Bolivar Roads and San Luis Pass and at the
Brazos River delta.

Cases 3 and 9 both have a wave direction of 135° but case 9 represents high long-period
waves associated with storm conditions (Figures 13 and 19). The variance in alongshore wave
height along Bolivar Peninsula is about 1.0 m for hurricane conditions or 50% of the initial wave
height of 2 m. Wave heights for case 3, on the other hand, range about 0.3 m, or 25% of the
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initial wave height of 1.2 m. Wave-height zones are also shifted about 4 km to the east for long-
period hurricane conditions compared with nonstorm conditions.

Cases 3 and 9 were run with the bathymetric grid reflecting post-extraction conditions as
described above. For each case, a wave-height difference map was created by subtracting wave
heights computed for the excavated condition from the wave heights computed for the non-
excavated condition. Figure 20 shows the wave-height difference grid for the modal wave
condition of case 3. The simulated dredging caused wave heights to change less than 3 cm
landward of the Heald Bank dredge site and less than 10 cm landward of the Sabine Bank site in
the direction of initial wave propagation. Wave heights are lower in the landward “shadow” of the
excavated sites, but higher on each end. Wave heights along the landward 4-m isobath were also
plotted, and excavated versus nonexcavated scenarios compared (Figure 21). For case 3, the only
measurable change at the 4-m isobath is produced by dredging Sabine Bank, which predicts
lowering of wave heights by 5 cm just southwest of Sabine Pass.

The storm condition of case 9 was also run with and without excavated bathymetry; Figure 22
is the wave-height difference map for the two scenarios. Changes in wave heights caused by
dredging are less than 10 cm at Heald Bank and less than 20 cm at Sabine Bank. The pattern of
change in the lee of each bank is the same as described for case 3. For case 9, the greatest
predicted change at the 4-m isobath is produced by dredging Sabine Bank. The model predicts
lowering of wave heights by 10 cm just west of Sabine Pass (Figure 23). Similarly, the model
predicts that dredging Heald Bank will cause a lowering of wave heights by less than 5 cm
northeast of Bolivar roads.

Implications of Results

As waves propagate across the shallowest portions of Sabine and Heald Banks, they converge
and wave heights increase landward of shoals. This wave-focusing effect of the offshore shoals
causes variation in the distribution of wave heights arriving at the shoreline east of Bolivar Roads.
These offshore shoals, therefore, are expected to have a significant effect on shoreline change.
West of Bolivar Roads, variation of alongshore wave heights is caused by the more local effects of
wave refraction around tidal inlets and river deltas, which would not be influenced by dredging at
Heald or Sabine Banks.

Dredging the crests of Heald and Sabine Banks probably would decrease their wave-focusing
effect only slightly. The wave propagation model predicts that during average wave conditions,
wave heights will be lowered by less than 10 cm in the lee of the banks and by less than 5 cm at the
4-m isobath. During storm conditions, lowering of wave heights probably would be less than
20 cm in the lee of Sabine Bank and less than 10 cm at the 4-m isobath. The borrow scenario used
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in this analysis is for a volume of sand that is approximately 10 times the amount used in a typical
beach nourishment project. If Sabine and Heald Banks become offshore mining sites, it is
conceivable that this volume could be dredged over several years because of the initial needs of
several projects and continued maintenance nourishment. Based on the wave refraction analysis,
the effects of dredging Heald Bank on wave propagation and coastal sedimentation are negligible.
The effect of dredging Sabine Bank is greater, but also small, and is not expected to alter
sedimentation patterns away from the dredge site.

POTENTIAL WEATHER-RELATED DREDGING RESTRICTIONS

Successful offshore mining operations depend on understanding the physical processes in the
Gulf of Mexico near the Banks and the potential influence of those processes on sand extraction
operations. The preliminary work by Morton and Gibeaut (1993) only reported average conditions
for waves and tides. Those statistical averages provide some limited information about wave
heights and periods, but they are inadequate with regard to planning a sand extraction operation.
More important than averages are the distributions of wave heights, wave periods, wave
directions, current speeds, and current directions as well as the seasonality of all these processes.
An analysis of inner shelf processes was conducted to determine if dredging equipment would be
able to operate uninterrupted throughout the year or if mining operations would be suspended
during certain months when wave energy is greatest. This analysis indicates how the mining
operations might be effected by weather patterns and meteorological factors (wind, barometric
pressure, rain, and fog) and how the offshore physical oceanographic conditions are linked to the
meteorological forces. Another possible application of the physical processes analysis has to do
with predicting the direction and distance that suspended sediment will be transported away from
the mining site. Movement and dispersion of the suspended sediment plume will depend on the
sea state and shelf currents at the time of dredging.

The results of this task provide a better understanding of offshore mining conditions and the
annual cycle of environmental energy that would be encountered in the western Gulf of Mexico. It
also provides a basis for determining the annual durations of mining, which are needed for the
economic analysis.

The physical processes task was accomplished by examining historical records of tides, waves,
and weather patterns. A primary objective of this task is developing a summary of seasonal
characteristics of the critical offshore parameters including wind directions, wind speeds, wave
directions, wave heights, and identifying unusual circumstances (water spouts, hurricanes) that
might disrupt mining activities. Because offshore weather data are sparse or difficult to obtain
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(proprietary data), we used available National Weather Service records either from nearby coastal
sites such as Port Arthur and Galveston or offshore monitoring buoys.

Oceanographic records for coastal tide gauges and wave gauges or hindcast wave data were
ordered from the National Ocean Survey and the Corps of Engineers and examined. Principal
investigators for the MMS-funded Louisiana-Texas Shelf Circulation program (LATEX) were
contacted to see if any of their monitoring stations and data sets would be suitable for our analysis
of oceanographic conditions near Sabine and Heald Banks. Each data set was analyzed
independently using time-series methods that reveal trends in the data such as seasonal variability
and yearly maximums. The data sets were also examined to see if they cover the same time
periods. Because the data sets coincide temporally, additional statistical analyses were performed
to investigate the relationships among the measured variables. The results of this work could be
used to determine the optimal periods of mining and the duration of uninterrupted mining activities.
This type of mining restriction analysis is needed before an economic analysis of the operation can
be conducted.

A practical approach to understanding offshore mining conditions was also included in this
task. We contacted marine operators working in the Gulf of Mexico to determine what conditions
currently alter or interrupt offshore activities such as dredging, laying pipelines, or towing barges.
We also discussed with dredging companies the potential mining problems associated with
changing weather while working in the Gulf of Mexico.

Wind and Wave Analysis

Wind and wave data from several sources in the vicinity of Heald and Sabine Banks (Table 3)
were analyzed to describe the likely sea conditions that a dredging operation would encounter.
Both measured and hindcast data are presented. The hindcast data are from the Wave Information
Study (WIS) conducted by the U.S. Army Corps of Engineers (Hubertz and Brooks, 1989). For
the hindcast, a wind field is computed from an atmospheric pressure field and merged with
observed wind data (Resio et al., 1982). A discrete spectral model then uses the merged wind field
to determine the generation of waves (Resio, 1982). The results of the hindcast are time series of
directional wind and wave data for discrete locations, including a location near Heald Bank
presented in this study (Figure 24).

Measured wind and wave data are available from moored buoys and coastal stations operated
by the National Data Buoy Center (NDBC) of the National Oceanographic and Atmospheric
Administration (NOAA). Coastal stations are referred to as Coastal-Marine Automated Network
(CMAN) stations. A CMAN station west of Sabine Pass at Sea Rim State Park provided
directional wind data for this report (Figure 24). A moored sea buoy offshore of Galveston Island
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Table 3. Selected sources of wind and wave data in the Sabine and Heald Banks area.

Identification Description Latitude/Longitude Data Period
42035 moored buoy, 29 14’ 47"N/ hourly directional | 5/93 to
National Data 94 24’ 35”W winds and present
Buoy Center 30 km ESE of Bolivar nondirectional
(NDBC) Roads, 25 km NW of waves
Heald Bank
SRST2 Coastal-Marine 2940’ 12N/ hourly directional | 1985 to
Automated 94 03° 00"W winds present
Network (CMAN) | Sea Rim State Park on
station, NDBC coast 20 km W of Sabine
Pass, 35 km landward of
Sabine Bank
41-4300 or National Weather 29 58N/ less than hourly before
996830 Service first order | 95 21'W directional wind 1983 to
weather station Houston Intercontinental present
Airport, 100 km inland
WIS-11 Wave Information | 29 00’ 00”N/ 3 hourly 1956 to
Study (WIS) 94 30’ 00”"W directional winds | 1975
hindcast data, U.S. | 35 km SW of Heald and waves
Army Corps of Bank
Engineers
WIS-12 Wave Information | 29 00’ 00”N/ 3 hourly 1956 to
Study (WIS) 94 00’ 00”W directional winds | 1975
hindcast data, U.S. | 20 km SE and seaward of | and waves
Army Corps of Heald Bank
Engineers
WIS-13 Wave Information | 29 30’ 00”N/ 3 hourly 1956 to
Study (WIS) 9330’ 00”"W directional winds | 1975
hindcast data, U.S. | 25 km E of Sabine Bank | and waves
Army Corps of
Engineers
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Figure 24. Map showing locations of wind and wave recording and hindcast stations in the
vicinity of Heald and Sabine Banks.
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provided directional wind and nondirectional wave data. In addition, wind data from the National
Weather Service’s station at the Houston Intercontinental Airport provided directional wind data
(Figure 24).

Waves

The longest time series of wave data in the area is the hindcast data. These directional data are
computed at three hourly intervals for the 20-year period from 1956 to 1975. Tropical cyclones are
excluded from the hindcast. Figure 25 is a reproduction of the summary percent occurrence table
and wave rose diagram for WIS station 12 as they appear in the WIS report number 18 (Hubertz
and Brooks, 1989). Station 12 is located 20 km southeast and seaward of Heald Bank in 20-m
water depth.

Hindcast data indicate that nearly half of the time waves come from the southeast and that the
most common significant wave height (Hs, average height of the upper one-third highest waves) is
between 1.00 m and 1.49 m, which occurs 45% of the time. The most common peak wave period
(Tp) is between 5.4 and 6.5 s which occurs 28% of the time. The overall mean Hs is 1.2 m and
the mean Tp is 5.8 s. The monthly mean Hs as computed over the 20-year period varies from
0.9 m in July and August to 1.4 m in December, January, February, March, and April.

Table 4 is a cumulative percent table of Hs and may be used to approximate weather delays for
dredging operations caused by high waves. This table indicates the fraction of time that waves
were equal to or less than a particular Hs for all wave directions. When considering all the data for
the 20-year period, waves with heights of 1.5 m or less occurred 80% of the time. Table 4 also
presents cumulative data for each month. January is the stormiest morth with wave heights of
1.5 m or less occurring 66% of the time, whereas July and August are the calmest months with
wave heights of 1.5 m or less occurring 98% of the time. The Hs of 1.5 m is used in this
discussion because most dredging operations are delayed or hindered when waves exceed this
height. Table 4, however, may be used to approximate dredging delays for a variety of wave
heights. It is important to note that Hs is spectral, and for conditions when there is a large
variation in wave height, some waves may be considerably higher than the stated Hs. In addition,
the wave refraction analysis in this report shows that waves tend to be higher on and in the lee of
the crests of the banks. And finally, the hindcast data exclude tropical storms and hurricanes, and
even though August, September, and October are relatively low-Hs months, the chances for a
major storm are greater then than at other times of the year.

Two years of nondirectional wave data from May 1993 through April 1995 were collected by
NDBC buoy mooring number 42035 located in 15-m water depth 25 km northwest of Heald Bank
and 45 km northwest and landward of WIS station number 12. These data are hourly and nearly
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Figure 25. Wave rose diagram and percent occurrence of wave height and period for WIS
hindcast station 12, from Hubertz and Brooks (1989).
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Table 4. Cumulative percent of significant wave heights for WIS station 12 (20 years hindcast data: 1956 to 1975).
Percent values are percent of time with significant wave heights (Hs) less than or equal to the height given in column one.

All Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Hs(m) cum.% cum.% cum.% cum.% cum.% cum.% cmm% cum.% cum.% cum.% cum.% cum % cum. %
0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0} 0.0
0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0) 0.0
0.3 0.1 0.1 0.0 0.0 0.0 0.8 0.1 0.0 0.1 0.0) 0.0 0.0 0.1
0.4 15 0.3 0.4 04 0.5 2.8 3.5 4.7 3.1 1.1 0.8 0.5 04
0.5 44 1.2 1.0 0.9 1.5 5.6 8.5 14.1 9.8 4.6 2.6 1.5 1.1
0.6 79 2.6 2.5 2.0 2.5 9.7 14.2 23.0 174 9.6 52 3.3 2.2
0.7 124 4.6 5.0 44 45 14.2 20.5 32.7 27.8 15.5 8.7 55 42
0.8 18.8 8.1 8.9 82 8.0 204 29.3 44.7 39.6 24.6 15.4] 9.3 7.8
0.9 28.9 13.5 15.6 14.8 139 29.7 432 63.4 56.6 37.9 26.7 16.1 14.5
1.0 40.1 220 23.2 23.5 213 39.9 56.2 78.2 719 51.5 41.2 26.3 24.1
1.1 50.6 31.5 324 336 30.5 50.5 67.5 874 82.8 63.6) 54.6 37.1 34.6
1.2 59.6 41.1 427 440 39.6 59.3 76.0 924 90.1 73.0 64.4] 46.5 443
1.3 67.4 499 520 54.0 49.5 67.6 82.2 95.8 94.0 80.1 72.7 55.8 53.8
14 742 58.3 60.9 63.4 59.0 74.8 86.7 97.7 96.2 85.9 79.8 64.2 62.8
1.5 79.7 66.1 69.1 71.0 67.5 80.1 89.5 98.4 97.8 89.5 85.4 714 70.1
1.6 84.8 734 76.4 7.7 754 85.7 92.6| 99.1 98.9 92.2) 90.0 79.3 76.6
1.7 88.3 79.1 81.5 823 81.1 89.3 94.3 99.5 99.3 94.2] 92.8 84.4 81.6
1.8 91.5 84.1 86.3 86.8 86.0 92.5 95.9 99.8 99.6 95.9 95.3 89.3 85.9
1.9 934 87.6 89.8 89.7 884 942 . 96.7 99.9 99.7 97.0 96.7 92.3 89.0
2.0 952 90.9 92.5 924 90.8 96.1 97.3 99.9 99.8 97.9 98.0 94.8 919
2.1 96.6 93.8 94.8 944 93.1 974 979 100.0 99.9 98.5 98.8 96.3 94.2
2.2 973 95.2 95.9] 95.5 94.3 98.1 98.3 100.0 100.0 98.9 99.2 97.1 95.2
2.3 98.0 96.9 97.2 96.5 95.5 98.7 98.7 100.0 100.0 99.0) 99.4] 98.0) 96.4
24 98.5 979 98.1 97.3 96.3 99.0 98.8 100.0 100.0 99.2) 99.6| 98.8 97.2
2.5 98.9 98.6 98.6) 98.1 97.0 99.3 99.1 100.0 100.0 99.3 99.8 99.2] 97.9
2.6 99.1 99.0 98.9 98.5 975 99.5 99.3 100.0 100.0 99.4 99.9 99.4 98.4
2.7 994 99.3 99.2] 98.8 98.1 99.7 996 100.0 100.0 99.5 99.9 99.6| 98.8
2.8 99.5 99.4 994 99.1 98.5 99.7 99.8 100.0 100.0] - 99.5 100.0 99.7 99.1
2.9 99.7 99.6 99.6 994 98.8 99.8 99.9] 100.0 100.0 99,5 100.0 99.9 99.4
3.0 99.7 99.7 99.7 994 99.2 99.9 100. "100.0 100.0 99.5 100.0 99.9 99.6




continuous over the 2 years. The average Hs measured for the 2 years was 0.91 m, and the
average period was 5.6 s. Table 5 is a camulative percent table of Hs in the same format as
Table 4 discussed above. When considering all the data for the 2-year period, waves with heights
of 1.5 m or less occurred 92% of the time. January was the stormiest month with wave heights of
1.5 m or less occurring 85% of the time, whereas July and August are the calmest months with
wave heights of 1.5 m or less occurring nearly 100% of the time.

Figure 26 is a plot of the cumulative wave heights computed from buoy and hindcast data.
The buoy data measured the Hs lower than the hindcast data, and there are three possible causes
for this: (1) average wave heights were lower from 1993 to 1995 than from 1956 to 1975; (2) the
hindcast routine is biased toward higher wave heights; and (3) waves at the hindcast location tend
to be higher than those at the buoy location. The WIS hindcast station number 11 is 48 km to the
west of station 12 and has an average Hs of 1.1 m, which is 0.1 m lower than at station 12. WIS
station 11 is closer to shore than station 12 and 20 km closer to the buoy than station 12. The buoy
location is also closer to shore than station 12. Spatial variability, therefore, can explain part but
probably not all of the difference in Hs. Average wave periods between the two data sets agree
well.

Winds

Wind rose diagrams and tables of wind speed summaries are presented in Figures 27 through
30. Winds hindcast at WIS station 12 (Figure 27) and measured at NDBC buoy mooring 42035
(Figure 28) show the prevailing winds to be from the southeast. The hindcast shows winds with
speeds greater than 10 kts occurring 80% of the time, but for the 2 years of buoy data, winds
exceeded 10 kts only 51% of the time. The same possible reasons for the discrepancies in wave
height between the hindcast and buoy data sets discussed above apply to wind speed. Six years of
hourly data from the coastal CMAN station at Sea Rim State Park (Figure 29) show a more
southerly component to the winds and calmer conditions than at the offshore sites. At the coast,
wind speeds exceeded 10 kts only 37% of the time. Houston Intercontinental Airport is 100 km
from the coast, and wind speeds for the same 6-year period (1985 to 1991) as the CMAN time
series are lower with speeds exceeding 10 kts only 15% of the time (Figure 30). The directional
distribution of winds at the Houston airport is also more even than at the coastal and offshore sites.

Winds out of the northwest, north, and northeast occur less frequently than from other
directions, but they tend to be strong. These strong northerly winds are associated with the
passage of winter cold fronts. Because northerly winds generally blow offshore, they do not
generate large waves nearshore, and thus their potential effect on dredging operations is not
represented in the wave data. Based on the hindcast and buoy data, northerly winds that exceed
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Table 5. Cumulative percent of significant wave heights for NOAA buoy #42035 (May 1993 through April 1995).
Percent values are percent of time with significant wave heights (Hs) less than or equal to the height given in column one.

Hs (m)
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
09
1.0
1.1
12
13
14
1.5
1.6
1.7
1.8
19
2.0
2.1
22
23
24
25
26
2.7
2.8
29

3.0

All Data
cum. %
0.3
2.8
73
14.7
22.1
314
40.8
50.1
59.0
67.5
75.1
816
86.1
89.6
92.5
94.6
96.1
97.1
98.0
98.6
98.9
99.3
99.5
99.6
99.8
99.9
99.9
99.9
99.9
100.0

Jan
cum. %

23
6.0
8.9
14.5
21.2
26.2
319
38.5
46.0
539
60.9
68.1
75.0
80.5
84.7
87.6
90.2
92.9
94.9
96.8
98.0
98.6
98.9
99.1
99.4
99.7
99.9
100.0
100.0
100.0

Feb
cum. %

0.2
3.8
10.9
18.8
25.8
33.7
40.6
51.5
62.9
73.7
822
88.9
92.6
94.9
96.2
97.8
99.2
99.5
99.9
99.9
99.9
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

Mar
cum. %

03
54
9.6
19.8
24.9
329
41.7
48.7
57.0
63.9
71.0
711
81.2
85.7
89.5
9.7
94 .4
95.9
974
98.7
99.0
99.5
99.7
99.9
100.0
100.0
100.0
100.0
100.0
100.0

Apr
cum. %

0.0
0.0
29
7.9
14.7
24.6
33.5
427
510
644
74.1
79.6
83.9
88.5
91.6
93.9
95.6
96.7
98.2
98.6
99.4
99.7
99.8
99.9
99.9
99.9
100.0
100.0
100.0

100.0

May
cum. %

0.0
1.0
41
14.8
24.0
34.7
494
60.5
68.4
76.1
822
88.9
93.2
95.0
97.1
97.9
98.6
98.9
994
99.7
99.9
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

100.0

Jun
cum. %

0.0

13

5.7
10.5
14.7
229
29.8
39.2
49.0
56.7
68.0
76.3
82.8
86.7
90.4
93.1
95.1
96.5
97.1
97.5
978
98.3
98.4
98.5
98.7
99.1
99.2
99.2
994

99.5

Jul
cum. %
0.0
0.0
0.9
52
115
239
38.1
515
634
73.5
81.2
88.9
93.1
95.9
96.9
98.6
999
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

Aug
cum. %

0.0
25
7.5
21.2
383
56.5
68.8
744
80.8
86.9
92.3
96.3
98.6
99.2
99.7
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0

Sep
cum. %

04
6.7
20.1
31.7
404
476
56.6
66.5
769
833
87.1
89.6
92.8
95.1
96.2
96.8
97.1
97.5
97.7
97.8
98.0
98.3
98.7
99.1
994
99.5
99.6
99.8
99.9
100.0

Oct
cum. %

0.1
19
52
13.5
218
30.2
39.0
512
58.8
65.4
71.7
76.6
80.0
84.1
89.3
924
94.9
96.2
978
98.6
98.9
994
99.7
99.8
100.0
100.0
100.0
100.0
100.0
100.0

Nov
cum. %

0.0
13
2.6
43
8.7
19.5
30.2
374
49
54.3
63.1
722
78.0
82.8
874
91.1
934
954
96.8
97.7
98.3
99.1
99.5
99.7
99.9
100.0
100.0
100.0
100.0
100.0

Dec
cum. %

0.3
2.7
8.0
13.7
20.5
29.0,
37.7
46.8
56.9
66.4
75.5
83.9
88.8
92.5
95.3
96.7
974
97.6
98.0
98.4
98.4
98.9
994
99.5
99.9
100.0
100.0
100.0
100.0
100.0
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Figure 26. Cumulative percent occurrence for significant wave heights at buoy mooring
42035 and WIS hindcast station number 12. Buoy data cover the 2-year period from May
1993 through April 1995. Hindcast data cover the 20-year period from 1956 to 1975.
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WIS Hindcast Station 12
Winds from January 1956 through December 1975

‘I‘ N CUMULATIVE WIND SPEED SUMMARY (PERCENT)
MAGNITUDE 1 2 3 4 5 TOTAL
NORTH 1.0 6.5 18 00 00 9.3
NORTHEAST 19 108 15 00 00 141
EAST 39 109 a 00 00 148
SOUTHEAST 53 233 4 00 00 290
SOUTH 35 172 8 00 00 215
SOUTHWEST 22 22 00 00 00 a5
WEST 14 13 00 00 00 27
NORTHWEST 1.0 27 4 00 00 41
TOTAL 201 749 5.0 00 00
WINDS 100.0
CALM 0.0
TOTAL 100.0

10 20 30 40 50 60 70 80 90 100
WIND SPEED SUMMARY

O=|:|:|:|:| MAGNITUDE:CALM - S = 0 : 1 - 0<S<=10 : 2 - 10<S<=21 :
(S=KNOTS) 3 -21<S<=33 : 4 - 33<S<=47 : 5 - $>47

CALM 1 2 3 4 5

Figure 27. Wind rose diagram and wind speed summary for WIS hindcast station number
12.
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Buoy #42035
Winds from May 1993 through April 1995

N CUMULATIVE WIND SPEED SUMMARY (PERCENT)
MAGNITUDE 1 2 3 4 5 TOTAL
NORTH 3.3 7.6 1.4 0.0 0.0 12.3
NORTHEAST 53 8.0 3 0.0 0.0 13.6
EAST 9.3 8.3 2 0.0 0.0 17.8
SOUTHEAST 124 10.4 2 0.0 0.0 231
SOUTH 10.0 8.2 A 0.0 0.0 18.3
SOUTHWEST 3.9 22 0.0 0.0 0.0 6.1
WEST 1.8 8 0.0 0.0 0.0 26
NORTHWEST 23 25 8 0.0 0.0 5.6
TOTAL 48.3 48.1 3.2 0.0 0.0
WINDS 99.5
CALM .5
TOTAL 100.0
—1]
[} 10 20 30 40 50 60 70 80 90 100

WIND SPEED SUMMARY

O==

CALM 1 2 3 4 5

MAGNITUDE:CALM - S =0 : 1 - 0<S<=10 : 2 - 10<S<=21 :
(S=KNOTS) 3-21<S<=33:4 - 33<S<=47 : 5 - S>47

Figure 28. Wind rose diagram and wind speed summary for buoy mooring number 42035.
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Sea Rim State Park, CMAN Station SRST2
Winds from January 1985 through December 1991

*N CUMULATIVE WIND SPEED SUMMARY (PERCENT)
MAGNITUDE 1 2 3 4 5 TOTAL
NORTH 9.0 36 a 0.0 0.0 127
NORTHEAST 9.6 23 0.0 0.0 0.0 12,0
EAST 54 3.9 A 0.0 0.0 9.5
SOUTHEAST 10.0 9.8 5 0.0 0.0 20.3
SOUTH 133 10.5 3 0.0 0.0 24.1
SOUTHWEST 4.5 36 A1 0.0 0.0 8.1
WEST 3.6 4 0.0 0.0 0.0 4.0
NORTHWEST 6.6 16 0.0 0.0 0.0 83
TOTAL 62.1 35.7 11 0.0 0.0
WINDS 99.0
CALM 10
TOTAL 100.0
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WIND SPEED SUMMARY
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Figure 29. Wind rose diagram and wind speed summary for CMAN station SRST2 at Sea
Rim State Park.
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Houston Intercontinental Airport

Winds from January 1985 through December 1991

*N CUMULATIVE WIND SPEED SUMMARY (PERCENT)
MAGNITUDE 1 2 3 4 5
NORTH 123 25 0.0 0.0 0.0
NORTHEAST 9.5 .8 0.0 0.0 0.0
EAST 13 17 0.0 0.0 0.0
SOUTHEAST 14.0 4.3 0.0 0.0 0.0
SOUTH 125 3.6 0.0 0.0 0.0
SOUTHWEST 5.1 9 0.0 0.0 0.0
WEST 4.3 6 0.0 0.0 0.0
NORTHWEST 58 1.6 0.0 0.0 0.0
TOTAL 74.9 16.1 A1 0.0 0.0
WINDS 91.0
CALM 9.0
TOTAL 100.0

0 10 20 30 40 50 60 70 80 90 100
WIND SPEED SUMMARY

O=—=O

CALM 1 2 3 4 5

MAGNITUDE:CALM - S =0 : 1 - 0<S<=10 : 2 - 10<S<=21 :
(S=KNOTS) 3 -21<S<=33:4 - 33<S<=47 : 5 - S>47

TOTAL

14.8
10.3
13.0
18.4
16.2
59
4.9
7.4

Figure 30. Wind rose diagram and wind speed summary for the Houston Intercontinental

Airport.
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10 kts occur about 23% of the time, and northerly winds that exceed 20 kts occur about 3% of the
time in the vicinity of Sabine and Heald Banks. Strong northerly winds occur less frequently near
the shoreline as shown by the CMAN data from Sea Rim State Park.

First Quarter 1995 Weather Conditions

Approximately 535,500 m3 of sand were dredged from a site 1.5 km offshore of East Beach
on the eastern end of Galveston Island Texas from January through April 1995. Table 6 presents
cumulative Hs data for this time period recorded by NDBC buoy mooring 42035. The buoy wave
data are nondirectional; however, the wave periods, which averaged 5.6 s during this time, indicate
that the waves were locally generated and that wind direction recorded by the buoy may be used to
infer wave direction. Onshore-directed waves had an average Hs of 0.96 m and average period of
5.8 s for the 4-month period. Because the dredge site was nearshore, the cumulative wave-height
data in Table 6 were computed by assigning a wave height of 0.0 m during times of offshore
directed winds. Table 6 shows that about 95% of the time waves were either directed offshore or
were equal to or less than 1.5 m high.

The buoy position is 30 km east-southeast of the dredge site in 15 m of water, and the borrow
site is in 6 m of water. Qualitative inspection of wave refraction maps presented in this report
indicates that, for the common wave directions, wave heights are expected to be 0.2 to 0.3 m
higher at the dredge site than at the buoy site. Therefore, the Hs values should be conservatively
revised up by 0.3 m. After this revision, we estimate that the Hs at the borrow site was less than
or equal to 1.5 m about 85% of the time during the dredging operation.

ESTIMATED COSTS OF DREDGING

Before leasing of offshore sand resources in the western Gulf commences, an economic
analysis of offshore mining will need to be conducted. An economic analysis of offshore sand
extraction has not been conducted for the Sabine-Heald Bank trend for several reasons. First, the
physical and environmental issues regarding quality of the sand resource and possible
environmental impacts need to be resolved before an economic analysis is conducted. Second,
economic analyses are ephemeral because of the transient nature of supply and demand as well as
externalities that determine economic climate. An economic analysis would need to be conducted
before the near-term leasing phase is achieved but after specific mining objectives have been
determined. A third reason why an economic analysis of Sabine and Heald Banks has been
postponed is that an economic analysis of mining sand in the Gulf of Mexico at Ship Shoal was
favorable (Kelly and Crawford, 1991). Furthermore, mining of sand off the Atlantic coast and

54



Table 6. Cumulative percent of inshore significant wave heights (Hs) inferred from
NOAA buoy #42035. Period is January 1995 through April 1995. Percent values are
percent of time with Hs less than or equal to the height given in column one. During
times of offshore winds, Hs was assigned to 0 to infer inshore conditions.

Hs (m){cum. % Hs (m)|cum. %
0.1 38.2 1. 96.1
0.2] 404 1.7 97.1
0.3 42.1 1.8 97.8
0.4  46.0 1.9 988
0.5] 50.6 200 99.2
0. 53.7 2.1  99.5
0.7] 573 220 99.6
0.8 62.1 23 99.8
0.9 68.1 2.4  99.8
1.0 74.5 2.5 99.9
1.1  80.7 2.6 999
1.2]  84.9 2.71 100.0
1.3 884 2.8 100.0
1.4~ 920 2.9 100.0
1.5 94.6 3.0 100.0
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along the west coast of Florida for beach replenishment is currently economical, and the economics
of offshore sand mining in the Gulf of Mexico should improve as demand increases. In the first
quarter of 1995, sand for beach replenishment at Galveston, Texas, was mined from the Gulf of
Mexico.

A preliminary summary of costs associated with extracting and delivering offshore sand for
beach replenishment was prepared for areas where erosion is critical, such as at Galveston and
along the southeastern Texas coast (Jefferson County). This aspect of the economic analysis
focused on the estimated costs of mining sand resources associated with Sabine and Heald Banks.
This information is needed to assess the potential of near-term leasing of hard minerals in the
Federal waters of offshore Texas. The cost analysis considered parameters used in simulation
models, but did not involve actual model runs.

Local geological and engineering data (water depths, sand thickness, areal extent, percent sand,
haul distances, dredge methods, fill requirements) were compiled from prior work and the results
presented by Byrnes and Groat (1991), Morton and Gibeaut (1993), Morton (1994), Kraus et al.
(1995), and Morton et al. (1995). The results of this task provide a basis for comparing the
relative economic differences between mining sites and extraction technologies even if the cost
estimates are not highly accurate.

Galveston Beach Nourishment Project

The first large-scale nourishment of a Gulf beach in Texas was completed during the spring of
1995 on a 6.4-km stretch of Galveston Island extending from 10th Street to 61st Street. The
project, which was funded by the City of Galveston, was designed to restore the recreational beach
along the seawall where the density of commercial development is highest.

Sand for the nourishment project came from the shoreface off East Beach, which is
immediately east of the beach fill area. The mining site was 1.5 t0 2.0 km offshore and in 5 to 6 m
of water (Table 7). Significant wave heights at the borrow site are about 1.2 m. Textural analyses
from the borrow area indicate that the mined sediments were 95% sand and the average grain size
was fine to very fine sand, which is slightly finer than the native beach sand (Morton et al., 1995).

A hydraulic cutterhead dredge excavated 535,500 m3 in four months, and the most significant
mining delays were due to inclement weather. In December 1994, the dredge was only able to
operate 40% of the time because high waves in the Gulf either caused or threatened separation of
the pipeline connections. During rough weather, the dredge left the borrow site and moved to
protected water in Galveston Bay.

Large-diameter (1 m) pipes and pumps were used to transport the sand onshore from the
dredge. Additional pipe was laid along the beach, and pumps were added to transfer the sand in a
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| Table 7. Completed, proposed, and potential beach fill projects utilizing sand deposits from the Gulf of Mexico.

Parameter Galvestond South Padre Island® | Ship Shoal® Sabine Bankd Heald Bankd
Sand Source Shoreface Channel Maintenance | Offshore Shoal Offshore Shoal Offshore Shoal
Offshore Distance 2km 3 km 15-30 km 30-35 km 50-60 km
Water Depths 5-6 m 12m 3-7Tm 8-12 m 10-16 m
Signif. Wave Height | 1.2 m <1 m (between jetties) | 1.4 m 1.2 m 1.2m

Areal Extent of Sand | 3.4 km?2 1 km? (along channel) | 250 km2 450 km2 100 km2
Percent Sand 95% 75-90% 75-90% 85-100% 80-100%

Fill Requirement 535,500 m3 417,000 m3 764,000 m3 1,000,000 m3 1,000,000 m3
Pumping Distances | 3-17 km 9-11 km 2-15km 3-15 km 3-15km
Dredge Method Cutterhead Pipeline Hopper Hopper Hopper

Est. Dredging Costs | $7.65/m3 $3.62/m3 $8.14-16.35/m3 $10-18/m3 $10-18/m3

a Source Morton et al. (1995)
b Source Kraus et al. (1995) and Galveston District, Corps of Engineers
¢ Source Byrnes and Groat (1991)

d Source This Report




slurry to the diffuser where the sand was deposited from the slurry. Pumping distances ranged
from 3 to 17 km depending on proximity of the beach fill to the borrow site. According to the
consulting engineering firm on the project, dredging and pumping the sand cost $7.65/m3.
Mobilization and demobilization costs added another $1,000,000 to the cost of the project.
Comparing the costs of dredging at Galveston with those expected at Sabine and Heald Banks
indicates that costs are lower at the Galveston site despite greater water depths, similar sand
quality, and similar wave climate. This is primarily because the Galveston project involved a
single-step pumping operation rather than a more expensive hopper dredge or two-step sand
transfer operation, which is required at Sabine or Heald Banks to overcome the long offshore

distances.
Proposed Ship Shoal Project

A major barrier island restoration project has been proposed for southwestern Louisiana that
would excavate sand from Ship Shoal and place it on Isle Dernieres (Bymes and Groat, 1991).
The purpose of the project is to partly mitigate rapid coastal land loss in Louisiana and to provide
protection for the wetland resources located on the adjacent delta plain and associated estuaries. A
Feasibility Study and an Environmental Impact Statement (EIS) are currently (1995) being
prepared to ensure that the project would be cost effective and to assure that it would not cause
environmental degradation.

Ship Shoal is a large sand deposit located approximately 15 km offshore of the Isle Dernieres
in 3 to 7 m of water (Table 7). Significant wave heights vary around the shoal because variable
water depths influence wave heights. Seaward of the shoal, significant wave heights in the Gulf of
Mexico are about 1.4 m, whereas wave heights are lower where the shoal provides a sheltering
effect. The shoal contains an estimated 1.2 billion m3 of sand-rich sediment that would be suitable
for barrier restoration and beach nourishment.

In 1991, the estimated costs of dredging sand from Ship Shoal for replenishment of nearby
barriers ranged from $8.14 to $16.35 (Byrnes and Groat, 1991). It is expected that mining sand at
Heald and Sabine Banks using similar techniques and for similar purposes would be slightly more
expensive because offshore distances and water depths are greater. Other factors such as
nearshore sand quality, wave climate, and weather conditions are similar in Texas and Louisiana.

Proposed South Padre Island Project

South Padre Island is another Texas barrier resort community that depends on beach-related
tourism to sustain its economy. In the developed area about 10 km north of Brazos Santiago Pass,
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the beaches are eroding and there is a need for a major beach replenishment project that would
widen the beach and rebuild the dunes (Kraus et al., 1995). Current plans call for dredging
approximately 417 million m3 of sand from between the jetties at Brazos Santiago Pass by the
Corps of Engineers for maintenance of the navigation channel to Brownsville. Estimated costs for
this project are relatively low (Table 3) because the pumping distances are relatively short, the
dredging site is protected from open Gulf waves, and a pipeline dredge can be used.

Morton (1994) identified two potential sand deposits offshore of South Padre Island. The
most likely nearshore source of beach-quality sand is the former ebb-tidal delta and post-jetty sand
deposits that occur at water depths of 5 to 8 m. If other sand sources were not available, these
offshore deposits would be a primary target for beach replenishment sand because the material is
close to the proposed beach replenishment area, the material is compatible with the existing beach
sediments, and there appears to be a large volume of sand-rich sediment trapped by the north jetty
(more than 3 million m3).

Comparison of grain size analyses of surface sediments of the inner continental shelf reported
by White et al. (1986) with grain size analyses of beach sediments from South Padre Island
indicates that beach-quality material is present in the nearshore zone offshore of South Padre
Island. The water depths and distances offshore to the most probable sand deposits are well within
the range of available dredging equipment. Descriptions of borings taken along South Padre Island
indicate that sand layers about 6 m thick occur in water depths ranging from 5 to 18 m. These sand
deposits occur at the seafloor, and there appears to be very little, if any, mud covering the sand
deposits (overburden).

Mining sand offshore at South Padre Island is not economically competitive with sand
periodically available from maintenance dredging of the ship channel. Pumping the sand onto the
beach solves two problems; it mitigates the beach erosion and eliminates or greatly reduces the
need for offshore disposal of dredged material.

CONCLUSIONS AND RECOMMENDATIONS

The present and prior geological investigations of the inner continental shelf of the southeastern
Texas offshore area have demonstrated that a large volume of sand-rich sediments are associated
with Sabine and Heald Banks. The total volume of sandy sediments, estimated at more than
1.8 billion m3, constitutes a large hard-mineral resource suitable for uses such as beach
replenishment and other construction activities. Compared to Sabine Bank, Heald Bank is in
deeper water, contains less shell material, and is closer to potential markets such as Galveston
Island where projects requiring beach-quality sand are currently being conducted or planned.
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The sand deposits are located in water depths ranging from 4.5 m to about 17 m, and the
greatest thickness of beach-quality sand coincides with the shallowest water depths on Sabine
Bank. Several petroleum pipelines, production platforms, and a lighthouse are located within the
trend of high-quality sand deposits, but they would not necessarily prevent mining of sand from
either of the banks. Offshore mining of the sand resource would require equipment designed for
open-water dredging (moderate wave climate). Also it is anticipated that dredging and sand
transportation would be separate operations because of the distances between the sand deposits and
their potential market. Based on current offshore mining technology, costs of operation, and
mining efficiencies, it appears that a hydraulic sidecast dredge or bucket dredge would be
appropriate for sand extraction, and a system of tugs and scowls would be needed to move the
sand between the Banks and beach fill sites. Alternatively, a hopper dredge with pumpout
capability or a combination of hopper dredge and cutterhead dredge could be employed to convey
the sand from the mining site to the beach.
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APPENDIX A. LOCATIONS OF CORES



Latitude and Longitude of Sabine Bank and Heald Bank Vibracores

Latitude Longitude
re LD (degrees min.) (degrees min.)

Sabine Bank
SBV -1 29 27.726 93 42.867
SBV -2 29 28.327 93 43.511
SBV -3 29 27.059 93 45.498
SBV -4 29 28.379 93 46.889
SBV -5 29 28.618 93 51.448
SBV -6 29 26.772 93 50.641
SBV -7 29 25.790 93 50.241
SBV -8 29 24.589 93 49.818
SBV -9 29 38.090 94 03.449
SBV-10 29 29.722 93 48.413
SBV -11 29 31.177 93 35.648
SBV - 12 29 30.007 93 35.307
SBV - 13 29 28.729 93 34.872
SBV - 14 29 29.283 93 38.052
SBV - 15 29 25.341 93 44.381
SBV - 16 29 26.139 93 44.899
SBV -17 29 28.318 93 45.257
SBV - 18 29 27.692 93 48.413
SBV-19 29 26.411 93 47.782
SBV -20 29 25.035 93 41.144
SBV -21 29 23.800 93 46.506
SBV -22 29 25.163 93 52.618
SBV -23 29 24.610 93 54.689
SBV -24 29 23.378 93 58.237
SBV -25 29 20.895 94 03.237

Heald Bank
HBV -1 29 07.646 94 11.265
HBV -2 29 06.357 94 10.097
HBV -3 29 07.373 94 13.163
HBV -4 29 08.993 94 11.565
HBV -5 29 08.131 94 11.005
HBV -6 29 08.630 94 (09.949
HBV -7 29 08.672 94 08.193
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APPENDIX D. SEDIMENT TEXTURES
Gravel, Sand, Mud
Hydrometer Analyses
Sieve Analyses
Cumulative Curves (Sieve Analyses)



Gravel, Sand, Mud Analyses

Heald Bank and Sabine Bank samples

Sample Gravel Sand Mud
1D % % %
HBV-1-1.5 0.6 99.3 0.1
HBV-1-5.5 20.3 79.5 0.2
HBV-1-8.0 38.6 61.1 0.3
HBV-2-1.5 0.0 81.4 19.0
HBV-2-4.5 0.0 342 66.0
HBV-2-7.5 0.0 12.4 87.0
HBV-2-10.2 0.0 6.3 94.0
HBV-3-1.8 6.1 91.5 24
HBV-3-2.6 0.0 71.5 28.0
HBV-3-4.5 0.0 738 26.0
HBV-3-6.5 0.0 76.8 23.0
HBV-3-12.75 0.0 73.7 26.0
HBV-4-1.0 1.1 94.1 43
HBV-4-5.0 9.2 79.6 11.2
HBV-4-6.5 0.0 184 82.0
HBV-5-2.0 2.6 97.2 0.2
HBV-5-5.75 9.7 90.0 0.3
HBV-5-14.75 5.0 89.9 5.1
HBV-5-19.1 3.4 91.0 5.6
HBV-6-1.0 3.2 96.4 04
HBV-6-4.5 6.1 93.6 0.3
HBV-6-9.8 19.4 80.3 0.3
HBV-7-2.5 20.5 79.3 0.2
HBV-7-6.25 0.0 24.4 76.0
HBV-7-9.3 0.0 14.6 86.0
SBV-10-0.7 0.0 67.6 16.0
SBV-10-3.2 0.0 54.2 46.0
SBV-10-7.0 0.0 24.7 76.0
SBV-10-11.2 0.0 6.1 94.0
SBV-11-0.25 0.0 67.3 32.0
SBV-11-45 0.0 441 56.0
SBV-12-1.0 24 97.5 0.1
SBV-12-45 36.7 63.2 0.1
SBV-12-7.0 1.7 97.7 0.6
SBV-12-11.0 0.0 76.1 24.0
SBV-13-0.4 16.1 79.8 41
SBV-13-0.75 0.0 66.2 34.0
SBV-13-5.5 0.0 60.1 40.0
SBV-13-14 0.0 68.4 32.0
SBV-14-1.5 24.5 72.8 2.7
SBV-14-42 8.5 75.9 15.6
SBV-14-8.6 0.0 44.5 56.0
SBV-15-0.5 0.0 67.7 33.0




SBV-15-0.95 0.0 67.7 33.0
SBV-16-0.2 3.3 954 13
SBV-16-2.5 69.2 30.4 04
SBV-16-45 0.0 784 21.0
SBV-17-1.0 49 949 02
SBV-17-5.8 154 844 0.2
SBV-17-9.2 21.5 78.3 02
SBV-17-14.0 5.7 4.1 02
SBV-18-0.5 42 95.4 0.4
SBV-18-5.7 12.5 82.5 5.0
SBV-18-8.25 185 74.9 6.6
SBV-19-0.8 0.0 20.0 80.0
SBV-19-2.8 7.1 88.2 477
SBV-19-5.5 0.0 67.7 33.0
SBV-19-8.5 0.0 52.6 480
SBV-20-0.5 0.2 99.5 03
SBV-20-2.7 0.6 99.3 0.1
SBV-20-4.1 84.0 15.7 0.3
SBV-21-1.0 26.9 643 8.8
SBV-22-2.0 10.6 88.0 14
SBV-22-3.75 5.2 89.8 5.0
SBV-22-10.95 9.6 69.2 21.2
SBV-22-13.5 3.0 71.8 25.5
SBV-23-0.5 1.9 93.0 5.1
SBV-23-5.5 5.3 88.0 6.7
SBV-23-12.4 6.9 734 19.7
SBV-23-17.8 0.0 49.0 51.0
SBV-24-22 3.0 91.5 55
SBV-24-5.6 5.3 82.7 12.0
SBV-24-7.0 6.5 80.6 12.9
SBV-24-16.5 0.0 409 59.0
SBV-25-0.4 56.4 429 0.7
SBV-25-1.5 738 86.6 5.6
SBV-25-11.2 3.7 63.5 32.8




Hydrometer Analyses
Heald Bank and Sabine Bank samples

Sample | Sand [ Silt | Clay

ID % % %

HBV-1-1.5 sieve

HBV-1-5.5 sieve

HBV-1-8.0 sieve

HBV-2-1.5 81 8 11

HBV-2-45 | 34 | 40 | 26
HBV275 | 12 | 60 | 27

HBV-2-10.2 6 28 66

HBV-3-1.8 sieve

\oooxlmm-hwwhaﬂtwg

HBV-3-2.6 72

7
10 |[ABV345 | 74 | 6
11 _[HBV365 | 77 | 6 | 17
12 |ABV3-1275| 74 | 9

13 |HBV-4-1.0 sieve

14 |HBV-4-5.0 sieve

15 |HBV-4-6.5 18 32 50

16 |HBV-5-2.0 sieve

17 |HBV-5-5.75 | sieve

18 |HBV-5-14.75 | sieve

19 |HBV-5-19.1 sieve

20 |HBV-6-1.0 sieve

21 |HBV-6-4.5 sieve

22 |HBV-6-9.8 sieve

23 |HBV-7-2.5 sieve

24 |HBV-7-6.25 24 36 40

25 |[HBV-7-9.3 15 44 42

26 |SBV-12-1.0 | sieve

27 |SBV-12-45 | sieve

28 [SBV-12-7.0 | sieve

29 |SBV-12-110 | 76 12 12

30 [SBV-11-025| 67 | 16 16

31 |SBV-11-4.5 44 29 27

32 [SBV-10-0.7 68 16 16

33 |SBV-10-3.2 54 26 20

34 |[SBV-10-7.0 25 42 34

35 |SBV-10-11.2 6 28 66

36 |[SBV-13-0.4 sieve




37

SBV-13-0.75

66

17

17

38

SBV-13-5.5

21

19

39

SBV-13-14

68

16

16

40

SBV-14-1.5

sieve

41

SBV-14-4.2

sieve

)

SBV-14-8.6

36

43

SBV-15-0.5

68

16

SBV-15-0.95

68

16

45

SBV-16-0.2

sieve

46

SBV-16-2.5

sieve

77

SBV-16-4.5

78

48

SBV-17-1.0

sieve

49

SBV-17-5.8

sieve

50

SBV-17-9.2

sieve

51

SBV-17-14.0

sieve

52

SBV-18-0.5

sieve

53

SBV-18-5.7

sieve

54

SBV-18-8.25

sieve

55

SBV-19-0.8

20

42

38

56

SBV-19-2.8

sieve

57

SBV-19-5.5

68

20

13

58

SBV-19-8.5

53

29

19

59

SBV-20-0.5

sieve

SBV-20-2.7

sieve

61

SBV-20-4.1

sieve

62

SBV-21-1.0

sieve

63

SBV-22-2.0

sieve

SBV-22-5.75

sieve

65

SBV-22-10.95

sieve

66

SBV-22-13.5

sieve

67

SBV-23-0.5

sieve

68

SBV-23-5.5

sieve

69

SBV-23-12.4

sieve

70

SBV-23-17.8

49

34

17 |

71

SBV-24-22

sieve

72

SBV-24-5.6

sieve

73

SBV-24-7.0

sieve

74

SBV-24-16.5

41

40

19

75

SBV-25-04

sieve

76

SBV-25-1.5

sieve

77

SBV-25-11.2

sieve




Sieve Analyses
Heald Bank and Sabine Bank samples

cumulative %'s

Lab | Sample | -2.0¢] -15¢] -1.08] -0.56] Op [ 0.5¢ | 1.0p | 1.5p | 2.00 | 2.5p | 3p | 3.50 | 4.09 | pan

# ID % % % % %0 % % %0 % % % % % %

1 |HBV-1-1.5 0010010110406 10] 1712977 [439[930][99.7] 999 1000
2 |HBV-1-5.5 00 ] 08 | 40 |105(203[31.3]389]434| 487694949995 | 99.8 [100.0
3 |HBV-1-8.0 5.2 |1 10.7 ] 1851287 [ 386 | 46.4 | 51.2 | 543 | 583 | 73.8 [ 95.1 | 99.5 | 99.7 | 100.0
4 |HBV-2-15 03104107 [09]12]16[]20]23] 29[ 70 |419(87.0[ 9741000
5 |HBV-2-4.5 hydrometer

6 |[HBV-2-7.5 hydrometer

7 |HBV-2-10.2 |hydrometer

8§ |HBV-3-1.8 00102 ] 11 ] 3261 | 86 ]|11.0[137[27.7[775]95.8|972(97.6 1000
9 |[HBV-3-2.6 00100 ] 00]01f05([10]18]26] 38141688968/ 992 1000
10 [HBV-3-4.5 001 00]00]01f03[08] 14] 1932135 71.3[961]99.1]1000
11 |HBV-3-6.5 001 00]00]01f[02f06]12] 17 28 [123[687]951] 986 1000
12 |HBV-3-12.75 | 0.0 | 00 | 00 | 09 [ 24 [ 39 [ 50 | 57 | 63 | 10.1 | 666 | 86.7 | 97.1 | 100.0
13 |HBV-4-1.0 00101105107 [ 11| 18] 40 83 [16.6| 484 [ 81.8 | 93.0 952 | 100.0
14 |HBV-4-5.0 20 )1 32149 1 67 [ 92 | 128] 164 (204|256 | 374 | 60.2 | 805 | 88.8 | 100.0
15 |HBV-4-6.5 hydrometer

16 [HBV-5-2.0 00101102 10 26| 58] 9.8 [13.8]226] 5501 93.1] 995 | 99.8 |100.0
17 [HBV-5-5.75 23 128 140 ] 62 [ 97 |148]195[23.4]30.1] 587932993 99.7 |100.0
18 [HBV-5-14.75 | 03 | 05 | 1.0 | 24 | 50 | 85 [ 11.8[ 152 193 [ 384 | 795 | 933 | 949 [100.0
19 [HBV-5-19.1 00100 ] 02112 34| 65] 94 [125]| 164 285 | 69.9 | 91.0 | 94.4 | 100.0
20 [HBV-6-1.0 00101 ] 04 ] 12 [32] 69 ][11.0[152]249] 642953 99.3 ] 99.6 |100.0
21 [HBV-6-4.5 00101 ] 06 ] 23| 61 |123] 184237338 7031 96,0 99.4 ] 99.7 |100.0
22 |HBV-6-9.8 86 | 96 | 112|143 [ 194259 319[ 365|453 764 | 97.2 | 99.5 | 99.7 | 100.0
23 [HBV-7-2.5 13 | 24 | 48 1106205 341|478 [ 547|682 84.8 972 99.7 [ 99.8 | 100.0




24 |HBV-7-6.25 [hydrometer

25 |HBV-7-9.3 hydrometer

26 [SBV-12-1.0 01 | 02 1 06 [ 13 [ 24| 47 ] 9.7 [147] 294735983 [ 99.8 [ 99.9 [100.0
27 |SBV-12-4.5 20.2 1 23.8 | 28.11325]36.7] 402 | 435] 466 554 81.0| 98.7 | 99.8 [ 99.9 | 100.0
28 [SBV-12-7.0 04 [ 051 08 [ 1.1 [ 1.7 [ 27 ] 45 71172624956 99.0] 99.4 | 100.0
29 [SBV-12-11.0 | 00 | 0.0 | 0.0 | 0.0 J 0.0 [ 05 [ 1.2 [ 23 | 7.2 [ 358 | 863 | 925 | 95.6 | 100.0
30 |SBV-11-0.25 |hydrometer

31 |SBV-11-45 |hydrometer

32 |SBV-10-0.7 |hydrometer

33 |SBV-10-3.2 |hydrometer

34 |SBV-10-7.0 |hydrometer

35 |SBV-10-11.2 [hydrometer

36 [SBV-13-04 27 | 49 |1 77 [ 1157 16.1[20.6| 252 29.0| 35.8 | 54.7 | 84.1 | 932 | 95.9 | 100.0
37 |SBV-13-0.75 |hydrometer

38 |SBV-13-5.5 [hydrometer

39 |SBV-13-14  |hydrometer

40 |SBV-14-1.5 85 | 1221 16.0| 20.5 | 24.5] 28.0 [ 315 351 [ 420 594 [ 89.0 | 95.6 | 97.3 | 100.0
41 |[SBV-14-4.2 03 [ 04 | 13 [ 43 [ 85 [128]16.6] 199259 | 4227 67.2 | 76.7 | 84.4 | 100.0
42 [SBV-14-8.6 |hydrometer

43 [SBV-15-0.5 |hydrometer

44 |SBV-15-0.95 |hydrometer

45 |[SBV-16-0.2 00 [ 00 ] 04 14]33]57]93][131[21.0/370] 80.8[975] 98.7 1000
46 [SBV-16-2.5 246 |1 355 4861 605]69.2]755] 795|828 875[91.697.6 | 995 | 99.6 | 100.0
47 |[SBV-16-4.5 0010010005 11[20]39] 4775194588936/ 938.81100.0
48 |[SBV-17-1.0 01 | 05 ] 15 (29 ] 49| 74 [103]137[253]60.6 | 95.4 | 99.6 | 99.8 | 100.0
49 [SBV-17-5.8 21 [ 39 ] 6.6 [105] 154 20.1]242]278[ 38271663 95.7 [ 99.6 | 99.8 | 100.0
50 [SBV-17-9.2 28 [ 5.0 ] 91 [ 149215 27.6] 325]369 | 469 | 70.8 | 963 | 99.6 | 99.8 | 100.0
51 |SBV-17-140 | 09 | 1.7 [ 31 | 44 | 57 | 74 | 96 | 119 | 23.4 | 58.4 | 94.7 | 99.4 | 99.3 | 100.0
52 [SBV-18-0.5 00 | 0.1 12 | 2.6 [ 42 [ 57 | 80 | 105|214 51,7934 992 | 99.6 | 100.0
53 |[SBV-18-5.7 24 | 37 |1 57 | 89 | 125] 163 | 20.3 ] 243 [30.7 | 50.8 | 84.4 | 92.7 | 95.0 | 100.0
54 |SBV-18-825 | 49 [ 73 [ 99 [ 14.0] 185 [ 233 (279325 392| 535 | 80.6 | 90.8 | 93.4 | 100.0
55 |SBV-19-0.8 |hydrometer

56 |[SBV-19-2.8 04 [ 08 [ 1942 [ 711103138 17.8 [ 245 415 | 783 | 92.8 | 953 [ 100.0




57 |[SBV-19-5.5 |hydrometer

58 [SBV-19-8.5 |hydrometer

59 |[SBV-20-0.5 001 00 ] 00 01 ] 02] 07 ] 20 35| 82 [412] 879 99.0 99.7 |100.0
60 |SBV-20-2.7 01101 ] 02 03] 06| 1.6 | 44 [ 87 |336(779]( 972 99.7 | 99.9 |100.0
61 |SBV-20-4.1 3271569 ) 71.0 | 79.0 [ 84.0 | 87.4 ] 89.3 ] 90.3 | 92.6 | 96.6 | 99.1 | 99.6 | 99.7 | 100.0
62 |SBV-21-1.0 33 | 84 [ 152|214 269|312 | 348 | 388 | 45.6 | 54.1 | 66.0 | 82.8 | 91.2 | 100.0
63 |SBV-22-2.0 16 | 23 | 41 | 69 | 106 | 144 | 179 215 32.0 553 | 86.6 | 97.4 | 98.6 | 100.0
64 [SBV-22-575 | 00 ] 02 | 05 | 19 [ 52 | 98 | 139 ] 16.6 | 23.5 | 52.8 | 82.3 | 92.0 | 95.0 [ 100.0
65 |SBV-22-1095]| 14 | 2.6 | 3.8 | 63 | 9.6 | 13.8 | 18.0 | 21.7 | 27.3 | 39.5 | 58.6 | 70.6 | 78.8 | 100.0
66 |SBV-22-13.5 | 0.1 | 0.1 | 0.1 | 0.8 | 3.0 | 7.5 | 12.8 | 17.1 | 21.0 | 28.5 | 43.7 | 63.6 | 74.8 | 100.0
67 |SBV-23-0.5 01 ] 02 7] 05| 11] 19 ] 32 ] 52| 74 [205]51.0| 81.7 | 91.9 | 949 |100.0
68 [SBV-23-5.5 1.3 1 1.7 1 21 [ 32 | 53 | 81 [ 114] 152|239 505 749 | 87.5 ] 93.3 | 100.0
69 |SBV-23-124 | 0.1 | 03 | 09 | 2.7 | 6.9 | 125 17.6 | 21.5| 26.7 | 414 | 61.7 | 729 | 80.3 | 100.0
70 |SBV-23-17.8 |hydrometer

71 |SBV-24-2.2 04 |1 04 ] 08 | 15 ] 3.0 ] 56 | 88 | 12.1 | 17.8 | 41.2 | 80.3 | 91.8 | 94.5 | 100.0
72 |SBV-24-5.6 04 ) 06 | 1.2 [ 25 | 53 | 94 | 134 ] 16.7 | 21.2 | 35.7 | 65.8 | 80.7 | 88.0 | 100.0
73 |[SBV-24-7.0 00 09| 14 { 31| 65 | 11.1| 152 ] 184 | 22.8 |1 37.0 | 65.1 | 80.7 | 87.1 | 100.0
74 |SBV-24-16.5 |hydrometer

75 [SBV-25-0.4 59 ] 16.6 | 31.5| 453 | 564 | 66.3 | 73.6 | 77.8 | 83.5| 92.7 | 98.0 | 99.0 [ 99.3 | 100.0
76 |SBV-25-1.5 18 | 22 | 29 | 48 | 7.8 | 11.7| 154 | 18.6 | 23.2 | 39.2 | 76.8 | 91.2 | 94.4 | 100.0
77 |SBV-25-112 | 0.0 | 0.0 | 0.1 | 1.1 | 3.7 | 83 | 13.6 | 179 | 21.4 | 26.0 | 40.4 | 569 | 67.2 | 100.0
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APPENDIX E. LITHOLOGIC PROFILES OF VIBRACORES
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Clay

D Muddy sand
NN

Pleistocene clay

QAb1979¢c
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— 4
15 —
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18 —
— 6
21 -

SBV-10

Coarser —>»

Facies

D
Muddy sand

E Sandy mud

D Muddy sand

E Sandy mud

D Muddy sand

E
Sandy mud

Clay

QAb1980¢
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D
Muddy sand
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SBV-12
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A
Fine sand

B
Shelly sand

A
Fine sand

D
Muddy sand
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SBV-13
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A
Fine sand

D
Muddy sand

Clay

QAb1983¢
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0 0 A
Fine sand
B
Shelly sand
3 —4
- 1
D
Muddy sand
6 —
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9 |
— 3
E
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] F
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- 5 —
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ﬂDepth SBV-15 Facies

m
0o oA ——>
D
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3 -
— 1 I T T T U
Pleistocene clay
6 -
fIt:)ep'(h SBV-20 Facies
m
0—0 ..Coarser ——>
A
Fine sand
3 —
1
B
Shelly sand
6 -
Depth SBV-21 Facies
ft m
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B Shelly sand
F Clay
D Muddy sand
14
F Clay
B Shelly sand
NN
6] Pleistocene clay
-2
9 J
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Pleistocene clay
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Fine sand
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A Fine sand
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