ENVIRONMENTAL ASSESSMENT

For the Town of Kitty Hawk Shore Protection Project
ENVIRONMENTAL ASSESSMENT
TOWN OF KITTY HAWK SHORE PROTECTION PROJECT

Prepared for:
The Town of Kitty Hawk, North Carolina

and

The U.S. Army Corps of Engineers and Bureau of Ocean Energy Management

Prepared by:
Coastal Planning & Engineering of North Carolina, Inc.
Wilmington, North Carolina

June 2016
Table Of Contents

Table Of Contents .. i
List Of Figures .. v
List Of Tables .. vi
Appendices ... viii
1 INTRODUCTION .. 9
 1.1 Where is the Proposed Action Located? .. 9
 1.2 Scoping and Consultation History.. 10
 1.3 What is the Proposed Action? .. 11
 1.4 What are the Purpose and Need of the Proposed Action? .. 12
2 DESCRIPTION OF ALTERNATIVES ... 13
 2.1 Alternative #1: Abandon and Retreat... 16
 2.1.1 Long-Term Erosion Impacts ... 16
 2.1.2 Overwash/Flooding Impacts. .. 20
 2.1.3 Storm Erosion Threat .. 22
 2.2 Alternative #2: Authorization to Use Outer Continental Shelf Borrow Area (Preferred
 Alternative) ... Error! Bookmark not defined.
 2.2.1 Overwash Assessment .. 25
 2.2.2 Borrow Area Design ... 25
 2.2.3 Construction Methods ... 30
 2.3 Alternative #3: No Action Alternative ... 35
3 ENVIRONMENTAL SETTING .. 36
 3.1 Physical Environment .. 36
 3.1.1 Geology and Geomorphology ... 36
 3.1.2 Native Beach Sand Quality and Composition .. 39
 3.1.3 Borrow Area Sand Quality and Composition .. 39
 3.2 Littoral Processes ... 42
 3.2.1 Waves .. 42
 3.2.2 Storms ... 43
 3.2.3 Erosion .. 44
 3.2.4 Sea Level Rise ... 44
4 AFFECTED ENVIRONMENT .. 45
 4.1 Water Quality ... 45
5.3.1 Associated Impacts with Abandon and Retreat Alternative .. 116
5.3.2 Associated Impact with Preferred Action Alternative .. 116
5.3.3 Associated Impact with No Action Alternative ... 117
5.4 Beach and Dune Habitat .. 118
5.4.1 Associated Impact with Abandon and Retreat Alternative .. 118
5.4.2 Associated Impact with Preferred Action Alternative ... 118
5.4.3 Associated Impact with No Action Alternative ... 118
5.5 Essential Fish Habitat .. 119
5.5.1 Associated Impact with Abandon and Retreat Alternative .. 119
5.5.2 Associated Impact with Preferred Action Alternative ... 119
5.5.3 Associated Impact with No Action Alternative ... 123
5.6 Threatened and Endangered Species .. 124
5.6.1 West Indian Manatee .. 125
5.6.2 Whales .. 126
5.6.3 Sea Turtles ... 128
5.6.4 Shortnose Sturgeon ... 138
5.6.5 Atlantic Sturgeon .. 139
5.6.6 Seabeach Amaranth .. 142
5.6.7 Piping Plovers ... 143
5.6.8 Rufa Red Knot .. 145
5.6.9 Roseate Tern ... 147
5.7 Cultural Resources ... 148
5.7.1 Associated Impact with Abandon and Retreat Alternative .. 148
5.7.2 Associated Impact with Preferred Action Alternative ... 148
5.7.3 Associated Impact with No Action Alternative ... 149
5.8 Socioeconomic Resources .. 149
5.8.1 Associated Impact with Abandon and Retreat Alternative .. 149
5.8.2 Associated Impact with Preferred Action Alternative ... 150
5.8.3 Associated Impact with No Action Alternative ... 151
5.9 Recreational and Scenic Resources .. 152
5.9.1 Associated Impact with Abandon and Retreat Alternative .. 152
5.9.2 Associated Impact with the Preferred Alternative .. 152
5.9.3 Associated Impact with No Action Alternative ... 152
5.10 Impacts Comparison of Alternatives ... 152
6 Cumulative Impacts ... 154

6.1 Water Quality ... 158

6.2 Air Quality .. 158

6.3 Noise ... 158

6.4 Natural Setting and Wildlife .. 159

6.5 Threatened and Endangered Species ... 159

6.5.1 West Indian Manatee ... 159

6.5.2 Humpback and North Atlantic Right Whales ... 160

6.5.3 Sea Turtles .. 160

6.5.4 Atlantic and Shortnose Sturgeon ... 161

6.5.5 Seabeach Amaranth .. 162

6.5.6 Piping Plover ... 162

6.5.7 Rufa Red Knot ... 162

6.5.8 Roseate Tern ... 163

6.6 Socioeconomic Resources ... 163

7 CONSERVATION AND MONITORING MEASURES ... 164

7.1 Construction Practices ... 164

7.1.1 Borrow Area Design ... 164

7.1.2 Dredge Type .. 164

7.1.3 Dredge Positioning .. 164

7.1.4 Pipeline Positioning .. 164

7.2 Construction Observations .. 165

7.2.1 Sediment Compatibility .. 165

7.2.2 Escarpments .. 166

7.2.3 Water Quality .. 166

7.2.4 Pipeline Observations .. 166

7.3 Species Monitoring and Impact Minimization ... 167

7.3.1 West Indian Manatee, Humpback and North Atlantic Right Whales Monitoring 167

7.3.2 Sea Turtle Monitoring .. 167

7.3.3 Sea Turtle Relocation Trawling .. 168

7.3.4 Bird Monitoring .. 169

8 REFERENCES ... 170
List Of Figures

Figure 1. Map showing general site location (inset), as well as borrow source areas, project limits and municipal boundaries...9

Figure 2. Kitty Hawk dune crest elevation and elevation of NC 12 obtained from an October 24, 2014 field survey. ...21

Figure 3. Example of Kitty Hawk structures situated east of NC 12 that are at a high risk of damage due to storms...22

Figure 4. Project design for the Town of Kitty Hawk Shoreline Protection Project. USACE baseline stationing is also provided in the figure..24

Figure 5. Typical design template for the Town of Kitty Hawk Shoreline Protection Project..24

Figure 6. Map of Borrow Area A, showing preliminary design cuts, locations of vibracores, and cultural resource buffers. Locations of other identified magnetic anomalies and side scan sonar anomalies deemed not culturally significant are also shown...............28

Figure 7. Map of Borrow Area C, showing preliminary design cuts, locations of vibracores, and cultural resource buffers. Locations of other identified magnetic anomalies and side scan sonar anomalies deemed not culturally significant are also shown...........29

Figure 8. Monthly average wave heights near Nags Head, NC for the period 1986 – 2006 (graph from USACE, 2010; source data courtesy USACE-FRF). ...33

Figure 9. Estimated pipeline dredging efficiencies at Dare County, NC (graph from USACE, 2010; source data from USACE, 2000) ..34

Figure 10. Regional bathymetry with potential borrow areas and major shoal features38

Figure 11. Wave rose from Wave Information System (WIS) 63221 (1980-1999) located offshore of the Project Area (USACE, 2010b)...43

Figure 12. The dune vegetation found in Kitty Hawk includes plant species typical to south Atlantic dune communities, including American beach grass, sea oats, and bitter panicum..47

Figure 13. Much of the dune community within the project area has been lost to erosion (left) and development (right)..47

Figure 14. Comparison of current right whale critical habitat and the proposed areas under consideration. Image: NOAA Fisheries, 2015..66

Figure 15. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2009. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014). ...68

Figure 16. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2010. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014). ...69

Figure 17. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2011. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014). ...70

Figure 18. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2012. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014). ...71

Figure 19. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2013. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014)...72
Figure 20. Daily nesting (blue line) and hatchling emergence (red line) observed for all sea turtle species throughout North Carolina between 2009 and 2013. ... 73

Figure 21. Total number of nests counted within two-week increments over the course of 2009 through 2013. .. 74

Figure 22. Total number of emergences counted within two-week increments over the course of 2009 to 2013. .. 76

Figure 23. Mean nesting density (± standard error) and mean emergence density (± standard error) per region throughout the five years of analysis (2009-2013). .. 78

Figure 24. Monthly nesting observed within each region throughout the five years of analysis (2009-2013) ... 79

Figure 25. Monthly hatchling emergences observed at each region throughout the five years of analysis (2009-2013). ... 81

Figure 26. Loggerhead turtle sightings during the Southeast AMAPPS spring 2012 aerial survey. Image from NOAA, 2012. ... 83

Figure 27. Migration routes (post-nesting and inter-foraging segments) of satellite-tracked loggerhead turtles (N = 15) represented by individual black lines in the Cape Hatteras, North Carolina (NC) region. The horizontal dotted line separates the Mid-Atlantic and South Atlantic Bights. Figure from Griffin et al., 2013. .. 84

Figure 28. Number of loggerhead sea turtle nests recorded along the northern portion of the Outer Banks, north of Oregon Inlet, from 2009 to 2014. Data provided by the NCWRC (Matthew Godfrey, pers. comm., 2014). ... 92

Figure 29. Terrestrial critical habitat proposed by the USFWS for the loggerhead sea turtle (Northwest Atlantic DPS). The northernmost unit is LOGG-T-NC01, located in Carteret County, NC and does not extend into the Project Area. ... 93

Figure 30. Location of the NMFS designated loggerhead sea turtle critical habitat in proximity to the Project Area.. 95

Figure 31. Atlantic sturgeon detections recorded by acoustic array located offshore Cape Hatteras, NC. Sturgeon were tagged by the Atlantic Cooperative Telemetry Network (Charles Bangley, pers. comm., September 15, 2014) .. 98

Figure 32. Wintering piping plover critical habitat unit NC-1. Image from 73 FR 62840............. 105

Figure 33. The location of the Duck Target Facility Munitions Response Site, which has been declared as a Formerly Used Defense Site. The borrow areas are located well offshore of the Rocket Target range boundary, represented by the purple cone. 111

List Of Tables

Table 1. Average shoreline change rates from LiDAR data and DCM 2011 Update. 18
Table 2. Number of ocean front structures that would be imminently threatened by long-term erosion over the next 30 years. .. 20
Table 3. Summary of runup analysis for Alternative 1... 21
Table 4. Comparison of overwash potential for Alternatives 1 and 2 .. 25
Table 5. Total volume requirements for the Duck, Kitty Hawk, and Kill Devil Hills projects... 26
Table 6. Preliminary results of sediment characteristics of the material within the Kitty Hawk native beach as well as material contained within Borrow Areas A and C. The standard allowances set forth by the State Sediment Criteria are also provided....................... 40
Table 7. EFH for managed species within coastal North Carolina. Not all species within a management unit have EFH designated; such species have ‘none’ within the life stages column... 50
Table 8. Essential Fish Habitat identified in FMP Amendments of the South Atlantic and Mid-Atlantic FMC’s (NMFS, 2010)... 52
Table 9. Geographically defined HAPC identified in the FMP Amendments affecting the South Atlantic area (NMFS, 2010). .. 54
Table 10. HMS and their life stage that have marine waters in vicinity of the Project designated as EFH... 56
Table 11. Federally threatened, endangered or proposed listed species that may occur in the Project Area and designated critical habitat.. 61
Table 12. Total number of nests observed within each two-week increment used in the analyses. Nesting counts were combined over the five years of analysis (2009 to 2013). 74
Table 13. Post-hoc multiple comparisons p-values (2-tailed) of mean ranks of nesting counts. Mean rank of each two-week group are also provided (R). Red values indicate a significant difference. .. 75
Table 14. Summary of hatchling emergence activity per two-week block observed throughout the five year period (2009 to 2013). The term n refers to the number of days for which emergences were observed. .. 77
Table 15. Post-hoc multiple comparisons p-values (2-tailed) of mean ranks. Mean ranks (R) of each two-week group are also provided. Red values indicate a significant difference. 77
Table 16. Multiple comparisons of nesting per month within the Outer Banks using the Games-Howell test. Mean difference is significant at the 0.05 level for cells highlighted in yellow. .. 80
Table 17. Multiple comparisons of hatchling emergences per month within the Outer Banks using the Games-Howell test. .. 81
Table 18. Total number of sea turtle strandings recorded per month in North Carolina in 2013. Totals are reported for each species. Abbreviations in the table are interpreted as the following: CC=Caretta caretta; CM=Chelonia mydas; LK=Lepidochelys kempii; DC=Dermochelys coriacea; El=Eretmochelys imbricata; HY=hybrid; UN=unidentified. (Table modified from seaturtle.org, 2013). .. 85
Table 20. Kemp’s ridley sea turtle nests documented in North Carolina from 2009 to 2013. Data provided by the NCWRC (Matthew Godfrey, pers. comm., 2014). .. 89
Table 21. Total number of piping plover observations per month within the northern, central and southern regions of North Carolina as compared to the total number of individuals observed within Bodie Island, North Carolina from 1965 to 2013. The last two rows in the table display the Bodie Island observations as a percentage of both statewide and northern region observations. To display monthly trends, rows are color-coded such that the lowest values are shaded green and the highest values are shaded red. .. 104
Table 22. Total number of piping plover nesting pair observations per month within the northern, central and southern regions of North Carolina as compared to the total number of nesting pairs observed within Bodie Island, North Carolina from 1965 to 2008. The last two rows in the table display the Bodie Island observations as a percentage of both statewide and
northern region observations. To display monthly trends, rows are color-coded such that the
lowest values are shaded green and the highest values are shaded red. 104
Table 23. Total number of red knots observed per month within the northern, central and
southern regions of North Carolina as compared to the total number observed within Dare
County, North Carolina from 1986 to 2013. The last two rows in the table display the Dare
County observations as a percentage of both statewide and northern region observations. To
display monthly trends, rows are color-coded such that the lowest values are shaded green
and the highest values are shaded red. .. 108
Table 24. Summary of project emissions by source and location. NOx represents the sum of NO
and NO2 emissions; VOX .. 116
Table 25. Federally threatened, endangered, or proposed listed species that may occur in the
Project Area .. 124
Table 26. Typical dredging operations based on information provided by potential dredge
contractors.. 127
Table 27. Dredging projects within the Wilmington District of the USACE South Atlantic
Division using offshore borrow areas. Any records of turtle takes, conditions at time of take,
and pertinent biological information are also included. A designation of ‘n/a’ indicates no
data are available.. 132
Table 28. Comparison of potential impacts for each resource resulting from the three
alternatives ... 152
Table 29. Proposed federal and non-federal beach nourishment projects within North Carolina
and the projected start dates ... 156
Table 30. Summary of beach nourishment projects in North Carolina that are authorized, being
pursued, or may be pursued in the foreseeable future. ... 158

Appendices

Appendix A - Interagency Scoping Meeting Minutes
Appendix B - Engineering Report
Appendix C - Project Information Document
Appendix D - Archaeological Survey Report
Appendix E - Biological Assessment
Appendix F - Geotechnical Report
1 INTRODUCTION

1.1 Where is the Proposed Action Located?

The Town of Kitty Hawk Shoreline Protection Project (Project) is located along the Atlantic coast of the Outer Banks within Dare County, North Carolina. The project includes a one-time beach nourishment event along the entire 3.58-mile oceanfront shoreline of the Town of Kitty Hawk using material obtained from two Outer Continental Shelf (OCS) borrow areas located in federal waters offshore of Dare County (Figure 1). Borrow Area A is located between 5.0 and 6.5 miles offshore, while Borrow Area C is located between 4.1 and 5.2 miles offshore. The Towns of Duck and Kill Devil Hills, also within Dare County, are simultaneously pursuing similar beach nourishment projects. The project proponent and proposed lease holder, Dare County, plans to construct the selected alternative on behalf of all three townships. Due to their proximity and project similarities, the three projects may be constructed concurrently within the same dredging season.

Figure 1. Map showing general site location (inset), as well as borrow source areas, project limits and municipal boundaries.
1.2 Scoping and Consultation History

On September 14, 2011, the Town of Kill Devil Hills, adjacent to the Town of Kitty Hawk, held an interagency meeting in Washington, North Carolina with representatives from various state and federal agencies including the North Carolina Division of Coastal Management (NCDCM), United State Army Corps of Engineers (USACE), US Fish and Wildlife Service (USFWS) and National Marine Fisheries Service (NMFS). The purpose of the meeting was to present the scope of a proposed locally sponsored project, develop an agreed upon permitting approach and scope of necessary environmental documentation. One outcome of the meeting was the decision to develop a “Project Information Document” that would provide the USACE with a summary of the relevant existing environmental documentation and biological data that pertains to the proposed Kill Devil Hills Shore Protection Project. The information provided within the document was used to assist the USACE in determining the necessary permitting requirements. Following the submittal of the document, the USACE responded that due to the likelihood of determining a Finding of No Significant Impacts (FONSI), an Environmental Assessment (EA) would be the recommended approach regarding the required environmental documentation. The meeting minutes from the September 14, 2011 interagency meeting are presented in Appendix A.

Subsequent to the 2011 interagency meeting, the Towns of Duck and Kitty Hawk also expressed interest in pursuing their own shoreline protection projects in light of continued erosion on their respective shorelines. Considering that all three Towns are proceeding with similar nourishment projects, constructing these projects within the same year, either concurrently or sequentially, would reduce mobilization costs to the towns. Another interagency meeting was held on June 19, 2013 with representatives from many of the same agencies to discuss proposed permitting and environmental documentation approaches for all three towns, (Duck, Kitty Hawk and Kill Devil Hills). Because the potential borrow areas under consideration for the three nourishment projects are located in federal waters, it was determined that the Bureau of Ocean Energy Management (BOEM) would act as a co-lead agency along with the USACE. It was agreed that, while individual EAs could be drafted for each of the three proposed projects, a batched Essential Fish Habitat (EFH) assessment and a batched Biological Assessment (BA) could be submitted to satisfy consultation requirements with NMFS and USFWS. The meeting minutes from the June 19, 2013 interagency meeting are presented in Appendix A.

The project involves use of OCS borrow areas, which fall under the Bureau of Ocean Energy Management (BOEM) jurisdiction, and placement of material on the beach, which falls under the USACE’s jurisdiction. It was therefore determined that BOEM and the USACE would act as joint lead agencies for NEPA purposes, and would prepare joint NEPA documents. BOEM and the USACE agreed to participate in the required Endangered Species Act (ESA) Section 7 consultations, the Magnuson-Stevenson Fishery and Conservation Management Act Essential Fish Habitat (EFH) Consultation (Section 305); the National Historic Preservation Act (NHPA) Section 106 process, and the Coastal Zone Management (CZMA) Section 307 consistency process.

The proposed dredging of OCS borrow areas falls outside the scope of several existing biological opinions. The 1995/1997 South Atlantic Regional Biological Opinion (SARBO) does not apply because 1) the USACE does not have regulatory jurisdiction over OCS borrow areas, and 2) the
project is not being funded or undertaken by the USACE. The USACE has re-initiated consultation with the USFWS and the NMFS to include new species, actions and geographic areas in the SARBO. The presently proposed dredging activities would be covered under this re-initiated SARBO, since both the USACE and BOEM would be party to it. However, it cannot be assumed that the SARBO will be completed in time to be applicable to the Kitty Hawk project; therefore, BOEM will need its own “stand-alone’ biological opinion and Incidental Take Statement to authorize any potential protected species interactions occurring in federal waters. During the interagency meeting on July 19, 2013, representatives from USFWS and NMFS agreed that while individual Environmental Assessments (EAs) could be drafted for each of the three proposed projects (resulting in three individual sets of permits), a single regional EFH assessment and a single Biological Assessment (BA) could be submitted to satisfy consultation requirements with NMFS and USFWS for the Towns of Duck, Kitty Hawk, and Kill Devil Hills. The EFH and BA were each developed in a batched format, such that all three Towns were addressed within one document. Both the EFH and the BA have been submitted to the appropriate agencies to begin formal consultation. The EFH was submitted on December 8, 2014, and formal consultation is in progress. For the BA, formal consultation with NMFS began on July 7, 2015, and with USFWS on June 23, 2015.

In a letter from BOEM to the USACE, dated December 2, 2014, it was stated that lead agency in ESA Section 7 consultation for potential impacts on protected species would be determined by jurisdiction. The BOEM will be lead agency and consult with National Marine Fisheries Service (NMFS) concerning potential effects from dredging activities for species under their purview (i.e. swimming turtles and whales). The USACE will be the lead agency and consult with UFWS concerning effects from placement activities for species under their purview (i.e. nesting sea turtles). BOEM and the USACE will consult jointly with NMFS Habitat Conservation Division on EFH and request NMFS to assign conservation recommendations by jurisdiction. The USACE will be lead agency for the National Historic Preservation Act (NHPA) Section 106, and will notify the State Historic Preservation Office (SHPO) and relevant Tribal Historic Preservation Offices (THPO). The USACE and BOEM will work with the North Carolina Department of Environmental and Natural Resources (NCDENR), to ensure compliance with Section 307 of the Coastal Zone Management Act (CZMA).

1.3 What is the Proposed Action?

The proposed action will include a one-time sand placement event along the entire 3.58 miles of the Town of Kitty Hawk (Town) oceanfront shoreline, as well as a small portion of the adjacent Towns of Southern Shores and Kill Devil Hills. Beach quality sand would be dredged from the identified offshore borrow area(s) using a self-contained ocean-certified hopper dredge and/or a hydraulic pipeline dredge. Placement onto the beach would be accomplished via submerged pipeline with direct pump-out. The type and number of dredges needed will be determined by the contractor. Should a cutterhead dredge be used, dredged material would be transported to the recipient beach via submerged pipeline. In the event a hopper dredge is used, pump-out stations will be implemented and material will be transported to the beach via submerged pipeline. The specific locations of pipeline corridors and pump-out locations have not been determined at this time, but will also be determined by the contractor. Once discharged, the sand will be shaped and graded according to the design template using earth-moving equipment such as bulldozers and excavators. The Town is proposing a year-round construction schedule such that dredging and
placement may occur whenever it is deemed safest and most efficient by the contractor. Details of this alternative are discussed in Section Error! Reference source not found.. This EA will evaluate a one-time nourishment event with a year-round construction window for the Town of Kitty Hawk.

BOEM proposes to issue a negotiated agreement to the project proponent, Dare County that would authorize use of OCS sand resources in the Town of Kitty Hawk Shore Protection Project. Any future use of federal borrow resources, outside of the length of the negotiated agreement, would require further NEPA review. The Town of Kitty Hawk has also submitted an application to the Corps requesting a permit for placement operations.

The scope of activities, when considering connected actions, include the dredging of the sand from the proposed OCS borrow areas, the conveyance of the sand from the borrow area to the shoreline (including location of pump-out corridors, anchoring, etc.) and the placement of the sand along the shoreline of Kitty Hawk.

1.4 What are the Purpose and Need of the Proposed Action?

The Town of Kitty Hawk is focused on a long-term shoreline management program. The Town’s stated purpose for implementing a beach nourishment project is threefold: 1) Reduce the vulnerability of public infrastructure including NC 12, town roads between NC 12 and U.S. Highway 158, and utilities to storm-induced erosion; 2) Reduce flooding in many non-oceanfront areas throughout the Town during ocean overwash conditions, including portions of Highway NC 12 and U.S. Highway 158; and 3) Reduce the vulnerability of homes within the Town that front the Atlantic Ocean and are exposed to wave events during nor’easters and other large storm events as well as natural trends. Flooding is a major concern as it can render routes impassable which greatly limits the ability for emergency personnel to respond. In order to accomplish these stated goals, the Town is taking steps to maintain its oceanfront beach and dune to a configuration that: 1) provides a reasonable level of storm damage reduction; 2) provide a reasonable level of flood reduction; and 3) mitigates long term erosion that could threaten public and private development as well as recreational opportunities and biological resources. The Town will regularly monitor and re-evaluate on 5-year intervals the level of storm damage reduction, flood reduction, and erosion mitigation that the existing beach provides.

Based on long-term shoreline and volume change rates, storm vulnerability analyses, and flood vulnerability analysis, the entire 3.58 miles of oceanfront shoreline is in need of additional actions to meet the Town’s objectives. For this reason, the proposed action for which the Town is seeking permits and approvals includes the entire 3.58 miles of the Town’s oceanfront shoreline. The purpose of this particular action is to afford this stretch of shoreline with a reasonable level of flood reduction and storm damage reduction, to reduce the risk to public and private development, maintain recreational opportunities and sustain the existing natural resources. The project also includes advance fill to maintain the integrity of the project design for a period of 5 years.

The current purpose and need are for a one-time beach nourishment event. However, the Town will proactively monitor and re-evaluate on 5-year intervals the level of storm damage reduction and erosion mitigation that the existing beach provides. Should the data indicated that the
constructed project requires maintenance nourishment, the Town will seek the necessary permit modifications to perform the maintenance event.

The BOEM is not undertaking or responsible for proposed dredged-and-fill work, and therefore has a separate proposed action and purpose and need. The BOEM proposed action is to review the OCS sand use request (under the authority granted to the Department of the Interior by the Outer Continental Shelf Lands Act [OCSLA] for the purpose of responding to the lease request. The proposed action is necessary because the Secretary of the Interior delegates the authority granted in the OCSLA to the BOEM for authorizing use of OCS sand resources for the purpose of shore protection and beach restoration.

2 DESCRIPTION OF ALTERNATIVES

This section describes the various alternatives evaluated for responding to problems associated with protection of NC Highway 12 (Virginia Dare Trail) and inland portions of the Town between NC Highway 12 and US Route 158 (N. Croatan Highway) against flooding caused by wave and storm surge overwash. The alternatives were also evaluated for their ability to mitigate damage to oceanfront development due to both long-term erosion and storms.

The area included in the assessment extends the entire 18,900 ft. of shoreline fronting the Town of Kitty Hawk. The project also includes a northern taper, which extends from the Kitty Hawk pier north 1,000 ft. into the Town of Southern Shores. Likewise, there is a southern taper that extends 1,000 ft. into the town of Kill Devil Hills. The total area included in the assessment is therefore 20,900 ft.
Table 2).

- Alternative 1 – Abandon/Retreat
- Alternative 2 – Preferred Alternative – Authorization to use the OCS Borrow Areas
- Alternative 3 – No Action

The primary tools used to evaluate the effectiveness of the various alternatives in meeting the purpose and needs of the proposed action included:

- LiDAR surveys
- NC Division of Coastal Management (DCM) 2011 Shoreline Change Update
- SBEACH model
- Wave Over-topping analysis

LiDAR Surveys. Shoreline changes along the Town of Kitty Hawk were evaluated using LiDAR (Light Detection and Ranging) data collected by USACE JALBTCX (Joint Airborne LiDAR Bathymetry Technical Center of Expertise), USGS (U.S. Geological Survey), NASA (National Aeronautics and Space Administration) and NOAA (National Oceanographic and Atmospheric Administration). LiDAR is an optical remote sensing technology that measures the ground elevation or seafloor at relatively high spatial resolutions. LiDAR data are better suited for surveying subaerial platforms since light penetration may be restricted by water clarity. For this analysis only elevations collected along the dry beach were evaluated. Twelve sets of LiDAR data collected over a 16-year period between 1996 and 2012 were used for the shoreline study. Details of the shoreline change analysis are provided in Appendix B.

DCM 2011 Shoreline Change Update. The North Carolina DCM periodically updates shoreline change rates for the entire state for purposes of computing ocean hazard setback factors. DCM computes shoreline change rates using the “end point” method which essentially measures the difference in position of an “early shoreline” with the shoreline shown on a more recent set of aerial photographs. For the 2011 update, DCM actually used an early shoreline interpreted from a 1940 set of aerial photos and the more recent shoreline determined from 2009 aerial photos. Since the DCM data covered a larger timeframe, the DCM shoreline change rates along Kitty Hawk had less variability than the rates computed from the LiDAR data. A full discussion of the DCM shoreline change rates and a comparison of those rates with the LiDAR data rates is provided in Appendix B.

SBEACH model. Storm erosion modeling for Kitty Hawk was conducted using the Storm Induced Beach Change Model (Larson and Kraus, 1989). SBEACH simulates the beach profile changes due to storm generated waves and water levels over the duration of the storm.

The SBEACH analysis for Kitty Hawk used storm characteristics associated with Hurricane Isabel to determine the vulnerability of NC Highway 12 and oceanfront structures to storm damage. SBEACH was run for existing conditions and for the erosion response alternatives listed above to determine the level of storm damage vulnerability in each case.
Hurricane Isabel impacted the area in September 2003 and produced a maximum water level of +5.6 feet NAVD. The storm still-water level was measured at the USACE Field Research Facility (FRF) located in Duck, NC approximately 7.8 miles (12.6 km) north of the northern town limits of Kitty Hawk.

In general, a storm similar to Hurricane Isabel would have a probability of occurring in any given year of between 4% to 5%, i.e., a storm similar to Hurricane Isabel would be expected to impact the area an average of once every 20 to 25 years. Notwithstanding the storm frequency, there is a 70% to almost 80% risk a storm similar to Hurricane Isabel will impact Kitty Hawk over the next 30 years.

The SBEACH model was applied to each of the approximate 1,000-foot baseline transects along Kitty Hawk and the most landward point where the post-storm profile was one foot below the pre-storm profile was used as an indication of the landward limit of the storms impact. The impact point at each transect was superimposed on 2012 aerial photographs and an impact line connecting the impact points superimposed on the photos. If the impact line reached the front of a structure or bisected the structure, that structure was deemed to be impacted by the storm. A similar approach was used to determine the vulnerability of NC Highway 12 to potential storm damage. No attempt was made to determine the extent of the potential damage, only whether the structure and/or highway would be impacted to some degree.

Details of the SBEACH analysis along with figures showing the impact line for the Alternative 1 – Abandon/Retreat (which is also applicable to Alternative 3 – No Action) as well as the impact lines for various beach design options evaluated for Alternative 2 are provided in Appendix B.

The SBEACH analysis for the Abandon/Retreat Alternative (Alternative 1) provided an assessment of the number of structures at risk of storm damage if measures such as beach nourishment are not implemented to reduce the level of risk. The SBEACH runs for the various beach fill options provided a relative measure of the potential reduction in storm damage to existing development relative to Alternative 1. This provided a basis for selecting the most cost-effective beach design option.

Wave Overtopping Analysis. North Virginia Dare Trail (NC Highway 12) is subjected to frequent flooding due to waves overtopping the beach. In general, the beach is overtopped three to four times each year resulting in flooding of NC Highway 12 as well as areas located between NC Highway 12 and US Route 158. In addition to flooding, the overtopping events deposit large quantities of sand on NC Highway 12. Removal of the sand deposits is accomplished by NC DOT.

The flooding/overwash events can and have caused closures to both NC Highway 12 and US Route 158 with road closures lasting several days. In addition to the road closure, the ponded water, which can measure up to 5 feet deep in places, poses potential health problems from waterborne pollutants as well as mosquitoes during certain times of the year.

The Town has contracted with Albemarle & Associates, LTD. (AAL) to evaluate the flooding problem and develop a stormwater management plan to reduce the impact of flooding. AAL
completed its report in February 2012. Given the relatively flat topography within the area impacted by flooding, AAL’s primary recommendation was to implement a stormwater collection system in 8 areas that would allow the town to respond immediately following the passage of a storm by pumping the flood waters directly into the Atlantic Ocean. The Town initiated implementation of the stormwater management plan in September 2013 and will continue implementation of the entire plan as funding permits.

An assessment of the potential reduction in wave overtopping that could be achieved through the construction of a beach nourishment project was based on theoretical wave run-up elevations computed using the De Wall and Van der Meer (1992) method. An explanation of this method is provided in Appendix B.

2.1 Alternative #1: Abandon and Retreat

Under the Abandon/Retreat Alternative, structures deemed imminently threatened would be relocated to new location, or abandoned and subsequently demolished. The Town does not have a formal shoreline management program. Most of the Town’s efforts are directed toward mitigating flooding caused by storms over washing the frontal dune.

2.1.1 Long-Term Erosion Impacts

Shoreline erosion rates determined from the analysis of the LiDAR data sets spanning the 16-year period from October 1996 and November 2012 varied along the shoreline. Rates ranged from a maximum recession of 6.0 feet/year along the northern 1,000 feet of the Kitty Hawk shoreline and southern 1,000 feet of the Southern Shores shoreline to an accretion rate of +4.4 feet/year between stations 110+00 to 120+00 (approximately 4123 North Virginia Dare Trail to 4011 North Virginia Dare Trail). A summary of the shoreline change trends developed from the LiDAR data is provided in Table 1.

Updated shoreline change rates published by the NC Division of Coastal Management (DCM) in 2011 (DCM 2011 Update), which were based on measured changes between 1940 and 2009, are also provided in Table 1. The shoreline change rates for the DCM 2011 Update indicate a more uniform shoreline trend along the Kitty Hawk shoreline with the majority of the shoreline experiencing recession rates of between -0.8 feet/year to -2.7 feet/year.

The relatively slow to moderate rate of shoreline recession indicated by the DCM 2011 Update does not reflect recent changes along Kitty Hawk. Therefore, the shoreline trends indicated by the more recent LiDAR data was used to determine when or if oceanfront structures could become imminently threatened over the next 30 years. As defined by DCM, a structure is deemed to be imminently threatened once the erosion scarp (or other erosion indicator) encroaches within 20 feet of a structure’s foundation. In the absence of a well-defined erosion scarp, the analysis of when or if ocean structures would become imminently threatened was based on the projected position of the +6-foot NAVD contour over the next 30 years. The +6-foot NAVD contour represents the approximate elevation of the natural berm crest in the area and is representative of the average wave run-up elevation under normal conditions. For this analysis, once the +6-foot NAVD contour encroached within 20 feet of the front of the structure that structure was deemed to be imminently threatened.
The number of oceanfront structures that could be impacted by long-term erosion over the next 30 years is summarized in
Table 2 with the number of imminently threatened structures reported in 5-year increments. The assessment identified 100 structures that could be impacted by long-term erosion during the next 30 years. Of this total, 75 structures could become imminently threatened over the next 15 years with an additional 25 structures being threatened over the last 15 years of the analysis period.

Table 1. Average shoreline change rates from LiDAR data and DCM 2011 Update.

<table>
<thead>
<tr>
<th>Shoreline Segment</th>
<th>Shoreline Distance (feet)</th>
<th>Average Rate Shoreline Change from LiDAR data (ft/yr)</th>
<th>Average Rate Shoreline Change from DCM 2011 Update (ft/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From Station</td>
<td>To Station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10+00</td>
<td>10+00</td>
<td>2,000</td>
<td>-6.0</td>
</tr>
<tr>
<td>10+00</td>
<td>20+00</td>
<td>1,000</td>
<td>-5.6</td>
</tr>
<tr>
<td>20+00</td>
<td>30+00</td>
<td>1,000</td>
<td>-5.3</td>
</tr>
<tr>
<td>30+00</td>
<td>40+00</td>
<td>1,000</td>
<td>-4.8</td>
</tr>
<tr>
<td>40+00</td>
<td>50+00</td>
<td>1,000</td>
<td>-3.3</td>
</tr>
<tr>
<td>50+00</td>
<td>60+00</td>
<td>1,000</td>
<td>-3.0</td>
</tr>
<tr>
<td>60+00</td>
<td>70+00</td>
<td>1,000</td>
<td>-2.8</td>
</tr>
<tr>
<td>70+00</td>
<td>80+00</td>
<td>1,000</td>
<td>-2.2</td>
</tr>
<tr>
<td>80+00</td>
<td>90+00</td>
<td>1,000</td>
<td>+0.8</td>
</tr>
<tr>
<td>90+00</td>
<td>100+00</td>
<td>1,000</td>
<td>+2.0</td>
</tr>
<tr>
<td>100+00</td>
<td>110+00</td>
<td>1,000</td>
<td>+2.5</td>
</tr>
<tr>
<td>110+00</td>
<td>120+00</td>
<td>1,000</td>
<td>+4.4</td>
</tr>
<tr>
<td>120+00</td>
<td>130+00</td>
<td>1,000</td>
<td>-1.7</td>
</tr>
<tr>
<td>130+00</td>
<td>140+00</td>
<td>1,000</td>
<td>-5.4</td>
</tr>
<tr>
<td>140+00</td>
<td>150+00</td>
<td>1,000</td>
<td>-5.5</td>
</tr>
<tr>
<td>150+00</td>
<td>160+00</td>
<td>1,000</td>
<td>-3.3</td>
</tr>
<tr>
<td>160+00</td>
<td>170+00</td>
<td>1,000</td>
<td>+0.1</td>
</tr>
<tr>
<td>170+00</td>
<td>180+00</td>
<td>1,000</td>
<td>-2.6</td>
</tr>
<tr>
<td>180+00</td>
<td>189+00</td>
<td>900</td>
<td>-2.8</td>
</tr>
</tbody>
</table>

Based on the shoreline change rates given in
Table 2, NC Highway 12 would not be directly impacted by long-term erosion over the next 30 years; however, as discussed below, NC 12, as well as other areas located between NC Highway 12 and US 158, would continue to experience frequent flooding and sand deposition under Alternative 1. Also, storms could sever the NC 12, temporarily cutting off access to properties located on both sides of the highway. The frequency and severity of the overwash events, as well as severance of the NC 12, would increase over time as the shoreline moves closer to the road right-of-way.
Table 2. Number of ocean front structures that would be imminently threatened by long-term erosion over the next 30 years.

<table>
<thead>
<tr>
<th>Time Increment (years)</th>
<th>Structures Imminently Threatened</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>29</td>
</tr>
<tr>
<td>6-10</td>
<td>31</td>
</tr>
<tr>
<td>11-15</td>
<td>15</td>
</tr>
<tr>
<td>16-20</td>
<td>21</td>
</tr>
<tr>
<td>21-25</td>
<td>3</td>
</tr>
<tr>
<td>26-30</td>
<td>1(1)</td>
</tr>
</tbody>
</table>

(1)Does not include the Hilton Garden Inn.

There are approximately 32 vacant lots in the Town of Kitty Hawk between Highway NC 158 and NC Highway 12. With 100 structures subject to be imminently threatened over the next 30 years, there are obviously not enough vacant lots to accommodate the threatened or soon to be threatened structures. In any event, in order to implement an Abandon/Retreat option in an orderly fashion, the Town should purchase as many of the available lots as possible. The structures that are not moved to one of the available lots either by choice of the property owners or the absence of a suitable lot would be demolished.

While flooding and overwash of NC 12 would continue to be a problem under Alternative 1, relocating NC 12 is not a viable economic option due to the lack of a suitable alternative right-of-way that would provide access to the homes located on the southwest side of NC 12. Therefore, relocating NC 12 to the southwest would likely involve purchasing all of the homes and lots on the southwest side of NC 12 as well as relocation of all of the existing public utilities that are tied to the present NC 12 right-of-way.

2.1.2 Overwash/Flooding Impacts.

Under existing conditions, the ocean shoreline fronting the Town of Kitty Hawk is subjected to frequent storm overwash events that flood NC 12, portions of the town lying between NC 12 and US 158. In addition to floodwaters, the overwash events deposit large quantities of sand on NC 12 that must be removed by the NC Department of Transportation (NC DOT). These overwash events occur about 4 times every year. Sand removal from the roadway and the repair of dunes damaged by storms continue to be recurring problems within the town limits of Kitty Hawk.

An assessment of the overwash threat under Alternative 1, which is also applicable to Alternative 3 – the No Action Alternative, was made by estimating the elevation of wave run-up that could occur for an annual event (1-year event) as well as an event that would only be expected to occur once every 5 years (5-year event). The annual event would produce a storm surge of 2.5 feet with the surge for a 5-year event equal to 3.3 feet. Two run-up computations were made for each storm with run-up computed at every 1,000-foot transect along the Kitty Hawk shoreline. One run-up computation assumed the peak surge of the storms would occur at the time the normal tide level would be near mean sea level (MSL) (0 feet NAVD88) and a second computation assumed the peak surge would correspond to the time of normal high tide. Mean High Water (MHW) in the Kitty Hawk area is +1.2 feet NAVD88. For the case in which the peak surge corresponded to normal mean sea level, the still water level used in the run-up computations was +2.5 feet NAVD88 for the 1-year event and +3.3 feet NAVD88 for the 5-year event. For the case in which the peak surge corresponded to the time of normal high tide, the still water levels for
the run-up computations were +3.7 feet NAVD88 and +4.5 feet NAVD88 for the 1-year and 5-year events, respectively.

The maximum levels of wave run-up for the various conditions evaluated were compared to the crest elevation of the dunes along Kitty Hawk and the length of shoreline that would experience run-up elevations in excess of the peak dune elevation determined. The elevation of the dune crest and the elevation of the centerline of NC 12, which were obtained from a field survey conducted on October 24, 2014, are provided on Figure 2. The results of the run-up analysis for both the 1-year and 5-year events are summarized in Table 3. The table provides the estimated length and percent of the town’s shoreline that could be overtopped by the 1-year and 5-year storm events should the peak surge of each storm occur at the time the normal tide level would be at MSL and at MHW.

![Figure 2. Kitty Hawk dune crest elevation and elevation of NC 12 obtained from an October 24, 2014 field survey.](image)

<table>
<thead>
<tr>
<th>Storm</th>
<th>Runup Elevation (ft. NAVD88)</th>
<th>Length of shoreline overtopped (ft.)</th>
<th>Percent of shoreline overtopped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSL<sup>(1)</sup></td>
<td>MHW<sup>(1)</sup></td>
<td>MSL<sup>(1)</sup></td>
</tr>
<tr>
<td>1-year</td>
<td>12.6</td>
<td>15.8</td>
<td>2,467</td>
</tr>
<tr>
<td>5-year</td>
<td>18.3</td>
<td>21.7</td>
<td>13,826</td>
</tr>
</tbody>
</table>

Table 3. Summary of runup analysis for Alternative 1.
Lunar tide at time of peak storm surge used to compute runup elevations.

The results of the run-up computations for Alternative 1 indicate that a significant portion of the Town’s shoreline is susceptible to overwash by the annual storm event, with most of the shoreline being overtopped by a 5-year event if the peak surge occurs near the time of normal high tide. Given the known history of overwash events, the results of the overwash analysis appear to provide a realistic representation of the existing overwash/flooding problem. As reported below, the same analysis was performed for Alternative 2 to determine the potential reduction in overwash that could be achieved by placing sand along the Kitty Hawk ocean shoreline.

2.1.3 Storm Erosion Threat

The SBEACH analysis of potential impacts to oceanfront structures during storms under Alternative 1 identified 122 structures with a tax value of $16.2 million that could be impacted by a storm similar to Hurricane Isabel. Note that 100 of the 122 structures deemed at-risk of storm damage are the same structures identified as potentially becoming imminently threatened by long-term erosion over the next 30 years. The potential damages that could be caused by long-term erosion and storms evaluated in this assessment are not cumulative.

Most of the structures at-risk of damage due to a storm similar to Hurricane Isabel could also suffer substantial damage by a less intense storm as the majority of the at-risk structures are situated east of NC 12 and reside on or near the active portion of the beach. An example of these at-risk structures is shown in the photo on Figure 3. Of the 122 structures at risk of storm damage, 110 are located along an 11,600-foot segment between Starfish Ln. and the north town limits.

Figure 3. Example of Kitty Hawk structures situated east of NC 12 that are at a high risk of damage due to storms.
2.2 Alternative #2: Authorization to Use Outer Continental Shelf Borrow Area (Preferred Alternative)

This alternative includes authorization by BOEM to access OCS resources in the borrow areas known as A and C for the extent of the lease agreement. The main placement area of the proposed local project for Kitty Hawk begins at in vicinity of the north town limit (baseline station 0+00) which is approximately 120 ft. north of the Kitty Hawk Pier located at the Hilton Garden Inn. The main placement area extends 18,900 ft. along the entire length of the Kitty Hawk ocean shoreline ending at approximately the Kitty Hawk/Kill Devil Hills town limits (baseline station 189+00). If the Kitty Hawk project is constructed as a stand-alone project, two approximately 1,000-foot taper sections would be included, one on the south end and the other on the north. The south taper would end near E. Helga Street in Kill Devil Hills, which is located at baseline station 199+00. The north taper would extend into the Town of Southern Shores, terminating near 8 Sea Bass Circle. Thus, the Kitty Hawk project would include a total of 20,900 ft. (3.96 mi.) of shoreline.

The Town of Kill Devil Hills is also seeking permits to allow the construction of a beach protection project along the northern 12,588 feet of the municipal shoreline. Consequently, there is a possibility both the Kitty Hawk and Kill Devil Hills projects could be constructed concurrently which would eliminate the need for the south taper section for the Kitty Hawk project.
Optional beach design templates were evaluated with the primary emphasis on reducing the incidences of overwash and flooding that impacts NC Highway 12 and the interior portions of the Town lying between NC Highway 12 and US Route 158. A discussion of the design template options considered is provided in Appendix B. Based on this evaluation, the preferred design template would consist of a 60 ft. wide berm at elevation +6 ft. NAVD88. A “starter dune” with a crest elevation of +14 feet NAVD88 and a total base width of around 11 to 12 feet would be provided landward of the constructed berm by pushing some of the material into a pile (Figure 5). Sand fencing would be provided on the starter dune to trap windblown sand.

The total fill volume will include the volume required to construct the design template, as well as five years of advanced nourishment. Advanced nourishment refers to an extra volume of material that is placed during initial construction for the purpose of maintaining the integrity of the project design for a period of time into the future; in this case five years. Based on the most recent (May 2015) surveys, the volume of material needed to construct the design template plus five years advanced nourishment total 1,175,000 cy. Actual dredged volume could vary, and be up to 20% higher than the fill volume, dependent upon the loss rate. Using a conservative estimate of 20% loss rate, the total dredged volume would be approximately 2,118,000 cubic yards.
2.2.1 Overwash Assessment

An assessment of the overwash potential following construction of a design template with a 60-foot wide berm at elevation +6 feet NAVD88 was made using the same input parameters and computational procedures used for both the 1-year and 5-year storm events described for Alternative 1. A comparison of the results obtained for both Alternative 1 and Alternative 2 given in terms of the length and percentage of the shoreline over-washed is provided in Table 4.

The construction of a 60-foot wide beach berm at elevation +6.0 feet NAVD88 has the potential to substantially reduce overwash along the Town of Kitty Hawk shoreline, particularly during the 1-year storm event. Should the peak of the 1-year storm occur during normal high tide, the nourishment project would reduce the length of shoreline overwashed from about 45% to only 12%, a 33% reduction. For the 5-year storm event, the 60-foot berm project could potentially reduce the length of shoreline overwashed by about 38% if the peak of the storm impacts the area during normal high tide.

Table 4. Comparison of overwash potential for Alternatives 1 and 2.

<table>
<thead>
<tr>
<th>Alternative</th>
<th>1-Year Storm Event</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length of Shoreline Overwashed (ft.)</td>
<td>Percent of Shoreline Overwashed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSL (1)</td>
<td>MHW (1)</td>
<td>MSL (1)</td>
</tr>
<tr>
<td>1-Abandon/Retreat (2)</td>
<td>2,467</td>
<td>8,488</td>
<td>13.0%</td>
</tr>
<tr>
<td>2-60-foot Berm</td>
<td>31</td>
<td>2,258</td>
<td>0.2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5-Year Storm Event</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSL (1)</td>
<td>MHW (1)</td>
</tr>
<tr>
<td>1-Abandon/Retreat (2)</td>
<td>13,826</td>
<td>18,095</td>
</tr>
<tr>
<td>2-60-foot Berm</td>
<td>3,844</td>
<td>10,930</td>
</tr>
</tbody>
</table>

(1)Lunar tide at time of peak storm surge used to compute runup elevations.
(2)Results also applicable for Alternative 3-No Action.

2.2.2 Borrow Area Design

To identify and characterize potential sand source material, CPE-NC used a systematic approach to marine sand searches developed by Finkl, Khalil and Andrews (1997), Finkl, Andrews and Benedet (2003), Finkl, Benedet and Andrews (2005), and Finkl and Khalil (2005). CPE-NC divided the investigation into three (3) sequential phases and were performed in coordination with BOEM. First, a comprehensive review of the recipient beach/project area and sediment resources offshore of the project area was conducted. Second, reconnaissance level geotechnical (jet probes) and geophysical (sub-bottom profiler, sidescan sonar, bathymetry, and magnetometer) surveys were performed. Third, design level geotechnical (vibracores) and geophysical (sub-bottom profiler, sidescan sonar, bathymetry, and magnetometer) investigations and borrow area design were completed. These investigations were conducted to evaluate the two target areas and ultimately delineate the Borrow Areas A and C. Design considerations for the proposed borrow area included:

- Construction of the project using both Hopper Dredge and Cutterhead Pipeline Dredges
- Location of sufficient sand to construct the three proposed beach nourishment projects for the Towns of Duck, Kitty Hawk, and Kill Devil Hills
- Beach compatible sand with similar mean grain size and sorting as the project beaches
- Avoidance of environmentally sensitive areas such as hard bottom, sea grass beds, etc.
- Avoidance of potentially significant cultural resources
- Avoidance of nearshore impacts due to wave refraction over borrow areas

These efforts lead to the development of the borrow area designs shown in Figure 6 and Figure 7. Proposed Borrow Area A is located on the Outer Continental Shelf between 5.0 and 6.5 miles offshore the Towns of Kill Devil Hills and Nags Head in water depths between 50 and 60 feet. Borrow Area A covers approximately 1,246 acres and contains approximately 17,350,000 cubic yards of sand. Borrow Area A is divided into six different design cuts, with cut depths ranging from -58.5 to -68.5 ft. The sediment compatibility analysis (discussed below in section 3.1.2 and 3.1.3) determined the offshore borrow material in Area A meets the compatibility requirements established by the North Carolina Coastal Resources Commission (CRC). The cultural resource surveys identified three targets within Borrow Area A; therefore, “cultural resource buffers (no work zones)” were developed around the targets and are incorporated into the design (Figure 6). Further details regarding the cultural resource surveys within Borrow Area A are provided in section 4.7.

Proposed Borrow Area C is located on the Outer Continental Shelf between 4.1 and 5.2 miles offshore the Town of Duck in water depths between 55 and 65 feet. The proposed borrow area covers 354 acres and contains approximately 2,049,000 cubic yards of sand. Borrow Area C is divided into five different cuts with cut depths ranging from -64.0 to -67.0 feet. A “no dredge zone was developed in the middle of Borrow Area C, where potentially unsuitable material exists. Additionally, “cultural resource buffers (no work zones)” associated with potentially significant cultural resources have been established and are included in the design (Figure 7). Further details regarding the cultural resource surveys within Borrow Area C are provided in section 4.7.

The estimated volume of dredgeable material within both borrow areas meets the engineering requirements for the Kitty Hawk design template plus dredging losses, which is estimated to be 2,218,000 cy. Additionally, Borrow Areas A and C contain sufficient amounts of compatible material to also supply to engineering requirements for the Duck and Kill Devil Hills projects (Table 5). The total dredging requirement to satisfy all three projects is estimated to be 4,825,200 cy.

Table 5. Total volume requirements for the Duck, Kitty Hawk, and Kill Devil Hills projects.

<table>
<thead>
<tr>
<th>Year</th>
<th>Town</th>
<th>Quantity Needed (CY) to be Placed on the Beach</th>
<th>Sand Source</th>
<th>Quantity Needed (CY) to be Dredged/Mined *including approximately 20% loss rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Duck</td>
<td>1,180,000</td>
<td>Borrow Area A (67%) and BA-C (33%)</td>
<td>1,416,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA-C Only</td>
<td>1,699,200</td>
</tr>
<tr>
<td>2016</td>
<td>Kitty Hawk</td>
<td>1,765,000</td>
<td>BA-A</td>
<td>2,118,000</td>
</tr>
<tr>
<td>2016</td>
<td>Kill Devil Hills</td>
<td>840,000</td>
<td>BA-A</td>
<td>1,008,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total OCS Sand Resources Extracted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total OCS Sand Resources Extracted (with BA-C Only Option for Duck)</td>
</tr>
</tbody>
</table>
The sediment compatibility analyses conducted for these projects (discussed in Section 3.1.2 and 3.1.3) determined the material in both offshore borrow areas meets the compatibility requirements established by the North Carolina Coastal Resources Commission (CRC). Results of the sand compatibility analyses are discussed further in sections 3.1.2 and 3.1.3.
Figure 6. Map of Borrow Area A, showing preliminary design cuts, locations of vibracores, and cultural resource buffers. Locations of other identified magnetic anomalies and side scan sonar anomalies deemed not culturally significant are also shown.
Figure 7. Map of Borrow Area C, showing preliminary design cuts, locations of vibracores, and cultural resource buffers. Locations of other identified magnetic anomalies and side scan sonar anomalies deemed not culturally significant are also shown.

Borrow Area C Volume = 2,049,000 C.Y.

Notes:
2. Color bathymetry surface is based on field data collected by CPE-NC between June 7-13, 2014 and October 21-29, 2014.

Legend:
- 2014 CPE-NC Vibracore
- Preliminary Investigation Area
- Cultural Resource Survey Boundary
- Proposed Design Cuts
- Depth in ft. (NAVD88)
- Cultural Resource Buffers (No Work Zone)
- No Dredge Zone

Figure 7. Map of Borrow Area C, showing preliminary design cuts, locations of vibracores, and cultural resource buffers. Locations of other identified magnetic anomalies and side scan sonar anomalies deemed not culturally significant are also shown.
2.2.3 Construction Methods

To obtain material from the borrow areas, the Town of Kitty Hawk proposes to use either an ocean-certified, self-contained hopper dredge with direct pump-out, a cutterhead suction dredge, or a combination of the two. The types utilized will depend on many factors, including competition in the bid process, pumping or haul distance, and depth and extent of dredging. The offshore borrow area locations are subject to the most severe wave climate along the entire east coast of the United States. Therefore, the potential for adverse sea conditions and construction schedule will be a major consideration in the selection of the dredging methods and equipment used.

2.2.3.1 Hopper Dredges

A hopper dredge is a self-propelled, maneuverable vessel that can independently load, transport and unload dredged material. The hopper dredge has a trailer suction pipe with a draghead that strips off layers of sediment and hydraulically suctions the material into the hopper. For the proposed project, material would be offloaded by direct pump-out through a submerged pipeline while the vessel is moored offshore. There are potential environmental impacts associated with using hopper dredges, such as entrainment of threatened and endangered species by the draghead and localized turbidity plumes at the draghead site and near the surface as the hoppers are filled. However, advances in design have included under hull release of overflow sediment and anti-turbidity valves, which help reduce sediment plumes (W.F. Baird and Associates, 2004). Efforts to mitigate the take of listed species include relocating trawling, both prior to and during project construction, and installation of turtle deflectors on dragheads. Additionally, the borrow areas have been designed to maximize efficiency and reduce entrainment risk through measures such as minimizing the number of turns and drag head “pick-ups” that would be required should a hopper dredge be used. Additional environmental considerations incorporated into the borrow area designs are discussed in section 7.1.1 pre-dredge and relocation trawling and inclusion of turtle deflectors on dragheads.

2.2.3.2 Cutter Suction Dredge

A cutter suction dredge is mounted on a barge, and is therefore not self-propelled and requires a tug for transport. During operation, the cutter suction dredge is anchored at one corner by a spud and then moves in an arc over the dredge area rotating around the spud. During dredging, material is hydraulically pumped up the suction pipe and discharged at a placement site or to a barge for transport to the placement site. Cutter suction dredges are limited by sea-state condition and do not perform well in areas of elevated sea states. Use of a cutterhead dredge is optimal when the fill location is within an economic pumping distance from the dredging location – typically less than 6 miles. Environmental effects include suspension of sediment around the cutterhead or turbidity plumes resulting from pipeline leaks. In instances where a spider barge and scow operation is employed, adverse environmental impacts can result from dredge overflow occurring during hydraulic offloading. Turbidity created by a cutter suction dredge is generally less than that of a trailing suction hopper dredge since sediment re-suspension is confined to near the substrate and around the cutterhead. Rather than direct pipeline conveyance, cutter suction operations may also utilize a spider barge/scow operations when conducting hydraulic...
offloading, which introduces the potential for dredge overflow. Environmentally conscious developments have involved design improvements to the cutter suction dredge that increase accuracy and reduce mechanical disturbance of the seabed (McLellan and Hopman, 2000).

2.2.3.3 Management of Material on the Beach

Once the material is discharged from the pipe onto the beach, onshore construction crews will shape the material into the desired construction template. The material is typically managed in a way that reduces turbidity by constructing shore parallel berms along which the water from the slurry will run, allowing additional time for material to settle out of suspension before the seawater returns to the ocean. Equipment such as bulldozers and front-end-loaders are typically used to shape sand on the beach and move pipes as necessary. At the location where the submerged pipeline comes ashore, the slurry flow is typically diverted with a 90-degree elbow to direct the flow towards the project area. As portions of the project are constructed, the pipeline is extended to allow for the next section of beach to be constructed.

2.2.3.4 Relocation Trawling

Should hopper dredges be utilized, the proposed project will employ relocation trawling as a means to reduce the potential for entrainment of protected species, such as sea turtles and Atlantic sturgeon. Relocation trawling has been employed in select USACE dredging projects since the 1980’s, and has proved to be a successful method for temporary displacement of sea turtles from a project area when hopper dredging was ongoing (Bargo et al., 2009).

The protocols and techniques of relocation trawling were researched and developed by the USACE, and have become a standard practice for reducing lethal sea turtle takes during dredging projects. Two types of trawls may be used during hopper dredging projects. Sea turtle abundance trawling is employed several days before commencement of dredging activity, and is used to determine the abundance of sea turtles in the area. Relocation trawling will be performed during active hopper dredging or in coordination with the NMFS. Essentially, this method employs a capture-relocation technique, and is targeted at the active dredging site within the borrow area. The distance covered by each tow may vary as dictated by large vessel traffic in the area, or by the size and configuration of the borrow site. A separate vessel, usually a shrimp trawler, deploys a trawling net ahead of the approaching dredge to remove sea turtles from the dredge’s path. Typically, trawlers tow two specially designed 60-ft trawl nets in the vicinity of the dredge on a 12 or 24 hour schedule. The position at the beginning of each tow is determined from GPS positioning equipment, and tow speed is recorded at the approximate midpoint of each tow. Water temperature measurements are also taken twice per day, and weather conditions (air temperature, wind velocity and direction, sea state, wave height, precipitation) are recorded by instrumentation and visual observations aboard the trawler. If relocation trawling is implemented, standard relocation trawling conditions will be observed as set forth by NMFS including specification for trawl time, handling, holding conditions, take and release, any tagging, etc.

2.2.3.5 Construction Schedule

The Town aims to complete the project in the shortest time practicable, during a safe operating period and with the least environmental impact possible. Weather and sea-state conditions play a
crucial role in the safety and efficiency of offshore dredging projects, particularly during the winter. The wave climate in the northern Outer Banks is reportedly among the most inclement on the U.S. eastern coast (Leffler et al., 1996). The Final Environmental Impact Statement (FEIS) written in association with the 2010 Nags Head Beach Nourishment project presents a detailed analysis of the local offshore wave climate, which is incorporated here by reference (USACE, 2010). In summary, data were obtained from the USACE Field Research Facility (FRF), located in Duck, NC and are considered representative of conditions offshore of Kitty Hawk. The USACE (2010a) analyzed a three-year record of wave heights between January 2003 and December 2005 collected by Waverider Buoy 630, located 2.4 miles offshore in 55 feet of water. Waves were predominately from the east, with the highest-energy waves originating from the northeast. The USACE reported that during the three-year period analyzed, there was an annual average of 59 weather events producing wave heights in excess of 1.6 meters and an average of 5.3 storm events producing wave heights greater than 3.4 meters. Two storm events, one of which was Hurricane Isabel, produced wave heights in excess of 7 meters.

Historical data also show the wave climate in the northern Outer Banks varies seasonally. Using a 21-year record of wave data area maintained by the USACE-FRF station, the USACE described:

“...average significant wave heights are greatest from September through April (3.4 – 3.9 ft.) and decrease from May through August (2.1 – 3.0 ft). Average wave periods remain consistent (~8–9 sec), with highest wave period being in September, coinciding with the peak of Atlantic hurricane season. Wave direction during the fall and winter is from the east-northeast, averaging between 70E and 80E from north, coinciding with larger waves produced from northeaster storms. During the spring and summer months, waves approach more from the east, averaging between 84E and 96E.”

The Nags Head EIS and feasibility study developed for the 2010-2011 Nags Head project suggest that, based on conditions encountered during two previous projects constructed in North Carolina, there is an inverse relationship between wave height and dredging efficiency when using a cutterhead pipeline dredge (Figure 8 and Figure 9) (USACE, 2000; USACE 2010a). Larger, steeper waves are frequently generated by wintertime storms, and adversely impact dredging operations by decreasing safety, increasing downtime and total project cost. In the Nags Head FEIS, dredging efficiency for Dare County was calculated based on two other dredging projects completed in North Carolina and was estimated to range from 81% in July to only 46% in February (USACE, 2000). A detailed analysis of dredging efficiencies is included in the Biological Assessment developed for the 2010 Nags Head Beach Nourishment project (USACE, 2010a, Appendix H) and is incorporated here by reference. Due to the aforementioned sea state conditions, dredging during the winter months using a pipeline cutterhead dredge (October to March) increases the risk to crews, equipment and reduces dredging efficiency. For example, during nourishment operations along Bogue Banks in 2002 and 2003, cutter head dredge production was low despite short pumping distances (< 1 mile). Long period swells (greater than 7 to 8 seconds) put substantial strain on the equipment made control of the cuts difficult, causing dredging operations to shut down. This, in turn can result in damaged equipment, a longer construction period and reduced production efficiency, and potentially prolonging environmental
impacts. Risks translate directly into costs whether the risks are related to safety, weather, financial, environmental or other factors.

Figure 8. Monthly average wave heights near Nags Head, NC for the period 1986 – 2006 (graph from USACE, 2010; source data courtesy USACE-FRF).
Hopper dredges are less affected by the adverse weather conditions of winter months than pipeline dredges. Pipeline dredges utilize a dredge ladder to support the cutterhead and intake pipe; this apparatus can be damaged during times of long period waves, which drive the ladder in and out of the cut during operations. Hopper dredges are less affected by ground swell because they do not insert a cutterhead into an underwater embankment; rather, they drag small suction heads across the bottom, leaving shallow cuts with each pass. For example, nourishment projects along Bogue Banks used both hopper dredges and a cutterhead to dredge an offshore borrow area during February and March. While cutterhead dredge efficiency was approximately 38%, the hopper dredges efficiencies were between 87 and 90%. The hopper dredges also had higher production rates, and lower percent down time due to weather (CSE, 2003).

The downtime associated with shutdown and redeployment represents the main factor contributing to inefficiency and the overall economics of the project. In a letter addressed to the Town of Nags Head, the Technical Director from the Dredging Contractors of America (DCA) stated that it would be extremely dangerous and expensive to conduct dredging operations during the winter months north of Oregon Inlet due to the high risk of dangerous wave and storm events and the associated potential for frequent shut-downs of dredging operations (CSE, 2007 – Attachment 6). The warmer months between April and September are relatively calm compared to the fall and winter months. This period also corresponds with recommended “environmental windows” during which time sand placement and hopper dredging is typically discouraged to avoid construction during periods of higher biological activity within coastal waters and beaches along the U.S. Atlantic coast. In North Carolina, it is generally recommended that sand placement and dredging projects occur from November 16 through April 30 to avoid peak sea
turtle activity in nesting and marine areas, and from September 1 through March 31 to avoid the peak shorebird nesting seasons.

In consideration of the information provided above, the Town proposes a year-round construction window, with a high likelihood that construction would occur during the calmer and safer winter months. A year-round construction window would provide the contractor the most flexibility and a safer, more economical work environment for offshore dredging activities in the northern Outer Banks. To allow for the greatest scheduling flexibility, no start and end date will be specified; rather, the construction schedule will be determined by the contractor and based on equipment availability and weather conditions. Based on estimated production rates, the Kitty Hawk project will likely require approximately 3.5 months. The Duck project will likely require approximately 3 months, and the Kill Devil Hills project will require approximately 2.5 months. Construction of the three projects could be independent or concurrent. The maximum time anticipated for completion of the three projects is 9 months; however, the contractor could utilize multiple pieces of equipment and construct the projects in parallel, leading to a minimum construction time of 3.5 months. These timeframes are based on the production rates for hopper dredges achieved during the 2010-2011 Nags Head project. The production rates have been adjusted to account for distances from the project areas to the identified borrow areas. All timeframes assume that material will be obtained from Area A; however, if Area C is used, the construction time for the Duck project may decrease.

2.3 Alternative #3: No Action Alternative

BOEM considers the following as an alternative to the proposed action:

Do Not Authorize Use of OCS Sands: Under this alternative, the Town of Kitty Hawk would not be authorized to access offshore sands in BAA or BAC. The project proponents could either:

(a) Re-evaluate the project to find a State-water sand source to restore the project placement location, or
(b) locate an onshore source of comparable high-quality sand, or
(c) no project completion

Option A would not minimize overall environmental effects because of the need to protect the shoreline associated with the project by either constructing new or augmenting existing protection mechanisms for the beaches. Option B is not considered to be viable as sources of approved onshore sand are limited. Additionally, even if a sufficient amount of high-quality sand is located onshore, Option B is likely to result in increased environmental disruption/effect from the onshore excavation of the source and overland transport. Option C would result in a continuation of beach loss. Portion of the Town Of Kitty Hawk beach has been eroding at rates of up to 6.5 feet/year, and recent storm events have only exacerbated the problem. Further loss of the island’s beach will put many structures at risk for storm damage (see Section 2.1.2).

The Town of Kitty Hawk does not have a formal shoreline management program. Most of the Town’s efforts are directed toward mitigating flooding caused by storms over washing the frontal dune. Under Alternative 3: No Action Alternative, the Town of Kitty Hawk would not take any action to protect the 122 structures that are presently threatened, or will become threatened, by long-term erosion and storm damages over the 30-year analysis period. Therefore,
all of the threatened structures would eventually be condemned and their tax value removed from the town’s tax base. The 122 structures are valued at about $16.2 Million, or 1.52% of the total tax base of the Town of Kitty Hawk. Overwash of NC 12 and the associated flooding of the interior portions of the town would continue to be a problem. These overwash events could render NC Highway 12 impassable for extended periods of time, carrying the potential for health issues depending, on the time of year the flooding persists.

3 ENVIRONMENTAL SETTING

3.1 Physical Environment

The Town of Kitty Hawk is located on the Outer Banks, a coastal barrier island system along the Atlantic coastline of northeastern North Carolina. Kitty Hawk is located at approximately at 36° 04’ N, 75° 42’ W with a maximum elevation of approximately 40 feet above sea level. The town is situated between Southern Shores at its northern boundary, Kill Devil Hills at its southern boundary and by the Albemarle Sound to the west. Kitty Hawk encompasses 8.2 sq. miles and is oriented in a north northwest/south southeast direction. The natural habitats follow a profile typical of a coastal barrier island system, transitioning from open ocean to island shoreline, dune, over-wash (mud flat), salt marsh and finally, marine sound. The Project Area is defined as the boundary of where direct effects will occur, and is inclusive of the area of nourishment along the shoreline (depicted in Figure 2) and the OCS borrow areas. Because it is not currently known whether a pipeline cutterhead dredge will be utilized, or the number of dredges needed, parameters such as pipeline corridors and number and location of pump-out locations cannot be determined at this time. These variables will be determined by the contractor. Nevertheless, it is acknowledged that these entities may be a part of the project, and this EA considers the potential impacts that may be associated with their implementation.

3.1.1 Geology and Geomorphology

The geomorphology of the North Carolina coastal environment can be geographically divided into northern and southern zones by the paleotopographic high referred to as the Cape Lookout High. The region north of Cape Lookout lies within a structural basin known as the Albermarle embayment, and consists of a 90 m thick Quaternary stratigraphic record (Mallinson et al., 2009). The northern zone has been shaped by multiple cycles of deposition and erosion related to global sea-level cycles during the Pleistocene epoch. Sea level rise during the present geological epoch (Holocene) has resulted in non-uniform deposition of coastal sediments over the eroded Pleistocene embayments. The modern North Carolina barrier island system is therefore superimposed upon multiple irregular, partially preserved and highly dissected geological strata and consists of sediments ranging from peat and mud to unconsolidated or semi-unconsolidated sands, gravel and shell beds.

The Northern Coastal Zone is characterized by a gentler land slope than the steeper Southern Coastal Zone, such that rising seas have produced longer barrier islands and the broad expanse of drowned river estuaries called the Albermarle-Pamlico estuarine system. These northern barrier islands project seaward to form Cape Hatteras and the Outer Banks, and are interspersed by five inlets. The coastal system can be further divided into four geomorphic compartments, known as
embayments, which are defined by capes and associated cape shoals (Riggs et al., 2008). The Hatteras compartment, bounded in the south by Cape Hatteras and the associated shore-perpendicular sand shoal called Diamond Shoals, is oriented northeast, and therefore takes the brunt of frequent nor’easters (Riggs et al., 2008).

The development of the slope and sandbars that characterize the beach and nearshore is highly influenced by this underlying geological framework (Riggs et al., McNinch, 2004). The influence of this framework is even greater in areas with limited sand supply, such as North Carolina, where sediments for beach development are derived from the erosion and transport of sediments from adjacent beaches or the inner continental shelf (Thieler et al., 2014).

The inner continental shelf of the Albemarle Embayment is characterized by abundant sediment deposition reflected in large shoal structures, as well as shoreface attached ridges and sorted bedforms (Thieler et al., 2013). Sorted bedforms are subtle, large-scale regions of coarse sand with gravel and shell hash that trend obliquely to the coast. These features are easily identifiable through sidescan sonar surveys of the seafloor. They tend to be fairly low in relief, generally at or below 1 m (Normandeau Associates Inc., 2014). In a 2014 study, Thieler et al. identified large-scale bedforms present over broad areas of the inner shelf within Raleigh Bay in the Outer Banks. The bedforms begin about 500 m to approximately 11 km off the coast, and span an area over 1000 km² between Cape Hatteras and Cape Lookout. These features, also called rippled scour depressions, consist of coarser sediment in the troughs and finer sediments in the ridges (Thieler et al., 2014).

The morphology in the region extending from False Cape, VA to Kitty Hawk, NC consists of shore-oblique ridges composed of Holocene sand, that are oriented to the north-northeast. These irregularly spaced ridges are up to 4 meters higher than the surrounding bathymetry (Thieler et al., 2014). The sea floor in the vicinity of Borrow Area C, located directly offshore of Duck, has been described as a large patchy veneer of fine-grained, Holocene sediment overlaying extensive deposits of ancient Pleistocene sediments exposed on the seafloor.

The portion of the Albemarle Embayment extending south from the Town of Kitty Hawk to Cape Hatteras is characterized by a pattern of large, sediment rich, shoal structures (Thieler et al., 2014). A shoal is a natural, underwater ridge, bank or bar consisting of sedimentary deposits, typically sand or gravel dominated, with bathymetric relief of 3 feet or greater and providing potentially important habitat. The term shoal complex refers to two or more shoals and adjacent morphologies, such as troughs, that are interconnected by past and or present sedimentary and hydrographic processes (Normandeau Associates Inc., 2014). Major shoal features in this area include Oregon shoal, Platt Shoals, Wimble Shoals, Kinnakeet Shoals, and Diamond shoals Figure 10. Borrow Area A also falls within this region, and is located in proximity of Oregon shoal – a triangular shaped shoal 15 km long and 3 km wide. This shoal spans approximately 34 km², and lies in 10 to 19 m water depth. This shoal merges with Oregon shoal in a series of large sand waves, and is covered with 1 to 1.5 m high sand waves with wavelengths of 400 m to 1,000 m.
A notable feature within the project area is a large paleo-fluvial valley system, Roanoke/Albemarle Valley, between the present day Town of Kitty Hawk and Oregon Inlet that influences local sea floor geomorphology as well as barrier island evolution. As many as four major branches of the Roanoke/Albemarle paleo-fluvial system intersect the shoreface offshore of Duck, Kitty Hawk, Kill Devil Hills, and Nags Head (Riggs et al., 1995). Bathymetric surveys of the nearshore between Kitty Hawk and Nags Head have identified several paleo channels > 500 m wide, and a 6 to 8 km wide paleo-channel at Kitty Hawk. Sea floor sediments in these paleo-channels are dominated by fluvial-rounded river gravels that outcrop in the shoreface. The presence of paleo channels infilled with both fine grained (silt and clay) and gravel material can be easily identified through seismic sub-bottom reflection profile surveys and sidescan sonar.
surveys performed during geotechnical and geophysical investigations of the borrow areas. Details and results of these surveys are presented in section 3.1.3

3.1.2 Native Beach Sand Quality and Composition

Regional sediment composition, sediment size and sediment shape are among the many variables affecting a coastline’s morphology. Barrier islands in the Outer Banks are primarily composed of unconsolidated fine- to medium-sized quartz and shell (calcium carbonate) material (McNinch, 2004).

Taking material from offshore and placing it onto the beach has the potential to alter the physical characteristics of the native beach. To minimize the risk of such alterations, projects are designed to use similar sediment with regards to sorting, mean grain size, and sediment composition. Furthermore, the North Carolina State Sediment Criteria Rule (15A NCAC 07H.0312) sets state standards for nourishment projects to prevent the disposal of incompatible material on the native beach. The rule sets forth the following requirements to ensure the sediment characteristics of material placed on the recipient beach are compatible with the native sediment:

- The average percentage by weight of fine-grained sediment (less than 0.0625 mm) in each borrow site shall not exceed the average percentage by weight of fine-grained sediment of the recipient beach characterization plus five (5) percent.
- The percentage by weight of granular (coarse-grained) sediment (greater than or equal to 2 mm and less than 4.76 mm) in each borrow site shall not exceed the average percentage by weight of granular sediment of the recipient beach characterization plus five (5) percent.
- The percentage by weight of gravel (greater than or equal to 4.76 mm) in a borrow site shall not exceed the average percentage by weight of gravel-sized sediment for the recipient beach characterization plus five (5) percent.
- The average percentage by weight of calcium carbonate in a borrow site shall not exceed the average percentage by weight of calcium carbonate of the recipient beach characterization plus 15 percent.

In keeping with the requirements set forth in the North Carolina State Sediment Criteria, CPE-NC performed shore-perpendicular topographic and bathymetric surveys of the native beach to determine the beach profile. Sediment characteristics were determined from samples taken along five generally evenly spaced profiles sampled in April 2015 and August 2015. The locations of the profiles surveyed by CPE-NC were based off a data set previously collected by the US Army Corps of Engineers, Wilmington District. Each profile was surveyed from a point no less than -25 ft. NAVD88. Of the profiles surveyed, characterization of the Kitty Hawk native beach was generated from samples collected along five generally evenly spaced profiles within the Kitty Hawk project area. As required by the State Sediment Criteria, samples were taken at 13 locations along each of the five sampling profiles. A summary of the characteristics of the native material derived from the two sampling operations are provided in Table 6.

3.1.3 Borrow Area Sand Quality and Composition

Because the sediment in these offshore areas is not part of the active littoral system, the sediment may differ from the beach in terms of size and composition. Using material for beach
nourishment that differs significantly from the recipient beach can alter the physical characteristics of the native beach, thereby affecting project performance and the natural and human environment. Taking material from offshore and placing it onto the beach has the potential to alter the physical characteristics of the native beach. To minimize the risk of such alterations, projects are designed to use similar sediment with regards to sorting, mean grain size, median grain size, and sediment composition. Furthermore, the North Carolina State Sediment Criteria Rule (15A NCAC 07H .0312) sets state standards for borrow material aimed at preventing the disposal of incompatible material on the native beach. The rule limits the amount of material by weight in a borrow area with a diameter equal to or greater than 4.76 mm and less than 76 mm (gravel), between 4.76 mm and 2.0 mm (granular), and less than 0.0625 mm (fines) to no more than 5% above that which exists on the native beach. Additionally, the rule requires the proportion of calcium carbonate in borrowed material not to exceed 15% above that of the native beach. Preliminary analysis of sediment characteristics suggest that the material within borrow areas A and C meets or exceeds the State Sediment Criteria for the Kitty Hawk native beach, per the State Sediment Criteria (Table 6).

Table 6. Preliminary results of sediment characteristics of the material within the Kitty Hawk native beach as well as material contained within Borrow Areas A and C. The standard allowances set forth by the State Sediment Criteria are also provided.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Kitty Hawk Native Beach</th>
<th>Allowable Limits</th>
<th>Borrow Area A</th>
<th>Borrow Area C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet/Dry Munsell Color</td>
<td>5/7</td>
<td>n/a</td>
<td>5/6</td>
<td>5/6</td>
</tr>
<tr>
<td>Mean Grain Size (mm)</td>
<td>0.38</td>
<td>n/a</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>Sorting (Phi)</td>
<td>1.41</td>
<td>n/a</td>
<td>0.90</td>
<td>1.09</td>
</tr>
<tr>
<td>Fines (%)</td>
<td>0.94</td>
<td>5.94</td>
<td>0.83</td>
<td>1.36</td>
</tr>
<tr>
<td>Granular (%)</td>
<td>6.38</td>
<td>11.38</td>
<td>1.48</td>
<td>2.21</td>
</tr>
<tr>
<td>Gravel (%)</td>
<td>1.64</td>
<td>6.64</td>
<td>0.52</td>
<td>1.09</td>
</tr>
<tr>
<td>Carbonate</td>
<td>2.0</td>
<td>17.0</td>
<td>1.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

The composite data presented in Table 6 represents the material mapped within the horizontal and vertical limits of the designed borrow areas. Based on signatures of known substrate, the bottom material across the borrow areas is predominately unconsolidated fine to medium grained sand overlaying unconsolidated and semi-consolidated silty-sand and sandy-silty clays. The sand deposits form large, high relief sand shoals superimposed with smaller scale sand waves (refer to the Geotechnical and Geophysical Investigation Report, Appendix F). The borrow areas contain coarser grained sediment grading into finer grained sediments with depth, and percent fines increase with depth as well. Therefore, excavation of the borrow area using a hopper dredge, which typically excavates shallow layers of sand from the upper portion of a sand deposit, may result in the placement of sand with a mean grain size coarser than the composites listed in Table 6. Conversely, the use of a cutterhead suction dredge, which typically dredges deeper deposits within a defined sand deposit than a hopper dredge, would result in the placement of sand with a mean grain size comparable to the composite listed in Table 6. An important consideration is that a turtle deflector installed in the draghead requires a certain amount of ‘overdepth’ dredging, in
order accommodate effective plowing of the draghead. Therefore, to ensure only compatible material is obtained from the borrow area, a two-foot buffer has been incorporated into the borrow area design, such that two-feet of compatible material exists below each of the design cut depths presented in Figure 6 and Figure 7. This will ensure that a drag head equipped with a turtle deflector on a hopper dredge, or the rotating cutter head on a pipeline dredge, will have enough clearance to operate effectively.

Along with ensuring compatibility of the sand characteristics, the State Sediment Criteria also require quantification of clasts (rocks and shell) greater than 3-inches in diameter present on the native beach. As such, scientists conducted a pre-construction survey to determine the background levels of clasts greater than 3-inches that exist on the Kitty Hawk native beach. Per the State Sediment Criteria, the number of 3-inch clasts were quantified within a 50,000 sq. ft section of the Kitty Hawk native beach; results identified 403 clasts greater than 3-inches within the survey area. The criteria stipulates that borrow area material greater than 3-inches in diameter that is placed in the project area is considered incompatible if it is more than twice the background level that existed on the native beach before the project began.

A recent nourishment project completed in North Topsail Beach, North Carolina resulted in a higher concentrations of limestone clasts being placed on the beach from an offshore borrow area than anticipated. As a result, a major concern among permitting and environmental agencies is the potential for other projects utilizing offshore borrow material for beach nourishment to result in high concentrations of rocky material being deposited onto the beach. As described above, the regional coastal geomorphology north of Cape Lookout is quite different than that of Onslow Bay. The inner continental shelf in this region is characterized by abundant sediment deposition reflected in large shoal structures and shoreface attached ridges as well as sediment poor portions of sorted bedform outcrop (Thieler et al., 2014). The underlying geologic framework of the offshore area in the Albemarle Embayment Outer Continental Shelf (OCS) is a depositional basin characterized by a Quaternary sequence (Riggs et al. 1994). The Dare County project is not expected to result in rocky material being placed on the beach for a number of reasons. First, vibracore data collected during the geophysical and geotechnical investigations of the borrow areas A and C show a very low occurrence of rock fragments between both borrow areas. Of the 72 vibracores taken within the two borrow areas, only 5 (6.9%) of these cores contained one isolated rock fragment each. Specifically, in borrow area A, there were 3 individual rock fragments ranging in size from 0.75” to 1.25”. In area C, there were 2 individual rock fragments ranging in size from 0.25” to 1.5”. These isolated occurrences of small rock suggest the borrow material does not contain large amounts of material greater than 3-inches and will likely meet state sediment criteria standards when placed on the beach.

The paucity of rock observed within the outer banks borrow area vibracores is telling of the marked differences in the inner continental shelf geology off the Outer Banks versus that within Onslow Bay, where the North Topsail Beach borrow area is located. The continental shelf in Onslow Bay is considered sediment starved, and is characterized by a complex sequence of rocky outcrops and a thin veneer of Holocene sand. By contrast, as discussed previously in section 3.1.1, the areas in which proposed borrow areas A and C are located are characterized by large shoals and sand ridges. Rocky material can be found in paleo-channels, such as the Roanoke/Albemarle paleo-fluvial valley system. The seismic surveys conducted for development
of borrow areas A and C did determine the presence of some paleo-channels within the survey area. However, these areas were avoided in borrow area design as vibracores showed that the channel fill material was not beach compatible. Furthermore, the 30-m spacing between each swath of the seismic surveys should provide adequate coverage to prevent missing any paleo-channels present within the borrow areas.

Archival literature studies regarding the geological setting of the project area were conducted as part of the geotechnical and geophysical surveys for the proposed project. These studies found no indication that hardbottom habitats are present within, or in the vicinity of, the borrow areas. Additionally, previous geotechnical and geophysical investigations have not indicated the presence of hardbottoms in the area. Namely, as part of the development of the Environmental Impact Statement on Hurricane Protection and Beach Erosion Control for Dare County Beaches, (USACE, 2000), the USACE completed extensive surveys for potential offshore sand resources, including approximately 535 miles of high resolution seismic reflection and CHIRP sonar profiles followed by over 200 vibracores offshore Dare County. Finally, analysis of the sidescan sonar data acquired by CPE-NC for the present project indicated no presence of hardbottom habitats, consolidated rock outcrops within or in the vicinity of the borrow areas.

3.2 Littoral Processes

Kitty Hawk is subject to littoral processes typical of the barrier islands that line the North Carolina coast, referred to as the Outer Banks. The islands are subject to winds, rising sea levels, and strong storms that gradually push sand from the ocean side of the islands to the land side. The Project Area includes the intertidal and subtidal unconsolidated bottoms, as well as the offshore sand shoals within the borrow areas. Coastal salinity is maintained at approximately 35 ppt. year round and water temperatures range from 49ºF in January to 80ºF in August. This coastline experiences semi-diurnal tides with an average tidal range of approximately 3 ft. Net water movement is from north to the south via a longshore current that veers toward the southeast in the summer and toward the southwest in the winter (Inman and Dolan, 1989).

3.2.1 Waves

The predominant wave direction is from the south to southeast in the spring and summer and from the north to northeast in the fall and winter. Annually, the wave heights typically range from 1.6 to 4.9 ft., with a mean wave height of about 3.3 ft. (USACE, 2006). Highest waves are generally associated with tropical storms and may occur in phase with hurricane surges. According to the USACE (2006), this area can experience waves in excess of 15 ft. during tropical storms, although they occur sporadically. Figure 11 presents a wave rose from Wave Information System (WIS) station 63221 located offshore of Duck in 17m depth. Examination of hindcast data shows the majority of waves higher than 0.5 m come from the northeast and the east northeast.
3.2.2 Storms

Although not available for Kitty Hawk, historical storm data for nearby Elizabeth City (approximately 50 miles northwest of Kitty Hawk) show the area is brushed or hit by a tropical system every 2.37 years. This area is directly hit by a hurricane (experiences hurricane force winds for at least a few hours) once every 14.2 years, and is most likely to be hit in late August to early September. In the past 142 years, Elizabeth City was hit by a tropical system 60 times. Of these storms, 39 (65%) were tropical storms and 21 (35%) were hurricanes (hurricanecity.com, 2014). Nor’easters, or strong areas of low pressure that tend to form off the east coast, tend to influence the coastline of the Outer Banks more frequently than hurricanes and tropical storms. Nor’easters can cause severe coastal flooding, coastal erosion, hurricane force winds or blizzard conditions; these conditions are usually accompanied with very heavy rain or snow, depending on when the storm occurs.
3.2.3 Erosion

Coastal erosion is the wearing away of land or the removal of beach and dune sediments by wave action, tidal currents, wave currents or drainage. Waves generated by storms, wind or even fast-moving motor craft traveling close to shore contribute to coastal erosion. Erosion may take the form of long-term losses of sediment and rocks or merely the temporary redistribution of coastal sediments. In other words, erosion in one location may result in a larger beach nearby, as the sand is veritably "moved" from one stretch of beach to another.

Despite constant forces moving the sand, the barrier islands continue to exist in a state of dynamic equilibrium, fed by sediment from inland rivers like the Cape Fear, Neuse, Roanoke and Tar. These rivers flow out toward the sea, carrying sediment that replenishes barrier island sand and water that maintains inlets. It's an ecological system kept in balance by a complicated assortment of forces. That balance is further complicated when people are factored into the equation.

3.2.4 Sea Level Rise

According to the International Panel on Climate Change (IPCC) (2013), the long-term global mean sea level trend estimate from 1901 to 2010 is 1.7 mm/year, for a total sea level rise of 0.19 m. The latest IPCC report states that global mean sea level will continue to rise during the 21st century, and climate models predict that rates of sea level rise will increase due to increased ocean warming and melting glaciers and ice sheets (IPCC, 2013). Therefore, the impacts of changing sea levels to coastal and estuarine zones must be considered in Civil Works programs.

On October 1, 2011, the USACE distributed an Engineering Circular (EC) setting parameters for the inclusion of the effects of projected sea level rise for all phases of USACE coastal projects. This consideration includes the planning, engineering, design, construction, operation and maintenance phases (EC 1165-2-212). Because projects are implemented at a local or regional scale, it is important to distinguish between global mean sea level (GMSL) and local mean sea level (MSL). According to the USACE (1996), global mean sea level (GMSL) change is defined as a global change of oceanic water level. Local mean sea level (MSL) changes result from the collective effects of GMSL and regional changes, such as local land elevation changes. Local mean sea level trends can be estimated using historical tidal gauge records. The National Oceanographic and Atmospheric Administration (NOAA) has maintained a tide observation station at Duck, North Carolina called Tide Station 8651370 since 1977, which is the closest to the Kitty Hawk project area (NOAA, 2013). This station presently is in working order and continues to collect tide data. The mean sea level trend indicated by this station is estimated at 4.57 mm/year, based on monthly mean tidal data recorded by Tide Station 8651370 from 1978 to 2011 (NOAA, 2013). This tide station is located less than 6 miles to the north of the northern limit of the Kitty Hawk project, and is therefore considered representative of conditions of this area.
4 AFFECTED ENVIRONMENT

4.1 Water Quality

The waters of the Atlantic Ocean contiguous to that portion of Pasquotank River Basin that extends from the North Carolina-Virginia State Line to the northeast tip of Ocracoke Island are classified as SB by the North Carolina Department of Environment and Natural Resources, Division of Water Resources. Class SB waters are tidal salt waters protected for all SC uses in addition to primary recreation. Primary recreational activities include swimming, skin diving, water skiing and similar uses involving human body contact with water where such activities take place in an organized manner or on a frequent basis. Class SC waters are all tidal salt waters protected for secondary recreation such as fishing, boating and other activities involving minimal skin contact; fish and noncommercial shellfish consumption; aquatic life propagation and survival; and wildlife.

The North Carolina Department of Natural Resources (NCDENR) Division of Marine Fisheries maintains water quality sampling sites throughout the state. One station near the project area, labeled N12, is located near the intersection of SR 1206 and N Virginia Dare Trail in Kitty Hawk. This station currently indicates good water quality levels, with enterococci levels within the EPA standards for swimming.

Water quality can be measured by a number of different methods that quantify re-suspended sediments and the related effects of turbidity, light attenuation and water chemistry. Turbidity, expressed in Nephelometric Turbidity Units (NTU), quantitatively measures the clarity of water, taking into account the scattering and absorption of light by suspended particles. The two reported major sources of turbidity in coastal areas are very fine organic particulate matter and sand sized sediments that are re-suspended around the seabed by local waves and currents (Dompe, 1993). Total Suspended Solids (TSS) are solids that are present anywhere in the water column. TSS can include a wide variety of material, such as silt, decaying plant and animal matter, industrial wastes and sewage. Currently, there are no standards associated with TSS in North Carolina.

The inshore zone along Kitty Hawk has free circulation of oceanic waters with little direct input of fine-grained material from inlets or estuaries. The surf zone is devoid of fines because of relatively high wave-energy characteristics of the beach environment. The combination of low amounts of fine-grained sediments and frequent, high-wave energy off the Kitty Hawk coast tends to inhibit the accumulation of silts and clays. Low concentrations of fine-grained material tend to minimize the potential for pollutants to adsorb on particles and become concentrated within the proposed project area.

4.2 Air Quality

Ambient air quality standards are based on six common pollutants: particulate matter less than 2.5 m (PM-2.5); particulate matter 2.5 to 10 m (PM-10); carbon monoxide (CO); ozone (O3); sulfur dioxide (SO2); nitrogen dioxide (NO2); and lead (Pb). According to the EPA, the air quality indices at the closest monitoring stations (Wilmington and Elizabeth City) contain air quality well within the State and National Ambient Air Quality Standards. Also according to the
EPA, a geographic area that meets or is within the national ambient air quality standard is deemed an “attainment area”; an area that doesn't meet this standard is called a nonattainment area Dare County as a whole is designated as an attainment area (USEPA, 2014).

4.3 Noise

Noise levels in the proposed project area are relatively low. No commercial or industrial activities exists within the proposed project area, the residential nature of the shoreline in Kitty Hawk generally equates to low ambient noise. Increases of the ambient noise levels in Kitty Hawk tend to originate from public use, such as recreational activity and traffic along Virginia Dare Trail. Natural noise levels, such as wind and pounding surf, vary and decibel levels can increase during storm events.

Ambient sound levels within coastal waters can vary seasonally and temporally, and are associated with shipping and industrial sounds, wind-and-wave induced sound, and biologically produced sound (Richardson et al., 1995). Reine et al. (2014) characterized ambient sound levels at an offshore borrow area to be quite high; sound pressure levels (SPLs) averaged 117 dB re 1µPa at the upper listening depths (3 m water depth) and 114.9 dB re 1µPa at the lower listening depth (9 m water depth). Overall average SPL at the offshore borrow area was 116.1 re 1µPa.

4.4 Natural Setting

Natural habitats found within the Project Area include dry beaches, dunes and foredunes. Additional natural habitats that are designated as Essential Fish Habitat are discussed in section 4.5 below.

4.4.1 Beach and Dune

Dunes are vegetated mounds of unconsolidated sediments that lie landward of the active beach. Dune formation occurs when winds carrying beach sediments encounter resistance from vegetation, thereby causing the wind to deposit this material. Typically, dunes are comprised of finer sands, while those in the berm and beach face are coarser (Rogers and Nash, 2003). Dunes are dynamic geologic features that continually accrete and erode from factors such as seasonal fluctuations in wave height and storm activity (Rogers and Nash, 2003). Dune vegetation is essential to maintaining dune structure, and generally consists of hearty plants tolerant of extreme conditions such as sea oats, beach elder, and beach grasses. Dune vegetation typical along the uppermost dry beach of Kitty Hawk includes beach spurge (Euphorbia polygonifolia), sea rocket (Cakile edentula) and pennywort (Hydrocotyle bonariensis). The foredune includes American beach grass (Ammophila breviligulata), bitter panicum (Panicum amarum), sea oats (Uniola paniculata), broom straw (Andropogon virginicus), seashore elder (Iva imbricata) and saltmeadow cordgrass (Spartina patens) (USACE, 2000) (Figure 12). Beach vitex (Vitex rotundifolia) is an invasive species that is also commonly found among the dune community. The beach and dune community within the Permit Area is limited in extent due to development and a coastline that is receding due to storm events and beach erosion (Leatherman et al., 2000) (Figure 13).
Beaches are formed from the deposition and accumulation of material by way of coastal currents and wave transport. Beaches are constantly evolving and often experience periods of erosion during winter by way of rough seas and strong winds. During the calmer spring and summer months, the beach often experiences accretion. The intertidal zone or wet beach is the area that is cyclically exposed due to tidal exchange. These habitats are comprised mainly of sandy bottoms that support many benthic and infaunal organisms, and as provide foraging areas for birds and finfish. The dry beach begins at the berm and slopes gently upwards to the foot of the dune, and provides habitat for roosting birds and invertebrates such as the ghost crab (*Ocypode quadrata*).
The exposed environment of North Carolina sandy beaches leads to low diversity, but high abundance of organisms that can survive in the high-energy environment.

4.5 Essential Fish Habitat

4.5.1 Fishery Management

The Magnuson-Stevens Fishery Conservation and Management Act (MSFCMA) of 1976, amended on October 1996 and also referred to as the Sustainable Fisheries Act, was enacted by the U.S. Congress to protect marine fish stocks and their habitat, prevent overfishing while achieving optimal yield and minimize bycatch to the extent practicable. Congress defined Essential Fish Habitat (EFH) as “those waters and substrate necessary to fish for spawning, breeding, feeding or growth to maturity”. The MSFCMA requires that EFH be identified for all fish species federally managed by the Fishery Management Councils (FMC) and the National Marine Fisheries Service (NMFS).

Eight FMC were established under the MSFCMA to manage living marine resources within federal waters and are required to describe and identify EFH designations in their respective regions. Each of these councils is responsible for developing Fishery Management Plans (FMP) to achieve specified management goals for fisheries. The FMP includes data, guidelines for harvest, analyses and management measures for a fishery. Each FMP must describe the affected fishery, analyze the condition of the fishery, and describe and identify relevant EFH.

In close coordination, both the South Atlantic Fisheries Management Council (SAFMC) and the Mid-Atlantic Fisheries Management Council (MAFMC) manage marine fisheries in the federal waters off the North Carolina coast. Federal water limits off the North Carolina coast extend from 3 nautical miles to 200 nautical miles. In addition, the Atlantic States Marine Fisheries Commission (ASMFC) manages fisheries in the state waters of all 15 Atlantic coast states from Maine to Florida. The ASMFC manages fish stocks within the state waters of North Carolina from the coastline to three nautical miles offshore.

The SAFMC is responsible for the conservation and management of fish stocks within the federal 200-mile limit of the Atlantic off the coasts of North Carolina, South Carolina, Georgia and east Florida to Key West. The seven states that comprise the MAFMC are New York, New Jersey, Pennsylvania, Delaware, Maryland, Virginia and North Carolina (North Carolina is also on the South Atlantic Council). The MAFMC also works with the ASMFC to manage summer flounder, scup, black sea bass, bluefish and spiny dogfish. The SAFMC broadly defines EFH habitats for all of its managed fisheries in a generic management plan amendment that contains life stage based EFH information for each of the federally managed species. The SAFMC currently manages eight fisheries that include coastal migratory pelagics, coral and live bottom habitat, dolphin and wahoo, golden crab, shrimp, snapper grouper, spiny lobster and Sargassum. Of these eight fisheries, only the snapper grouper complex contains species that are considered overfished. Both the recreational and commercial snapper grouper fisheries are highly regulated and progress continues to be made as more species are removed from the overfished list each year. The other fisheries are expected to continue into the future at productive sustainable levels (SAFMC, 2014).
The MAFMC is responsible for the conservation and management of fish stocks in the federal waters off the coasts of New York, New Jersey, Pennsylvania, Delaware, Maryland, Virginia and North Carolina. They have prepared multiple FMPs with amendments to identify EFH for each life stage (eggs, larvae, juvenile and adults) of its managed fisheries (Table 7). The MAFMC identifies several broad areas designated as EFH in estuarine and marine environments. The six FMPs developed by the council are the golden tilefish; summer flounder, scup, black sea bass; dogfish; surfclam and ocean quahog; Atlantic mackerel, squid, and butterfish; and bluefish (MAFMC, 2014).

NMFS has also prepared multiple FMPs with amendments to identify EFH within its authority. Four fisheries (billfish, swordfish, tuna and sharks) are managed under the FMPs of NMFS and are classified as Highly Migratory Species (HMS). NMFS geographically defines EFH for each HMS along the Atlantic coast. The defined EFH areas are species-specific and include shallow coastal waters, offshore waters inside the exclusive economic zone (EEZ), offshore waters outside the EEZ and inshore waters along the Atlantic coast (NMFS, 2010).

The North Carolina Marine Fisheries Commission (NCMFC) manages commercially and recreationally significant species of fisheries found in state marine or estuarine environments. The NCMFC designates Primary Nursery Areas (PNA) that are included as EFH by the SAFMC.
Table 7. EFH for managed species within coastal North Carolina. Not all species within a management unit have EFH designated; such species have ‘none’ within the life stages column.

<table>
<thead>
<tr>
<th>Management Agency</th>
<th>Management Plan Species group</th>
<th>Common name</th>
<th>Scientific name</th>
<th>EFH life stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFMC</td>
<td>Calico Scallop</td>
<td>Calico scallop</td>
<td>Argopecten gibbus</td>
<td>A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Coastal Migratory Pelagics</td>
<td>Cobia</td>
<td>Rachycentron canadum</td>
<td>E L P J A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Dolphin</td>
<td>Dolphin</td>
<td>Coryphaena hippurus</td>
<td>L P J A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>King mackerel</td>
<td>Scomberomorus cavalla</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Spanish mackerel</td>
<td>Scomberomorus maculatus</td>
<td>L J A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Coral & Coral Reef</td>
<td>Coral & Coral Reef</td>
<td>100s of species</td>
<td>Florida only</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Golden Crab</td>
<td>Golden crab</td>
<td>Chaceon fenneri</td>
<td>A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Red Drum</td>
<td>Red drum</td>
<td>Sciaenops ocellatus</td>
<td>E L A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Shrimp</td>
<td>Brown shrimp</td>
<td>Farfantepeneae aztecutis</td>
<td>E L A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Shrimp</td>
<td>Pink shrimp</td>
<td>Farfantepeneae duorarum</td>
<td>E L A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Shrimp</td>
<td>Rock shrimp</td>
<td>Sicyonia brevirostris</td>
<td>A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Shrimp</td>
<td>Royal red shrimp</td>
<td>Fisticus robustus</td>
<td>A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Shrimp</td>
<td>White shrimp</td>
<td>Lilopena setiferis</td>
<td>E L A</td>
</tr>
<tr>
<td>SAFMC</td>
<td>Blackfin snapper</td>
<td>Lutjanus buccanella</td>
<td>J, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Blueline tilefish</td>
<td>Caulolatilus microps</td>
<td>E, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Golden tilefish</td>
<td>Lopholatilus chamaeleonticeps</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Gray snapper</td>
<td>Lutjanus griseus</td>
<td>L, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Greater amberjack</td>
<td>Seriola dumerili</td>
<td>J, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Jewfish</td>
<td>Epinephelus itajara</td>
<td>Florida only</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Mutton snapper</td>
<td>Lutjanus analis</td>
<td>Florida only</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Red porgy</td>
<td>Pagrus pagrus</td>
<td>E L J A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Red snapper</td>
<td>Lutjanus campechanus</td>
<td>L, P, J, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Scamp</td>
<td>Mycteroperca phenax</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Silk snapper</td>
<td>Lutjanus vivanus</td>
<td>J, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Snowy grouper</td>
<td>Epinephelus niveatus</td>
<td>E L A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Speckled hind</td>
<td>Epinephelus drummondhavi</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Vermillion snapper</td>
<td>Rhomboptilus aurorubens</td>
<td>J, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Warsaw grouper</td>
<td>Epinephelus nigritus</td>
<td>E A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>White grunt</td>
<td>Haemulon plumieri</td>
<td>E, L, A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Wreckfish</td>
<td>Polyprion americanus</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Yellowedge grouper</td>
<td>Epinephelus flavolimbus</td>
<td>E L A</td>
<td></td>
</tr>
<tr>
<td>SAFMC</td>
<td>Spiny Lobster</td>
<td>Spiny Lobster</td>
<td>Panulirus argus</td>
<td>L J A</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Atlantic mackerel, Squid,</td>
<td>Atlantic mackerel</td>
<td>Scomber scombris</td>
<td>None</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Butterfish</td>
<td>Long finned squid</td>
<td>Loligo pealei</td>
<td>None</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Short finned squid</td>
<td>Illex illecebrosus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>MAFMC</td>
<td>Atlantic Surfclam & Ocean Quahog</td>
<td>Ocean quahog</td>
<td>Artica islandica</td>
<td>None</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Quahog</td>
<td>Surfclam</td>
<td>Spisula solidissima</td>
<td>None</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Bluefish</td>
<td>Bluefish</td>
<td>Pomatomus saltatrix</td>
<td>L J A</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Spiny Dogfish</td>
<td>Spiny dogfish</td>
<td>Squalus acantius</td>
<td>J A</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Summer Flounder, Scup, Black Sea Bass</td>
<td>Black sea bass</td>
<td>Centropristis striata</td>
<td>E L J A</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Scup</td>
<td>Scup</td>
<td>Stenotomus chrysops</td>
<td>E L J A</td>
</tr>
<tr>
<td>MAFMC</td>
<td>Summer flounder</td>
<td>Paralichthys dentatus</td>
<td>L J A</td>
<td></td>
</tr>
</tbody>
</table>

COASTAL PLANNING & ENGINEERING OF NORTH CAROLINA, INC.
<table>
<thead>
<tr>
<th>Management Agency</th>
<th>Management Plan Species group</th>
<th>Common name</th>
<th>Scientific name</th>
<th>EFH life stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMFS</td>
<td>Blue marlin</td>
<td>Makaira nigricans</td>
<td>E L J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Longbill spearfish</td>
<td>Tetrapturus pfluegei</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Sailfish</td>
<td>Istiophorus platypterus</td>
<td>E L J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>White marlin</td>
<td>Tetrapturus albidus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Atlantic angel shark</td>
<td>Squatina dumeril</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Atlantic sharpnose shark</td>
<td>Rhizoprionodon terraenovae</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Basking shark</td>
<td>Cetorhinus maximus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Big nose shark</td>
<td>Carcharhinus altimus</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Bigeye sand tiger shark</td>
<td>Odontaspis noronhai</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Bigeye sixgill shark</td>
<td>Hexanchus vitulus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Bigeye thresher shark</td>
<td>Alopias superciliosus</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Blacknose shark</td>
<td>Carcharhinus acronotus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Blacktip shark</td>
<td>Carcharhinus limbatus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Blue shark</td>
<td>Prionace glauca</td>
<td>J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Bonnethead</td>
<td>Sphyra tiburo</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Bull shark</td>
<td>Carcharhinus leucas</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Carribean reef shark</td>
<td>Carcharhinus perezi</td>
<td>Research Area</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Carribean sharpnose shark</td>
<td>Rhizoprionodon porosus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Dusky shark</td>
<td>Carcharhinus obscurus</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Finetooth shark</td>
<td>Carcharhinus isodon</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Galapagos shark</td>
<td>Carcharhinus galapagensis</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Great hammerhead</td>
<td>Sphyra mokarran</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Lemon shark</td>
<td>Negaprion brevirostris</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Longfin mako shark</td>
<td>Isurus paucus</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Narrowtooth shark</td>
<td>Carcharhinus brachyurus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Night shark</td>
<td>Carcharhinus signatus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Nurse shark</td>
<td>Gymnothorax cirratus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Oceanic whitetip shark</td>
<td>Carcharhinus longimanus</td>
<td>J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Porbeagle shark</td>
<td>Lamna nasus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Sand tiger shark</td>
<td>Odontaspis taurus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Sandbar shark</td>
<td>Carcharhinus plumbeus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Scalloped hammerhead</td>
<td>Sphyra lewini</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Sharpnose sevengill shark</td>
<td>Hexanchias perlo</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Shortfin mako shark</td>
<td>Isurus oxyrinchus</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Silky shark</td>
<td>Carcharhinus falciformis</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Sixgill shark</td>
<td>Hexanchus griseus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Smalltail shark</td>
<td>Carcharhinus porosus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Smooth hammerhead</td>
<td>Sphyra zygaena</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Spinner shark</td>
<td>Carcharhinus brevipinna</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Thresher shark, common</td>
<td>Alopias vulpinus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Tiger shark</td>
<td>Galeocerdo cuvieri</td>
<td>J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Whale shark</td>
<td>Rhincodon typus</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>White shark</td>
<td>Carcharodon carcharias</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Swordfish</td>
<td>Xiphias gladius</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Albacore</td>
<td>Thunnus alalunga</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Atlantic bigeye tuna</td>
<td>Thunnus obesus</td>
<td>J A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Atlantic yellowfin tuna</td>
<td>Thunnus albacares</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Skipjack tuna</td>
<td>Katasevitus pelamis</td>
<td>E L J S A</td>
<td></td>
</tr>
<tr>
<td>NMFS</td>
<td>Western Atlantic bluefin tuna</td>
<td>Thunnus thynius</td>
<td>E L J S A</td>
<td></td>
</tr>
</tbody>
</table>

1. These Essential Fish Habitat species were compiled from *Essential Fish Habitat: A Marine Fish Habitat Conservation Mandate for Federal Agencies*, February 1999 (Revised 10/2001) (Appendices 2, 3, 6, 7, and 8). Although 49 species are listed in Appendix 3 under National Marine Fisheries Service management, only 35 of these species have EFH listed in Appendix 8.
2. Life stages include: E = Eggs, L = Larvae, P = PostLarvae, J = Juveniles, S = SubAdults, A = Adults
3. Organizations responsible for Fishery Management Plans include: SAFMC (South Atlantic Fishery Management Council); MAFMC (Mid-Atlantic Fishery Management Council; NMFS = National Marine Fisheries Service)
4.5.2 Habitats Designated as EFH

Aside from the life-stage based EFH defined for managed fish species, the SAFMC and MAFMC have designated several habitats as EFH, listed in Table 8. Of those habitats listed, only the marine water column is found within the Project Area. The marine water column will be temporarily affected by an increase in turbidity, and potentially by a decrease in dissolved oxygen (DO), as a result of dredging in the offshore borrow areas and by the placement of sand onto the beach. Additionally, transient indirect effects to the marine water column, surf zone, offshore shoals and managed species are expected due to benthic resources being temporarily effected by the removal of sediment within the offshore borrow areas and through burial with sand placement along the oceanfront shoreline. Brief descriptions of the marine water column, offshore shoals and managed species present within the Project Area are continued below.

There are no estuarine areas located within the Project Area. Also, as determined from sidescan sonar data acquired during geophysical surveys of the borrow areas (discussed in section 3.1.1), there are no hardbottom habitats within or in the vicinity of the project area. There are also no coral and coral reefs, artificial/manmade reefs or Sargassum essential fish habitat marine areas located with the Project Area. There are no potential impacts for these EFH categories and they will not be discussed further.

Table 8. Essential Fish Habitat identified in FMP Amendments of the South Atlantic and Mid-Atlantic FMC’s (NMFS, 2010).

<table>
<thead>
<tr>
<th>SAFMC</th>
<th>MAFMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estuarine Areas</td>
<td>Estuarine Areas</td>
</tr>
<tr>
<td>Estuarine Emergent Wetlands</td>
<td>Seagrass</td>
</tr>
<tr>
<td>Estuarine Scrub/Shrub Mangroves</td>
<td>Creeks</td>
</tr>
<tr>
<td>Oyster Reefs and Shell Banks</td>
<td>Mud Bottom</td>
</tr>
<tr>
<td>Intertidal Flats</td>
<td>Estuarine Water Column</td>
</tr>
<tr>
<td>Palustrine Emergent and Forested Wetlands</td>
<td></td>
</tr>
<tr>
<td>Aquatic Beds</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Estuarine Water Column</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Live/Hard Bottoms</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Coral and Coral Reefs</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Artificial/Manmade Reefs</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Sargassum</td>
<td>Marine Areas</td>
</tr>
<tr>
<td>Water Column</td>
<td>Marine Areas</td>
</tr>
</tbody>
</table>

4.5.2.1 Marine Water Column

The SAFMC and MAFMC designate the marine water column as an EFH. The marine water column is divided into oceanographic zones that are defined by physical parameters of the water column such as temperature, salinity, density and others. Three oceanographic zones are defined
for the North Carolina area including outer shelf (131 to 230 ft.), mid-shelf (66 to 131 ft.) and inner shelf (0 to 66 ft.). These zones are influenced by the Gulf Stream, winds, tides and freshwater runoff (SAFMC, 1998).

Marine water column environments in proximity to the Project Area include the inner shelf waters associated with the proposed borrow areas and the surf zone waters associated with the placement of sand on the oceanfront shorelines of Kitty Hawk. Managed fish species that utilize marine water column EFH in North Carolina waters are managed by the ASMFC, NCDMF, NMFS, SAFMC and MAFMC and are discussed in Section 4.5.1 above.

4.5.2.2 Offshore Shoals

Although not identified as Essential Fish Habitat in the FMP Amendments of the South Atlantic and Mid-Atlantic FMC’s (NMFS, 2010), offshore shoal environments are utilized by many fish species and NMFS has identified shoal complexes as EFH for Coastal Migratory Pelagics and Highly Migratory Species (SAFMC, 1998; NMFS, 2009).

A shoal is a natural, underwater ridge, bank or bar consisting of sedimentary deposits, typically sand or gravel dominated, with bathymetric relief of three feet or greater and providing potentially important habitat. The term shoal complex refers to two or more shoals and adjacent morphologies, such as troughs, that are interconnected by past and or present sedimentary and hydrographic processes (Normandeau Associates Inc., 2014).

In a 2014 study, Thieler et al. identified that large-scale bedforms are present over broad areas of the inner shelf from 500 m to approximately 11 km off the coast of the northern Outer Banks, including both the tops of the shoals and the intervening swales (Thieler et al., 2014). Sorted bedforms are subtle, large-scale regions of coarse sand with gravel and shell hash that trend obliquely to the coast. They tend to be fairly low relief, generally with relief at or below 1 m (Normandeau Associates Inc., 2014). The seafloor in the region exhibits a series of shore-oblique ridges that seismic data indicate are composed largely of Holocene sand (Thieler et al., 2014). Major shoal features in the area are located both north and south of the Project Area (Figure 10). More detailed bathymetry of the borrow areas is shown in Figure 6 and Figure 7.

4.5.3 Habitat Areas of Particular Concern

Habitat Areas of Particular Concern (HAPC) are subsets of designated EFH and are defined as rare, particularly susceptible to human-induced degradation, especially ecologically important or located in an environmentally stressed area. The SAFMC and the MAFMC have designated HAPC areas to focus conservation priorities on specific habitat areas that play a particularly important role in the life cycles of federally managed fish species. HAPC may include high value intertidal and estuarine habitats, offshore areas of high habitat value or vertical relief and habitats used for migration, spawning and rearing of fish and shellfish (NMFS, 2004).

Areas identified as HAPC by the NMFS and the FMCs in the South Atlantic and North Carolina are presented in Table 9 below (NMFS, 2010). There are no designated HAPC identified within the Project Area.
Table 9. Geographically defined HAPC identified in the FMP Amendments affecting the South Atlantic area (NMFS, 2010).

<table>
<thead>
<tr>
<th>South Atlantic HAPC</th>
<th>Project Area Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council-Designated Artificial Reef Special Management Zones</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Hermatypic Coral Habitat and Reefs</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Hard bottoms</td>
<td>Not Present</td>
</tr>
<tr>
<td>Hoyt Hills</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Sargassum Habitat</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>State-Designated Areas of Importance to Managed Species</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Submerged Aquatic Vegetation</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>North Carolina HAPC</td>
<td></td>
</tr>
<tr>
<td>Big Rock</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Bogue Sound</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Pamlico Sound at Hatteras/Ocracoke Inlets</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Capes Fear, Lookout & Hatteras (sandy shoals)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>New River</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>The Ten Fathom Ledge</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>The Point</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

4.5.4 Nursery Areas

The North Carolina Division of Marine Fisheries (NCDMF) has designated three categories of nursery areas, Primary, Secondary and Special Secondary Nursery Areas. Primary Nursery Areas (PNAs) encompass approximately 80,000 acres throughout North Carolina. PNAs are typically shallow with soft muddy bottoms and surrounded by marshes and wetlands. They are found in the upper portions of bays and creeks, where the low salinity and abundance of food is ideal for young fish and shellfish. To protect juveniles, many commercial fishing activities are prohibited in these waters. Secondary Nursery Areas (SNAs) are located in the lower portion of bays and creeks. As juvenile fish and shellfish develop, primarily blue crabs and shrimp, they move into these waters. Trawling is prohibited in SNAs. Special SNAs are found adjacent to SNAs, but closer to the open waters of sounds and the ocean. These waters are closed for a majority of the year when juvenile species are abundant (Deaten et al., 2010). There are no NCDMF designated PNAs in the proposed Project Area.

4.5.5 Significant Natural Heritage Areas

The North Carolina Natural Heritage Program (NCNHP) serves as an information clearinghouse in support of conservation of the rarest and most outstanding elements of natural diversity in the state. These elements of natural diversity include plants and animals that are so rare or natural communities that are so significant that they merit special consideration in land-use decisions. There are no anticipated direct or indirect impacts to significant natural heritage or managed areas associated with the proposed Project Area.

4.5.6 Managed Species

Managed species that have the marine water column or shoals listed as an EFH and that may be present in the Project Area include coastal migratory pelagics, highly migratory species; snapper
grouper complex; shrimp; summer flounder, scup and black seabass; red drum; bluefish and spiny dogfish. The following narratives briefly describe each of these groups or species.

4.5.6.1 Coastal Migratory Pelagics

Prior to the 1980’s, king and Spanish mackerel catches were essentially unregulated. Introduction of airplane reconnaissance and large power-assisted gill net vessels in the commercial fishery took advantage of the schooling nature of the fish and greatly increased catches. Harvests by both recreational and commercial fishermen in the 1970’s and early 1980’s exceeded reproductive capacity and led to overfishing. Federal regulations were implemented in 1983 to control harvest and rebuild dwindling stocks of king and Spanish mackerel. Different migratory groups were later managed separately, and quotas, bag limits and trip limits established to rebuild the mackerel fisheries. Gear regulations included the elimination of drift gill nets in 1990. Since the implementation of management measures, stocks have been increasing (SAFMC, 2014).

The Coastal Migratory Pelagic (Mackerel) FMP for the Gulf of Mexico and South Atlantic regions is a joint management plan between the Gulf of Mexico Fishery Management Council and SAFMC. Beginning in January 2012, in addition to managing separate migratory groups of king mackerel and Spanish mackerel, the two fishery management councils have added separate migratory groups of cobia to the FMP.

Essential fish habitat for coastal migratory pelagic species includes sandy shoals of capes and offshore bars, high profile rocky bottom, barrier island ocean-side waters and waters from the surf to the shelf break zone, including Sargassum. In addition, all coastal inlets and all state-designated nursery habitats are of particular importance to coastal migratory pelagics.

Spanish Mackerel (*Scomberomorus maculates*)

Spanish mackerel make north and south migrations depending on water temperature, with 68° F being a preferred minimum. Spanish mackerel can be found from April to November in North Carolina’s waters, then they migrate south to the Florida coast in the late fall. They may be found as far inland as the sounds and coastal river mouths in the summer months. Spanish mackerel spawn from May to September (SAFMC, 1998).

King Mackerel (*Scomberomorus cavalla*)

Similar to Spanish mackerel, water temperature and prey availability trigger inshore and offshore migrations of king mackerel. In the winter and early spring, king mackerel congregate just inside the Gulf Stream along the edge of the continental shelf. During the summer and fall, they move inshore along the beaches and near the mouths of inlets and coastal rivers. King mackerel prefer water temperatures between 68° F and 78° F (SAFMC, 1998).

Cobia (*Rachycentron canadum*)

Cobia have a world-wide distribution preferring warm water temperatures from 68° to 86° F. Cobia are pelagic fish, and typically congregate off North Carolina to spawn in May and June. However, spawning has been observed in shallow bays and estuaries with the young heading offshore after hatching (FLMNH, 2010). Cobia typically migrate south in the fall to over-winter in warmer waters. EFH for cobia includes, but is not limited to high salinity bays, estuaries, seagrass habitat, sandy shoals and rocky bottom (SAFMC, 1998).
4.5.6.2 **Highly Migratory Species**

Atlantic Highly Migratory Species are managed under the dual authority of the MSFCMA and the Atlantic Tunas Convention Act (ATCA). Under the MSFCMA, the National Marine Fisheries Service (NMFS) must manage fisheries to maintain optimum yield by rebuilding overfished fisheries and preventing overfishing. Under ATCA, NMFS is authorized to promulgate regulations, as may be necessary and appropriate, to implement the recommendations from the International Commission for the Conservation of Atlantic Tunas (ICCAT). Before this action, tunas, swordfish and sharks were managed under the 1999 FMP for Atlantic Tunas, Swordfish and Sharks (and its 2003 amendment) and billfish were managed under the 1988 Atlantic Billfish FMP (and its 1999 amendment). The 2006 final HMS FMP combined the management of all Atlantic HMS into one FMP (NMFS, 2006).

In Amendment 1 to the consolidated HMS FMP released in 2009, NMFS updated identification and descriptions for EFH and revised existing EFH boundaries for Atlantic HMS (NMFS, 2009). Table 10 identifies the marine waters in vicinity of the project that are designated as EFH for HMS and their life stage.

Table 10. HMS and their life stage that have marine waters in vicinity of the Project designated as EFH.

<table>
<thead>
<tr>
<th>Tuna</th>
<th>Life Stage</th>
<th>Sharks</th>
<th>Life Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluefin (Thunnus thynnus)</td>
<td>J</td>
<td>Sandbar (Carcharhinus plumbeus)</td>
<td>YOY, J, A</td>
</tr>
<tr>
<td>Skipjack (Katsuwonus pelamis)</td>
<td>J, A</td>
<td>Silky (Carcharhinus falciformis)</td>
<td>YOY, J, A</td>
</tr>
<tr>
<td>Yellowfin (Thunnus albacres)</td>
<td>J</td>
<td>Spinner (Carcharhinus brevipinna)</td>
<td>J, A</td>
</tr>
<tr>
<td>Billfish</td>
<td>Life Stage</td>
<td>Tiger (Galeocerdo cuvieri)</td>
<td>YOY, J, A</td>
</tr>
<tr>
<td>Sailfish (Istiophorus platypterus)</td>
<td>J</td>
<td>Sand Tiger (Carcharias taurus)</td>
<td>YOY, J, A</td>
</tr>
<tr>
<td>Sharks</td>
<td>Life Stage</td>
<td>Angel (Squatina dumerili)</td>
<td>J, A</td>
</tr>
<tr>
<td>Scalloped Hammerhead (Sphyrna lewini)</td>
<td>J, A</td>
<td>Sharpnose (Rhizoprionodon terraeovae)</td>
<td>A</td>
</tr>
<tr>
<td>Dusky (Carcharhinus obscurus)</td>
<td>YOY, J, A</td>
<td>Thresher (Alopias vulpinus)</td>
<td>YOY, J, A</td>
</tr>
</tbody>
</table>

1 Young of the Year (YOY), Juvenile (J), Adult (A)

4.5.6.3 **Snapper Grouper Complex**

Ten families of fishes containing 73 species are managed by the SAFMC under the snapper grouper FMP. Association with coral or hard bottom structure during at least part of their life cycle and their contribution to an interrelated reef fishery ecosystem is the primary criteria for inclusion within the snapper grouper plan. There is considerable variation in specific life history patterns and habitat use among species included in the snapper grouper complex (SAMFC, 1998).
Essential fish habitat for snapper grouper species includes coral reefs, live/hard bottom, submerged aquatic vegetation, artificial reefs and medium to high profile outcroppings on and around the shelf break zone from shore to at least 600 feet where the annual water temperature range is sufficiently warm to maintain adult populations. EFH includes the spawning area in the water column above the adult habitat and the additional pelagic environment, including Sargassum, required for larval survival and growth up to and including settlement. In addition, the Gulf Stream is an essential fish habitat because it provides a mechanism to disperse snapper grouper larvae. Essential fish habitat for specific life stages of estuarine dependent and nearshore snapper grouper species includes areas inshore of the 100-foot contour such as attached macroalgae; submerged rooted vascular plants; estuarine emergent vegetated wetlands; tidal creeks; estuarine scrub/shrub; oyster reefs and shell banks; unconsolidated bottom; artificial reefs; and coral reefs and live/hard bottom.

Given the lack of EFH present near the Project Area and space constraints in this document, thorough characterizations of this diverse multispecies complex is omitted but may be referenced in the SAFMC FMP (SAFMC, 1998).

4.5.6.4 Shrimp

Penaeid Shrimp (Brown Shrimp (Penaeus aztecus), Pink Shrimp (Penaeus duorarum), White Shrimp (Penaeus setiferus))

Penaeid shrimp are reported to spawn offshore, moving into estuaries during the post-larval stage during the early spring. As the shrimp grow larger, they migrate to higher salinity environments. In late summer and fall, they return to the ocean to spawn (NCDMF, 2006).

For penaeid shrimp, EFH includes inshore estuarine nursery areas, offshore marine habitats used for spawning and growth to maturity, and all interconnecting water bodies as described in the Habitat Plan. Inshore nursery areas include tidal freshwater (palustrine); estuarine and marine emergent wetlands; tidal palustrine forested areas; mangroves; tidal freshwater, estuarine and marine submerged aquatic vegetation and subtidal and intertidal non-vegetated flats. This applies from North Carolina through the Florida Keys.

4.5.6.5 Summer Flounder, Scup and Black Sea Bass

Summer flounder (Paralichthys dentatus), scup (Stenotomus chrysops) and black sea bass (Centropristus striata) are managed by the MAFMC. The three species are considered part of an offshore-wintering guild of fish, a migratory group of warm temperate species that are intolerant of colder, inshore winter conditions (MAFMC, 2014).

Summer flounder (Paralichthys dentatus)

Adult summer flounder emigrate from North Carolina estuaries beginning in November as water temperatures decrease and spawning takes place in continental shelf waters (MAFMC, 2014). Larvae immigrate to the higher salinity areas of estuaries becoming common January through April. Juveniles are present year-round at salinities between 5 ppt to >25 ppt (MAFMC, 2014). Adult summer flounder are common in estuaries in November and December, but typically not present January through March as they will have migrated to warmer offshore waters to overwinter. Juveniles are abundant year-round in estuarine waters from 5 ppt to >25 ppt salinity. From January to April larval summer flounder are rare at lower salinities (5 ppt to 25 ppt), becoming common at salinities >25 ppt (MAFMC, 2014). This stage (larval) of the life cycle is
reported as most abundant in nearshore waters (12 – 50 miles offshore) at depths between 30 and 230 feet from November to May in the southern part of the Mid-Atlantic Bight (MAFMC, 2014). EFH for summer flounder has been identified as shelf waters and estuaries from Albemarle Sound, North Carolina through to St. Andrew/Simon Sounds, Georgia for the larval, juvenile and adults stages (MAFMC, 2014).

Scup (Stenotomus chrysops)

Scup are a schooling continental shelf species of the Northwest Atlantic that undertake extensive migrations between coastal waters and offshore waters. Spawning occurs from May through August, peaking in June. Scup spawn once annually over weedy or sand-covered areas. Juvenile and adult scup are demersal, using inshore waters in the spring and moving offshore in the winter. About 50% of age-2 scup are sexually mature (at about 17 cm total length, or 7 inches), while nearly all scup of age 3 and older are mature. Adult scup are benthic feeders and forage on a variety of prey, including small crustaceans (including zooplankton), polychaetes, mollusks, small squid, vegetable detritus, insect larvae, hydroids, sand dollars, and small fish. The Northeast Fisheries Science Center food habits database lists several shark species, skates, silver hake, bluefish, summer flounder, black sea bass, weakfish, lizardfish, king mackerel and goosefish as predators of scup (MAFMC, 2014). Essential Fish Habitat for scup includes demersal waters, sands, mud, mussel beds and seagrass beds, from the Gulf of Maine through Cape Hatteras, North Carolina.

Black Sea Bass (Centropristus striata)

The northern population of black sea bass spawns in the Middle Atlantic Bight over the continental shelf during the spring through fall, primarily between Virginia and Cape Cod, Massachusetts. Spawning begins in the spring off North Carolina and Virginia, and progresses north into southern New England waters in the summer and fall. Collections of ripe fish and egg distributions indicate that the species spawns primarily on the inner continental shelf between Chesapeake Bay and Montauk Pt., Long Island. Adult black sea bass are also very structure oriented, especially during their summer coastal residency. Unlike juveniles, they tend to enter only larger estuaries and are most abundant along the coast. A variety of coastal structures are known to be attractive to black sea bass, including shipwrecks, rocky and artificial reefs, mussel beds and any other object or source of shelter on the bottom. Essential Fish Habitat for black sea bass consists of pelagic waters, structured habitat, rough bottom shellfish, and sand and shell, from the Gulf of Maine through Cape Hatteras, North Carolina (MAFMC, 2014).

4.5.6.6 **Red Drum**

Red drum (*Sciaenops ocellatus*) are managed solely by the ASFMC through Amendment 2 to the Interstate FMP (ASFMC, 2013). Red drum populations along the Atlantic coast are managed through the Atlantic Coastal Fisheries Cooperative Management Act (Atlantic Coastal Act). Unlike the MSFCMA that addresses fishery management by federal agencies, the Atlantic Coastal Act does not require the ASFMC to identify habitats that warrant special protection because of their value to fishery species. Nonetheless, the ASFMC identifies habitats used by the various life stages of red drum for management and protection purposes (ASFMC, 2013).

Red drum occur in a variety of habitats distributed from Massachusetts to Key West, Florida on the Atlantic coast. Spawning occurs at night in the fall (August through October) along ocean beaches and near inlets and passes and in high salinity estuaries with optimal temperatures being
between 72° to 86° F (SAFMC, 1998; ASMFC, 2013). In North Carolina, spawning adults were reported to be common in salinities above 25 ppt (ASMFC, 2013). Juveniles are reported to prefer shallow shorelines of bays and rivers and shallow grass flats in the sounds (SAFMC, 1998).

Adult red drum migrate seasonally along the Atlantic coast. Reports from fishermen and menhaden spotter pilots indicate that red drum typically arrive at Cape Hatteras, North Carolina between March and April, some entering Pamlico Sound and others proceeding up the coast. They are expected about a week later at Oregon Inlet and three weeks to a month later in Virginia. Red drum leave Virginia in most years by October and North Carolina by November (ASMFC, 1998).

The SAFMC recognizes several habitats as EFH for red drum from Virginia to Florida. In North Carolina, these natural communities include tidal freshwater, estuarine emergent vegetated wetlands, submerged rooted vascular plants, oyster reefs and shell banks, unconsolidated bottom, ocean high salinity surf zones, and artificial reefs. Of the designated EFH, HAPC have been recognized for red drum by the SAFMC. Areas that meet the criteria for HAPC in North Carolina include all coastal inlets, all state-designated nursery habitats of particular importance to red drum, documented sites of spawning aggregations, other spawning areas identified in the future, and areas supporting submerged aquatic vegetation (NCDMF, 2008b).

4.5.6.7 Bluefish

Bluefish (Pomatomus saltatrix) are managed by the NMFS as a single stock under a joint FMP collaboratively developed by the MAFMC and the ASMFC and implemented in 1990. Bluefish are considered warm water migrants, preferring waters above 57° to 61° F (Shepherd and Packer, 2006). Generally, juvenile bluefish occur in North Atlantic estuaries from June through October, Mid-Atlantic estuaries from May through October, and South Atlantic estuaries March through December, within the "mixing" and "seawater" zones. Adult bluefish are found in North Atlantic estuaries from June through October, Mid-Atlantic estuaries from April through October, and in South Atlantic estuaries from May through January in the "mixing" and "seawater" zones. Bluefish adults are highly migratory and distribution varies seasonally and according to the size of the individuals comprising the schools. Juveniles utilize estuaries as nursery areas and then emigrate to warmer offshore waters when temperatures approach 59° F (Shepherd and Packer, 2006). Bluefish can tolerate temperatures of 53.2° to 86.7° F, but exhibit signs of stress at both extremes. They can survive temporarily in waters of 45.5° F but juveniles cannot survive below 50° F (Lund and Maltezos, 1970).

Bluefish EFH has been designated for marine areas north of Cape Hatteras based on life stage. Based on the maps provided in Amendment 1 to the Bluefish FMP (MAFMC, 2014), EFH for all life stages of bluefish exists within or in proximity to the Project Area, with an emphasis on young of the year (YOY) and adult bluefish surveys showing the most dense coverage near the Project Area.

4.5.6.8 Spiny Dogfish

In North Carolina, the spiny dogfish (Squalus acanthias) is currently included in the Interjurisdictional FMP, which defers to ASMFC/MAFMC/NEFMC FMP compliance.
requirements. It is managed jointly under the MAFMC and the North East Fisheries Management Council (NEFMC) FMPs (NCDMF, 2008a).

The spiny dogfish is a long-lived species with an estimated life expectancy of 25 to 100 years and is reported to be one of most abundant sharks in the world. Spiny dogfish are found in oceans and coastal zones, are rarely found in the upper reaches of estuaries and do not occur in fresh water. Generally, spiny dogfish are found at depths of 33 to 1475 ft. in water temperatures ranging between 37° and 82° F. The preferred temperature range is 45° to 55° F. Spiny dogfish migrate seasonally, moving north in the spring and summer and south in fall and winter (MAFMC, 2014). They are most common in shelf waters in North Carolina from November through April, at which time they begin their northward migration toward Newfoundland and Labrador. Pregnant females and pups are present from February through June in North Carolina waters, with the preferred pupping area located around the Cape Hatteras shoals (MAFMC, 2014).

North of Cape Hatteras, EFH is the waters of the continental shelf from the Gulf of Maine through Cape Hatteras, North Carolina in areas that encompass the highest 90% of all ranked ten-minute squares for the area where adult dogfish were collected in the NEFSC trawl surveys. Based on figures within the Spiny Dogfish FMP (MAFMC, 2014), this includes marine water located within the Project Area.

4.6 Threatened and Endangered Species

The species under consideration within this biological assessment were identified from updated lists of threatened and endangered (T&E) species provided by the National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) (NMFS, 2014e; USFWS, 2014a). These lists were combined to develop the following composite list of T&E species that could be present in the project area based upon their geographic range. However, the actual occurrence of a species in the project area would depend upon the availability of suitable habitat, the seasonality of occurrence, migratory habits and other factors.

Table 11 provides a list of these T&E species that may be found in the various habitats within the Project Area. The Project Area is defined by the stretch of shoreline receiving beach nourishment, and the borrow areas. Although not explicitly defined at this time, any pipeline corridors associated with a cutterhead dredge and hopper dredge pump out operations will also be considered part of the Project Area. Any potential impacts on federally listed T&E species would be limited to those species that occur in habitats encompassed by the Project Area.
Table 11. Federally threatened, endangered or proposed listed species that may occur in the Project Area and designated critical habitat.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Indian Manatee</td>
<td>Trichechus manatus</td>
<td>Endangered</td>
</tr>
<tr>
<td>North Atlantic Right Whale</td>
<td>Eubaleana glacialis</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sei Whale</td>
<td>Balaenoptera borealis</td>
<td>Endangered</td>
</tr>
<tr>
<td>Sperm Whale</td>
<td>Physeter macrocephalus</td>
<td>Endangered</td>
</tr>
<tr>
<td>Finback Whale</td>
<td>Balaenoptera physalus</td>
<td>Endangered</td>
</tr>
<tr>
<td>Humpback Whale</td>
<td>Megaptera novaeangliae</td>
<td>Endangered</td>
</tr>
<tr>
<td>Blue Whale</td>
<td>Balaenoptera musculus</td>
<td>Endangered</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leatherback Sea Turtle</td>
<td>Dermochelys coriacea</td>
<td>Endangered</td>
</tr>
<tr>
<td>Hawksbill Sea Turtle</td>
<td>Eretmochelys imbricate</td>
<td>Endangered</td>
</tr>
<tr>
<td>Kemp’s Ridley Sea Turtle</td>
<td>Lepidochelys kempii</td>
<td>Endangered</td>
</tr>
<tr>
<td>Loggerhead Sea Turtle</td>
<td>Caretta caretta</td>
<td>Threatened-NWA DPS(^1)</td>
</tr>
<tr>
<td>Green Sea Turtle</td>
<td>Chelonia mydas</td>
<td>Threatened(^2)</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortnose Sturgeon</td>
<td>Acipenser brevirostrum</td>
<td>Endangered</td>
</tr>
<tr>
<td>Atlantic Sturgeon</td>
<td>Acipenser oxyrinchus</td>
<td>Endangered-Carolina DPS(^3)</td>
</tr>
<tr>
<td>Vascular Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seabeach Amaranth</td>
<td>Amaranthus pumilus</td>
<td>Threatened</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piping Plover</td>
<td>Charadrius melodus</td>
<td>Threatened</td>
</tr>
<tr>
<td>Roseate Tern</td>
<td>Sterna dougallii</td>
<td>Endangered</td>
</tr>
<tr>
<td>Red Knot</td>
<td>Calidris canutus rufa</td>
<td>Proposed Threatened</td>
</tr>
<tr>
<td>Critical Habitat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Atlantic Right Whale</td>
<td>Southeast U.S. unit expansion (NMFS)</td>
<td>Proposed</td>
</tr>
<tr>
<td>Piping plover Unit NC-1</td>
<td></td>
<td>Designated</td>
</tr>
<tr>
<td>Loggerhead Unit LOGG-T-NC01</td>
<td></td>
<td>Designated</td>
</tr>
<tr>
<td>Loggerhead Unit LOGG-N-1</td>
<td></td>
<td>Designated</td>
</tr>
</tbody>
</table>

\(^1\)There are nine distinct population segments of the loggerhead sea turtle listed as either threatened or endangered. The Northwest Atlantic Ocean (NWA) Distinct Population Segment (DPS) was listed as Threatened (76 FR 58868).

\(^2\)Green sea turtles are listed as threatened, except for breeding populations of green turtles in Florida and on the Pacific Coast of Mexico, which are listed as endangered.

\(^3\)NMFS listed two Atlantic sturgeon DPSs that spawn in the southeast (the Carolina and the South Atlantic) (77 FR 5919). There are an additional three Atlantic sturgeon DPSs in the northeast that spawn in the northeast (the Gulf of Maine, New York Bight, and Chesapeake) (77 FR 5880). Depending on the project area, a combination of DPSs may be present, particularly in marine waters. Please see Federal Register Notices for additional information.
4.6.1 West Indian Manatee

The West Indian manatee is listed as a federally protected species under the Endangered Species Act of 1973 and the Marine Mammal Protection Act of 1972. An adult manatee is, on average, 10 ft (3 m.) long, weighs approximately 2,200 lbs. and is typically referred to as the "sea cow." The coloring of the manatee is grayish brown, which contributes to the difficulty in detecting manatees in silt-laden waters. This mammal can be found in shallow waters (5-20 ft. [1.5-6.1 m.]) of varying salinity levels including coastal bays, lagoons, estuaries and inland river systems. Manatees primarily feed on aquatic vegetation, but can be found feeding on fish, consuming between four and nine percent of their body weight in a single day (Schwartz, 1995; USFWS, 2014f). Sheltered areas such as bays, sounds, coves and canals are important areas for resting, feeding and reproductive activities (Humphrey, 1992).

The West Indian manatee occupies the coastal, estuarine and some riverine habitats along the western Atlantic Ocean from Virginia to the Florida Keys, the Caribbean Islands, Mexico, Central America and northern South America (Garcia-Rodriguez et al. 1998; USFWS, 2014g). The West Indian manatee (Trichechus manatus) includes two subspecies, the Florida manatee (T. m. latirostris) and the Antillean manatee (T. m. manatus). Within U.S. waters, the Florida manatee can be found throughout the southeastern U.S., including North Carolina, while the Antillean manatee is found in Puerto Rico and the Virgin Islands (Lefebvre et al., 2001). As the Antillean manatee does not occur within the southeastern U.S., this biological assessment will only evaluate the Florida manatee population.

No statistically robust estimate of population size is currently available for manatees (USFWS, 2014g). The current, best available information includes FWC’s 2011 counts, and suggests a minimum population size of 4,834 individuals in the Florida stock (Laist et al., 2013). Occurrence throughout the southeastern U.S. changes seasonally, as the manatees seek out warmer water temperatures. During the winter months (October through April), the entire U.S. population typically moves to the waters surrounding Florida (Humphrey, 1992).

The greatest threat and cause of mortality for manatees is boat collisions. Other dangers to the species include entanglement in fish lines, entrapment and entanglement in locks, dams and culverts, and poaching. Long-term and cumulative impacts are associated with a loss of aquatic vegetated habitat and blocking of estuarine and riverine systems (Humphrey, 1992).

Sightings and stranding data suggest the Florida manatee regularly occurs within inland and coastal waters of North Carolina, and they have been sighted most frequently from June through October when water temperatures are warmest (above 71.6° F [22° C]) (USFWS, 2003a; USFWS, 2014f). Manatees may also overwinter in North Carolina where the discharge from power plants supports the warm water temperatures (USFWS, 2008). The USFWS has reported manatee sightings in the last 20 years in the counties of Beaufort, Bertie, Brunswick, Camden, Carteret, Chowan, Craven, Currituck, Dare, Hyde, New Hanover, Onslow, Pamlico, Pasquotank, Pender, Perquimans, Pitt, Tyrrell and Washington. After compiling state-wide manatee sighting and stranding reports from 1991 to 2012, Cummings et al. (2014) reported there have been 99 manatee sightings in North Carolina. Sighting records varied between years, and ranged from 0 to a peak of 30 sightings in 2012. Sightings were reported throughout North Carolina, although most were concentrated around the heavily populated coastal areas of Beaufort and Wilmington.
Manatees arrived in North Carolina in April, and sightings were most common from June to October, when water temperatures were above 20° C (68° F). Sightings declined with water temperature in November, and manatees appeared to absent from the region from December through February (Cummings et al., 2014). Within northeastern North Carolina, sightings have increased since 2011, which may be due to greater awareness and improved survey efforts (Cummings et al., 2014). The greatest number of manatee sightings occurred within the Intracoastal Waterway, sounds, bays, rivers and creeks. Manatees were least commonly sighted in the open ocean and around marinas. The number of manatees potentially occurring in the Project Area is not known, but is presumed to be low with the greatest likelihood of occurrence during the warmer months, in particular June through October.

4.6.2 Whales (Right, Finback, Humpback, Sei, and Sperm)

All whales are protected under the MMPA and are under NMFS jurisdiction. There are six species of whales also listed as endangered under the ESA that are known to occur in the Western North Atlantic. These species include the blue whale (*Balaenoptera musculus*), fin whale (*B. physalus*), humpback whale (*Megaptera novaeangliae*), North Atlantic right whale (*Eubalaena glacialis*), sei whale (*B. borealis*) and sperm whale (*Physeter macrocephalus*). The blue, sei and sperm whales are considered oceanic whales and rarely venture into the shelf waters offshore North Carolina (Kenny and Winn, 1987; NMFS, 1998a). Therefore, these species are considered unlikely to occur within the Project Area and will not be evaluated further in this biological assessment.

The major threats to the whale species discussed below are largely the same and include entanglement in fishing gear and collisions with ships. The commercial hunting of whales is illegal in U.S. waters, and therefore this threat has been vastly minimized. However, ship collisions remain a significant threat to these species. According to the large whale ship strike database, of the 292 records of confirmed or possible ship strikes to large whales, 44 records (15%) were of humpback whales, the second most often reported species next to fin whales (75 records or 26%) (Jensen and Silber, 2004). Of the five documented ship strikes resulting in serious injury or mortality for North Atlantic humpback whales from January 1997-December 2001, three were located in North Carolina and South Carolina waters. Collisions with vessels are consistently identified as one of the most severe threats affecting recovery of the North Atlantic right whale (Kraus et al. 2005; Waring et al. 2014). Though the total level of human-caused mortality and serious injury is unknown, current data indicate that it is significant. The annual rate of human-caused mortality and serious injury due to ship strikes for the period from 2007 to 2011 was reportedly 0.8 whales per year, which exceeds the rate of potential biological removal (Waring et al., 2014). Historical and continued commercial harvesting outside U.S. waters pose an additional threat to fin, humpback and North Atlantic right whales, as does overfishing of prey species, habitat degradation, climate and ecosystem change and disturbance from marine noise and whale watching activities.

Fin whale

Fin whales (*Balaenoptera physalus*) were listed as endangered throughout their range on December 2, 1970 under the ESA and are considered “depleted” under the MMPA. There are two subspecies of fin whales, one in the North Atlantic and one in the southern ocean. The present assessment will focus only on the North Atlantic subspecies *B.p. physalus*. Fin whales
are the second largest whale species, reaching sizes of 75-85 ft. They have a sleek, streamlined body with a distinctive falcate dorsal fin positioned two-thirds of the way back on the body. Coloration is counter shaded, with the upper part of the body black or brownish grey, and a white underbelly.

The fin whale is extensively distributed throughout the North Atlantic, ranging from the Gulf of Mexico and the Mediterranean northward to the arctic pack ice. Although not well defined, migration patterns are thought to follow a “southward flow” in the fall from Newfoundland to the calving grounds in the West Indies (Clark, 1995). Fin whales fast in the winter during migrations and feed in the summer and fall on krill and small schooling fish. These whales can be found in social groups of a small number of fin whales or feeding in large groups that include other whales and dolphins (NMFS, 2014b). Feeding areas are generally thought to occur offshore and north of New England but fin whales have been seen feeding as far south as the coast of Virginia (Hain et al., 1992). Off the eastern United States, sightings are common along the 200-m isobaths, but sightings have occurred within both shallower and deeper waters, including submarine canyons along the shelf break (Kenney and Winn, 1987; Hain et al., 1992). To gain a better understanding of their distribution, Hain et al. (1992) analyzed fin whale sightings data from Cape Hatteras, North Carolina to approximately Nova Scotia, Canada, within continental shelf waters from the shoreline to 5 nm seaward of the 1,000 fathom isobath. Results indicated frequent and wide-ranging distribution over shelf waters, with a predominance of sightings (65%) in the 21-100 m range. While sightings were reported in depths less than 21 m., the nearshore areas of North Carolina were among the few areas identified as being “rarely or never occupied by fin whales”. However, recent sightings data available in OBIS-SEAMAP show several fin whale occurrences within North Carolina shelf waters (Halpin et al., 2009), a number of which were in the vicinity of Kitty Hawk and Kill Devil Hills, less than 5 miles from shore at approximately 20 m depth (McLellan, 2001; UNCW, 2006). These nearshore sightings were recorded during the UNCW Right Whale Aerial Surveys (2006) and the UNCW Marine Mammal Sightings (2001), and occurred in February both years. These nearshore sightings were recorded during the UNCW Right Whale Aerial Surveys (2006) and the UNCW Marine Mammal Sightings (2001) and occurred in February both years.

Humpback whale

Humpback whales (*Megaptera novaeangliae*) were listed as endangered throughout their range on December 2, 1970 under the ESA and are considered “depleted” under the MMPA. Humpbacks are circumglobal, and are often found in protected waters over shallow banks and shelf waters for breeding and feeding. The humpback is a medium-sized baleen whale, reaching as much as 51 feet and 34 metric tons at maturity. The body is short and rotund, and is accentuated by exceptionally long flippers. As a baleen whale, major prey species for humpbacks include small schooling fishes (herring, sand lance, capelin, mackerel, small pollock and haddock) and large zooplankton, mainly krill (up to 1.5 tons per day) (NMFS, 2014c). Distinguishing behaviors including breaching displays, slapping the water surface with flukes or flippers, bubble feeding. Humpacks are also known for their varied and rich vocabulary of sounds, or “songs”. Both males and females reach sexual maturity around 9 years of age, and the females generally give birth approximately every two years (Johnson and Wolman, 1984). During spring, summer and fall, feeding grounds for the Gulf of Maine population of humpback whales extend from the eastern coast of the U.S. to the Gulf of St. Lawrence, Newfoundland/Labrador and western Greenland. During the winter, this population migrates
from the North Atlantic down to the West Indies to mate and calf (NMFS, 2014c), passing the North Carolina coastline while en-route. It is thought that most adult and newborn humpbacks migrate well offshore in deep waters (NMFS, 1991), and are on breeding grounds from January to April (Katona and Beard, 1990; Whitehead, 1992). Nevertheless, not all whales migrate to the West Indies during winter. Sighting and stranding reports suggest that sexually immature whales migrate to Mid-Atlantic States to feed during the winter, and they may utilize the nearshore waters as feeding grounds (Swingle et al., 1993; Wiley et al. 1995). Swingle et al. (1993) documented juvenile humpback whales feeding within 4 km of shore near Chesapeake Bay during the period of January through March 1991, and feeding behavior was observed in shallow water (2.5–6 m). Analysis of stranding data from 1985 – 1992 from New Jersey to southern Florida also suggests presence of juvenile whales during much of the year (Wiley et al., 1995). Strandings occurred with greatest frequency in April, and the highest number of strandings occurred within the area from the Chesapeake Bay to Cape Hatteras. Strandings occurred throughout the fall (October – December), winter (January – March) and spring (April – June) seasons, but few occurred during the summer (July – September). For all years, no strandings occurred within July and August (Wiley et al., 1995).

More recently, sightings and stranding data queried from OBIS-SEAMAP indicate a number of humpbacks have been recorded within the area from Corolla to Nags Head, North Carolina (Halpin et al., 2009). Specifically, during the University of North Carolina Wilmington Right Whale surveys flown during the period from October 2005 to April 2006, ten sightings were noted in this area. These surveys were flown in parallel lines from the South Carolina/North Carolina border to the south end of Assateague Island, Virginia. One of these humpback sightings occurred directly off Kitty Hawk, and a group of three humpbacks were sighted directly offshore the Kitty Hawk/Kill Devil Hills boundary in February 2006 (UNCW, 2006). Additionally, one stranding occurred on December 21, 2007 along the shoreline of southern Corolla, a town located approximately 25 miles to the north of Kitty Hawk (Virginia Aquarium Stranding Response Program, 2008).

North Atlantic right whale

North Atlantic right whales (Eubalaena glacialis) were listed as endangered throughout their range on December 2, 1970 under the ESA and are considered “depleted” under the MMPA. These large baleen whales have a stocky body, and can reach up to 70 tons in weight and 50 feet in length at maturity. North Atlantic right have black coloration, no dorsal fin, and a large head that is often covered with callosities. Two large plates of baleen hang from the upper jaw, and are used to strain zooplankton from the water. North Atlantic right whales may live up to 50 years in age, and females generally birth their first calf at 10 years of age (NMFS, 2013e). The North Atlantic right whale population ranges primarily from calving and nursing grounds in coastal waters off the southeastern United States to summer feeding and mating grounds that include New England waters, the Bay of Fundy, Scotian Shelf and Gulf of St. Lawrence. Wintering grounds include waters off the southeastern United States where females give birth from December to March (NMFS, 2013e), as well as Cape Cod Bay (Brown and Marx, 1998). However, not all reproductively active females return to calving grounds each year (Kraus et al., 1986), and the whereabouts of much of the population during winter remains unknown (NMFS, 2005). In the spring and summer, right whales migrate to the higher-latitude New England waters (Hamilton and Mayo, 1990) and Canadian waters during summer and fall (Winn et al., 1986). Although the mid-Atlantic waters south of Cape Cod and north of the Georgia/Florida wintering
grounds are not considered “high use” areas, they do serve as migration corridors (NMFS, 2013e). Additionally, recent surveys suggest mother/calf pairs may use the area from Cape Fear, North Carolina to South Carolina as wintering/calving areas as well (NMFS, 2005). According to the Northeast Fisheries Science Center, there have been 19 right whale sightings off the coast of North Carolina from January 1, 2010 to May 2014. It should be noted that each of these sightings might not indicate a separate individual or group; it may be that the same whale had been spotted multiple times. Reported sightings occurred during the months of February, March, April and December (NEFSC, 2014). Additionally, an adult and calf were sighted from the relocation trawler operating during the Bogue Banks Phase II Nourishment project on March 30, 2004. The same pair was also seen the same day from the dredge operating during the Morehead City Project (USACE, 2013c).

In 1994, the NMFS designated critical habitat for what was considered at the time to be the North Atlantic population of northern right whales that consisted of parts of Cape Cod Bay and Stallwagen Bank, the Great South Channel of the coast of Massachusetts for feeding. The critical habitat also included waters adjacent to the coasts of Georgia and the east coast of Florida for calving and nursery habitat. It was since determined that genetic data supported three distinct right whale lineages as separate species: North Atlantic right whales, North Pacific right whales, and southern right whales. After listing North Atlantic and North Pacific right whales as separate species under the ESA, NOAA Fisheries was petitioned to revise critical habitat for the North Atlantic right whales. The newly proposed critical habitat expands greatly on the previous designation, demonstrated by Figure 14.

![Figure 14. Comparison of current right whale critical habitat and the proposed areas under consideration. Image: NOAA Fisheries, 2015.](image-url)
4.6.3 Sea Turtles

There are five species of sea turtles that can be found nesting on the beaches of North Carolina, swimming in offshore waters, or both. These species include the leatherback sea turtle (*Dermochelys coriacea*), hawksbill sea turtle (*Eretmochelys imbricata*), Kemp’s ridley sea turtle (*Lepidochelys kempii*), green sea turtle (*Chelonia mydas*), and the loggerhead sea turtle (*Caretta caretta*). Data provided by the North Carolina Wildlife Resources Commission (NCWRC) show the leatherback, Kemp’s ridley, green and loggerhead sea turtles have been documented nesting along the Northern Outer Banks.

4.6.3.1 Sea Turtle Nesting Activity in North Carolina

Data provided by the North Carolina Wildlife Resources Commission (NCWRC), for the period from 2009 through 2013 indicate that the leatherback, Kemp’s ridley, green and loggerhead sea turtle have all been documented nesting along the Northern Outer Banks (Figure 15 through Figure 19). In North Carolina, sea turtle nesting season starts May 1 and ends August 31, although turtles have been documented nesting outside of these dates in the past. In North Carolina, sea turtle nesting season starts May 1 and ends August 31, although turtles have been documented nesting outside of these dates in the past. According to Matthew Godfrey with the North Carolina Wildlife Resources Commission, a leatherback sea turtle nested on April 16, 2000 and April 18, 2007 on Hatteras Island. Additionally, two nests were laid on the night of April 30 (found on May 1) in 2004 and 2007 on Cape Lookout. It is possible that other nests have been laid will before May 1, but were not detected because the area was not monitored in April.
Figure 15. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2009. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014).

Legend:

2009 Sea Turtle Nests
- *Dermochelys coriacea* (1)
- *Caretta caretta* (6)
- City Limits

Notes:
2. Background imagery is from the ESRI Imagery Service.
Figure 16. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2010. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014).
Figure 17. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2011. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014).

Legend:
- 2011 Sea Turtle Nests
 - Caretta caretta (18)
 - City Limits

Notes:
2. Background imagery is from the ESRI Imagery Service.
Figure 18. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2012. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014).
Figure 19. Number and species of sea turtle nests recorded from Oregon Inlet to the North Carolina/Virginia border in 2013. Data provided by the NCWRC (Matthew Godfrey, pers. comm., May 22, 2014).

Legend:
- 2013 Sea Turtle Nests
 - Caretta caretta (10)
 - Chelonia mydas (1)
 - City Limits

Notes:
2. Background imagery is from the ESRI Imagery Service.
Sea turtle nesting data, provided by the NCWRC (Matthew Godfrey, *pers. comm.*, 2014), were analyzed to quantify monthly nesting activity throughout North Carolina. Data were provided for eight locations including Ocean Isle, Oak Island, Wrightsville Beach, Topsail Island, Emerald Isle, Atlantic Beach, Cape Hatteras and Oregon Inlet to the NC/VA border from 2009 to 2013. The dates of nesting and hatchling emergences for all sea turtle species combined were examined to determine the most active periods of nesting activity. Figure 20 presents daily nesting and hatchling emergence activity observed throughout the five years of analysis (2009-2013). Over the five years, 2,023 nests were documented. The earliest recorded nesting occurred on May 11 and the earliest hatchling emergence occurred on July 11. The latest recorded nesting occurred on October 7 and the latest recorded hatchling emergence occurred on November 15.

Figure 20. Daily nesting (blue line) and hatchling emergence (red line) observed for all sea turtle species throughout North Carolina between 2009 and 2013.

Nest Counts
To determine when, on average, the most nesting activity occurred throughout the season, nesting counts over the five-year period were grouped into eleven, two-week increments. A two-week increment was used in order to maintain large enough sample sizes necessary for statistical analyses (not feasible at the daily scale), yet allowed for a finer level of comparison than monthly increments. When summed over the five year period, nest counts were generally highest during June and July, while the fewest number of nest counts occurred toward the end of the season (September through October) (Figure 21, Table 12). The number of nests counted during
the month of May essentially made up 7% of total nesting, while the period between August 10 and October 7 constituted 5% of total nesting. It can therefore be said that the majority (82%) of nesting occurred between June 1 and August 9 (Table 12).

Table 12. Total number of nests observed within each two-week increment used in the analyses. Nesting counts were combined over the five years of analysis (2009 to 2013).

<table>
<thead>
<tr>
<th>Week Block</th>
<th>n (number of days)</th>
<th>Mean Nest Counts/Day (±SD)</th>
<th>Total Number of Nests</th>
<th>% of Total Nesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 4-May 17</td>
<td>70</td>
<td>0.27 (0.70)</td>
<td>19</td>
<td>1%</td>
</tr>
<tr>
<td>May 18-May 31</td>
<td>70</td>
<td>1.61 (1.86)</td>
<td>113</td>
<td>6%</td>
</tr>
<tr>
<td>June 1-June 14</td>
<td>70</td>
<td>4.73 (2.76)</td>
<td>331</td>
<td>16%</td>
</tr>
<tr>
<td>June 15-June 28</td>
<td>70</td>
<td>5.86 (2.81)</td>
<td>410</td>
<td>20%</td>
</tr>
<tr>
<td>June 29-July 12</td>
<td>70</td>
<td>6.26 (2.67)</td>
<td>438</td>
<td>22%</td>
</tr>
<tr>
<td>July 13-July 26</td>
<td>70</td>
<td>5.37 (3.01)</td>
<td>376</td>
<td>19%</td>
</tr>
<tr>
<td>July 27-Aug 9</td>
<td>70</td>
<td>3.29 (2.45)</td>
<td>230</td>
<td>11%</td>
</tr>
<tr>
<td>Aug 10-Aug 23</td>
<td>70</td>
<td>1.16 (1.30)</td>
<td>81</td>
<td>4%</td>
</tr>
<tr>
<td>Aug 24-Sept 6</td>
<td>70</td>
<td>0.27 (0.56)</td>
<td>19</td>
<td>1%</td>
</tr>
<tr>
<td>Sept 7-Sept 20</td>
<td>70</td>
<td>0.06 (0.23)</td>
<td>4</td>
<td>0.2%</td>
</tr>
<tr>
<td>Sept 21-Oct 7</td>
<td>85</td>
<td>0.02 (0.15)</td>
<td>2</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total Nests</td>
<td></td>
<td></td>
<td>2023</td>
<td>100%</td>
</tr>
</tbody>
</table>

To determine where significant increases or decreases in nest counts occurred throughout the season, counts during the two-week increments were compared using non-parametric statistical
analyses. Because the nesting data were non-normal, a Kruskal-Wallis ANOVA was run to compare the effect of time on nest counts when counts were grouped into two-week increments. The Kruskal-Wallis ANOVA does not require the data to be normally distributed and is essentially an analysis of variance performed on ranked data. Results of the Kruskal-Wallis ANOVA indicated there was a significant effect of time on nest counts at the p<0.05 level for the eleven two-week groupings [H(10, 785)=573.0429, p=0.000]. Post-hoc comparisons of mean ranks between all groups revealed a number of significant differences between two-week blocks. The p-values associated with each of these comparisons are displayed in Table 13. It is important to note that the Kruskal-Wallis ANOVA is a non-parametric test based on ranks of the data, not the arithmetic means. The post-hoc test is therefore also a comparison of the mean ranks of all pairs of groups, and the mean rank (R) for each group is displayed in the table. Taken together, these results suggest nesting does vary with time throughout the nesting season. Nesting counts during May 4 through May 17 were significantly lower than the subsequent seven two-week blocks between May 18 and August 23. There was a period of eight weeks, from June 1 to July 26, in which nesting counts were significantly higher than any other two-week blocks. The four, two-week increments within this period were not statistically different from one another in terms of nesting counts (Table 13). The first significant decrease in nesting counts occurred between the two-week blocks of July 27 to August 9 and August 10 to August 23. It is also interesting to note that first two-week period in the nesting season is statistically similar to the last six weeks (Table 13), suggesting that nesting activity quickly increases in the beginning of the season, but continues in low numbers for a longer period toward the end of the season. It can be concluded that, based on data compiled from 2009 to 2013, the least amount of nesting occurred from May 4 to May 17 at the beginning of the season, and from August 24 to October 7 at the end of the season.

Table 13. Post-hoc multiple comparisons p-values (2-tailed) of mean ranks of nesting counts. Mean rank of each two-week group are also provided (R). Red values indicate a significant difference.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>202.14</td>
<td>356.69</td>
<td>574.34</td>
<td>624.81</td>
<td>645.49</td>
<td>597.88</td>
<td>496.36</td>
<td>330.25</td>
<td>208.38</td>
<td>171.3</td>
<td>164.36</td>
</tr>
<tr>
<td>May4 - May17</td>
<td></td>
</tr>
<tr>
<td>May18- May31</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>June1- June14</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June15- June28</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June29- July12</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July13- July26</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>July27- Aug9</td>
<td>0.00</td>
<td>0.01</td>
<td>1.00</td>
<td>0.04</td>
<td>0.01</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug10- Aug23</td>
<td>0.05</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug24- Sept6</td>
<td>1.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept7- Sept20</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept21- Oct7</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hatchling Emergences

Similar to the nest count data, nest emergence counts over the five-year period were grouped into two-week increments, spanning July 11 to November 15. Because emergences were only recorded on five separate days during the final two-week increment (October 31 to November 15), the sample size \(n \) would have been 5 for this group. This \(n \) would have been substantially smaller than the \(n \)'s of the remaining two-week groupings; therefore, these data were rolled into the previous grouping for the sake of statistical comparisons. As a result, there are eight groupings of hatchling data: seven two-week groupings and one spanning one month (Table 14).

When emergences are summed for each two-week grouping over the five-year period, it becomes apparent that the greatest number occurred during mid-August, and the least have occurred from July 11 to July 24 and October 16 to November 15 (Figure 22, Table 14). Emergences occurring during July 11 to July 24 (3%), and October 2 to November 15 (7%) accounted for approximately 10% of total emergences. It follows that the majority of emergences occurred from July 25 to September 4 (65%), with the peak number occurring during August 8 to August 21.

![Total Number of Emergences per Two-week Increment (2009 - 2013)](image)

Figure 22. Total number of emergences counted within two-week increments over the course of 2009 to 2013.

To determine when significant increases or decreases in nest emergences occurred, counts during two-week increments were compared using a non-parametric Kruskal-Wallis ANOVA. Results of the Kruskal-Wallis indicated time has an effect on number of nest emergences at the \(p<0.05 \) level when data are grouped into two-week increments \([H_{(8,414)} = 140.3825, \ p=0.00]\). Post-hoc comparisons of mean ranks between all groups show a number of significant differences between the two-week increments. The \(p \)-values associated with each comparison are displayed in Table 15. The first significant increase occurred between the two-week increments of July 11 to July 24.
and July 25 to August 7. There was essentially no significant difference in emergences between the July 25 to August 7, August 8 to August 21 and August 22 to September 4 two-week periods.

Table 14. Summary of hatchling emergence activity per two-week block observed throughout the five year period (2009 to 2013). The term \(n \) refers to the number of days for which emergences were observed.

<table>
<thead>
<tr>
<th>Week Block</th>
<th>(n) (number of days on which emergences occurred)</th>
<th>Mean Emergences/Day (±SD)</th>
<th>Sum of all Emergences</th>
<th>% of Total Emergences</th>
</tr>
</thead>
<tbody>
<tr>
<td>July11-July24</td>
<td>29</td>
<td>1.7 (1.3)</td>
<td>50</td>
<td>3%</td>
</tr>
<tr>
<td>July25-Aug7</td>
<td>61</td>
<td>4.3 (2.7)</td>
<td>265</td>
<td>17%</td>
</tr>
<tr>
<td>Aug8-21</td>
<td>69</td>
<td>5.8 (3.14)</td>
<td>403</td>
<td>25%</td>
</tr>
<tr>
<td>Aug22-Sep4</td>
<td>67</td>
<td>5.4 (3.49)</td>
<td>364</td>
<td>23%</td>
</tr>
<tr>
<td>Sep5-Sep18</td>
<td>69</td>
<td>3.8 (2.38)</td>
<td>260</td>
<td>16%</td>
</tr>
<tr>
<td>Sep18-Oct1</td>
<td>56</td>
<td>2.7 (1.96)</td>
<td>150</td>
<td>9%</td>
</tr>
<tr>
<td>Oct2-Oct15</td>
<td>33</td>
<td>1.8 (1.37)</td>
<td>61</td>
<td>4%</td>
</tr>
<tr>
<td>Oct16-Nov15</td>
<td>30</td>
<td>1.3 (0.66)</td>
<td>40</td>
<td>3%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1593</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 15. Post-hoc multiple comparisons \(p \)-values (2-tailed) of mean ranks. Mean ranks (\(R \)) of each two-week group are also provided. Red values indicate a significant difference.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>104.12</td>
<td>240.66</td>
<td>288.6</td>
<td>266.64</td>
<td>217.93</td>
<td>165.54</td>
<td>112.79</td>
<td>79.917</td>
</tr>
<tr>
<td>July11-July24</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.70</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>July25-Aug7</td>
<td>0.00</td>
<td></td>
<td>0.63</td>
<td>1.00</td>
<td>1.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Aug8-21</td>
<td>0.00</td>
<td>0.63</td>
<td></td>
<td>1.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Aug22-Sep4</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>0.49</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sep5-Sep18</td>
<td>0.00</td>
<td>1.00</td>
<td>0.01</td>
<td>0.49</td>
<td></td>
<td>0.42</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Sep18-Oct1</td>
<td>0.70</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.42</td>
<td></td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>Oct2-Oct15</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Oct16-Nov15</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

4.6.3.2 Sea Turtle Nesting Activity in the Outer Banks

A regional analysis was also completed to determine if the Outer Banks differed from the rest of North Carolina in terms of nesting activity (nest counts and emergences). To do so, all data were grouped into three regions: South (Long Bay), Central (Onslow Bay), and North (Outer Banks). As the length of surveyed beach differed between regions (South Region = 20 miles, Central Region = 43.5 miles, North Region = 109 miles) a comparison of an average nesting density
(nests/mile surveyed) and per season (May through October) was made to determine if there were differences between regions. Hartley’s F test was conducted to compare the nesting density per region and no statistically significant differences were found between variances ($F_{max} = 7.2 < F_{crit} = 10.8$). As this data was homoscedastic, a one way ANOVA for treatments was conducted and there were no statistically significant differences between mean nesting density per region (ANOVA $[F_{(2,15)} = 0.795, p = 0.470]$) (Figure 23). Likewise, a comparison of an average hatchling emergence density (emergences/mile surveyed) per season (July-November) was made to determine if there were differences between regions. A Hartley’s F test determined there were no significant differences between variances of emergence density between regions ($F_{max}=11.2 < F_{crit} =15.5$). A one-way ANOVA for treatments also showed no significant differences between mean emergence density per region (ANOVA $[F_{(2,12)} = 1.19, p= 0.36]$).

Figure 23. Mean nesting density (\pm standard error) and mean emergence density (\pm standard error) per region throughout the five years of analysis (2009-2013).
Nest Counts
Monthly activity was analyzed to show which months were most active for sea turtle nesting within each region. In each region, the majority of nesting occurred in June and July (Figure 24). A comparison of monthly nesting within the Northern Region was made to determine if there were monthly differences in nest counts. Within the Outer Banks, Hartley’s F test was conducted to compare the nests per month and statistically significant differences were found between variances ($F_{\text{max}} = 4968.5 < F_{\text{crit}} = 29.5$). As this data was heteroscedastic, the Games-Howell test was conducted to determine if there were significant differences in nest counts between months. Significant differences in monthly nesting were found between May and June, May and July, June and August, June and September, July and September, June and October, and July and October (Table 16).

Figure 24. Monthly nesting observed within each region throughout the five years of analysis (2009-2013).
Table 16. Multiple comparisons of nesting per month within the Outer Banks using the Games-Howell test. Mean difference is significant at the 0.05 level for cells highlighted in yellow.

<table>
<thead>
<tr>
<th>Month 1</th>
<th>Month 2</th>
<th>lower 95% CI</th>
<th>upper 95% CI</th>
<th>mean difference</th>
<th>Games-Howell q statistic</th>
<th>df</th>
<th>Critical value of q (at p=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>May</td>
<td>Jun</td>
<td>-103.97</td>
<td>-21.23</td>
<td>-62.60</td>
<td>8.64</td>
<td>5.77</td>
<td>5.71</td>
</tr>
<tr>
<td>May</td>
<td>Jul</td>
<td>-141.84</td>
<td>-13.36</td>
<td>-77.60</td>
<td>7.42</td>
<td>4.79</td>
<td>6.14</td>
</tr>
<tr>
<td>Jun</td>
<td>Jul</td>
<td>-79.15</td>
<td>49.15</td>
<td>-15.00</td>
<td>1.26</td>
<td>6.90</td>
<td>5.38</td>
</tr>
<tr>
<td>May</td>
<td>Aug</td>
<td>-43.57</td>
<td>8.77</td>
<td>-17.40</td>
<td>3.47</td>
<td>7.67</td>
<td>5.23</td>
</tr>
<tr>
<td>Jun</td>
<td>Aug</td>
<td>3.60</td>
<td>86.80</td>
<td>45.20</td>
<td>5.95</td>
<td>6.53</td>
<td>5.48</td>
</tr>
<tr>
<td>Jul</td>
<td>Aug</td>
<td>-3.38</td>
<td>123.78</td>
<td>60.20</td>
<td>5.63</td>
<td>5.19</td>
<td>5.94</td>
</tr>
<tr>
<td>May</td>
<td>Sep</td>
<td>-14.69</td>
<td>27.09</td>
<td>6.20</td>
<td>1.95</td>
<td>4.19</td>
<td>6.55</td>
</tr>
<tr>
<td>Jun</td>
<td>Sep</td>
<td>25.16</td>
<td>112.44</td>
<td>68.80</td>
<td>10.52</td>
<td>4.04</td>
<td>6.67</td>
</tr>
<tr>
<td>Jul</td>
<td>Sep</td>
<td>16.96</td>
<td>150.64</td>
<td>83.80</td>
<td>8.40</td>
<td>4.02</td>
<td>6.70</td>
</tr>
<tr>
<td>Aug</td>
<td>Sep</td>
<td>-2.29</td>
<td>49.49</td>
<td>23.60</td>
<td>6.02</td>
<td>4.12</td>
<td>6.60</td>
</tr>
<tr>
<td>May</td>
<td>Oct</td>
<td>-13.73</td>
<td>28.53</td>
<td>7.40</td>
<td>2.35</td>
<td>4.02</td>
<td>6.70</td>
</tr>
<tr>
<td>Jun</td>
<td>Oct</td>
<td>26.23</td>
<td>113.77</td>
<td>70.00</td>
<td>10.73</td>
<td>4.00</td>
<td>6.71</td>
</tr>
<tr>
<td>Jul</td>
<td>Oct</td>
<td>18.14</td>
<td>151.86</td>
<td>85.00</td>
<td>8.53</td>
<td>4.00</td>
<td>6.71</td>
</tr>
<tr>
<td>Aug</td>
<td>Oct</td>
<td>-1.28</td>
<td>50.88</td>
<td>24.80</td>
<td>6.37</td>
<td>4.01</td>
<td>6.70</td>
</tr>
<tr>
<td>Sep</td>
<td>Oct</td>
<td>-1.90</td>
<td>4.30</td>
<td>1.20</td>
<td>2.40</td>
<td>4.69</td>
<td>6.20</td>
</tr>
</tbody>
</table>

Hatchling Emergence

A regional analysis was competed between the South (Long Bay), Central (Onslow Bay), and North (Outer Banks) regions, to determine if there was a spatial preference to hatchling emergence. Monthly activity was analyzed to show which months were most active for sea turtle hatchling emergence. In each region, the majority of emergences occurred in August and September (Figure 25).

Within the Outer Banks, a Hartley’s F test was conducted to compare the emergences per month and statistically significant differences were found between variances (F_{max} = 3784.333 < F_{crit} = 25.2). As this data was heteroscedastic, the Games-Howell test was conducted to determine if there were significant differences in emergences between months. Significant differences in monthly emergences were only found between August and November (Table 17).
Table 17. Multiple comparisons of hatchling emergences per month within the Outer Banks using the Games-Howell test.

<table>
<thead>
<tr>
<th>Month 1</th>
<th>Month 2</th>
<th>lower 95% CI</th>
<th>upper 95% CI</th>
<th>mean difference</th>
<th>Games-Howell q statistic</th>
<th>df</th>
<th>Critical value of q (at p=0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul</td>
<td>Aug</td>
<td>-126.96</td>
<td>3.36</td>
<td>-61.80</td>
<td>5.77</td>
<td>4.28</td>
<td>6.08</td>
</tr>
<tr>
<td>Jul</td>
<td>Sep</td>
<td>-100.19</td>
<td>31.79</td>
<td>-34.20</td>
<td>3.16</td>
<td>4.27</td>
<td>6.09</td>
</tr>
<tr>
<td>Aug</td>
<td>Sep</td>
<td>-45.61</td>
<td>100.81</td>
<td>27.60</td>
<td>1.84</td>
<td>8.00</td>
<td>4.89</td>
</tr>
<tr>
<td>Jul</td>
<td>Oct</td>
<td>-16.24</td>
<td>8.24</td>
<td>-4.00</td>
<td>1.62</td>
<td>7.48</td>
<td>4.97</td>
</tr>
<tr>
<td>Aug</td>
<td>Oct</td>
<td>-7.74</td>
<td>123.34</td>
<td>57.80</td>
<td>5.43</td>
<td>4.16</td>
<td>6.16</td>
</tr>
<tr>
<td>Sep</td>
<td>Oct</td>
<td>-36.19</td>
<td>96.59</td>
<td>30.20</td>
<td>2.81</td>
<td>4.16</td>
<td>6.17</td>
</tr>
<tr>
<td>Jul</td>
<td>Nov</td>
<td>-7.26</td>
<td>17.26</td>
<td>5.00</td>
<td>2.54</td>
<td>4.06</td>
<td>6.24</td>
</tr>
<tr>
<td>Aug</td>
<td>Nov</td>
<td>0.59</td>
<td>133.01</td>
<td>66.80</td>
<td>6.34</td>
<td>4.00</td>
<td>6.29</td>
</tr>
<tr>
<td>Sep</td>
<td>Nov</td>
<td>-27.80</td>
<td>106.20</td>
<td>39.20</td>
<td>3.68</td>
<td>4.00</td>
<td>6.29</td>
</tr>
<tr>
<td>Oct</td>
<td>Nov</td>
<td>0.33</td>
<td>18.33</td>
<td>9.00</td>
<td>5.99</td>
<td>4.11</td>
<td>6.21</td>
</tr>
</tbody>
</table>

4.6.3.3 Swimming Sea Turtles Offshore North Carolina

Numerous studies have shown that the Mid-Atlantic and South-Atlantic Bight, particularly the waters from North Carolina to New Jersey, provide important seasonal and migratory habitat for sea turtles, especially juvenile and adult loggerheads from the Northern U.S population. The Mid-Atlantic Bight (MAB) includes oceanic waters from Cape Cod, Massachusetts to Cape
Hatteras, NC; and the South Atlantic Bight (SAB) includes oceanic waters from Cape Hatteras, NC to Cape Canaveral, Florida. Loggerhead sightings data compiled for the Atlantic Marine Assessment Program for Protected Species show the presence of this species inside the 200-m isobaths is well-documented during the spring (NOAA, 2012) (Figure 26). The occurrence and distribution of sea turtles along the Atlantic coast has been shown to be tied to sea surface temperature (SST) (Coles and Musick, 2000; Braun-McNeill et al., 2008). In addition, Mansfield et al. (2009) show that site fidelity of juvenile loggerheads can be due to changes in environmental parameters such as water temperature as well as prey availability. Throughout the region, water temperatures increase rapidly in March and April and decrease rapidly in October and November; these temperature changes are quicker in nearshore waters. An analysis of historical tracking and sightings data conducted by the Turtle Expert Working Group (TEWG) indicates that the shelf waters (out to the 200-meter isobaths) off North Carolina are seasonally “high-use areas” for certain life stages of loggerhead sea turtles (TEWG, 2009). During the winter months (January through March), very few loggerheads occur coastally north of Cape Hatteras, North Carolina. During the spring (April through June), summer (July through September) and fall (October through December), the nearshore waters from the North Carolina/South Carolina border up to the Chesapeake Bay, Virginia serve as high-use areas for juvenile and adult nesting females. Similarly, male loggerheads frequent the nearshore waters of the mid-Atlantic Bight from the spring through the fall (essentially April through December), with a high-use area in the vicinity of Cape Hatteras. Braun-McNeill et al. (2008) show that loggerhead turtle presence off Cape Hatteras (based on sightings, strandings, and incidental capture records) occurred when 25% or more of the area exceeded SST of 11°C (51.8°F). Satellite tagging studies of juvenile loggerheads performed by Mansfield et al. (2009) demonstrate that the waters of Virginia and North Carolina also serve as important seasonal habitat for juvenile sea turtles from May through November, and the Cape Hatteras area creates a “migratory bottleneck” that warrants “special management consideration”.

In a study spanning ten years (1998-2008) 68 female loggerhead sea turtles (Caretta caretta) were tagged following nesting on the beaches of North Carolina (NC), South Carolina (SC), and Georgia (GA) (Griffin et al., 2013). Using satellite tags, their movements were tracked in order to document where the turtles spend their time while at sea. Tagging data from the “Northern Recovery Unit (NRU) turtles” (those turtles nesting in this area of the United States) indicate that they migrate to areas offshore Cape Hatteras, NC to northern New Jersey (NJ) to forage and recover from the stresses of reproduction and nesting (Griffin et al., 2013). The majority of the NRU tagged turtles (42 of 68) used migration routes over the continental shelf off Cape Hatteras, NC moving south to the SAB from mid-September through November, and north to the MAB in from April through June (Griffin et al., 2013) (Figure 27). The width of the migratory corridor used by the turtles was constricted off Cape Hatteras, NC and was used over seven months of the year (Griffin et al., 2013). This indicates that it is an important high-use area for female loggerheads and this should be considered when conducting activities there.
Figure 26. Loggerhead turtle sightings during the Southeast AMAPPS spring 2012 aerial survey. Image from NOAA, 2012.
Although loggerheads are the most common turtle occurring offshore of North Carolina, the state’s marine waters also provide important habitat for green and Kemp’s ridley sea turtles. A review of sightings reports obtained from commercial and recreational fishermen and the public indicate that sea turtles are present offshore North Carolina year-round. There were two seasonal peaks: one in spring (April to June) off the entire North Carolina coast, and one in late fall (October through December) off the northern North Carolina coast (Epperly et al., 1995).
Sightings were generally greatest in offshore water (>5.6 km from shore), except during the period from May to June, when nearshore (<5.6 km) sightings were equal to offshore sightings. Leatherbacks were also documented nearshore in “large numbers” in early May, presumably with the appearance of prey. The sightings data also indicated the leatherbacks subsequently moved northward along the beach, and leatherback presence declined by late June (Epperly et al., 1995).

Sea turtle stranding data from 2013 in North Carolina show that of 897 total recorded strandings, 553 (62%) occurred in the months of January through March and November through December. Of these 553, 13% (71) were loggerheads, 65% (362) were green turtles and 21% (115) were Kemp’s ridley turtles. The remaining 1% (5) were unidentified. The higher number of strandings for green and Kemp’s ridley turtles may be due to their lower tolerance for cooler water temperatures; however, the strandings also indicated that these species are in fact present throughout the year in waters off North Carolina (seaturtle.org, 2013).

Table 18. Total number of sea turtle strandings recorded per month in North Carolina in 2013. Totals are reported for each species. Abbreviations in the table are interpreted as the following: CC=Caretta caretta; CM=Chelonia mydas; LK=Lepidochelys kempii; DC=Dermochelys coriacea; EI=Eretmochelys imbricata; HY=hybrid; UN=unidentified. (Table modified from seaturtle.org, 2013).

<table>
<thead>
<tr>
<th>Species by Month</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>CC</td>
</tr>
<tr>
<td>January</td>
<td>25</td>
</tr>
<tr>
<td>February</td>
<td>6</td>
</tr>
<tr>
<td>March</td>
<td>6</td>
</tr>
<tr>
<td>April</td>
<td>8</td>
</tr>
<tr>
<td>May</td>
<td>24</td>
</tr>
<tr>
<td>June</td>
<td>34</td>
</tr>
<tr>
<td>July</td>
<td>25</td>
</tr>
<tr>
<td>August</td>
<td>26</td>
</tr>
<tr>
<td>September</td>
<td>22</td>
</tr>
<tr>
<td>October</td>
<td>17</td>
</tr>
<tr>
<td>November</td>
<td>22</td>
</tr>
<tr>
<td>December</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>227</td>
</tr>
</tbody>
</table>

While in foraging areas and migratory corridors, sea turtles can come into contact with fisheries, dredging activities, as well as other offshore activities. Therefore, bycatch records can be useful tools for determining sea turtle presence in nearshore and oceanic waters. The 2011 NMFS Bycatch Report includes estimates of bycatch from 2001 through 2006. Per the referenced report, bycatch is defined as discarded catch of any living marine resource and as unobserved mortality due to a direct encounter with fishing gear (NMFS, 2011). Loggerheads are the most common species of sea turtle to be taken as bycatch in fisheries operations (Griffin et al., 2013).
highest numbers of sea turtles caught as bycatch occur in the Southeast Region by the reef fish, Atlantic pelagic longline, and southeastern Atlantic and Gulf of Mexico shrimp trawl fisheries (NMFS, 2011). The most common species taken as bycatch are loggerheads, followed by Kemp’s ridley, and leatherbacks (NMFS, 2011). Sea turtle bycatch estimates for the North Carolina southern flounder pound net fishery were 536 loggerheads, 107 green turtles, and 13.6 Kemp’s ridley turtles; and estimates for the North Carolina inshore gillnet fishery were 37 green turtles, 19 leatherbacks and 4 loggerhead turtles (NMFS, 2011). The fisheries with the highest level of sea turtle bycatch (based on 2001 data only) were the Gulf of Mexico and Southeastern Atlantic shrimp trawl fisheries with the majority of turtles caught being Kemp’s ridley and loggerhead sea turtles (NMFS, 2011).

4.6.3.4 Leatherback Sea Turtle

The leatherback sea turtle (*Dermochelys coriacea*) was listed as an endangered species on June 02, 1970 (under a law that preceded the Endangered Species Act of 1973), and subsequently listed as endangered throughout its range in the United States under the Endangered Species Act of 1973 (35 FR 8491). A Critical Habitat designation is listed for Sandy Point, St. Croix, U.S. Virgin Islands and surrounding waters (44 FR 17710).

While the leatherback has a worldwide distribution in temperate and tropical waters of the Atlantic, Pacific and Indian Oceans, it is not found in large numbers anywhere (USFWS, 2013c; USFWS, 2014c). Nesting populations of leatherback sea turtles were first discovered in the 1950's; however, most were not recorded until the 1960's and 1970's (Lutz and Musick, 1997). In 1995, an estimated 34,500 females nested worldwide, and global nesting populations are currently estimated between 34,000 and 94,000 adult leatherbacks (USFWS, 2013c). Major nesting grounds discovered in Mexico once contributed over 65% to the total known populations worldwide (Pritchard, 1997). However, according to the U.S. Fish and Wildlife Service, the Mexico leatherback nesting population has declined dramatically to less than one percent of its estimated size in 1980. The largest nesting populations are now found in Indonesia, West Papua, Columbia and French Guiana (USFWS, 2013c).

The leatherback is one of the largest sea turtles with an average sized adult weighing 450 kilograms (1,000 lbs) (Pritchard, 1997). It is barrel-shaped in appearance with a rigid leather-like carapace. The front flippers are paddle-like without claws and proportionally longer than those of any other sea turtle (USFWS, 2014c). The average leatherback nest depth is approximately 90 cm (35.4 inches) or less (Stefanie Oullette, *pers. comm.*, 2006.). Considered to be the most pelagic of sea turtle species, leatherback hatchlings migrate offshore and remain pelagic through their adult lives. Leatherbacks feed throughout the water column from depths of 50 m (164 ft.) recorded in Australia, to surface waters and nearshore shallow environments of 4 m (13 ft.). These turtles primarily prey upon jellyfish, squid, shrimp and other types of fish (Bjorndal, 1997).

an average of five to seven times within a nesting season with an observed maximum of eleven nests. The average inter-nesting interval is about nine to ten days (USFWS, 2013c). Therefore, Rabon et al. (2003) hypothesized that these nesting activities could be attributed to a single female. The North Carolina Wildlife Resources Commission (NCWRC) reported one leatherback false crawl in North Carolina in 2007 (S. Everhart, pers. comm., 2007). More recently, data provided by the NCWRC shows three leatherback nests were documented between 2009 and 2013, one in the northern Outer banks (Figure 15) and two in the Cape Hatteras National Seashore (Table 19) (Matthew Godfrey, pers. comm., 2014).

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Outer Banks (Kill Devil Hills)</td>
<td>06/18/2009</td>
</tr>
<tr>
<td>Cape Hatteras National Seashore</td>
<td>06/28/2009</td>
</tr>
<tr>
<td>Cape Hatteras National Seashore</td>
<td>07/09/2012</td>
</tr>
</tbody>
</table>

While infrequently found in inshore waters, Epperly et al. (1995) reported that on average, 15 leatherback sea turtles per year were sighted in inshore waters (within three miles of shore) of North Carolina between 1989 and 1992. According to Epperly et al. (1995), these inshore sightings coincided with the appearance of jellyfish, and leatherback sightings diminished by late June.

4.6.3.5 Hawksbill Sea Turtle

The hawksbill sea turtle (*Eretmochelys imbricata*) was listed as endangered in 1970. The hawksbill is also internationally protected under Appendix 1 of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) (NMFS, 2013b). A Critical Habitat designation has also been identified for the waters surrounding Mona and Monito Islands of Puerto Rico. These islands provide primary foraging habitat for several life stages for this species (NMFS, 2013b; USFWS, 2013a).

Hawksbill turtles are usually found in tropical and subtropical waters of the Atlantic, Pacific and Indian Oceans from 30°N to 30°S latitude (NMFS, 2013b). These turtles are widely distributed in the Caribbean and the western Atlantic Ocean. Hawksbill turtles prefer the clear shallow waters of coral reefs, creeks, estuaries and lagoons in tropical areas. Their diet primarily consists of sponges but also includes algae, fish, mollusks and other benthic species found in the nearshore zone. Adults may reach up to 3 feet in length and weigh on average about 300 pounds (USFWS, 2013a). The hawksbill has experienced major population declines, due primarily to human exploitation for the shell trade. Panama, once a major nesting location, now supports only a remnant nesting population. Mexico and Cuba now host the largest nesting sites within the Caribbean. Nesting numbers totaled 400-833 females during the period from 2001 through 2006 in Mexico. An estimated 400 to 833 females nested in Cuba in 2002.

Hawksbills nest in low numbers on scattered beaches. Females lay on average 3-5 nests per season that contain 130 eggs per nest (NMFS, 2013b; USFWS, 2013a). Nesting season varies...
with locality, but most nesting occurs sometime between April and November (USFWS, 2013a). There have been no reported nesting activities of hawksbill sea turtles on the beaches within the Project Area (Matthew Godfrey, pers. comm., 2010).

Hawksbill neonate behavior is similar to other sea turtles; they remain pelagic for several years before returning to coral reef habitats. Juveniles move from pelagic to coastal habitats at a much smaller size than other turtles (to 10 inch carapace length) (Lutcavage and Musick, 1985). Juveniles are not often seen in waters deeper than 65 feet (Witzell, 1983); however, they are frequently associated with floating sargassum in the open ocean (Musick and Limpus, 1997).

Within the U.S., hawksbills are most common in the waters surrounding Puerto Rico, U.S. Virgin Islands and Florida (NMFS, 2013b). Hawksbills are recorded in the continental U.S. from all the Gulf States and from the eastern seaboard as far north as Massachusetts, but sightings north of Florida are rare (NMFS, 2013b). The U.S. Fish and Wildlife Service, North Carolina Office reports that the presence of hawksbill sea turtles along the North Carolina coast is rare (USFWS, 2014b) and no nests of this species have been documented by the NCWRC between 2009 – 2012 (Matthew Godfrey, pers. comm., 2014). Therefore, it is considered unlikely this species will occur within the Project Area.

4.6.3.6 Kemp’s Ridley Sea Turtle

The Kemp’s ridley sea turtle (Lepidochelys kempii) was listed as federally endangered under the Endangered Species Act on December 2, 1970 (35 FR 18319). The range of Kemp’s ridley includes the Gulf coast of Mexico, the Atlantic coast of North America as far north as Newfoundland and Nova Scotia, and the Gulf coast of the U.S., especially Padre Island, Texas. A few records exist for the Azores, Morocco and the Mediterranean Sea (USFWS, 2013b; NMFS, 2013c). Kemp’s ridley are the smallest of the eight species of turtles, averaging 35-45 kilograms (78-100 lbs) with an average length between 60 and 70 cm (24 and 28 inches) (Marquez 1994; NMFS 2013c). Juvenile Kemp’s ridley turtles feed primarily on crabs, clams, mussels and shrimp and are most commonly found in productive coastal and estuarine areas. Recruitment from pelagic habitats occurs at a carapace size between 20 and 25 cm (7.9 and 9.8 inches) (Lutcavage and Musick, 1985).

Female Kemp’s ridley turtles exhibit large-scale synchronized nesting, a phenomenon called “arribadas”. During an arribada, females come to shore in large numbers to nest, usually during the daylight hours (NMFS, USFWS and SEMARNAT, 2010; NMFS, 2013c). Females generally nest from May to July, and lay two to three clutches in a season. Hatchling emergence occurs generally at night after 45-58 days of incubation. Nesting aggregations discovered at Rancho Nuevo in 1947 were estimated at over 40,000 females. Within decades, however, the population was estimated to be around 300 nesting females. The species appears to be in the early stages of recovery and the number of nests counted annually at all monitored beaches suggest a female nesting population of 5,500 (NMFS, USFWS and SEMARNAT, 2010). Conservation measures initiated in the late 1970’s are thought to be contributing to the Kemp's ridley population recovery; however, the Kemp's ridley sea turtle remains the rarest and most endangered sea turtle in the world (Pritchard, 1997).
Unlike most sea turtle species that are widely distributed, the Kemp's ridley is mostly restricted to the Gulf of Mexico (Miller, 1997). The largest nesting populations occur on the coastal beaches of the Mexican states of Tamaulipas and Veracruz (NMFS, USFWS and SEMARNAT, 2010). Smaller nesting events occur near Padre Island National Seashore, Texas. According to the U.S. Fish and Wildlife Service, rare nesting events have also been recorded in Florida, South Carolina and North Carolina (USFWS, 2013b). Data from the North Carolina Wildlife Resources Commission (NCWRC) show four Kemp's ridley sea turtles nests have been documented in North Carolina between 2009 and 2013, all of which occurred in the Outer Banks Table 20). Two of these nests were deposited along Cape Hatteras National Seashore in June and August (Table 20). The other two nestings occurred in Corolla (Figure 16) and Duck (Figure 18), both during June (Table 20).

<table>
<thead>
<tr>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Outer Banks (Corolla)</td>
<td>07/09/2010</td>
</tr>
<tr>
<td>Cape Hatteras National Seashore</td>
<td>06/16/2011</td>
</tr>
<tr>
<td>Northern Outer Banks (Duck)</td>
<td>06/14/2012</td>
</tr>
<tr>
<td>Cape Hatteras National Seashore</td>
<td>08/14/2013</td>
</tr>
</tbody>
</table>

Hatchlings are dispersed within the Gulf and Atlantic by oceanic surface currents. They have also been sighted in shallow coastal waters along the east coast of the United States. Kemp’s ridley sea turtles are commonly observed migrating within North Carolina inshore waters during the spring and fall and occasionally found stranded on the beaches of North Carolina (Mihnovets, 2003). These strandings may be attributed to juveniles being caught in the southern Gulf of Mexico loop current that eventually moves these turtles east and north along the western Atlantic coast (Musick and Limpus, 1997).

5.6.3.7 Green Sea Turtle

Breeding populations of the green sea turtle (Chelonia mydas) in Florida and the Pacific coast of Mexico have been federally listed as endangered, while all other populations have been listed as threatened under the Endangered Species Act since July 28, 1978. Additionally, Critical Habitat was designated for the coastal waters surrounding Culebra Island, Puerto Rico (NMFS, 2013a; USDC, 1998). Green sea turtles are mid- to large-sized sea turtles that reach an average weight of 136.2 kg (303 lbs) (Pritchard, 1997). In the North Atlantic, green sea turtles leave their pelagic habitats and enter coastal feeding grounds when they have reached a carapace length of 30 to 40 cm (11.8 to 15.8 inches) (Lutcavage and Musick, 1985). Their shell is heart-shaped, of variable color and becomes smooth during the adult phase. Feeding habitats for adults are specific to seagrasses and marine algae, while hatchlings may be found feeding on various plants and animals. Green sea turtles are generally found near seagrass habitats in shallow aquatic environments, such as nearshore reefs, bays and inlets (NMFS, 2013a). Coral reefs and rocky patches may also be utilized for shelter and feeding when seagrass is not available (Hirth, 1997).
The green sea turtle is globally distributed and generally ranges throughout warm tropical and temperate waters of more than 140 countries. Their nesting and feeding grounds are predominantly located along coastal areas between 30° N and 30° S. The green sea turtle nesting season of southern U.S. populations generally occurs between June and September, but varies depending upon its locality. Nest depth ranges between 60 and 90 cm (23.6 and 35.4 inches) (Stefanie Oullette, pers. comm., 2006). The clutch size of a female turtle varies from 75 to 200 eggs with an incubation time from 45 to 75 days (USFWS, 2014e). Hatchling incubation time and sex determination are both temperature dependent (Hays et al., 2001). Green sea turtle hatchlings emerge at night and migrate offshore spending several years feeding and growing in oceanic current systems (USFWS, 2012a).

Green turtles nest over a broad latitudinal range with the largest nesting populations in the world found along the western side of the Pacific Ocean on the beaches of Raine Island, Australia. Additional significant nesting beaches that occur in the Pacific Ocean include the Hawaiian archipelago French Frigate Shoals, Commonwealth of the Northern Marianas, Guam and American Samoa. Other large nesting populations have been reported in the Indian Ocean along the beaches of Oman and in the Atlantic Ocean along the coastlines of Ascension Island, Aves Island, Costa Rica and Surinam. Along the U.S. beaches of the Atlantic, green turtles primarily nest in Florida. Less significant nesting populations have been identified in the U.S. Virgin Islands, Puerto Rico, Georgia, South Carolina and North Carolina (USFWS, 2012a). Regarding proximity to the Project Area, the USFWS (2014e) reports that the green sea turtle has been observed in Beaufort, Brunswick, Carteret, Currituck, Dare, Hyde, New Hanover, Onslow, Pamlico and Pender Counties. While green sea turtles have been sighted, primarily from spring through fall, along the entire North Carolina coastline, nesting activities have only been observed in Onslow, Brunswick, Hyde, Dare and Currituck Counties (Matthew Godfrey, pers. comm., 2014).

Nesting survey data provided by the NCWRC indicates 48 green sea turtle nests have been recorded within North Carolina from 2009 to 2013. The earliest nest was laid on June 7, 2011, along the Cape Hatteras National Seashore, and the latest nest was laid October 3, 2013 on Topsail Island. Of the 48 nests documented, only one nest was laid north of Oregon Inlet; this nest was deposited in Duck on July 17, 2013 (Figure 19).

4.6.3.8 Loggerhead Sea Turtle

The loggerhead sea turtle (Caretta caretta) was listed in the Federal Register as threatened throughout its range on July 28, 1978 (43 FR 32800). On September 22, 2011, the listing was revised from a single threatened species to nine Distinct Population Segments (DPS) with four listed as threatened and the remaining five listed as endangered. Within the Northwest Atlantic Distinct Population Segment (DPS), five nesting recovery units in have been identified through genetic DNA analysis and include: 1) the Northern recovery unit from southern Virginia to the Georgia-Florida border; 2) Peninsular Florida recovery unit from the Florida-Georgia border, following the eastern coastline south and around to Pinellas County on Florida's west coast; 3) the Dry Tortugas, Florida, recovery unit including loggerheads nesting on the islands west of Key West, Florida; 4) the Northern Gulf of Mexico recovery unit, from Franklin County along Florida's northwest coast through Texas; and 5) the Greater Caribbean recovery unit, which includes loggerheads originating from all other nesting assemblages within the Caribbean.
Loggerheads are large reddish-brown turtles weighing between 91-159 kg. (200-350 lbs.) (Pritchard, 1997). The average carapace length of an adult southeastern U.S. loggerhead is about 92 cm. (3 ft.) with an associated body mass weighing 133 kg. (293 lbs.). Adult loggerheads nest at night along sandy beaches and may nest from one to seven times within a nesting season (NMFS, 2013d; USFWS, 2012b). The average nest depth for loggerhead sea turtles is 61 cm. (24 in.) (Stefanie Oullette, pers. comm., 2006). Loggerhead sea turtles are the only marine sea turtles that have been reported to nest predominantly outside of the tropics (Bolten and Witherington, 2003).

Hatchling loggerheads migrate offshore into the Gulf Stream where they move at a northeastward trajectory into the northwestern Atlantic. These neonate turtles have been shown to venture out of the Gulf Stream and into meso-scale eddies, continue into the Gyre or into the Sargasso Sea where they can be found in drifting masses of sargassum macroalgae until they have grown to be much larger juveniles (Fletmeyer, 1978; Mansfield et al., 2014). Loggerhead sea turtles will remain within the gyre for several years before leaving their pelagic habitats to return to their coastal foraging and nesting habitats (Klinger and Musick, 1995; Bolten et al., 1993). Recruitment into coastal habitats occurs when their carapace length is between 25 and 70 cm (9.8 and 27.5 in) (Lutcavage and Musick, 1985; Bolten et al., 1993).

The loggerhead is widely distributed, inhabiting different oceanic zones throughout the temperate and tropical regions of the Atlantic, Pacific and Indian Oceans (USFWS, 2012b). According to the U.S. Fish and Wildlife Service (2012), loggerhead sea turtles predominantly nest along the western coasts of the Atlantic and Indian Oceans. Major nesting aggregations include Masirah Island (Oman), Australia and south Florida.

Eighty percent of all loggerhead nesting that occurs in the southeastern U.S. takes place in Florida. The Archie Carr National Wildlife Refuge (ACNWR), a 20-mile stretch of coastline found along the east coast of Florida, is considered the most important nesting area for loggerhead turtles in the western hemisphere. Over 625 nests per km have been recorded by researchers within the ACNWR (NMFS, 2013d). Loggerhead sea turtle nesting occurs to a lesser extent on suitable beaches on islands off the Gulf states and along the entire North Carolina coastline, including Dare County where the Project Area is located (USFWS, 2014a). The Fish and Wildlife Service reported that although declines in nesting since the 1970's have been documented, no long-term trend data is available for the Northern subpopulation (USFWS, 2012b). Bolten and Witherington (2003) reported that studies on the northern subpopulation from 1989 to 1998 illustrated a stable or declining population trend. The Florida Fish and Wildlife Conservation Commission analyzed trends in loggerhead nesting in Florida and found no demonstrable trend for the period between 1998 to 2013, indicating a reversal in the decline detected prior to 1998. Between 1989 and 2013, there was an almost 30% positive change in nest counts (FWC, 2014).

Nesting survey data provided by the NCWRC indicate 1,634 loggerhead sea turtle nests were recorded within North Carolina from 2009 to 2013. The earliest nest recorded was May 11, 2012,
and the latest record of the season occurred on October 7, 2009. Of the total nests recorded in North Carolina, 67 (4.1%) occurred along the northern Outer Banks, north of Oregon Inlet. Nests in this region were recorded from May through September, with the majority being recorded during June and July (Figure 28).

![Loggerhead Sea Turtle Nests in the Northern Outer Banks from 2009-2013](image)

Figure 28. Number of loggerhead sea turtle nests recorded along the northern portion of the Outer Banks, north of Oregon Inlet, from 2009 to 2014. Data provided by the NCWRC (Matthew Godfrey, *pers. comm.*, 2014).

Designated Critical Habitat for Loggerhead Sea Turtles

On July 10, 2014, the USFWS designated 1,102 km of the western Atlantic and Gulf of Mexico coastlines as terrestrial critical habitat for the Northwest Atlantic Ocean Distinct Population Segment (NWA DPS) of loggerhead sea turtles. Critical habitat is designated on sandy beaches capable of supporting a high density of nests in North Carolina (Brunswick, Carteret, New Hanover, Onslow and Pender counties), South Carolina (Beaufort, Charleston, Colleton, and Georgetown counties), Georgia (Camden, Chatham, Liberty, and McIntosh counties), and Florida (Bay, Brevard, Broward, Charlotte, Collier, Duval, Escambia, Flagler, Franklin, Gulf, Indian River, Lee, Manatee, Martin, Monroe, Palm Beach, Sarasota, St. Johns, St. Lucie, and Volusia counties). The designation also includes non-continuous sections of coastline from Alabama and Mississippi. Department of Defense lands are exempt from critical habitat designation. Maps of the specific terrestrial critical habitat locations may be found in the FWS Final Rule (79 FR 39756). In North Carolina, the northernmost segment of the terrestrial Critical Habitat, referred to as LOGG-T-NC-01, is located on Bogue Banks, approximately 125 miles south of Dare County (Figure 29). There are no units designated within Dare County.

Additionally, on July 10, 2014 the National Marine Fisheries Service (NMFS) designated marine critical habitat within the Atlantic Ocean and the Gulf of Mexico for the NWA DPS of the loggerhead sea turtle. Open water critical habitat was designated for nearshore reproductive habitat, breeding habitat, migratory habitat, and winter habitat and is located along the U.S. Atlantic coast from North Carolina south to Florida and into the Gulf of Mexico. Critical habitat is designated offshore of the U.S. Atlantic coast coincident with the Gulf Stream to the edge of the U.S. Exclusive Economic Zone (EEZ) stretching from approximately 38° North latitude, 71°
West longitude south to the Gulf of Mexico-Atlantic border. Detailed descriptions and maps may be found in the NMFS Final Rule for critical habitat designation (79 FR 39856). Unit LOGG-N-01 is the northernmost unit within North Carolina and the closest to Dare County. This unit is defined in the Federal Register as (79 FR 39856):

Figure 29. Terrestrial critical habitat proposed by the USFWS for the loggerhead sea turtle (Northwest Atlantic DPS). The northernmost unit is LOGG-T-NC01, located in Carteret County, NC and does not extend into the Project Area.
LOGG-N-1 - *North Carolina Constricted Migratory Corridor and Northern Portion of the North Carolina Winter Concentration Area:* This unit contains constricted migratory and winter habitat. The unit includes the North Carolina constricted migratory corridor and the overlapping northern half of the North Carolina winter concentration area. NMFS defined the constricted migratory corridor off North Carolina as the waters between 36° N latitude and Cape Lookout (approximately 34.58° N) and from the shoreline (MHW) of the Outer Banks, North Carolina, barrier islands to the 200-m depth contour (continental shelf).

The constricted migratory corridor overlaps with the northern portion of winter concentration area off North Carolina. The western and eastern boundaries of winter habitat are the 20-m and 100-m contours, respectively. The northern boundary of winter habitat starts at Cape Hatteras (35°16′ N) in a straight latitudinal line between the 20- and 100-m depth contours and ends at Cape Lookout (approximately 34.58° N) (Figure 30).

According to the above description, there is no designated critical habitat that falls within the municipal boundaries of Kitty Hawk. Unit LOGG-N-1 extends into the waters off the southernmost portion of Kill Devil Hills, the town adjacent and to the south of Kitty Hawk. One of the proposed borrow areas, Borrow Area A, is located within the portion of unit LOGG-N-1 including only constricted migratory habitat.
4.6.4 Shortnose Sturgeon

The shortnose sturgeon (*Acipenser brevirostrum*) was listed as endangered on March 11, 1967 under the Endangered Species Preservation Act of 1966 (a predecessor to the Endangered Species Act of 1973). NMFS later assumed jurisdiction for shortnose sturgeon under a 1974 government reorganization plan (38 FR 41370). The shortnose sturgeon is the smallest of the three sturgeon species that are found in eastern North America, rarely exceeding a length of 1.4 meter (4.7 ft) and a weight of 23 kilograms (50.7 pounds) (NMFS, 2014d). Shortnose sturgeons are bottom feeders, typically feeding on crustaceans, insect larvae, worms, mollusks and some plants (NMFS, 1998b). They appear to feed either in freshwater riverine habitats or near the freshwater/saltwater interface. This species is anadromous, primarily utilizing riverine and estuarine habitats, migrating between freshwater and mesohaline river reaches. Spawning occurs in upper, freshwater areas, typically in January and February while feeding and overwintering.
activities may occur in both fresh and saline habitats. Aside from seasonal migrations to estuarine waters, this species rarely occurs in the marine environment (NMFS, 1998b; Keiffer and Kynard, 1993). There are accounts of shortnose sturgeons occurring in the Atlantic Ocean offshore of NC (Holland and Yelverton, 1973; Dadswell \textit{et al.}, 1984), however, these records are not well substantiated and there is speculation as to whether they were misidentified juvenile Atlantic sturgeon (Shortnose Sturgeon Status Review Team, 2010). Those shortnose sturgeon captured in the ocean are usually taken close to shore, in low salinity environments; there are no records of shortnose sturgeon in the NMFS database for the northeast offshore bottom trawl survey (NMFS, 1998b). This species is therefore considered highly unlikely to occur in the project area.

\subsection*{4.6.5 Atlantic Sturgeon}

In 2009, the Natural Resources Defense Council (NRDC) petitioned NMFS to list the Atlantic sturgeon \textit{(Acipenser oxyrinchus)} under the Endangered Species Act of 1973 (ESA). As a result of the petition, four Distinct Population Segments (DPS) were listed as endangered on February 6, 2012, including the South Atlantic DPS, the Carolina DPS, the Chesapeake Bay DPS and the New York Bight DPS. The project area falls within the range of the Carolina DSP. Atlantic sturgeon are similar in appearance to shortnose sturgeon \textit{(Acipenser brevirostrum)} but can be distinguished by their larger size, smaller mouth, different snout shape and scutes (NMFS, 2014a). The Atlantic sturgeon is a long-lived, estuarine dependent, anadromous fish. They are benthic feeders and typically forage on invertebrates including crustaceans, worms and mollusks. Atlantic sturgeon can grow to approximately 14 feet long and can weigh up to 800 pounds (NMFS, 2014a). They are bluish-black or olive brown dorsally (on their back) with paler sides and a white belly.

Adults range from St. Croix, Maine southward to the St. Johns River in Florida (NMFS, 2014a). These fish undergo seasonal migrations to and from freshwater, but spend much of their adult life in the marine environment for growth (Stein \textit{et al.}, 2004; Laney \textit{et al.}, 2007). Atlantic sturgeons are found offshore primarily during the fall to spring months of approximately October to March. However, different life stages will utilize the marine environment during the summer as well. Although Atlantic sturgeons spawn repeatedly, they do not necessarily spawn every year (Smith and Clugston, 1997). Atlantic sturgeon spawning intervals range from one to five years for males and two to five years for females (NMFS, 2014a). During non-spawning years, adults may utilize marine waters year-round (Bain, 1997). Spawning adults migrate upriver in spring, beginning in February to March in the south, April to May in the mid-Atlantic, and May to June in Canadian waters. In some areas, a small spawning migration may also occur in the fall. Spawning occurs in flowing water between the salt front and fall line of large rivers. Following spawning, males may remain in the river or lower estuary until the fall while females typically exit the rivers within 4 to 6 weeks (NMFS, 2014a). Juveniles move downstream and inhabit brackish waters for a few months and when they reach a size of about 30 to 36 inches, they move into nearshore coastal waters (Smith, 1985). Tagging data indicates that these immature Atlantic sturgeons travel widely once they emigrate from their natal (birth) rivers.

Records from federal, private and state surveys also show that Atlantic sturgeon have been documented within nearshore Atlantic Ocean habitats from the North/South Carolina state line to off the mouth of Chesapeake Bay (Moser \textit{et al.} 1998). Collins and Smith (1997) reported the
occurrence of Atlantic sturgeons in the Atlantic Ocean off South Carolina in months of low water temperatures (November–April) from nearshore to well offshore in depths up to 40 meters. The rivers, estuaries and nearshore waters of coastal North Carolina serve as important habitat for Atlantic sturgeon. Coastal North Carolina is considered one of several concentration areas along the northeastern U.S. where sturgeon have been shown to aggregate, and Stein et al. (2004) found the fish were often associated with inlets of the Outer Banks. An acoustic array deployed offshore Cape Hatteras has collected data on acoustically-tagged Atlantic sturgeon (tagged by members of the Atlantic Cooperative Telemetry network) from February 2012 to May 2014. The array consists of 12 VR2W receivers placed 1.6 km apart, from nearshore to just shy of 20 km offshore. Data has been collected for 123 individual Atlantic sturgeon and indicate the highest numbers of detections have occurred during the months of November and March (Charles Bangley, pers. comm., September 15, 2014). In general, few acoustically tagged Atlantic sturgeon were recorded passing the array during the summer months. The array has picked up signals from sturgeon released from Connecticut through Georgia, and the data suggest the area may be a “hotbed for Atlantic sturgeon” (Rulifson, pers. comm., September 11, 2014) (Figure 31).

A study conducted by Laney et al. (2007) also provides some insight into spatial distribution of Atlantic sturgeon in the marine waters offshore Virginia and North Carolina, based on incidental captures in winter tagging cruises conducted between 1988 and 2006. The surveys included sampling in and near extensive sand shoals adjacent to Oregon Inlet and Cape Hatteras. During the months of January and February from 1998 through 2006, investigations by bottom trawling captured 146 juvenile Atlantic sturgeons in depths from 9.1 to 21.3 m. (29.9 to 69.9 ft.) (Laney et al., 2007). Numbers of Atlantic sturgeon captured and tagged in a given year ranged from 0 (1993, 1995) to 29 (2006). Atlantic sturgeon were encountered in 4.2% of tows, with the percentage varying from 0 in 1993 and 1995 to 12.6% in 1988. Captures typically occurred near shore at depths less than 18 m. Capture patterns suggested that Atlantic sturgeon were likely aggregating to some degree. Many of the fish were captured over sandy substrates. Total lengths of captured Atlantic sturgeon ranged from 577 to 1,517 mm (mean of 967 mm), suggesting that most fish were juveniles. Limited tagged returns and genetic data suggest that fish wintering off North Carolina constitute a mixed stock.
Sturgeons are distributed within areas that provide foraging opportunity. The narrow depth ranges and substrate types preferred by sturgeon correspond with bottom features that likely support depth-specific concentrations of prey (Stein et al., 2004; Kynard et al., 2000). Analysis of commercial fishery by-catch data suggests that, along the northeastern U.S., migratory subadults and adults show preference for shallow (10 to 50 m) coastal areas dominated by gravel and sand substrate (Stein et al., 2004). Within the mid-Atlantic Bight (including coastal North Carolina), sturgeon may prefer even shallower depths (25 m or less). Coastal features, such as inlets and mouths of bays, support high concentrations of Atlantic sturgeon presumably due to the physical and biological features produced by outflow plumes (Stein et al., 2004). This species has also been shown to utilize sand shoals in the mid-Atlantic Bight. Atlantic sturgeon were collected during otter trawl surveys over the Beach Haven Ridge, a large shoal feature located about 11 kilometers offshore New Jersey in water depths ranging from 2 to 19 meters (Milstein and Thomas, 1977). In a study analyzing the physical and biological characteristics of offshore sand shoals, CSA International et al. (2009) suggest pelagic and demersal species that were found affiliating with shoals were likely seeking food, shelter, orientation or relief from the currents.
4.6.6 Seabeach amaranth

Seabeach amaranth (*Amaranthus pumilus*) is an annual plant that is native to Atlantic Ocean barrier island beaches. Historically, this species was found from Massachusetts to South Carolina, but is currently only found in New York, New Jersey, Delaware, Maryland, Virginia, North Carolina and South Carolina (USFWS, 2011b). A reduction in range, population sizes and number of seabeach amaranth populations prompted the USFWS to list the species as threatened on April 7, 1993 under the Endangered Species Act of 1973. Seabeach amaranth grows in low clumps comprised of sprawling, fleshy, reddish branches with dark leaves. The plant is profusely branched and generally grows to 1 meter (39 inches) in diameter. Flowering begins as soon as plants have reached sufficient size, sometimes as early as June, but more often beginning in July and continuing until the death of the plant in late fall. Seed production commences in July or August and peaks in September during most years, but continues until the death of the plant (USFWS, 1993; USFWS, 1996b; USFWS, 2011b).

The primary habitat of seabeach amaranth consists of overwash flats at accreting ends of islands and lower foredunes and upper strands of non-eroding beaches on barrier island beaches. It may form small temporary populations in other habitats, including sound-side beaches, blowouts in foredunes, and sand and shell material placed as beach nourishment or dredge spoil (USFWS, 1993; USFWS, 2011b). The plant is typically found at elevations from 0.2 m to 1.5 m (0.6 ft. to 4.9 ft.) above mean high tide (Weakly and Bucher 1992) and is an effective sand binder, building dunes where it grows. A single large plant may be capable of creating a dune up to 60 centimeters (23.6 inches) high, containing 2 to 3 cubic meters of sand, although most are smaller (Weakley and Bucher, 1992). Seabeach amaranth appears to function in a relatively natural and dynamic manner, allowing it to occupy suitable habitat as it becomes available (USFWS, 1993).

Annual seabeach amaranth surveys have been performed by the U.S. Army Corps of Engineers, Wilmington District (CESAW) throughout North Carolina’s coastal counties. In accordance with conditions set forth in the 1993 Biological Opinion for various beach disposal projects occurring in North Carolina, these surveys are performed along beaches subject to USACE activity. Since 1991, the USACE has surveyed a number of locations within Dare, Carteret, Onslow, Pender, New Hanover and Brunswick counties, with the last survey completed in 2013. From 1992 to 2009, scattered surveys were performed at various locations throughout Dare County, including Bodie Island, Pea Island, Rodanthe, Avon, Buxton, Frisco to Hatteras, and Hatteras to the Hatteras Inlet. No seabeach amaranth has been identified in the USACE surveys. It should be noted that not all areas were surveyed every year, and no surveys were performed in 2006 (USACE, 2013a). Also, no surveys have been conducted within Dare County since 2009 as no USACE activity has occurred on the beaches (Theresa Bullard, pers. comm., May 16, 2013). The National Park Service (NPS) has conducted annual surveys within the Cape Hatteras National Seashore (CHNS), but as of 1995, no plants had been found (USACE, 2000). The USFWS has no records of the species on the Pea Island National Wildlife Refuge (PINWR) but suitable habitat for this species does exist near Bonner Bridge. The nearest known population is at Cape Point, approximately 40 miles south of the inlet (USACE, 2000).

Among those threats presently affecting the range and habitat for seabeach amaranth, the USFWS listed shoreline stabilization as one of the primary threats (USFWS, 2007a). In many ways, hard (groins, seawalls and jetties) and soft (sand placement) beach stabilization efforts are
considered a leading contributor to the decrease in the population (USFWS, 1996b; 2002). By stabilizing beaches and overwash areas, these practices reduce or remove the dynamic coastal areas that serve as primary habitat for seabeach amaranth, and are considered a major cause of loss of suitable habitat for the species. However, hard and soft shoreline protection measures may also result in beneficial effects. For example, beach erosion is considered one of the primary causes of population decline for seabeach amaranth due to loss of suitable habitat. The plant is not found on beaches where the foredune is scarped by undermining water at high or storm tides; therefore, it is dependent on an upper beach habitat that is not flooded during the growing season from May into the fall (USFWS, 1996b). This type of habitat is rare on severely eroded barrier islands. Under natural conditions, storm-related beach erosion and dune movement disturb, alter or remove seabeach amaranth habitat, but do not pose a threat to the continued existence of the species (USFWS, 1993; USFWS, 2011b). However, coastal development and beach armor ing (i.e. seawalls) has curtailed the ability of barrier beaches to respond naturally to these pressures, ultimately resulting in destruction of habitat for seabeach amaranth (USFWS, 1993; 2002). Estimates of sea level rise also threaten to further undermine existing habitat.

Accretion that occurs upstream of a groin may create or maintain a shoreline that would otherwise be completely lost to erosion. In this way, stabilization of beaches through successful implementation of nourishment or hard structures (such as groins) can create or maintain habitat for seabeach amaranth (USFWS, 2002). However, it is important to note that this species depends on dynamic coastal processes to create primary habitat, such as overwash areas; therefore, any shoreline stabilization will likely make the habitat marginal and ultimately be detrimental to the range-wide persistence of the species (USFWS, 2002).

Previous beach nourishment projects have rebuilt habitat for seabeach amaranth and encouraged growth of some populations, as seen in Bogue Inlet (Dale Suiter, pers.comm., 2007) and Wrightsville Beach (USFWS, 1996b). For example, historically, seabeach amaranth had been recorded on Wrightsville Beach, but after severe erosion and lack of nourishment during the 1970’s no plants were recorded in surveys from 1987 – 1980. After two nourishment projects in 1980-81 and 1986, surveys in 1988 recorded nearly 3,000 plants. According to the USFWS (1996b), Wrightsville Beach had become one of the largest and least variable populations of seabeach amaranth known and had apparently reestablished itself (whether from a seedbank or from colonization is not known) on this renourished beach. However, surveys performed by the USACE have not recorded the species on Wrightsville Beach since 2011, when only two plants were observed. Prior to 2011, no plants had been recorded since 2008 (USACE, 2013a). This suggests the ephemeral nature of even well-established populations of seabeach amaranth. Another population displaying this ephemeral behavior is located in Bogue Banks, Carteret County, NC. Prior to 2001, the area surveyed between Fort Macon and Atlantic Beach supported substantial populations of seabeach amaranth, with plant counts numbering in the thousands some years. In 2001, the number of plants had fallen to 20. After nourishment, seabeach amaranth increased to over 5,000 plants in 2002, 2003 and 2004. In 2010, plant counts fell below 100 and by 2013, only one plant was found in the entire area surveyed within Carteret County (USACE, 2013a).
4.6.7 Piping Plovers

The piping plover (*Charadrius melodus*) was federally listed in 1986 under the Endangered Species Act of 1973, as amended with three separate breeding populations in North America: 1) the Atlantic Coast population (threatened), 2) the Northern Great Plains population (threatened) and 3) the Great Lakes population (endangered). Piping plovers are also listed as threatened throughout their wintering range (USFWS, 1996a). The Atlantic Coast population breeds along the east coast of North America from the Canadian Maritime Provinces to North Carolina. The Northern Great Plains population can be found breeding from southern Alberta to Manitoba and south to Nebraska. The Great Lakes population breeds along the shorelines of the Great Lakes. All three populations migrate to the coastal shorelines of the South Atlantic, Gulf of Mexico and the beaches of the Caribbean Islands to winter (USFWS, 2012c).

Piping plovers are small shorebirds weighing approximately 42.5 to 56.7 gm (1.5 to 2 oz), measuring 17.8 cm (7 in) in length, with an average wingspan of 38.1 cm (15 in). Piping plovers resemble a sandpiper with the upper body parts a pale brownish or grayish color and the underbody white (S. Everhart, *pers. comm.*, 2007). Distinguishing features are noticeable during the summer months, including a black band across the forehead, a second black band forming a ring around the neck and orange legs. During the winter months, the black bands fade to be unrecognizable and the legs fade to a pale yellow. Coloring and size of both the male and female adults are similar. Plovers primarily feed on invertebrates endemic to the wet sand environment between mean low and mean high water (USFWS, 1996a).

As of the 1986 listing, the USFWS (2011a) estimated that 790 piping plover breeding pairs existed in the Atlantic Coast population (including Canada). By 1996, 1,348 breeding pairs were documented. The number of breeding pairs has continued to steadily increase, reaching 1,438 pairs in 2000, 1,690 pairs in 2002 (USFWS, 2011a) and 1,782 pairs in 2010 (USFWS, 2011a). However, overall population growth has been tempered by abrupt declines within recovery units. For example, the number of piping plover breeding pairs in North Carolina decreased from 55 pairs in 1989 to 24 pairs in 2003. Nevertheless, estimates indicate a slight increase occurred in breeding pairs to 37 in 2005 and 46 in 2006 (USFWS, 2011a). Overall, the southern recovery unit of the Atlantic Coast population increased by 66% between 1989 and 2008 with the majority of this increase occurring between 2003 and 2005 (USFWS, 2011a).

Coastal habitats along the U.S. Atlantic coast serve a variety of ecological functions for piping plovers. For nesting, piping plovers utilize dry sand habitats above the high tide line along coastal beaches, spits and flats at the ends of barrier islands, gently sloping foredunes, blowout areas within primary dunes and washover areas (USFWS, 2010). Nests are usually found in sparsely vegetated dune and beach environments (USFWS, 2003b; Cohen *et al.*, 2008a), although they may nest under patches of beach vegetation (USFWS, 1996a). Nests are shallow, scraped depressions made of fine sand, pebbles, shells or cobble (Patterson, 1991). In North Carolina, non-breeding piping plovers primarily use bayshore beaches and sound islands for foraging and ocean beaches for roosting and preening (Cohen *et al.*, 2008).

According to the USFWS, the piping plover may be found within all eight coastal counties of North Carolina (USFWS, 2014a). The spring migration of piping plovers occurs from March 1
through April 30 and piping plovers have been documented arriving on their breeding grounds in North Carolina beginning as early as mid-March. Eggs can be found along the nesting habitat from mid-April through late July (Sue Cameron, pers. comm., 2007). At the age of 25 to 35 days, chicks are able to fly and leave the nest (USFWS, 1996). By mid-July, adults and young may begin to depart for their wintering areas. In North Carolina, fall migration for the new chicks and adult parents begins in mid-July and can extend through the end of November (S. Cameron, pers. comm., 2007). Aside from breeding activities, the North Carolina coastline serves as habitat for migration activities of the Atlantic Coast population, as well as wintering grounds for all three breeding populations. Piping plovers are therefore present year-round in North Carolina and utilize the coastal habitats for foraging, roosting, nesting, wintering and migrating (Sarah Schweitzer, pers. comm., April 18, 2014).

Since the 1980’s, breeding pairs of piping plovers in North Carolina have been surveyed annually; the state also participates in a winter survey held every five years, the last of which was performed in 2011. Data on piping plovers during their migration are more scant because they are not part of a formal survey but are recorded opportunistically in a variety of surveys including the International Shorebird Surveys, which determine fall and spring migration counts. Other opportunistic piping plover data are gathered during monitoring performed by consultants as part of permit requirements, NGO and agency surveys for other purposes including research and by the public (Sarah Schweitzer, pers. comm., March 26, 2014). Additional data from winter surveys, or un-specified surveys, dating back to 1965 are also included in the database. It should be noted that it is likely that piping plovers are present outside these survey efforts but are not recorded in a systematic manner. Thus, lack of data at a location or during a period does not imply piping plover absence, it only implies no surveys were conducted (Sarah Schweitzer, pers. comm., April 18, 2014).

The data from the aforementioned surveys are maintained by the North Carolina Wildlife Resources Commission (NCWRC) and are summarized in Table 21. Statewide data were broken down into the following regions: southern (all sampling locations from Bird Island to Bald Head Island), central (all sampling locations from Fort Fisher to Fort Macon State Park) and northern (all sampling locations from Beaufort Inlet to Currituck). Habitats surveyed included oceanfront beaches of barrier islands, sand shoals, dredge spoil islands, natural marsh islands and mainland bayshores. Because the various surveys were not performed systematically or using the same methodology, data are not standardized across all surveys. Table 21 shows piping plovers have been observed within all three regions during all months of the year. The total number of piping plover observations was highest in the summer months (July through September) for the Central and Northern regions, and in the spring for the southern beaches. The lowest number of observations was recorded from December to February for all three regions. Overall, total piping plover observations were highest in July and August and lowest during the winter months throughout the state (Table 21). These two months also correspond with the highest number of surveys performed; therefore, it is not clear whether the trends are seasonally driven or the result of survey effort. The northern region supported the greatest number of piping plover observations (n = 21,029) and also the greatest number of surveys performed; therefore, it cannot be determined if the results are driven by regional differences in piping plover occurrence or survey effort. Breeding pairs were observed in all three regions but only during the months of May, June and July (Table 22). The highest number of breeding pairs observations was observed
during July in all three regions, as well as overall. The northern region supported the greatest number of breeding pairs. The NCWRC’s definition of a “breeding pair” was not provided.

Data were also summarized for Bodie Island, which is in the northern region and is the closest area surveyed to the Project Area. The last piping plover surveys along Bodie Island occurred in 2008, during which 62 piping plover observations were recorded: 29 in March, 2 in July and 31 in August. Surveys were not performed in any other months during 2008. Sightings data for individuals and breeding pairs are available from 1965 to 2008 and are summarized by month in Table 21. During this time, there were 2,247 piping plover observations along Bodie Island, which represents 11% of observations within the northern region and 8% of statewide observations. The total number of observations was highest in August (508), followed closely by December (406). Breeding pairs were observed only in June and July, which makes up less than 1% of statewide observations.

Although beaches in the vicinity of the Project Area (Bodie Island) have historically supported 12% of piping plover occurrences from the northern region and 10% of statewide occurrences, the highly developed nature of the Kitty Hawk shoreline likely deters any piping plovers from utilizing the Town’s shoreline (Sara Schweitzer, pers. comm., August 2013). Therefore, it is not likely that piping plovers will occur within the Project Area.

It should be noted that it is likely that piping plovers are present outside these survey efforts, however the observations are not collected in a systematic manner. Thus, lack of data at a location or period does not imply piping plover absence, it only implies no surveys were conducted (Sara Schweitzer, pers. comm, April 18, 2014).
Table 21. Total number of piping plover observations per month within the northern, central and southern regions of North Carolina as compared to the total number of individuals observed within Bodie Island, North Carolina from 1965 to 2013. The last two rows in the table display the Bodie Island observations as a percentage of both statewide and northern region observations. To display monthly trends, rows are color-coded such that the lowest values are shaded green and the highest values are shaded red.

<table>
<thead>
<tr>
<th>Region</th>
<th>Jan</th>
<th>Feb</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>*Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Region</td>
<td>720</td>
<td>789</td>
<td>1311</td>
<td>1064</td>
<td>328</td>
<td>887</td>
<td>3883</td>
<td>4979</td>
<td>2618</td>
<td>1823</td>
<td>1000</td>
<td>1551</td>
<td>76</td>
<td>21029</td>
</tr>
<tr>
<td>Central Region</td>
<td>303</td>
<td>305</td>
<td>653</td>
<td>510</td>
<td>243</td>
<td>163</td>
<td>482</td>
<td>788</td>
<td>666</td>
<td>474</td>
<td>299</td>
<td>223</td>
<td>54</td>
<td>5163</td>
</tr>
<tr>
<td>Southern Region</td>
<td>16</td>
<td>5</td>
<td>77</td>
<td>30</td>
<td>23</td>
<td>16</td>
<td>53</td>
<td>17</td>
<td>19</td>
<td>34</td>
<td>7</td>
<td>5</td>
<td>32</td>
<td>334</td>
</tr>
<tr>
<td>Statewide</td>
<td></td>
</tr>
<tr>
<td>Statewide Monthly Totals</td>
<td>1039</td>
<td>1099</td>
<td>2041</td>
<td>1604</td>
<td>594</td>
<td>1066</td>
<td>4418</td>
<td>5784</td>
<td>3303</td>
<td>2331</td>
<td>1306</td>
<td>1779</td>
<td>162</td>
<td>26526</td>
</tr>
</tbody>
</table>

Table 22. Total number of piping plover nesting pair observations per month within the northern, central and southern regions of North Carolina as compared to the total number of nesting pairs observed within Bodie Island, North Carolina from 1965 to 2008. The last two rows in the table display the Bodie Island observations as a percentage of both statewide and northern region observations. To display monthly trends, rows are color-coded such that the lowest values are shaded green and the highest values are shaded red.

<table>
<thead>
<tr>
<th>Location</th>
<th>Jan through April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug through Dec</th>
<th>*Winter</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statewide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Region</td>
<td>0</td>
<td>4</td>
<td>448</td>
<td>797</td>
<td>0</td>
<td>0</td>
<td>1249</td>
</tr>
<tr>
<td>Central Region</td>
<td>0</td>
<td>11</td>
<td>50</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>131</td>
</tr>
<tr>
<td>Southern Region</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Statewide Monthly Totals</td>
<td>0</td>
<td>19</td>
<td>504</td>
<td>886</td>
<td>0</td>
<td>0</td>
<td>1409</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bodie Island</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bodie Island Beaches</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>% of North Region</td>
<td>0%</td>
<td>0%</td>
<td>0.7%</td>
<td>1.0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>% of Statewide</td>
<td>0%</td>
<td>0%</td>
<td>0.6%</td>
<td>0.9%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Critical Habitat

On July 10, 2002, the USFWS published a final rule to list 137 areas along the coasts of North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana and Texas as Critical Habitat for wintering populations (66 FR 36038). A Critical Habitat designation recognizes specific areas “that are essential to the conservation of a listed species, and that may require species management considerations or protection.” A total of 18 critical habitat units for the wintering piping plover have been designated within seven of the eight coastal counties in North Carolina, with the exception of Currituck County (66 FR 36038; 73 FR 62816). There is no critical habitat unit within the municipal boundaries of the Town of Kitty Hawk or within the Project Area. The Critical Habitat closest to the Project Area is Unit NC-1, which the USFWS delineates to be the following (Figure 32).

“Unit NC-1 is approximately 8.0 km (5.0 mi) long, and consists of about 196 ha (485 ac) of sandy beach and inlet spit habitat on Bodie Island and Pea Island in Dare County, North Carolina. This is the northernmost critical habitat unit within the wintering range of the piping plover. Oregon Inlet is the northernmost inlet in North Carolina, approximately 19.0 km (12.0 mi) southeast of the Town of Manteo, the county seat of Dare County...The unit begins at Ramp 4 near the Oregon Inlet Fishing Center on Bodie Island and extends approximately 8.0 km (5.0 mi) south to the intersection of NC Highway 12 and Salt Flats Wildlife Trail…” (73 FR 62816).

![Figure 32. Wintering piping plover critical habitat unit NC-1. Image from 73 FR 62840](image-url)
4.6.8 Red Knot

The *rufa* red knot (*Calidris canutus rufa*) is one of the six subspecies red knots and one of the three that resides in the Western Hemisphere. Subspecies *rufa* winters in northern Brazil, the greater Caribbean and along the U.S. coast from Texas to North Carolina. Due in part to substantial population declines in the 1990’s and 2000’s, the USFWS released a proposed rule to list the rufa red knot as threatened on September 30, 2013 (78 FR 60023). Population estimates for subspecies *rufa* up to the early 1990s were 100,000-150,000, one of the smallest red knot populations worldwide. During the 1990s, this fell to around 80,000. By the early 2000s, the population may have dropped to 35,000-40,000. The population now numbers 18,000-33,000 (NatureServe, 2013). The rufa red knot population decline that occurred in the 2000s was caused primarily by reduced food availability from increased harvests of their key prey species, the horseshoe crab, and was exacerbated by small changes in the timing that knots arrived at the Delaware Bay. Decreased foraging success during migration has been linked to decreased breeding success and the probable increased mortality of adults. Wintering rufa red knots tend to concentrate at a few localities where habitat loss or reduced food availability can influence a sizable proportion of entire populations. Additionally, climate change may have long-term effects on coastal foraging areas, due to sea level rise, and its Arctic breeding grounds due to habitat change (USFWS, 2014d). The 2010 Spotlight Species Action Plan prepared by the USFWS attributes the destruction and modification of the rufa red knot’s habitat, and particularly the decline of key food resources resulting from reductions in horseshoe crabs, as a significant threat. The shore of the Delaware Bay is the only significant breeding area for horseshoe crabs on the Atlantic coast of North America. The rufa red knots rely on the eggs of horseshoe crabs as a food source to fuel the migratory flight from the wintering grounds of Chile and Argentina, to the breeding grounds of the Arctic. Along the North Carolina coast, threats to migration stopover habitat include beach erosion, human disturbance and competition with other species for limited food sources.

Rufa red knots winter at the southern tip of South America and breed above the Arctic Circle, requiring the birds to fly over 9,300 miles from south to north every spring and reverse the trip every autumn (USFWS, 2014d). The spring migration is broken into non-stop segments of 1,500 miles or more with the birds converging at critical stopover areas along the entire Atlantic coast. Red knots are faithful to these specific sites, and will stop at the same locations year after year (USFWS, 2010). Mole crabs (*Emerita talpoida*) and coquina clams (*Donax sp.*) are reportedly an important food source for migrating knots in North Carolina (Gilbert Grant, *pers. comm.*, March 20, 2014). Birds arrive at stopover areas with depleted energy reserves and must quickly rebuild their body fat to complete their migration to Arctic breeding areas. During their brief 10 to 14-day stay in the mid-Atlantic, rufa red knots typically double their body weight (USFWS, 2010).

Although the Delaware Bay and coastal Virginia represent the largest stopover concentration of rufa red knots, coastal North Carolina does support the birds during their spring and fall migrations. Various surveys for rufa red knots have been performed throughout the state and data from these surveys is maintained by the North Carolina Wildlife Resources Commission (NCWRC). These surveys are performed at discrete times of year, as well as opportunistically to fulfill various permit requirements or research interests. Surveys are not performed systematically or monthly, therefore, it should be emphasized that lack of data in the NCWRC database does not imply absence of the species; rather, it implies only that no surveys were performed at that time (Sara Schweitzer, *pers. comm.*, March 26, 2014). Data from the various surveys within the NCWRC database were
summarized to determine total rufa red knot observations per month throughout the state from 1985 to 2013. Habitats surveyed include oceanfront beaches along barrier islands, dredge material islands and sand and inlet shoals. It should be noted that surveys for the rufa red knot in North Carolina are quite varied, inconsistent and were not conducted every month or in all years. Therefore, it cannot be determined if red knots were present at un-surveyed times or locations.

The data from the aforementioned surveys are summarized in Table 23. Statewide data were broken down into the following regions: southern (all sampling locations from the North Carolina-South Carolina state line to Bald Head Island), central (all sampling locations from Fort Fisher to Fort Macon State Park) and northern (all sampling locations from Beaufort Inlet to Currituck). Habitats surveyed included oceanfront beaches of barrier islands, sand shoals, dredge spoil islands, natural marsh islands and mainland bay shores. Table 23 shows rufa red knots have been observed throughout the state during all months of the year. The greatest number of observations occurred during May, followed by April. The northern region has supported a substantial number of red knot observations with 31,218 rufa red knots recorded from 1986 to 2013. Surveys occurred all months except November and birds have been observed during each surveyed month. The majority of surveys have been performed in May, which corresponds with the highest number of observations. May also corresponds with the greatest number of surveys.

Data were summarized for Dare County, including all barrier islands and inlet shoals extending from the Hatteras Inlet to the northern limit of Southern Shores. Table 23 shows that red knots have been observed during the months of January, April, May and June, with the greatest number of observations occurring in May. These were also the only months surveyed; therefore, it is not known if the birds occur in the area during other months. The greatest number of surveys also occurred in May; therefore, it may be the larger counts are driven by survey effort. Nevertheless, the data indicate red knots do occur within Dare County during the surveyed months.

Based on available data, it can be concluded that red knots have historically utilized numerous locations in the northern region of coastal North Carolina, including Dare County, and may occur outside the environmental dredge windows in substantial numbers. The birds also occur in highest numbers from April to June; however, it is unclear whether these large numbers are true seasonal differences or the result of a larger survey effort.

Although these data show that beaches in the vicinity of the Project Area (Dare County) have historically supported roughly 10% of red knot observations from the northern region and 8% of statewide observations, the highly developed nature of the Kitty Hawk shoreline likely deters any red knots from utilizing habitats within the Project Area. Kitty Hawk has a narrow, heavily utilized beach with dogs, pedestrians and vehicular traffic that discourages use by shorebirds (Sara Schweitzer, pers. comm., August 29, 2013). Therefore, while the birds may be present elsewhere within the county, it is not likely that red knots will occur within the Project Area.
Table 23. Total number of red knots observed per month within the northern, central and southern regions of North Carolina as compared to the total number observed within Dare County, North Carolina from 1986 to 2013. The last two rows in the table display the Dare County observations as a percentage of both statewide and northern region observations. To display monthly trends, rows are color-coded such that the lowest values are shaded green and the highest values are shaded red.

<table>
<thead>
<tr>
<th>Location</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Tot</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>868</td>
<td>168</td>
<td>52</td>
<td>2991</td>
<td>20163</td>
<td>1949</td>
<td>1793</td>
<td>923</td>
<td>889</td>
<td>536</td>
<td>31,218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central</td>
<td>135</td>
<td>135</td>
<td>14</td>
<td>64</td>
<td>2386</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>49</td>
<td>2,922</td>
<td></td>
</tr>
<tr>
<td>South</td>
<td>50</td>
<td>18</td>
<td>1990</td>
<td>742</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>49</td>
<td>2,881</td>
<td></td>
</tr>
<tr>
<td>Statewide Monthly Totals</td>
<td>1053</td>
<td>321</td>
<td>66</td>
<td>5045</td>
<td>23291</td>
<td>2060</td>
<td>886</td>
<td>1793</td>
<td>923</td>
<td>889</td>
<td>109</td>
<td>585</td>
<td>37,021</td>
</tr>
<tr>
<td>Dare County Monthly Totals</td>
<td>35</td>
<td>1950</td>
<td></td>
<td>1,985</td>
</tr>
<tr>
<td>% of Northern Region</td>
<td>4%</td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td>% of Statewide</td>
<td>3%</td>
<td></td>
<td>7%</td>
</tr>
</tbody>
</table>

4.6.9 Roseate Tern

On November 2, 1987, the USFWS listed two populations of the Roseate tern as endangered and threatened. The population that nests in northeastern North America was determined to be endangered, while the Caribbean population (including nesting birds in the U.S. Virgin Islands, Puerto Rico and Florida) were listed as threatened. Roseate terns measure approximately 15 inches long with a wingspan about twice the length. They are distinguished by a black bill, pale coloration and rosy chests during summertime. In the winter, the black cap is replaced with a white forehead. Roseate terns breed primarily on small offshore islands, rocks, cays and islets. Rarely do they breed on large islands. They have been reported nesting near vegetation or jagged rock, on open sandy beaches, close to the waterline on narrow ledges of emerging rocks or among coral rubble (USFWS, 1998). The roseate tern is a rare occurrence in North Carolina and is not listed as one of the bird species prioritized for conservation in the North Carolina Wildlife Resources Commission’s Wildlife Action Plan (Sara Schweitzer, pers. comm., July 9, 2014). This species is primarily observed south of Cape Hatteras, particularly at Cape Point within Cape Hatteras National Seashore during the months of June through August. According to eBird, there have been opportunistic sightings of the roseate tern in Dare County; however, these occurrences have been rare. Sightings have occurred during the months of June, July and August (eBird, 2014). There are no records of the species nesting in the proposed Project Area (USFWS, 1999; eBird, 2014).

4.7 Cultural Resources

It is necessary to determine if any cultural resources, such as archaeological or historic artifacts and structures exist within the Project Area and if they are eligible for listing on the National Register of Historic Places. The federal statutes associated with these actions include Section 106 of the National Historic Preservation Act of 1966, as amended (PL 89-665), the National Environmental

The National Register of Historic Places was queried to identify any historic sites potentially present within the area of sand placement. Of the twenty-seven sites in Dare County that are listed in the database, there is only one historic site located within the town of Kitty Hawk – the Kitty Hawk Life Saving Station located at the southern end of the Action Area. Built in 1912, the station stayed in service until 1946. It now serves as a family vacation rental that is open year round. The station is located on the west side of N. Virginia Dare Trail and not within the Action Area.

In October 2014 remote sensing surveys were performed to identify whether any cultural resources exist in the vicinity of the proposed borrow areas. CPE-NC contracted with Tidewater Atlantic Research, Inc. (TAR) of Washington, NC, to assist with the conduct of a magnetometer, side-scan sonar, subbottom profile and fathometer survey of the proposed borrow sites. The magnetometer identifies ferrous metal objects that could be associated with shipwreck remains, while the sidescan sonar uses sound to produce images of the bottom surface and any exposed shipwreck or other material. TAR analyzed the resultant data to identify any evidence indicative of submerged cultural resources, and produced a report in coordination with BOEM standards (Appendix D). Analyses identified 9 magnetic anomalies in Area A, 4 of which were considered potentially significant (Error! Reference source not found.). In area C, there were 65 magnetic anomalies, 25 of which were considered potentially significant (Figure 7). As a result 3 buffer areas were established within Area A (Error! Reference source not found.) and 14 buffers were established within Area C (Figure 7), which will be avoided during dredging. Clearance from the State Historic Preservation Office will be obtained prior to project commencement.

Prior to these remote sensing surveys, TAR historians consulted the shipwreck inventories of numerous entities including museums, state historical archives, and research institutions throughout the state (see full report in Appendix D). The literature and archival investigations focuses on primary and secondary source materials associated with historical development of the North Carolina Outer Banks. Although the project area lies within the “Graveyard of the Atlantic”, an area famed for a high number of shipwrecks due to the presence of dangerous shoals and intervening treacherous currents, no known or historically documented shipwrecks were identified within the survey area. The borrow areas do coincide with the vicinity of a sixteenth century anchorage site. One charted wreck is identified immediately east of Borrow Area C. In consideration of this information, TAR recommends the project area “be considered as an area of high sensitivity for submerged cultural resources”.

The borrow areas are located offshore of a Formerly Used Defense Site (FUDS) referred to as the Former Duck Target Facility Munitions Response Site (MRS) (Figure 33). A FUDS refers to a property that was owned by, leased to, or otherwise possessed by the United States and under the jurisdiction of the Department of Defense (DoD), that was transferred from DoD control prior to October 17, 1986. The Duck Target Facility MRS was used from 1941 to 1965 as a practice bombing and rocket target range, and numerous types of rockets and practice bombs were used. The MRS consists of two sub ranges: a Bombing Target comprised of 649 acres, and a Rocket Target comprised of 8,202 acres. Per requirement of the DoD, the Military Munitions Response Program is
required to identify via inventory all FUDS locations, and address defense sites with munitions and explosives of concern (MEC). MEC’s include unexploded ordnances (UXO), discarded military munitions (DMM) and explosive compounds that pose an explosive hazard. According to site history compiled by the USACE, only practice munitions were used at the Duck Target Facility MRS. Numerous investigations and removal actions have been conducted within the Duck Target MRS between 1971 and 2008, therefore a large amount of data exist for the area (Table 24). Although over 1,000 tons of munitions have been removed or inspected at the site, these investigations have so far determined that all munitions present are munitions debris and scrap metal. No confirmed MEC have been identified. The proposed borrow areas are located well offshore the Duck Target Facility MRS, with borrow area C located 2.5 nm to the east and borrow area A located just over 11 miles to the southeast (Figure 33).

<table>
<thead>
<tr>
<th>Event</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Navy Clearance</td>
<td>1971</td>
</tr>
<tr>
<td>USMC Response and Preliminary Assessment</td>
<td>1992</td>
</tr>
<tr>
<td>USMC Removal Action for Construction Support</td>
<td>1994</td>
</tr>
<tr>
<td>Archive Search Report</td>
<td>1994</td>
</tr>
<tr>
<td>Engineering Evaluation/Cost Analysis (EE/CA) Investigation</td>
<td>1996</td>
</tr>
<tr>
<td>OE Removal Action Human Factors Applications, Inc. (NTCRA)</td>
<td>2000</td>
</tr>
<tr>
<td>OE Removal Action, Environmental Hazards Specialists International (NTCRA)</td>
<td>2000</td>
</tr>
<tr>
<td>Archive Search Report Supplement</td>
<td>2004</td>
</tr>
<tr>
<td>ESTCP Demonstration of Underwater Equipment</td>
<td>2005</td>
</tr>
<tr>
<td>USACE Huntsville Five Year Reviews</td>
<td>2006</td>
</tr>
<tr>
<td>Removal Action (NTCRA)</td>
<td>2007</td>
</tr>
<tr>
<td>Site Inspection</td>
<td>2008</td>
</tr>
</tbody>
</table>
Figure 33. The location of the Duck Target Facility Munitions Response Site, which has been declared as a Formerly Used Defense Site. The borrow areas are located well offshore of the Rocket Target range boundary, represented by the purple cone.

Notes:
2. Background imagery is from the ESRI imagery basemap.

Legend:
- Borrow Area
- Three Nautical Mile Line
- Artillery Range Boundary
- Bombing Range Boundary
- Formerly Used Defense Site (FUDS)
- City Limits
4.8 Socioeconomic Resources

Dare County has an economic base that relies largely on tourism and recreation. Commercial activity contributes to local socioeconomic resources in the form of tourism and associated tourist recreation, surfing, home construction, fishing, landscaping and other general residential and commercial services.

According to the United States Census Bureau (USCB) (2010), Kitty Hawk has a year-round resident population of approximately 3,272 and is primarily a tourist destination. The Town contains 3,264 housing units with 1,718 of these listed as vacant (vacation) homes.

4.9 Recreational and Scenic Resources

The oceanfront shoreline within Dare County spans 110 miles and serves as a valuable recreational and scenic resource for millions of residents and visitors each year. As a tourist destination, Kitty Hawk supports many recreational venues including surf shops, rental shops for kayaks, bicycles and fishing gear, charter boat fishing, beach tours and bird watching. Other water related recreational services provided are kite surfing, jet ski rentals and dive charters in the area. The Outer Banks are also known as a surfer’s destination. The exposed, high energy wave environment along the expansive shoreline draws local, national and international surfing enthusiasts. Recreational fishing is also a popular activity with tourists and locals alike. In-shore anglers, pier fishing, surf fishing and boat fishing collectively bring in revenue via fishing enthusiasts’ hotel accommodations, rentals, dining and permits.

5 IMPACTS ASSOCIATED WITH EACH ALTERNATIVE

Beach nourishment affects the infrastructural and economic aspects of the human environment. The act of nourishing a beach can have considerable positive and negative biological impacts to several components of the beach ecosystem such as terrestrial arthropods, marine zoobenthos, microphytobentos, seabirds and shorebirds, vascular plants, sea turtles and other swimming marine fauna. Negative impacts dominate in short term, while long term impacts depend on the ecological recovery of the system, which is influenced by the project timing, project size and location, techniques employed, sand quality and quantity and conditions prior to nourishment (Speybroeck et al., 2006). In general, positive impacts include protection of upland structures and infrastructure, estoration of eroded beach and dune habitat for wildlife nesting and roosting and potential benefits to local economies due to increased recreational use.

The Council on Environmental Quality (CEQ) regulations (40 CFR §§ 1508.7 and 1508.8) defines direct effects as those caused by the action and occur at the same time and place. Indirect effects are defined as those caused by the action and are later in time or farther removed in distance, but are still reasonably foreseeable. Indirect effects may include growth-inducing effects and other effects related to induced changes in the pattern of land use, population density or growth rate and related effects on air, water and other natural systems, including ecosystems. Cumulative impact is the impact on the environment that results from the incremental impact of the action when added to other past, present and reasonably foreseeable future actions regardless of what agency (federal or non-federal) or person undertakes such other actions. Cumulative impacts can result from individually minor but collectively significant actions taking place over time. The following sections
describe the negative and positive impacts anticipated for the human environment as well as the abiotic and biotic components of the coastal system for each of the alternatives.

5.1 Water Quality

5.1.1 Associated Impact with Abandon and Retreat Alternative

Turbidity along the Outer Banks is generally lowest in the summer months and highest in the winter months, corresponding with winter storm events. The abandon and retreat alternative does not involve any activities affecting the marine environment; therefore, turbidity events will continue to fluctuate naturally. The intertidal areas are subject to periodic increases in turbidity resulting from storms and wave activity. Turbidity levels near the beach placement sites will not be affected if the abandon and retreat alternative is implemented.

5.1.2 Associated Impact with Preferred Action Alternative

One concern associated with nourishment projects is the effect to water quality, particularly concerning turbidity and sedimentation at the borrow site and in the surf zone adjacent to the nourished beach. When sediment re-suspension occurs, larger particles will likely settle out; however, the finer sediments will remain suspended for longer periods, or even indefinitely in turbulent water (Adriaanse and Coosen, 1991). Suspended particles may interfere with the biological functions of some organisms such as feeding, respiration, reproduction and potentially cause predator avoidance. High turbidity and silt loads can have detrimental impacts to filter feeding organisms associated with nearshore benthic communities including amphipods, isopods, decapods, polychaetes, mollusks and others. The conditions of diminished light penetration can detrimentally affect the photosynthetic activity of phytoplankton, the primary producers of energy production.

Depending on the type of dredge being used, temporary sediment plumes will arise from various sources during borrow area dredging. In the case of a hopper dredge, sediment re-suspension will result as the draghead moves over the seafloor, as well as during the discharge of overflow while filling the hopper. Sediment re-suspension that results from overflow as the hopper is being filled generally only occurs during a portion of the filling time. The time required to fill a hopper (fill cycle) can vary, but on average may take 45 minutes to one hour when dredging sandy substrates. The first 1/3 of the cycle involves filling the hopper with sand and water. For the remaining 2/3 of the fill cycle, sand replaces the water in the hopper, and the water sporadically overflows back into the ocean. Turbidity plumes can also be created sub-surface at the drag head site. These plumes are localized to the immediate vicinity of the drag head and do not reach the surface (LaSalle et al., 1991). The sediment plume generated by hopper dredging has been shown to extend 1,640 to 4,000 feet from the dredge, and is generally reported to be short-term (Hitchcock et al., 1999; Anchor Environmental 2003; Roman-Sierra et al., 2011). The length and shape of the plume depends, in part, on the hydrodynamics within the water column as well as the sediment grain size. In sandy substrates typical of borrow sites, the grain size is larger and the extent of sediment suspension is therefore more restricted. The borrow areas presently proposed for the Kitty Hawk project will be composed of high-quality sand, with low organics and biological oxygen demand. Therefore, re-suspended material is expected to have a quicker settling time, and have no appreciable effects on the dissolved oxygen, pH or temperature. Additionally, the hydrodynamics of the open-ocean environment at the borrow sites allows adequate mixing with oxygen rich surface waters.
Accordingly, it is anticipated the proposed project would have only minor impacts to the marine water column at the borrow areas.

Cutter suction pipeline dredges generate comparatively lower amounts of suspended sediment and plumes are confined to within a few meters of the drilling cutterhead at the seafloor. A cutter suction dredge functions by drilling below the surface of the substrate; therefore, the sediment plumes created from the drilling cutterhead are generally highly localized (CSA et al., 2009). Additionally, the material is hydraulically moved from the cutterhead/sediment interface directly into a pipeline, eliminating the hopper-filling stage and associated overflow. Although unlikely, a leaking submerged pipeline can also be a source of elevated turbidity (Michel et al., 2013). At the placement site, turbidity will increase within the surf zone due to pipeline discharge and can affect hundreds of meters of shoreline. Several studies of similar projects involving sand placement activities have shown elevated concentrations within the nearshore extend an alongshore distance of 1,310 to 1,640 feet from the discharge pipe in the swash zone, and dissipate on the order of hours (Shubel et al., 1978; Burlas et al., 2002; Wilber et al., 2006). The beach quality material that will be placed along the shorelines for the proposed project will have a low percentage of fine-grained sediment, thus the turbidity plume generated is anticipated to be comparable to these studies, and temporary.

Although unlikely, a cutterhead dredge may be used in conjunction with spider and hopper barges, especially in cases of long distances. Loading of material onto a hopper barge can lead to hopper overflow, in which overspill of surplus sediment/water mixture from the hopper will result in surface plumes. As discussed above for the hopper dredge scenario, the spatial and temporal extent of these plumes depends on many factors, such as sediment characteristics, particle-size, and hydrodynamics at the site.

The borrow areas proposed for this Alternative consist of high-quality sand; therefore, dredging these areas is expected to result in sediment plumes that will be temporary and highly localized at the offshore borrow area. In the nearshore adjacent to the nourished beach, the discharged sediment will elevate turbidity levels, possibly beyond levels naturally occurring in the turbulent surf zone. To minimize turbidity impacts in the nearshore realm, shore-parallel berms will be constructed to encourage settling-out of material from the slurry before it is returned to the ocean. The preferred alternative is therefore not expected to result in long-term adverse impacts to water-quality in the nearshore or offshore marine environment.

5.1.3 Associated Impact with No Action Alternative

The no action alternative will impart no change on natural or anthropogenic activities already occurring in the Project Area. The status quo involves short-term solutions to storm protection taken by the property owners such as erecting sand fencing, occasional beach scraping and placement of sand bags. None of these activities will affect the turbidity levels in the marine environment and turbidity events will continue to fluctuate naturally. Turbidity levels will not be affected if the no action alternative is taken.
5.2 Air Quality

5.2.1 Associated Impact with Abandon and Retreat Alternative

The abandon and retreat alternative will result in no adverse impacts to air quality.

5.2.2 Associated Impact with Preferred Action Alternative

A temporary reduction in air quality will occur as a result of emissions created by the engines and generators associated with offshore dredges and support vessels, as well as shore-based construction equipment such as loaders, dozers, pumps, trucks and forklifts. The primary emissions would result from the burning of fossil fuels by this equipment. Variables that will affect the impact to ambient air quality include the amount of material dredged, the distance from shore at which the dredge operates, and meteorological conditions (e.g. wind velocity and direction). Generally, the dredge produces the majority of emissions during a nourishment project.

To ensure the proposed activity’s emissions do not violate National Ambient Air Quality Standards for criteria pollutants, including (carbon monoxide (CO), nitrogen dioxide (NO₂), lead (Pb), sulfur dioxide (SO₂), hydrocarbons (HC) and particulate matter (PM), an emissions analysis was performed to estimate the levels of each of these pollutants that may be generated during project construction. In cooperation with BOEM, ENVIRON International Corp. and the Woods Hole Group developed a Dredging Project Emissions Calculator (DPEC) to estimate the emissions levels that would be generated by proposed beach nourishment and coastal restoration projects (ENVIRON International Corp. and Woods Hole Group, 2013). This Microsoft Access program can be used to calculate emissions during multiple phases of a project, from dredging, to pump-out and sand placement, thereby providing a basis to determine conformity with regulations and impacts analysis. The analysis was run for the Town of Kitty Hawk Shoreline Protection Project using a large hopper dredge with 6,540 cy hopper capacity, and borrow area A, which represents the farthest distance the dredge would need to travel. The analysis also included auxillary equipment (such as tenders, tow boats and crew boats) as well as shore-based equipment (such as loaders and excavators). Estimated emissions levels generated by the DPEC for this project are shown in Table 25. The total project emissions are dominated CO₂ followed by NOx. For the purposes of evaluating air quality impacts in this EA, emissions are considered to be minor if the Proposed Action would result in an increase of 250 tons per year or less for any criteria pollutant. The 250 tons per year value is used by the EPA in its New Source Review standards as an indicator for impact analysis for listed new major stationary sources in attainment areas. No similar regulatory thresholds are available for mobile source emissions. Lacking any mobile source emission regulatory thresholds, this threshold is used to equitably assess and compare mobile source emissions. For the assessment of greenhouse gases, the CEQ-recommended 25,000 tonnes (27,500 tons) threshold is applied. Importantly, all equipment will be maintained to appropriate emissions standards. The emissions will be localized and will not result in any significant or long-term impact to ambient air quality in Kitty Hawk.
Table 25. Summary of project emissions by source and location. NOx represents the sum of NO and NO2 emissions; VOX

<table>
<thead>
<tr>
<th></th>
<th>Inside State Waters</th>
<th>Outside State Waters</th>
<th>All Locations and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HC</td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crew Boat</td>
<td>0.16</td>
<td>0.17</td>
<td>0.93</td>
</tr>
<tr>
<td>Tender 1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Tow Boat</td>
<td>0.31</td>
<td>0.33</td>
<td>2.09</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>0.02</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>Bulldozer</td>
<td>0.02</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>Excavator</td>
<td>0.02</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>Dredge Vessel Generator Transit</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Dredge Vessel Main Transit</td>
<td>0.04</td>
<td>0.04</td>
<td>0.72</td>
</tr>
<tr>
<td>Dredge Vessel Generator Pumping</td>
<td>0.02</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>Dredge Vessel Main Pumping</td>
<td>0.14</td>
<td>0.15</td>
<td>2.61</td>
</tr>
<tr>
<td>Dredge Vessel Generator Dredging</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Dredge Vessel Main Dredging</td>
<td>0.11</td>
<td>0.12</td>
<td>2.09</td>
</tr>
<tr>
<td>Dredge Vessel Generator Transit</td>
<td>0.04</td>
<td>0.04</td>
<td>0.24</td>
</tr>
<tr>
<td>Dredge Vessel Main Transit</td>
<td>0.36</td>
<td>0.38</td>
<td>6.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2.3 Associated Impact with No Action Alternative

The no action alternative will result in no adverse impacts to air quality.

5.3 Noise

5.3.1 Associated Impacts with Abandon and Retreat Alternative

Noise levels within the Project Area are relatively low. The abandonment of structures within the Project Area will not elevate ambient noise; however the relocation of residential or commercial structures would require a degree of construction activity dependent on the size, number and type of buildings being relocated. Noise levels would be elevated due to operation of construction equipment. As it is not known at this time which structures in imminent danger would be abandoned versus relocated, it is not feasible to estimate the extent or period for which noise levels would be elevated.

5.3.2 Associated Impact with Preferred Action Alternative

During dredging activities, noise levels will increase above the ambient levels at the borrow areas and beach site due to the presence of construction equipment and personnel. Marine dredging produces broadband, continuous, low frequency sound that can be detected over considerable distances and may trigger avoidance reactions in marine mammals (Thomsen et al., 2009) and other organisms. The sound produced is dependent on many factors including, but not limited to, substrate type, sediment type being dredged, type of equipment used and skill of the dredge operator. The variation in noise emitted by equipment type is related to how the machinery makes contact and
extracts material from the sea floor. Clarke et al. (2002) performed a study of underwater noise produced by various types of dredging equipment, including a hydraulic cutter suction dredge and a trailing suction hopper dredge. Recordings of a hydraulic cutter performing maintenance dredging in Mississippi Sound, Mississippi emitted noise as the cutterhead was turned at 1 – 10 rpm within the substrate. Sounds were continuous and fell within the 70 to 1,000 Hz range while sound pressure levels peaked between 100 to 110 dB re 1µPa rms. In the case of a hopper dredge, much of the sounds emitted during the active dredging process are produced by propeller and engine noise, pumps and generators. Similar to a cutter suction dredge, most of the sound energy produced fell within the 70 to 1,000 Hz range and was continuous in nature. However, Clarke et al. (2002) reported peak pressure levels recorded by a listening platform ranged from 120 to 140 dB re 1µPa rms for hopper dredges, which is comparatively much higher than a cutter suction dredge. A more recent study evaluated sound levels produced by hopper dredges operating in an offshore environment during sediment excavation, transport of material, and pump-out of material (Reine et al., 2014). When averaged across all dredging activities, SPLs averaged 142.31 dB at a distance of 50 meters, and grew progressively less to 120.1 dB at 1.95 km. At all distances from dredging activity, sound levels were highest during sediment removal activities and transition from transit to pump-out, and were quietest during flushing of pipes at pump-out (132.45 dB). At a distance of 2.5 km, sounds attenuated to ambient levels.

Sound plays an important role in the marine environment; however, the function of sound in the ecology of many marine animals is not entirely understood. The extraction of sand from the marine environment produces sound that elevates levels above ambient and may disturb or cause injury to some marine fauna such as invertebrates, fishes, mammals and sea turtles. For example, in marine cephalopods, exposure to low-frequency sound was found to cause acoustic trauma to sensory structures responsible for the animals’ sense of balance and position (Andre et al., 2011). Sound can also prove detrimental to fishes, especially those considered “hearing specialists” that have specialized hearing structures, and those with swim bladders. The frequency and sound levels emitted by dredges overlap the range of hearing for some fish species, meaning dredging can cause adverse effects such as behavioral changes or physiological damage (Thomsen et al., 2009). Impacts from dredging noise incurred by certain threatened and endangered species (e.g. manatees, whales and sea turtles) are discussed further in section 5.6.

At the placement site, noise levels will also be elevated during beach construction due to the presence of heavy machinery such as excavators and front-end loaders. Noise disturbance created by heavy machinery may drive birds and sea turtles from their foraging or nesting activities (Speybroek et al., 2006). Noise levels will only be elevated during active construction and will return to pre-construction levels upon project completion.

5.3.3 Associated Impact with No Action Alternative

The no action alternative will impart no change on natural or anthropogenic activities already occurring in the Project Area. Under the status quo, property owners within the project area have resorted to short-term solutions to storm protection such as erecting sand fencing, occasional beach scraping and placement of sand bags. Ambient noise levels will temporarily increase due to operation of equipment to complete these measures, such as bulldozers, but will return to ambient after project completion. No long-term impacts to noise levels will occur with the no action alternative.
5.4 Beach and Dune Habitat

5.4.1 Associated Impact with Abandon and Retreat Alternative

Analysis of historical shoreline trends using LiDAR data and DCM shoreline change rates show moderate recession rates tempered by some areas of accretion along the Kitty Hawk shoreline. Abandonment or relocation of threatened structures likely would not alter these trends and recession and accretion would continue at similar rates. Because the abandon and retreat alternative would not attempt to change these rates, gain and loss of beach and dune habitat within the Project Area will continue to occur in some areas.

The abandon and retreat alternative does not address the purpose and need item of providing storm damage reduction to imminently threatened structures over the next 5 years. As a result, storm damages may be incurred in the form of acute erosion or dune overwash, but these changes would likely be naturally restored after a period of accretion.

5.4.2 Associated Impact with Preferred Action Alternative

Much of the dune community along the Kitty Hawk shoreline has been lost due to a combination of development and erosion. Sand placement and dune construction would contribute to development of a stable beach and dune habitat that may prove beneficial for many plant and animal species. During construction, impacts to extant dune vegetation will be minimal, as operations will avoid disturbing or placing sand directly on existing vegetation.

Placing sand on the beach during summertime will correspond with the recruitment period for many infaunal species. Construction would therefore negatively impact the infaunal community that inhabits the intertidal and subtidal beach (e.g. polychaetes, amphipods, crustaceans, gastropods) as well as the biological community that depend on them such as, ghost crabs, fish and a variety of seabirds and shorebirds. However, numerous studied have demonstrated that nourishment does not prevent recolonization of the beach by infaunal organisms. An example of short-term recovery of beach infauna can be seen in the 2011 nourishment project at Nags Head Beach, North Carolina. The Town of Nags Head constructed a beach nourishment project from March through November 2011, and placed material along approximately 10 miles of oceanfront shoreline. Results from post-construction benthic monitoring have confirmed that the area impacted by sand placement on Nags Head beach has regained a viable assemblage of benthic organisms that is similar to non-impacted beaches both one year post-construction (CZR Incorporated and CSE, Inc., 2013) and two years post-construction (CZR Incorporated and CSE, Inc., 2014). The year-2 post-construction surveys showed no significant differences between the nourished beach in Nags Head from the control beaches in the study in terms of mean difference of taxa richness or sand grain size. On the nourished beach, wintertime abundance was actually significantly higher two years post nourishment than pre-nourishment (CZR Incorporated and CSE, Inc., 2014).

5.4.3 Associated Impact with No Action Alternative

A barrier island is a dynamic feature that naturally undergoes erosion of the beach and dune from the seaward side and accretion on the backside of the island. In this way, the island essentially “moves” with changing sea states. It is this ability to adapt that allows these features to persist. However,
development along the Kitty Hawk shoreline prevents this natural erosion/accretion cycle from occurring resulting in sand that will be progressively lost but not replenished naturally. This may result in progressive loss and possible elimination of the remaining beach and dune habitat and the ecological services these areas provide. The loss of beach would threaten sea turtle nesting habitat and result in a reduction in foraging and nesting grounds for shorebirds and seabirds that frequent the Town of Kitty Hawk shoreline.

Additionally, continued erosion along the Kitty Hawk beaches would increase the risk of storm damages to the human and natural environments. As a result, armoring measures (i.e. sand fences, sand bags, and beach scraping) potentially undertaken by property owners to reduce the threat of storm damage would further degrade the dune habitat and result in negative impacts to the biological communities. While installation of sand fencing and sandbags may encourage dune formation and increase storm protection, respectively, these efforts do little in the way of mitigating shoreline recession. Sandbags are considered Temporary Erosion Control Structures and are regulated under NCAC 7H .0308(a)(2), though they may persist for many years beyond their permitted use. If left un-maintained, the sandbags can begin to deteriorate or become damaged, littering nearby nearshore waters and beaches.

5.5 Essential Fish Habitat

5.5.1 Associated Impact with Abandon and Retreat Alternative

The abandon and retreat alternative is not expected to result in any adverse impacts to EFH.

5.5.2 Associated Impact with Preferred Action Alternative

There are no estuarine areas or associated EFH within the project area. As determined by geotechnical and geophysical surveys, there are also no known live/hard bottoms, coral and coral reefs, artificial/manmade reefs or Sargassum essential fish habitat marine areas located with the Project Area. As such, there are no potential impacts to these EFH categories.

There are two habitats that are considered EFH within the Project Area - the marine water column and offshore shoals - The marine water column within the Project Area includes the inner shelf waters around the borrow area and pump-out site and the surf zone adjacent to the section of shoreline proposed for nourishment.

5.5.2.1 Effects on Marine Water Column

The proposed borrow areas are located between 4.1 and 6.5 miles offshore. The water column within and surrounding the borrow areas will be impacted by elevated turbidity levels resulting from various aspects of dredging activities, discussed previously in section 5.1.2.

The physical disturbance of sediment created by the use of a dredge in the offshore borrow areas can negatively affect the physiology and feeding behavior of visually orienting fish via increased turbidity within the water column (Wilber et al., 2003). Depending on the type of dredge being used, temporary sediment plumes will arise from various sources during borrow area dredging. In the case of a hopper dredge, sediment re-suspension will occur as the draghead moves over the seafloor and...
during the discharge of overflow while filling the hopper. Cutter suction dredges generate comparatively lower amounts of suspended sediment and plumes are confined to within a few meters of the drilling cutterhead at the seafloor. A cutter suction dredge functions by drilling below the surface of the substrate; therefore, the sediment plumes created from the drilling cutterhead are generally highly localized (CSA et al., 2010). Additionally, the material is hydraulically moved from the cutterhead /sediment interface directly into a pipeline, eliminating the hopper-filling stage and associated overflow. A leaking submerged pipeline can also be a source of elevated turbidity (Michel et al., 2013). Although unlikely, a cutterhead dredge could be used in conjunction with a spider barge/scow set-up creating the potential for surface sediment plumes created by hopper overflow.

Studies of past dredging projects indicate the extent of the sediment plume is generally limited to a distance of 1,640 to 4,000 feet from the dredge and that elevated turbidity levels are generally short-lived, approximately an hour or less (Hitchcock et al. 1999; Anchor Environmental 2003; Wilber et al. 2006). The length and shape of the plume depend on the hydrodynamics of the water column and the sediment grain size. Similarly, multiple studies have been conducted on past beach nourishment projects to determine the extent and duration of elevated suspended solids levels downcurrent of a dredge’s discharge pipe. In general, elevated concentrations were limited to within an area 1,310-1,640 ft. of the discharge pipe in the swash zone (Schubel et al. 1978; Burlas et al. 2001; Wilber et al. 2006). As shown in Table 6, the material within the borrow area is comprised of a large mean grain size and low silt content. Regardless of the dredge type used, the potential for EFH turbidity effects is therefore limited by the borrow source’s sand percentage and rapid fallout during removal and placement. In addition, given the high-energy environment in conjunction with the borrow area characteristics, adverse effects from lowered DO are unlikely.

5.5.2.2 Effects on Surf Zone

The beachfront surf zone, a subcategory of the marine water column EFH, is characterized as a high-energy shallow area located between the marine intertidal habitat and where waves form and break. This high-energy area is habitat to many benthic organisms and a foraging ground for finfish. The surf zone has been designated as EFH by the SAMFC because of the ecological functions provided to the aquatic resources.

The proposed Project’s temporal and spatial effects on surf zone habitat and associated invertebrate prey species along the 3.58 miles of oceanfront shoreline of the Project Area could adversely affect other fishes of commercial, recreational or ecological importance such as Atlantic croaker (Micropogonias undulates), spot (Leiostomus xanthurus), striped mullet (Mugil cephalus) and Florida pompano (Trachinotus carolinus). These species serve as prey for king mackerel, Spanish mackerel, cobia and others that are managed by the SAFMC and for highly migratory species (e.g., billfishes and sharks) that are managed by NMFS. Effects to managed species are discussed in section 5.5.2.3.

Placing sand directly along the surf zone can be expected to increase turbidity levels within the water column infuana; Bodge (2002) reported turbidity levels elevated 3.9 nephelometric turbidity units (NTUs) above ambient within a hopper dredge pump-out location for a nourishment project in Brevard County, Florida. However, the sand obtained from the borrow area has a large grain-size and low percent fines, therefore settle out will likely occur rapidly. Additionally, ambient turbidity
levels within the surf zone are typically quite high and variable; therefore, project impacts will be minimal and short-term.

Sand placement will also result in burial of benthic infaunal communities within the surf zone. Although the infaunal communities in the surf zone will be directly impacted during construction, it is expected that these communities will recover in a short period due to recolonization from adjacent communities. Benthic monitoring is a frequently required component of beach nourishment monitoring programs. A study on the northern New Jersey coastline by Wilber et al. (2003) concluded that a temporary reduction in benthos did not detrimentally affect prey consumption of fish that forage in the nourished area. As a result, the author suggested that continued mandatory benthic monitoring does not appear to be a prudent use of limited monitoring resources.

While the number of trophodynamic studies linking surf-zone fish and non-fish communities is limited, researchers have evaluated the dominant prey for many surf zone and nearshore fish species. Hackney et al. (1996) identified both the mole crab (*Emerita talpoida*) and the coquina clam (*Donax variabilis*) as dominant prey items in the trophic web for the majority of surf zone and nearshore fish of the South Atlantic Bight. Although the effects remain short-term, there is a difference in recovery rate attributable to the season in which a project is constructed. A literature review of the effects of beach nourishment on benthic habitat prepared by Taylor Engineering (2009) for the Florida Department of Environmental Protection, evaluated a wide variety of sites along the Atlantic and Gulf coasts and spanned the years of 1980 to 2007. The review concluded that benthic habitat within nourished areas typically recovered within 2 to 7 months. Variability was attributed to the season in which fill activities occurred and the compatibility of the fill material, with winter projects having less of an impact.

The Nags Head beach nourishment project, completed in 2011, was conducted during the peak period of benthic productivity spanning the months of May through October. The fill area included approximately 10 miles of oceanfront shoreline and utilized an offshore borrow source located within states waters. The Year 1 post-construction monitoring report for the project was released in June of 2013. The report concluded that benthic populations in the nourished beach as well as the offshore borrow area are generally not significantly different from control stations and demonstrate viable populations of organisms during the earliest post project sample events (CZR, 2013). The Year 2 post-monitoring report confirmed the results of the Year 1 report. Both reports concluded benthic populations along the beach as well as the offshore borrow area were generally no different from control stations and demonstrated viable populations of organisms during the post-construction sampling events (CZR and CSE, 2014).

In summary, although seasonality of project construction may affect the recovery time of benthic communities, affects to benthos within nourished areas continue to be shown as minimal and transient. The project is not expected to result in significant or long-term impacts to this EFH or benthic prey resources due to a number of factors, including: the expected quick recovery of infaunal communities, the presence of non-impacted adjacent communities, quality of nourishment material, and mobility and adaptability of fish species found within the surf zone EFH.
5.5.2.3 Effects on Offshore Shoals

Dredging at offshore shoals may result in effects associated with shoal physiology, benthic abundance and elevated turbidity. The proposed maximum extents of the borrow areas encompass a cumulative total of 1600 acres or approximately 2.5 square miles. Relative to the extent of shoals in the region, the proposed project has the potential to affect a comparably small area.

Potential long-term physical and biological impacts could occur if dredging significantly changes the physiography of the shoals. Sediment removal has the potential to alter seabed topography, particularly if sediment removal in the borrow area results in a deep hole. Numerical modeling of morphological changes associated with sand mining has been used to show borrow area location can drive whether infilling of an excavated area will occur (CSA International et al., 2009). A borrow area located in an active shoal area will likely be in-filled, while an un-active area will not. In instances where in-filling does not occur, the hydrology and hydrodynamics that drive benthic recolonization and recovery can subsequently be affected. The potential for creation of deeper holes is higher with a cutterhead than a hopper dredge. Importantly, these concerns have been taken into account during borrow area design development. As shown in Figure 6 and Figure 7, the proposed Project’s borrow area sediment removal does not exceed the surrounding depths. Therefore, the proposed Project does not include significantly deep excavations that would otherwise create deep holes or drastically alter seabed topography such that infilling is prevented.

Benthic resources within offshore borrow areas will be affected during project construction by the removal of sediment. Benthic invertebrates that inhabit sand shoals provide structural fish habitat via the development of worm tubes, burrows and depressions. In addition, these invertebrates provide a foraging base for demersal feeders. Similar to the surf zone effects described above, recolonization by opportunistic species would be expected to begin soon after project construction ceases. Because of the opportunistic nature of the species, rapid recovery would be expected to occur from the migration of benthic organisms from adjacent areas and larval transport. Benthos found in sand bottoms of high-energy environments, such as those within the Project borrow areas, tend to recover more quickly than those occurring in lower-energy environments with a higher percentage of fine particles (Normandeau, 2014). Faster recovery in shallow high-energy environments may reflect the adaptation of communities that occur in these habitats to frequent disturbance from episodic storm events (Normandeau, 2014).

Benthic communities on the offshore shoals are known to vary seasonally. This seasonal variation becomes less apparent with distance offshore and increasing depth. Slacum et al. (2006) surveyed mobile benthic species on shoals and nearby habitats off Delaware and Maryland (16 to 25 km off the coast, in 5 to 22 m depth) and found significant seasonal variation in assemblages at both shoals and reference sites. Normandeau (2014) also showed species richness and abundance were both highest in summer and fall, and lowest in winter. Regardless, monitoring studies of post-dredging effects and recovery rates of borrow areas indicate that most borrow areas usually show significant recovery by benthic organisms approximately 1 to 2 years after dredging and greater inter-annual variability than differences from the effects of dredging (USACE, 2013). Burlas et al. (2001) monitored borrow sites with bathymetric high points off northern New Jersey and found that essentially all infaunal assemblage patterns recovered within 1 year after dredging disturbance, except recovery of average sand dollar weight and biomass composition, which required 2.5 years. Similar to the effects determination for the surf zone, with the expected relatively quick recovery of
infaunal communities, the Project is not expected to result in significant long-term impacts to benthic prey resources.

As described in the Mid and Inner Shelf Waters Effects Determination above, the potential for EFH turbidity effects are limited by the borrow source’s sand percentage and rapid fallout during removal. Although turbidity plumes associated with dredging often are short-lived and affect relatively small areas (Cronin et al., 1970; Nichols et al., 1990), resuspension and redispersion of dredged sediments by subsequent currents and waves can propagate dredge-related turbidity for extended periods after dredging ends (Onuf, 1994). Biological responses to turbidity depend on all of these physical factors, coupled with the type of organism, geographic location, and the time of the year. In the case of sand dredging from offshore shoals for beach nourishment, turbidity plumes at the borrow site are virtually nonexistent due to rapid settling of sand-sized particles, resulting in minimal, if any, sedimentation impacts relative to background transport processes (Louis Berger Group, 1999). Additionally, in an analysis of potential biological and physical impacts of dredging on offshore ridge and shoal features, CSA et al. (2009) confirmed that turbidity plumes and their effects are expected to be less important in unprotected offshore areas. This is due to sand settling more rapidly than clay and silt and offshore shoals tend to be coarser than inshore deposits (CSA et. al., 2009).

5.5.2.4 Effects on Managed Species

The physical disturbance caused by dredging and the placement of sand onto the beach may affect fish distribution patterns. However, it is anticipated that changes in turbidity from dredging operations will be less significant than changes in background levels that will occur during the range of environmental conditions experienced in the Project Area (Lally and Ikalainen, 2001). Additionally, any managed species migrating through, or potentially near the Project Area are expected to avoid active construction areas. Effects to managed species in regards to turbidity are expected to be transient and minimal.

The precise nature of any obligate association of demersal or pelagic fishes with shoals is not known, but it appears that many fish species rely on shoal features as a part of a broader, cross-shelf habitat (CSA et al., 2010). Regardless, as discussed previously and shown in Figure 6, Figure 7, and Figure 10 the proposed borrow area design and cuts will have a minimal effect on the individual shoal and a miniscule effect on the shoal complex in the area. Adverse effects to managed species from the relatively small affected area are not anticipated.

Additionally, as discussed and documented above, effects to benthic resources and consequentially to managed species or managed species prey sources are also expected to be transient. With the availability of adjacent undisturbed areas and fleeting effects within the Project Area, indirect effects to managed species in regards to prey loss and disturbance are expected to be short-lived and minimal.

5.5.3 Associated Impact with No Action Alternative

Continuation of the status quo is not expected to result in any adverse impacts to EFH.
5.6 Threatened and Endangered Species

Several threatened and endangered species may occur within or near the Project Area and may thus be affected by the proposed project. Because these species and the potential effects of the Duck shoreline protection project are similar to the proposed projects for the towns of Kitty Hawk and Kill Devil Hills, a batched Biological Assessment was developed to concurrently address all three projects in one document. The potential effects to threatened and endangered species are discussed in the following sections, and the effects determinations developed in the Batched Biological Assessment are summarized in Table 26. The potential project impacts and the implementation of conservation measures were taken into account for each effect determination.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Effect Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nourishment</td>
<td>Cutterhead Dredge</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Indian Manatee</td>
<td>Trichechus manatus</td>
<td>No Effect</td>
</tr>
<tr>
<td>North Atlantic Right Whale</td>
<td>Eubalaena glacialis</td>
<td>No Effect</td>
</tr>
<tr>
<td>Humpback Whale</td>
<td>Megaptera novaeangliae</td>
<td>No Effect</td>
</tr>
<tr>
<td>Sei Whale</td>
<td>Balaenoptera borealis</td>
<td>No Effect</td>
</tr>
<tr>
<td>Sperm whale</td>
<td>Physeter macrocephalus</td>
<td>No Effect</td>
</tr>
<tr>
<td>Finback whale</td>
<td>Balaenoptera physalus</td>
<td>No Effect</td>
</tr>
<tr>
<td>Blue Whale</td>
<td>Balaenoptera musculus</td>
<td>No Effect</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leatherback Sea Turtle</td>
<td>Dermochelys coriacea</td>
<td>MALAA</td>
</tr>
<tr>
<td>Hawksbill Turtle</td>
<td>Eretmochelys imbricata</td>
<td>No Effect</td>
</tr>
<tr>
<td>Kemp’s Ridley Sea Turtle</td>
<td>Lepidochelys kempii</td>
<td>MALAA</td>
</tr>
<tr>
<td>Green Sea Turtle</td>
<td>Chelonia mydas</td>
<td>MALAA</td>
</tr>
<tr>
<td>Loggerhead Sea Turtle</td>
<td>Caretta caretta</td>
<td>MALAA</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortnose Sturgeon</td>
<td>Acipenser brevirostrum</td>
<td>No Effect</td>
</tr>
<tr>
<td>Atlantic Sturgeon</td>
<td>Acipenser oxyrinchus</td>
<td>No Effect</td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seabeach Amaranth</td>
<td>Amaranthus pumilus</td>
<td>MANLAA</td>
</tr>
<tr>
<td>--------------------</td>
<td>----------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>

Birds

<table>
<thead>
<tr>
<th>Piping Plover</th>
<th>Charadrius melodus</th>
<th>MANLAA</th>
<th>No Effect</th>
<th>No Effect</th>
<th>No Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rufa Red Knot</td>
<td>Calidris canutus rufa</td>
<td>MANLAA</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
<tr>
<td>Roseate Tern</td>
<td></td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
<td>No Effect</td>
</tr>
</tbody>
</table>

Critical Habitat

<table>
<thead>
<tr>
<th>NARW Southeast U.S. unit expansion</th>
<th>No adverse modification</th>
<th>No adverse modification</th>
<th>No adverse modification</th>
<th>No adverse modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piping plover Unit NC-11</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
</tr>
<tr>
<td>Loggerhead Unit LOGG-T-NC01</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
</tr>
<tr>
<td>Loggerhead Unit LOGG-N-01</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
<td>No adverse modification</td>
</tr>
</tbody>
</table>

5.6.1 West Indian Manatee

5.6.1.1 Associated Impact with Abandon and Retreat Alternative

The abandon and retreat alternative will not involve any in-water work, or impacts to habitats utilized by manatees. This alternative will therefore have no effect on West Indian manatees.

5.6.1.2 Associated Impact with Preferred Action Alternative

Project Impacts

One of the major threats to the West Indian manatee is collisions with watercraft, resulting in serious injury or mortality. Interactions between manatees and project-associated vessels are possible while the dredge is underway to and from the fill site. However, open ocean habitat is not commonly used by manatees (Cummings et al., 2014). Therefore, the likelihood of manatees occurring within the operational area of the dredge is low. Additionally, the project will not affect estuarine habitats and there is no submerged aquatic vegetation (primary food source for manatees) near the Project Area.

The noise associated with project construction activities could potentially affect manatees. Marine mammals are highly vocal and dependent on sound for many ecological functions making them particularly susceptible to noise impacts. For example, manatees have been shown to select grassbeds with lower ambient noise for frequencies below 1 kHz. Noise levels within the nearshore environment will likely be elevated due to construction activities associated with the placement of sand onto the receiving beaches. As stated above, however, manatees do not commonly utilize the nearshore environment off North Carolina; therefore, it is considered unlikely manatees will occur within the Project Area.

Conservation Measures

During construction or dredging, the contractor will adhere to the “Guidelines for Avoiding Impacts to the West Indian Manatee” developed by the USFWS. Fulltime NMFS-certified protected species observers will be present on the hopper dredge to alert the dredge operator of any marine mammals,
including manatees, in the area. In the event a manatee is spotted, the ship’s captain will make proper maneuvers to avoid collisions or injury to the marine mammals.

Effects Determination
Due to the unlikelihood that West Indian manatees will be found within the Project Area, the nourishment and dredging activities associated with the proposed project will have no effect on West Indian manatees.

5.6.1.3 **Associated Impact with No Action Alternative**
The no action alternative will not impact any habitats utilized by West Indian manatees, and will therefore have no effect on this species.

5.6.2 **Whales**

5.6.2.1 **Associated Impact with Abandon and Retreat Alternative**
Activities related to this alternative will not impact any habitats utilized by whales, and will therefore have no effect on any whale species.

5.6.2.2 **Associated Impact with Preferred Action Alternative**

Project Impacts
Of the six species considered, only the humpback whale and the North Atlantic right whale could potentially occur within the Project Area. Although fin whales may occur within the nearshore waters of North Carolina during the winter, it is likely these individuals would be migratory. Fin whales are not anticipated within coastal waters of North Carolina during the summer, as they would likely be on their feeding grounds in Northern waters.

The major concern for humpback or North Atlantic right whales occurring within the Project Area will be the possibility of collisions with the hopper dredge or other vessels. Due to their critical population status, slow speeds and tendency to linger at the surface, vessel collisions are the greatest threat for North Atlantic right whales (NMFS, 2012). Collisions with the dredge are most likely to occur while sailing to and from the offloading site. Vessel speed has been shown to affect the probability of lethality of a collision substantially, and is therefore considered a major concern for North Atlantic right whales. Speeds at which dredges typically operate are quite slow - typically less than 10 knots - which is below the speed recommended by the NMFS if North Atlantic right whales are spotted. Hopper dredges cruising while empty can reach speeds of 10 knots or higher, especially if traversing long distances between the borrow area and pump out location. Table 27 presents typical dredging speeds for various operations based on information provided by contractors within the industry. The risk of vessel collision is highest while the dredge is underway to and from the borrow area, as it will operate at faster speeds. Laist et al. (2013) reports that of 41 ship strike accounts for which vessel speed has been reported, no lethal or severe injuries occurred at speeds below 10 kts and no collisions have been reported for speeds of less than 6 knots. The potential for an interaction between the dredge and a listed species increases with the level of dredging effort required for the project. Dredging effort includes parameters such as the total volume of material dredged, number and size of dredges used and total number of dredge days. Distance from the borrow area to the pump-out site and the number of trips made between them factor into dredging effort.
Table 27. Typical dredging operations based on information provided by potential dredge contractors.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Typical Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>Dredging Underway</td>
<td>1 – 3 kts</td>
</tr>
<tr>
<td>(loaded)</td>
<td>5 – 8 kts</td>
</tr>
<tr>
<td>Underway (empty)</td>
<td>10 – 11 kts</td>
</tr>
<tr>
<td>Hopper Fill Time</td>
<td>45 min – 75 min</td>
</tr>
<tr>
<td>Overflow</td>
<td>Sporadic, only during 2/3 of fill time</td>
</tr>
</tbody>
</table>

The noise produced by dredging activity while the dredge is stationary may also impact North Atlantic right whales and humpback whales if they are present near the Project Area. As discussed in the previous section, underwater noise of anthropogenic origin can potentially affect or alter normal migration patterns, communication, foraging and breeding habits. During dredging activities, noise levels will increase above the ambient levels at the borrow areas.

Conservation Measures
As discussed for the West Indian manatee, full-time NMFS certified endangered species observers will be present on any hopper dredge(s) used to alert operators of marine mammals, including whales and manatees, in the area. Should a whale be spotted, the captain will take necessary measures to avoid collisions or injury with them. Vessel operators will abide by the 10 kt (18.5 km/h) speed restrictions in any Dynamic Management Areas (DMAs) that may be established while underway. Operators will abide by NMFS Southeast Region marine mammal viewing guidelines and maintain 50 yds. from sea turtles and dolphins and 100 yds. from whales. Vessel operators will also follow the restricted vessel approach of 500 yds. established for North Atlantic right whales.

Effects Determination
The proposed project will have no effect on sei, sperm, or blue whales as the project area does not fall within their pelagic habitat. Likewise, the fin whale is not anticipated within the project area, and the project will have no effect on this species.

While the Humpback and North Atlantic right whales may occur in the vicinity of the Project Area, the likelihood of a summertime construction schedule reduces the potential that either species will be present during construction. During this time, the whales are generally found on, or migrating to, the northern feeding grounds. Furthermore, adherence to speed restrictions, the Southeast Region marine mammal viewing guidelines, and the Right Whale Early Warning System will reduce interaction with these animals and minimize potential impacts. The dredging activities associated with the proposed project therefore may affect, but are not likely to adversely affect humpback or North Atlantic right whales. Nourishment activities (e.g., sand placement) will have no impact on these whale species. There is no proposed critical habitat for the North Atlantic Right whale within the project area; therefore the project will not destroy or adversely modify critical habitat for this species.

5.6.2.3 Associated Impact with No Action Alternative
Activities under the no action alternative will not impact any habitats utilized by whales, and will therefore have no effect on any whale species.
5.6.3 Sea Turtles

5.6.3.1 Associated Impact with Abandon and Retreat Alternative

Under the abandon retreat alternative, no action will be taken to provide storm damage reduction the environmental resources in the Project Area. All temporary erosion management efforts (including beach scraping, sand fencing, dune vegetation planting, and small truck haul projects) will cease, essentially allowing erosion to continue unabated. Erosion and storm-damage analyses estimated over eighty structures would need to be moved or demolished within the next ten to twenty years. Relocation or demolition of all the structures would likely ensue over the course several years up to decades, therefore erosion would likely continue to encroach upon existing infrastructure, and the beach habitat would continue to be lost. In some cases, more drastic measures, such as sand bags, may be implemented until relocation could occur; these structures result in the loss of nesting habitat as well. The abandon and retreat alternative may reduce the amount of human presence along the beach strand, which could reduce disturbance (e.g. lighting, recreational activity) to hatchling or nesting sea turtles.

5.6.3.2 Associated Impact with Preferred Action Alternative

Sea turtles utilize different habitats in different phases of their life cycle. While sea turtles spend the vast majority of their life within the marine environment, they also utilize the beach for nesting purposes. Beach nourishment activities, including dredging of marine substrate and placement of sand on oceanfront beaches, may lead to several effects on swimming and nesting sea turtles. Beach nourishment activities occurring outside the typical environmental windows recommended for sea turtles (November 16 through March 31 for hopper dredges; November 16 through April 30 for cutterhead dredges) could exacerbate these impacts as construction would coincide with warmer water temperatures and periods of increased sea turtle activity within North Carolina waters and beaches. Therefore, impacts are addressed for sea turtles both within the water column and on the nesting beach.

Potential Water Column Impacts

The greatest risk of direct impacts to swimming sea turtles comes from interactions with the dredging vessels, where vessel strikes or entrainment by dredging equipment can result in injury or fatality. The risk of entrainment is largely associated with hopper dredges, which can directly kill turtles if crushed by, or caught in, the drag heads during dredging (NMFS, 1991).

Approaches to mitigating these threats include implementing environmental windows for dredging activities, conducting sea turtle relocation trawling ahead of the dredge, installing turtle deflectors on the drag heads, and requiring specific draghead operational measures to promote the efficacy of turtle deflecting dragheads and minimize the time that dragheads are off the bottom with the pumps on. The turtle deflector is a rigid shield installed over the draghead that pushes a sand wave ahead of the draghead and displaces turtles away from the immediate suction field. Even with implementation of these mitigation measures, turtle takes still occur on occasion. NMFS has hypothesized that the number of turtle interactions is positively associated with the volume of material dredged and time spent dredging, such that takes increase as the volume and duration of dredging increases (NMFS, 2012).
Although loggerhead sea turtles are the species most commonly documented within Dare County, takes of other turtle species have occurred during offshore dredging projects. According to the USACE’s Sea Turtle Warehouse database, among the six nourishment projects within the Wilmington District of the USACE SAD that utilized offshore borrow areas, two projects resulted in turtle takes (Table 28). A total of six turtle takes occurred, including two juvenile loggerheads, three juvenile Kemp’s ridley turtles, and an additional loggerhead of unknown age. Although sizes were not recorded for most takes, one juvenile loggerhead was measured to be 71.12 cm straight carapace length (SCL). Of particular note is the relatively high number of takes that occurred during the Bogue Banks Nourishment Project - Phase I completed from November 26, 2001, to April 11, 2002. Although this project was characterized by a longer duration and larger amount of material dredged, the first four turtle takes occurred after twenty days of dredging. The project adhered to mitigation measures including drag head deflectors and construction well within the environmental windows recommended for the project (December 1 through March 31); however, relocation trawling had not yet started for the project, which may have contributed to the high number of takes. Other possible contributing factors include a higher temp (64.4° F) than was reported for those projects that did not result in takes. Additionally, notes within the database indicate that a diver was sent down to explore why takes were occurring, and suggested that an “…abundance of old tires in the area attracted sea life which the turtles were feeding on (i.e. crustaceans, octopus bycatch).” It was also reported that observers witnessed an “…appearance of Sargassum during time of December takes” (USACE, 2013b). Relocation trawling was implemented during three of the four projects presented in Table 28, and did not cause turtle takes. However, one dolphin take did occur as a result of relocation trawling during the Bogue Banks Phase I Nourishment Project.

There are also five beach nourishment projects documented within the Norfolk district, only one of which resulted in a turtle take. One loggerhead was taken during the Virginia Beach Hurricane Protection Project, which took place from April 1 to May 10, 2002. Although no pre-dredge or relocation trawling was performed, the deflectors were used on the draghead. Only a portion of the carapace was recovered, therefore no additional information regarding the individual is available (i.e. sex, size, age). The remaining four projects took place during the winter or spring months, with the exception of the Sandbridge Beach nourishment project. This was accomplished from May 16, 1998 to July 21, 1998 and utilized offshore borrow area B. The only mitigative measure used was deflectors on the draghead; no relocation or pre-dredge trawling was employed.

The data discussed above suggest juvenile sea turtles are present in nearshore waters during the month of December; this concurs with the spatial distributions of juvenile and adult loggerheads presented by the Turtle Expert Working Group (TEWG) (TWEB, 2009). Based on satellite telemetry tracks of 248 loggerhead sea turtles, the TEWG concluded that few to no juvenile turtles occur close to shore north of Cape Hatteras during the winter (January through March). High-use areas occurred from the North Carolina-South Carolina border to the Chesapeake Bay, Virginia from spring (April through June) through fall (October through December). The historic satellite tracking data analyzed by the TWEG showed during the colder months of fall and winter, juvenile turtles had a higher frequency of occurrence off the Carolinas south of Cape Hatteras.

Of the takes presented in Table 28, the one turtle measured was a loggerhead with 71.12 cm SCL. The TEWG defines five life stages for loggerhead sea turtles by non-rigid size classes and habitat usage. Stage I (hatching to 15 cm SCL) and II juveniles (15 cm to 63 cm SCL) are entirely oceanic,
while Stage III juveniles (41 cm to 82 cm SCL) can be oceanic or neritic. Stage IV juveniles (63 cm to 100 cm SCL) and Stage V adults can also be oceanic or neritic. The 71.12 cm loggerhead turtle taken falls into the Stage III juvenile category.

Considering the TEWG studies and USACE take data, it seems that the takes reported for the Bogue Banks Phase I nourishment do not represent an anomaly in sea turtle abundance; but rather can be explained by the location (south of Cape Hatteras), habitat (neritic) and season (December) in which the takes occurred. Other species including the green, leatherback and Kemp’s ridley sea turtles have also been documented within nearshore waters of North Carolina; however, only the Kemp’s ridley turtles have reportedly been killed during offshore dredging projects within the SAD Wilmington District (Table 28). Nevertheless, there remains the potential for these species to occur in the Project Area, and to incur adverse project related impacts.

Should hopper dredges be utilized, the proposed projects will employ relocation trawling (as described in Section 2.2.3 of the present document) as a means to reduce the potential for entrapment of protected species, such as sea turtles and sturgeons. This method can successfully reduce the number of turtles taken by entrapment during dredging projects. For example, during the 2013 West Destin Beach Restoration project, in Okaloosa County, Florida, 23 green, loggerhead, Kemp’s ridley and leatherback sea turtles were successfully relocated by trawling, and no lethal takes occurred during the project (USACE, 2013c). However, relocation trawling results in the non-lethal take of protected species, and there is also a documented history of lethal take of both protected and non-protected species. During the 2002 Bogue Banks Phase I Beach Nourishment Project, although four sea turtles were successfully relocated, one dolphin was lethally taken by the trawler. Additionally, five sea turtles were taken by the dredge during this project (USACE, 2013c).

In the Biological Opinion developed for the Shoreline Restoration Protection Project in Fort Story, Virginia Beach, the NMFS hypothesized that the number of sea turtle-dredge interactions is dependent upon factors such as time of year that dredging occurs, the terrain of the dredged area and the presence or absence of sea turtle habitat within the dredged area (NMFS, 2012). The proposed project may occur wholly or partially during the time period when loggerhead, green, Kemp’s ridley and leatherback sea turtles are most abundant, which, coupled with the use of a hopper dredge, elevates the potential for entrapment. Additionally, Borrow Area A is located within critical habitat unit LOGG-N-1, which includes constricted migratory habitat for the loggerhead sea turtle. Furthermore, there is a history of green sea turtle takes during dredging of navigation channels in North Carolina. Although the risk of entrapment is reduced during offshore dredging projects, there remains the possibility that green sea turtles could be entrained during the proposed project. Finally, implementation of relocation trawling could result in the capture of loggerhead, green, leatherback and Kemp’s ridley sea turtles. Considering the above listed factors and historical data, it is considered likely that sea turtles will be present in the vicinity of the borrow areas and the proposed project may adversely affect swimming loggerhead, green, leatherback and Kemp’s ridley sea turtles.

Similar to the potential affects due to entrapment, potential affects resulting from vessel collisions are also elevated due to the proposed projects’ construction outside of the typical environmental window. The risk of collision also depends upon the amount of time the animal remains near the surface of the water (NMFS, 2012). The greatest risk of collision would occur when the dredge is
transiting between the offshore borrow area and the nearshore pump-out location. While vessel collisions are a significant source of mortality for swimming sea turtles, it is assumed that turtles are more likely to avoid slower moving vessels, such as dredges, due to a greater amount of time to maneuver out of harm’s way. To date, there has been no hardbottom areas that would serve as sea turtle foraging habitat identified in or near the borrow areas. Any sea turtles present will likely be swimming in the water column or at the surface to breathe and mate, or resting on the bottom after nesting. This may increase the chance of a collision; while at the same time reduce the potential for entrainment.
Table 28. Dredging projects within the Wilmington District of the USACE South Atlantic Division using offshore borrow areas. Any records of turtle takes, conditions at time of take, and pertinent biological information are also included. A designation of ‘n/a’ indicates no data are available.

<table>
<thead>
<tr>
<th>Project Info</th>
<th>Name</th>
<th>Bogue Banks Beach Nourishment-Phase I</th>
<th>Bogue Banks Beach Nourishment-Phase II</th>
<th>Kure and Carolina Beach Shore Protection Project</th>
<th>Bogue Banks Beach Nourishment-Phase II</th>
<th>Nags Head Beach Nourishment Project</th>
<th>Emerald Isle Post-Irene Renourishment Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Days Dredging</td>
<td>165</td>
<td>74</td>
<td>11</td>
<td>16</td>
<td>180</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Total Cubic Yards</td>
<td>1,869,390</td>
<td>989,895</td>
<td>324,453</td>
<td>n/a</td>
<td>4,615,126</td>
<td>630,000</td>
<td></td>
</tr>
<tr>
<td>Sea Temperature</td>
<td>18° C/64.4° F</td>
<td>18° C/64.4° F</td>
<td>18° C/64.4° F</td>
<td>16° C/60.8° F</td>
<td>16° C/60.8° F</td>
<td>12° C ± 3/53.6° F</td>
<td></td>
</tr>
<tr>
<td>Borrow Source</td>
<td>Offshore Bogue Banks</td>
<td>Offshore Bogue Banks</td>
<td>Offshore Borrow Area</td>
<td>Offshore Bogue Banks</td>
<td>Offshore Nags Head</td>
<td>Offshore Dredged Material Disposal Site</td>
<td></td>
</tr>
<tr>
<td>Take Info</td>
<td>Species</td>
<td>Loggerhead</td>
<td>Loggerhead</td>
<td>Kemp's Ridley</td>
<td>Kemp's Ridley</td>
<td>Kemp's Ridley</td>
<td>Loggerhead</td>
</tr>
<tr>
<td>Date of Take</td>
<td>12/15/2001</td>
<td>12/15/2001</td>
<td>12/15/2001</td>
<td>4/11/2002</td>
<td>3/19/2003</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Condition</td>
<td>Dead</td>
<td>Dead</td>
<td>Dead</td>
<td>Alive, Died later</td>
<td>Injured; Released</td>
<td>Dead</td>
<td>None</td>
</tr>
<tr>
<td>Age</td>
<td>Juvenile</td>
<td>Juvenile</td>
<td>Juvenile</td>
<td>Juvenile</td>
<td>Juvenile</td>
<td>Unknown</td>
<td>None</td>
</tr>
<tr>
<td>SCL(cm)</td>
<td>71.12</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>None</td>
</tr>
<tr>
<td>Conservation Measures Implemented</td>
<td>Pre-dredge Trawling?</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Deflector Used?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Within Windows?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

COASTAL PLANNING & ENGINEERING OF NORTH CAROLINA, INC.
Potential Impacts to Nesting and Hatchling Sea Turtles

The loggerhead sea turtle is the species most commonly observed nesting in North Carolina. As previously discussed, loggerhead nesting along the northern Outer Banks (north of Oregon Inlet) constitutes 4.1% of total nesting activity that has occurred throughout North Carolina from 2009 through 2014. According to the Recovery Plan for the Northwest Atlantic Population of the loggerhead sea turtle, the loggerhead nesting season typically ranges from late April to early September, with hatchling emergence occurring between late June and early November (NMFS and USFWS, 2008). Green, leatherback and Kemp’s ridley sea turtles have also been documented nesting along the northern Outer Banks, although to a much lesser extent than loggerhead sea turtles. Beach nourishment activities occurring during nesting season therefore have the potential to directly impact nesting females and hatchlings of these species. As discussed in section 4.6.3, recent nesting data indicate there has been significantly more sea turtle nesting between June and July than the other months within the nesting season. Additionally, significantly more hatchling emergences were found to occur between July 25 and September 4. It is therefore considered likely that dredging activities occurring during these periods have the greatest chance for affecting nesting and hatchling sea turtles.

The effects a nourishment project imparts upon nesting and hatchling sea turtles is partially dependent on the type of nourishment material used. An improperly re-nourished beach (i.e., one that does not adequately mimic the physical composition and profile) can negatively affect sea turtle nesting success, as well as hatchling emergence and survival. Nest site selection and digging behavior of the female can be strongly influenced by the compaction and compatibility of the nourished beach with a natural beach (Lutcavage et al., 1997). If the nourishment sand is dissimilar from the native sand, results can include changes in sand compaction, beach moisture content, sand color, sand grain size and shape, and sand grain mineral content, all of which may alter sea turtle nesting behavior (Crain et al., 1995). Nest site selection and digging behavior of the female can be altered, or deterred, if she finds the beach unsuitable. Additionally, escarpments may develop on nourished beaches and can prevent sea turtles from accessing the dry beach causing the female to return to the water without nesting. This is energetically wasteful to the female and may result in overall decreased reproductive success. If unable to reach preferable nesting sites, females may also choose to deposit nests in unfavorable areas seaward of the escarpment making them vulnerable to washout (Crain et al., 1995).

To provide the most suitable sediment for nesting sea turtles, the color of the nourishment material must resemble the natural beach sand in the area. A change in sediment color due to beach nourishment could alter the natural incubation temperatures of sea turtle nests (Morreale et al., 1982). Sex determination in hatchlings is dependent upon temperature, where higher temperatures tend to skew the hatchling sex ratio in favor of female hatchlings (Broderick et al., 2001; Mrosovsky and Provancha, 1992; Ackerman, 1997). The thermal tolerance range for development of sea turtle embryos falls within 25 to 27°C (77 to 80.6°F) and 33 to 35°C (91.4 to 95°F), and the threshold temperature at which sex determination occurs falls around 28 to 30°C (82.4 to 86°F) (Ackerman, 1997). The temperature that a nest incubates is determined, in part, on the color of sand. Lighter sand will result in a lower incubation temperature, while darker sand will cause higher incubation temperatures. Therefore, it is possible that a change in sediment color on a nourished beach could alter sex ratios of hatchlings in sea turtle nests.

133
Aside from compatibility of the nourishment material, the functionality of a newly nourished beach as sea turtle nesting habitat also depends upon the design profile, e.g. slope and elevation. In a report assessing how beach nourishment construction templates can affect sea turtle nesting, PBS&J (2007) lists the following among the principle documented impacts:

- Traditionally built nourished beaches tend to be wide and flat, whereas heavily nested natural beaches are often relatively narrow and steeply sloped. Alteration of beach profile (width, slope, and elevation) presents nesting turtles with different tactile and visual cues that may affect pre-emergent assessments of beach suitability (i.e., affect the number of emergences onto the beach), nesting success (percentage of emergences resulting in nests), and nest site selection. Reductions in nesting success and/or relative nest densities are typically observed on most traditionally nourished beaches.

- Changes in beach elevation and slope following nourishment may also alter incubation environments relative to natural beaches and can affect the prevalence of scarping.

- Patterns of nest placement are altered on nourished beaches relative to natural beaches. A disproportionate number of nests are placed along the seaward edge of the beach berm. These nests are more susceptible to erosion during periods of profile equilibration. As a nourished beach equilibrates, a substantial amount of sand can be lost along the seaward edge of the beach berm. Nests placed in this area of equilibration experience high rates of loss due to “washout”.

Furthermore, the authors suggest creation of a wider beach may result in additional energy expenditures for females and hatchlings due to greater crawl distances between the nest site and the ocean (PBS&J, 2007).

In an attempt to address the above risks and improve the quality of habitat provided by beach nourishment, construction of beach nourishment projects has typically been restricted to occurring outside the sea turtle nesting season. Additionally, constructed beaches are designed to mimic the native beach in terms of elevation, slope and sediment composition, such that scarping is limited and the biological performance is improved.

The Town of Kitty Hawk Shoreline Protection Project discussed herein is pursuing year-round construction, therefore it is possible construction and subsequent equilibration of the profile may occur during a portion of the nesting season. However, the proposed projects will incorporate a design that closely resembles the native beach, with an upper beach slope of 1:10. These precautions will reduce the potential for dramatic changes to the beach slope and allow for more subtle adjustments during the equilibration process, improving the quality of sea turtle nesting habitat provided by the new beach.

Importantly, the potential impacts addressed above may extend into multiple nesting seasons following the nourishment. Welch et al. [no date] found significant effects from nourishment such that loggerheads largely avoided nesting on a nourished beach and nests deposited on the nourished beach were placed in unfavorable locations. Rumbold et al. (2001) found that loggerhead sea turtle nesting density decreased, and false crawls increased, in the first two
nesting seasons following nourishment, although these changes are lessened during the second season following nourishment. Therefore, while nourishment may result in an increase in available nesting habitat for sea turtles, it is not certain to result in more nesting (Ecological Associates, Inc., 1999).

Projects that utilize fill material that is similar in grain size and composition to the nourishment area may prevent or reduce some of the adverse effects associated with nourishment efforts (Crain et al., 1995). The design of the beach involves the use of compatible beach material to widen the existing dry beach, thereby increasing the amount of available suitable nesting habitat for sea turtles. In April 2008, the North Carolina Coastal Resources Commission (CRC) adopted State Sediment Criteria Rule Language (15A NCAC 07H .0312) for borrow material aimed at preventing the disposal of incompatible material on the beach. The new rule limits the amount of material by weight in the borrow area with a diameter equal to or greater than 4.76 mm and less than 76 mm (gravel), between 4.76 mm and 2.0 mm (granular) and less than 0.0625 mm to no more than 5% above that which exists on the native beach. The material proposed for use in the project will meet these criteria (Table 6) and consequently reduces many of the potential impacts to nesting and hatchling sea turtles.

The proposed project may affect sea turtles in various other ways. Project construction during sea turtle nesting season poses the risk for direct mechanical destruction or burial of nests, and the potential for encounters with construction equipment on the beach during nesting activities. The presence of heavy machinery on the beach at night can create barriers to nesting females (if stationary). Tracks left by heavy machinery in the sand may affect hatchlings as they crawl toward the water. Studies have shown that hatchlings become diverted not because they are unable to maneuver out of the tracks (Hughes and Caine, 1994), but because the sides of the rut cast a shadow, causing the hatchling to lose sight of the horizon (Mann, 1977). Driving over unmarked nests may destroy them, or cause sand compaction that adversely affects nest site selection, digging behavior, clutch viability and hatchling emergence (Mann, 1977; Nelson and Dickerson, 1989). Artificial lighting associated with the project may also directly affect sea turtle nesting and hatchling behavior. Artificial lighting on beaches tends to deter sea turtles from emerging from the sea to nest (Witherington and Martin, 1996). Project lighting can also result in the hatchling disorientation. Hatchlings, which use visual cues to locate the sea once they emerge from the nest, can be misdirected by artificial lighting (Dickerson and Nelson, 1989; Lorne and Salmon, 2007). Following beach nourishment projects, the wider and flatter beach berm may expose turtles and their nests to artificial lighting that was less visible, or not visible at all, from nesting areas before the project, leading to greater hatchling disorientation and possible mortality (Trindell et al., 2005; Brock et al., 2008). However, the dune incorporated into the design may help reduce this risk. The dune construction may also help initiate nesting by females that would have otherwise abandoned the nesting attempt on the nourished beach (Brock et al., 2008)

Potential Impacts to Critical Habitat

The closest segment of terrestrial Critical Habitat for the loggerhead sea turtle, unit LOGG-T-NC-01, is located 125 miles to the south of Dare County, there is no USFWS designated critical habitat within the project area. Borrow Area A falls within the boundaries of critical habitat unit LOGG-N-01, which includes constricted migratory habitat for the loggerhead sea turtle. Constricted migratory critical habitat consists of 1) constricted continental shelf area relative to nearby continental shelf waters that concentrate migratory pathways; and 2) passage conditions
to allow for migration to and from nesting, breeding, and/or foraging areas. The constricted migratory corridor serves as a concentrated migratory pathway for loggerheads transiting to neritic foraging areas in the north and back to winter, foraging and/or nesting areas in the south. While the majority of loggerheads pass through this corridor from April to June and September to November, loggerheads are present in the area from April through November. Periods in which loggerheads are present in these areas vary with water temperatures and individual migration patterns.

In the final rule designating critical habitat for the loggerhead sea turtle, the NMFS highlights special management considerations for the physical or biological features (PBF) of constricted migratory habitat, and states that the “…primary impact to the functionality of the migratory routes…would be a loss of passage conditions that allow for free and efficient migration along the corridor.” Of major concern are large-scale or multiple construction activities that alter the habitat to such a degree that large scale deviations of migration patterns result. The NMFS also highlights activities that may, but will not likely impact important characteristics of the habitat, including the “Dredging and disposal of sediments that results in altered habitat conditions needed for efficient passage” (79 FR 39856).

The proposed activities may result in elevated turbidity levels in the immediate vicinity of the dredge, and this impact will be greater for hopper dredges and scow/barge operations than cutterhead pipeline dredges. However, the turbidity plumes will be temporary and localized to the dredging site, and should not result in large-scale deviation from migration patterns. Additionally, the proposed borrow areas encompass a very small area (2.5 square miles or 1600 acres) relative to the much larger area encompassed by the entire LOGG-N-01 unit.

Conservation Measures

Several measures will be taken to reduce impacts to swimming, nesting, and hatchling sea turtles. To decrease risk of entrainment by the hopper dredge, a turtle relocation trawling plan will be implemented. The Town of Kitty Hawk will electronically monitor the locations of trawlers and hopper dredges so that trawling is implemented to maximum effectiveness. The terms and protocols that will be implemented in association with relocation trawling are discussed in section 1.3.5. Risk of entrainment can be further reduced by use of a sea turtle deflector, which is a rigid device mounted on the draghead that effectively pushes a sand wave ahead of the draghead and displaces the sea turtle outside the immediate suction field. The efficacy of the draghead lies, in part, on proper installation, but also proper maneuvering by the dredge operator. Therefore, specific hopper dredging protocols will be in place to ensure effective plowing of the dragheads. To prevent impingement of sea turtles within the water column, every effort will be made to keep the dredge pumps disengaged when the dragheads are not firmly on the bottom. In the case of a cutterhead dredge, the rotating cutterhead will not be lifted from the sediment surface during active dredging operations. Additionally, full-time NMFS-certified protected species observers will be present on the hopper dredge to document any sea turtle activity and monitor turtle takes. The 1995 and 1997 South Atlantic Regional Biological Opinion (SARBO) sets forth several reasonable and prudent measures deemed necessary to minimize hopper dredge impacts to sea turtles; these will be implemented in the proposed project.
On the beach, several steps will be taken to minimize construction impacts to nesting and hatchling sea turtles. Artificial lighting used during nighttime construction activities will be angled and/or shielded to reduce deterrence of sea turtle nesting and hatchling disorientation. Sea turtle nest monitoring is also considered an important part of sea turtle conservation, therefore a sea turtle nest monitoring and avoidance/relocation plan will be implemented through coordination with USFWS and NCWRC. Dare County is included in surveys conducted by Network for Endangered Sea Turtles (N.E.S.T), the volunteer organization which performs systematic surveys of the northern Outer Banks from the Virginia border to the southern tip of Nags Head. Surveys are performed throughout the nesting season (May through August), and include daily morning patrols to mark and protect newly laid nests, as well as monitoring during incubation period and emergence. These surveys have been performed since 1981. Because the nourishment is proposed during the summer months (nesting season) for the Kitty Hawk project, monitoring will be needed to identify, and subsequently avoid burial or excavation of, existing nests during construction. This monitoring will be performed by trained individuals knowledgeable of the beach construction operations.

In addition to these monitoring surveys, efforts will be taken to reduce potential impacts to incubating sea turtle eggs. One manner of doing so is to relocate nests deemed in danger of being impacted by construction activities. Sea turtle nest relocation is a management tool with the potential to aid or impair the recovery of sea turtle populations. The primary benefit associated with relocating sea turtle nests (clutches) is to abate threats that would otherwise compromise the hatching and emergence success rate. Where clutches would otherwise have been lost, and where populations require intervention, clutch relocation may be an acceptable management practice for conservation of marine turtle populations. Some studies, including Hopkins & Murphy (1983) and Staneyk et al. (1980), have shown that the relocation of presumed “doomed” eggs increases nest productivity. In the case of beach nourishment activities, nests may be crushed, buried, or unearthed by construction equipment, therefore moving a nest out of the activity area may be beneficial. That said, there are potential negative effects associated with relocating eggs as well. Nest relocating that is unnecessary or improperly executed can result in movement-induced mortality of embryos, or adverse changes to hatching fitness or sex-ratios due to changes in the egg chamber environment. Studies evaluating hatch success reported higher hatch success rates in relocated than in situ nests, lower hatch success rates in relocated than in situ nests and no difference in hatch success between relocated and in situ nests (Bimbi 2009; Pintus et al., 2009; Tuttle, 2007; Wyneken et al., 1988). However, implementing measures such as strict adherence to decision criteria for relocation and using only highly trained personnel can improve the effectiveness of this technique. For the proposed project, trained personnel will be employed to monitor for sea turtle nests and relocate them out of the project area as necessary.

Effects Determination

Due to the proposed year-round project schedule, there is a high likelihood construction will occur during periods of high sea turtle abundance and activity, both in water and on the beach. Therefore, sand placement activities will likely adversely affect sea turtle species that nest within the project area, including the leatherback, Kemp’s ridley, green and loggerhead sea turtle. Additionally, the potential use of hopper dredges is likely to adversely affect these four species via risk of entrainment. Although employed as a conservation measure, relocation trawling is also considered likely to adversely affect swimming sea turtles via non-lethal take. While cutterhead dredging may occur while sea turtles are present, the risk of entrainment by a
cutterhead is low and is therefore not likely to adversely affect these species. The conservation measure discussed previously will reduce the potential for adverse impacts. The only species with Critical Habitat within the project area is the loggerhead sea turtle, unit LOGG-N-01. The unit may be affected through elevated turbidity plumes created by the cutterhead and hopper dredges. However, it is anticipated the turbidity plumes will be temporary and localized, and will therefore not alter migratory patterns of the loggerhead sea turtle. Dredging is therefore not expected to destroy or adversely modify the Critical Habitat unit LOGG-N-01. Relocation trawling will occur within the unit, but will not alter the migratory habitat or cause large scale deviations from migratory movements; therefore, this activity will not destroy or adversely modify the critical habitat unit. There is no terrestrial critical habitat with the project limits on the beach, therefore sand placement will not destroy or adversely modify this Critical Habitat unit.

5.6.3.3 Associated Impact with No Action Alternative

Under the no action alternative, long-term erosion within the project area would be expected to continue at the current rate, as would overwash events and storm events, all of which could ultimately cause a reduction in sea turtle nesting habitat over the next 20 to 25 years. Additionally, the nesting habitat may be further degraded by efforts of property owners within the Project Area to afford their properties storm protection temporarily, including beach scraping, sand fencing and sand bagging. Placing hard structures such as sand fences and sand bags along the beach creates obstacles to nesting females, and, in the case of sand bags, may exacerbate erosion seaward of the bag. These items may also obstruct hatchling sea turtles attempting to traverse the beach to get to the ocean.

5.6.4 Shortnose Sturgeon

5.6.4.1 Associated Impact with Abandon and Retreat Alternative

The abandon and retreat alternative will not involve any activity that affects the spawning, migratory, foraging or overwintering habitat of the shortnose sturgeon, and will therefore have no effect on this species.

5.6.4.2 Associated Impact with Preferred Action Alternative

Potential Impacts

Shortnose sturgeons primarily utilize riverine and estuarine habitats, neither of which is located in the proposed Project Area. Spawning occurs in upper, freshwater areas, typically in January and February while feeding and overwintering activities may occur in both freshwater riverine areas or near the freshwater/saltwater interface (NMFS, 1998b). Aside from seasonal migrations to estuarine waters, this species rarely occurs in the marine environment (NMFS, 1998b, Keiffer and Kynard, 1993). Although shortnose sturgeons are capable of entering open ocean water, it has been suggested that the species appears hesitant to do so, which likely limits extensive migrations of this species (Gilbert, 1989).
Effects Determination

Dredging will not occur within the typical spawning or foraging grounds for the shortnose sturgeon; therefore the proposed dredging and sand placement activities will not affect this species or its habitat.

5.6.4.3 Associated Impact with No Action Alternative

The no action alternative will not involve any activity that affects the spawning, migratory, foraging or overwintering habitat of the shortnose sturgeon, and will therefore have no effect on this species.

5.6.5 Atlantic Sturgeon

5.6.5.1 Associated Impact with Abandon and Retreat Alternative

The abandon and retreat alternative will not involve any activity that affects the spawning, migratory, foraging or overwintering habitat of the Atlantic sturgeon, and will therefore have no effect on this species.

5.6.5.2 Associated Impact with Preferred Action Alternative

Project Impacts

Atlantic sturgeons are known to inhabit the nearshore waters in North Carolina (Moser and Ross, 1995; Laney et al., 2007). The project area does not include suitable spawning grounds for the Atlantic sturgeon, as the closest spawning grounds are located in the Roanoke River and Albemarle Sound. However, Atlantic sturgeon spend much of their life history in the marine environment and can be found there year-round; therefore, the possibility of transient individuals occurring near the Project Area during dredging operations on the offshore sand shoals cannot be ruled out.

Dredging offshore sand shoals will have various effects on the physical and biological environments of these features. Dredging these areas is expected to alter the benthic community by removing sediments and benthic invertebrates, thereby disrupting trophic energy flow from mined sites until re-establishment of the community occurs (CSA et al., 2009). Additionally, removal of sediment from the shoal will create a depression that may or may not refill after dredging. A simulation of morphologic changes associated with offshore sand mining using numerical modeling suggests that borrow area location will determine whether infilling will occur. If dredging is performed in an active shoal area, the dredged area will be filled; conversely, if the dredged area is in an un-active area, the depression will not be refilled (CSA et al., 2009). The depression left by a dredged area that does not refill may affect the hydrodynamics and hydrology that affects recolonization and recovery of benthic invertebrates. The ability of fish populations to recolonize dredged areas is largely unknown, but is thought to depend on degree of association with the dredged feature and reestablishment of the trophic structure of the features (CSA et al., 2009).

The ocean environment may be affected by elevated turbidity levels resulting from placement of sand; however, any increase should be temporary. Although Atlantic sturgeons are highly mobile, there is conflicting evidence on whether they will evade dredging activities. Moser and Ross (1995) noted that Atlantic sturgeon occupied both undisturbed areas as well as regularly
dredged areas and were present during dredging operations in the Wilmington Harbor. Alternatively, in a study of Atlantic sturgeon presence at an open-water disposal site in an estuarine transition zone, Hatin et al. (2007) found a significant decrease in presence of Atlantic sturgeon after sand disposal occurred. The authors suggest habitat modification was likely the driving factor, rather than elevated turbidity or reduction of dissolved oxygen levels, which are more likely to occur when the material disposed is silt-clay, not sand. Furthermore, Atlantic sturgeon frequently use estuarine zones with high levels of suspended matter. Because only beach quality sand will be placed into the nearshore environment of the Project Area, turbidity levels are not expected to reach levels considered detrimental to Atlantic sturgeon.

Vessel strikes have been reported as a threat to Atlantic sturgeon but have only been reported to occur in river systems (NMFS, 2012). For the proposed project, the greatest risk of collision would occur when the dredge is transiting between the offshore borrow area and the nearshore pump-out location. Similar to sea turtles, it is assumed that Atlantic sturgeon are more likely to avoid slower moving vessels, such as dredges, as they are considered highly mobile and able to maneuver away from an approaching slow moving dredge. Because sturgeon will not likely be at the surface and are highly mobile, the chance of a collision is considered unlikely.

The greatest threat for Atlantic sturgeon occurring in the Project Area would be the potential for entrainment by the hopper dredge. The USACE reports 17 interactions with Atlantic sturgeon during 12 separate river and harbor dredging operations along the entire U.S. east coast from 1990 to 2011. Of these 17 interactions, 15 involved entrainment in hopper dredges (NMFS, 2012). While only seven were measured and confirmed to be juveniles, the NMFS deemed it likely that all entrained individuals were juveniles, as the large size of adult sturgeon relative to the opening of the draghead would prevent entrainment. By comparison, the USACE reported only three entrainments of Atlantic sturgeon among 31 coastal and offshore projects between 1998 and 2011. Pre-dredge trawling and relocation trawling was employed during 3 of the 31 offshore/coastal projects, and a total of 16 Atlantic sturgeon were successfully removed using these methods. No takes were documented during trawling or dredging activities during these projects, despite the fact that Atlantic sturgeon were obviously present in the vicinity of construction. The NMFS suggests the low level of interactions may have been due, in part, to the use of pre-dredge trawling and relocation trawling (NMFS, 2012).

In the Biological Opinion developed for a shoreline restoration project in Virginia Beach, Virginia, the NMFS put forth several factors that may contribute to the likelihood of entrainment for large mobile animals, such as sturgeon (NMFS, 2012). It was suggested that risk of entrainment is high where space is limited, as in rivers and channels, such that restricted movement inhibits the chance to escape an approaching dredge. Entrainment risk would also be elevated where there are higher numbers of individuals, as in aggregation areas. Additionally, sturgeons are benthic feeders and are commonly found foraging along the bottom. Because hopper dredge drag heads operate along the bottom, there would be a greater risk of entrainment if dredging of this type occurred within foraging areas.

These risk factors, along with knowledge of sturgeon behavior, can be used to assess the threat of entrainment at the offshore dredge sites that may be utilized by sturgeon during the summer months. Because an offshore borrow area is an open ocean environment, movements would not...
be restricted and sturgeon may therefore be able to avoid an approaching dredge (NMFS, 2012). There is evidence to suggest sturgeon may not behave in this manner, however. During a channel dredging project, Moser and Ross (1995) noted that shortnose sturgeon regularly moved through an area during dredging operations, and one Atlantic sturgeon moved within 100 m of a hydraulic pipeline dredge on two separate occasions, showing no signs of behavioral changes. While this suggests sturgeon behavior may not be negatively impacted by dredging, it may also imply that, although mobile, sturgeon may not readily swim away from an approaching dredge. Risk of entrainment may also vary with location of the dredge site in offshore waters. An offshore borrow area may exist within sturgeon migration corridors. In this case, the fish may be highly mobile and positioned higher in the water column, which could lower entrainment risk (NMFS, 2012). However, as discussed in section 4.6.5 sturgeon distribution was found to be concentrated within a narrow depth range offshore North Carolina, suggesting the fish are aggregating with bottom features that support prey. Therefore, it is possible that migrating sturgeon forage within coastal North Carolina waters. Because sturgeons are bottom feeders, they would be vulnerable to entrainment if a dredge were operating within these areas of higher distribution. Additionally, the proposed use of a hopper dredge elevates the risk of entrainment.

Conservation Measures

Full time NMFS certified endangered species observers will be present on the hopper dredge to document any endangered species activity and monitor takes through screening of inflow and/or outflow. Risk of entrainment will be reduced by keeping the dredge pumps disengaged when the hopper dredge dragheads are not firmly on the bottom. Also, the rotating cutterhead will not be lifted from the sediment surface during active dredging.

Effects Determination

Atlantic sturgeon may be present near the Project Area and susceptible to entrainment by hopper dredges. However, although Atlantic sturgeon may occur offshore year-round, they are most frequently documented during offshore during the cooler months. The likelihood of a summertime construction schedule reduces the potential for this species to be located in the vicinity of the borrow areas. Additionally, the proposed borrow areas are not located in river, harbor or channel areas and instead are located in the unconfined open ocean environment outside of any known congregating or spawning areas. It is therefore anticipated that any Atlantic sturgeon occurring within the Project Area would be able to maneuver away from the approaching dredge. In this way, dredging activities may affect, but are not likely to adversely affect Atlantic sturgeon. While relocation trawling has the potential to result in the capture and temporary displacement of any Atlantic sturgeon present in the pathway of the dredge, the anticipated low numbers of this species during construction deems relocation trawling unlikely to adversely affect Atlantic sturgeon.

5.6.5.3 Associated Impact with No Action Alternative

The no action alternative will not involve any activity that affects the spawning, migratory, foraging or overwintering habitat of the Atlantic sturgeon, and will therefore have no effect on this species.
5.6.6 Seabeach Amaranth

5.6.6.1 Associated Impact with Abandon and Retreat Alternative

Under the abandon and retreat alternative, no action will be taken to provide storm damage reduction to the environmental resources in the Project Area. Storm vulnerability analyses indicate a high probability that a large hurricane similar in magnitude to Hurricane Isabel will impact the area within 20 to 25 years, in which case much of the dry beach and dune that may serve as habitat for seabeach amaranth will likely be lost. Consequently, the abandon and retreat alternative could adversely affect this species. However, as discussed in above, seabeach amaranth is likely not found along the Kitty Hawk shoreline due to development and heavy recreational use of the beach; therefore, it is not likely to adversely affect seabeach amaranth.

5.6.6.2 Associated Impact with Preferred Action Alternative

As discussed in Section 4.6.1.6, beach stabilization efforts have the potential to affect seabeach amaranth negatively. Burial of seabeach amaranth plants present within the project footprint during sand placement is a potential direct impact to the species. Additionally, seabeach amaranth grows in dynamic coastal environments such as overwash areas and dune blowouts; therefore, stabilization of these areas through nourishment actually degrades the primary habitat. The nourishment portion of the proposed project could result in adverse effects as seed burial may deter germination the following season, depending upon the depth of disposal material (USFWS, 1993). Although seabeach amaranth seeds are accustomed to becoming wholly or partially buried by winter sand movement (USFWS, 1996b), if seeds become deeply buried due to nourishment activity, populations could be negatively affected (USFWS, 2002; 2010). Studies have shown that seedlings do not emerge from a depth of more than 1 or 2 cm (USFWS, 2010). Burial of the seed bank may be particularly detrimental to isolated populations, as no nearby seed sources are available to re-colonize the nourished site and will contribute to fragmentation (USFWS, 2002). USFWS biologist Dale Suiter (pers. comm., 2007) suggested it is likely that burial would delay germination of seeds, not prevent germination entirely. The extent of the potential effects of burial relies on the nature of seabeach amaranth’s seed bank and the importance of long distance and water dispersal of seeds; however, these topics need further study (USFWS, 1996b). In contrast, the restoration of the eroded shoreline may provide suitable habitat and encourage colonization post-nourishment, as has been observed following other nourishment projects. It should also be noted that while the above impacts may occur to seabeach amaranth, no recent (post 2009) surveys have been performed in the area; therefore, it is not known if any plants exist there currently. However, based on the absence of the species in past USACE surveys, it is not anticipated that seabeach amaranth plants or seeds will be present within the Project Area. Therefore, the project is not likely to adversely affect the species.

Effects Determinations

The nourishment portion of the proposed project could adversely affect sea beach amaranth, as seed burial may deter germination the following season if the disposal material is too deep. Because a summertime construction schedule would coincide with the growing season for sea beach amaranth, sand placement and dune construction may result in burial of plants. However, seabeach amaranth has not been recorded in past USACE surveys for the species in the Project Area. Therefore, the sand placement associated with the proposed project may affect, but is not likely to adversely affect seabeach amaranth.
5.6.6.3 Associated Impact with No Action Alternative

Under the no action alternative, the Kitty Hawk shoreline will experience the same long-term erosion rates and storm vulnerability discussed under the abandon and retreat alternative, which will likely result in a loss of beach and dune habitat over the next 20 to 25 years. Additionally, this habitat may be further degraded by efforts of property owners within the project area to temporarily afford their properties storm protection, including beach scraping, sand fencing, and sand bagging. There is conflicting evidence that sand fencing may adversely affect this species. On one hand, sand fencing may stabilize dunes such that the plant communities undergo succession to species that out-compete seabeach amaranth, which prefers unstable, dynamic environments. Contrastingly, plants have been observed thriving in areas where sand fencing has been implemented, such as Bogue Banks, NC (USFWS, 2009). Placement of sand bags generally occurs in the narrow strip of sand where seabeach amaranth would occur. As previously stated, it is unlikely seabeach amaranth would occur within the Project Area due to the level of development and recreational use of the beach. Therefore, the No Action Alternative is not likely to adversely affect seabeach amaranth.

5.6.7 Piping Plovers

5.6.7.1 Associated Impact with Abandon and Retreat Alternative

Under the abandon and retreat alternative, long-term erosion and acute erosion resulting from storm events would likely still occur, which could lead to a reduction in foraging, nesting and roosting habitat for piping plovers. However, in the absence of structures, these losses would likely be naturally restored after a period of accretion. Additionally, storm winds and waves would result in overwash areas, which are considered important primary habitat for piping plovers. Essentially beach habitat would be naturally maintained, ultimately benefitting piping plovers. Piping plovers are not commonly found along the Kitty Hawk shoreline due to the presence of development and human activity. The abandon and retreat alternative may reduce the amount of human presence along the beach strand, which would reduce disturbance to piping plovers while foraging, roosting, and nesting, and may encourage greater presence of this species along the beach strand.

5.6.7.2 Associated Impact with Preferred Action Alternative

Project Impacts

Because piping plovers occur year-round in North Carolina, construction may overlap with the presence of wintering, breeding or migrating piping plovers. The data provided by the NCWRC indicates that piping plovers have been observed along Bodie Island and that breeding activity occurs there as well. If piping plovers are present within the Project Area, they will be temporarily disturbed by the staging, storage and transportation of equipment, materials, supplies and workers on the beach in support of the sand placement onto the beach. Noise associated with construction may stress the piping plovers during the projected construction period by causing them to spend more time being alert than foraging and resting (Burger, 1994). Responses to noise levels are difficult to predict and the frequency, duration and intensity of noise must be taken into account. Higher noise levels may result in a startle response such as flushing from nests when incubating eggs, or interruption of feeding or courtship (USFWS, 2010a). These disturbances will likely cause piping plovers to seek out and use alternative habitat areas outside of the influence of project activity. Piping plovers engaging in roosting or foraging activities
would likely seek out alternative, undisturbed areas adjacent to the Project Area; therefore, these direct impacts would be temporary.

Infaunal prey density has been shown to affect habitat use in shorebirds (Peterson et al., 2006). The direct placement of sand will result in the burial and nearly complete mortality of benthic infauna along the beach and shallow water surf zones at the project nourishment locations. This would indirectly affect any adult and flightless chicks attempting to forage in the ocean intertidal zone within the Project Area. While adults may seek out alternate foraging areas adjacent to the Project Area, chicks would be unable to and hence would be adversely impacted.

A wider and more stable beach following project construction may both positively and negatively affect piping plovers. The increase in beach width from beach nourishment activities should increase the amount of available roosting habitat, and eventually increase the amount of suitable foraging habitat after benthic invertebrates repopulate the nourished area. Additionally, it may provide a buffer between important bird habitat areas and upland development and associated human activities. At the same time, it may also encourage more development and recreational use of the beach. With increased development comes the potential for increases in populations of domesticated and feral animals that predate on piping plover nests. The placement of sand would also contribute to stabilization of the beach, which the USFWS considers as one of the major threats to the species. Stabilization inherently prevents the formation of dynamic and ephemeral habitats (such as washover areas and dune blowouts) that serve as primary habitat for piping plovers (USFWS, 2009). Therefore the quality of habitat created by the nourishment will likely be marginal (due to heavy anthropogenic activity in the area and elimination of wintering habitat), and usage by piping plovers will be deterred.

The proposed project has been designed to mitigate the effects of storms such as Hurricane Isabel on the shoreline, namely, encroachment of the ocean above MHW and erosion and overwash of the existing beach and dune system. However, it is these elements that create primary habitat for piping plover, namely overwash areas where vegetation and even predators have been removed. In fact, Hurricane Isabel created renewed habitat for the piping plover and populations rebounded in areas of the Cape Hatteras National Seashore, Cape Lookout National Seashore, and the shoreline changes created by the storm have been credited with the expansion of the Virginia population (USFWS, 2009; Boettcher et al., 2007). Similarly, a lack of storm washover events along sections of Assateague Island National Seashore in Maryland has decreased the amount of piping plover habitat there. Furthermore, the creation of a 1.6 storm berm has been credited with declining piping plover productivity and abundance, due to the resultant reduction in chick foraging habitat.

The beaches near the Project Area (Bodie Island) have historically supported 12% of piping plover observations within the northern region and 10% of statewide observations. However, in the case of the Project Area, shoreline recession coupled with residential development has greatly reduced the amount of dry beach available for roosting and nesting, as well as wet beach for foraging. Additionally, the beach in the Project Area is heavily utilized recreationally with pedestrians, dogs and vehicular traffic that discourage use by shorebirds (Sara Schweitzer, pers. comm., August 29, 2013). Therefore, it is not likely that piping plovers will occur within the
Project Area. The project will have no effect on the designated critical habitat unit NC-1, which is located adjacent to Oregon Inlet approximately 30 miles to the south.

Conservation Measures
All personnel involved in the construction process along the beach will be trained to recognize the presence of piping plovers prior to the initiation of beach construction. Personnel will be provided photos to help with species identification; these photos will be kept at the construction site for quick reference. A contractor representative authorized to stop or redirect work will conduct a shorebird survey prior to 9:00 am each day of sand placement activities. The survey will cover the work area and any locations where equipment is expected to travel. The contractor will note any observance of piping plovers and submit observations to the USACE the next calendar day.

Effects Determinations
Construction activities associated with sand placement may temporarily affect nesting, roosting or foraging activities of piping plovers. Although piping plovers have been recorded along Bodie Island, the heavily developed and utilized nature of the beaches in Duck likely deters occurrence of the species in the project area. It is therefore determined that the proposed project may affect, but is not likely to adversely affect piping plovers. There is no piping plover critical habitat within the project area; therefore the project will not destroy or adversely modify critical habitat for this species.

5.6.7.3 **Associated Impact with No Action Alternative**

Under the no action alternative, the Kitty Hawk shoreline will experience the same long-term erosion rates and risk of storm damage as discussed under the abandon and retreat alternative, which will ultimately result in loss of beach and dune habitat over the next 20 to 25 years. Additionally, this habitat may be further degraded by efforts of property owners within the project area to temporarily afford their properties storm protection, including beach scraping, sand fencing and sand bagging. These activities can temporarily disrupt benthic communities (beach scraping) and reduce amount of habitat available (sand bagging). Regardless, it is unlikely piping plovers would occur within the project area due to the level of development and recreational use of the beach.

5.6.8 **Rufa Red Knot**

5.6.8.1 **Associated Impact with Abandon and Retreat Alternative**

Under the abandon retreat alternative, no action will be taken to provide storm damage reduction the environmental resources in the Project Area. All temporary erosion management efforts (including beach scraping, sand fencing, dune vegetation planting, and small truck haul projects) will cease, essentially allowing erosion to continue unabated. Erosion and storm-damage analyses estimated over eighty structures would need to be moved or demolished within the next ten to twenty years. Relocation or demolition of all the structures would likely ensue over the course several years up to decades, therefore erosion would likely continue to encroach upon existing infrastructure, and the beach habitat would continue to be lost. In some cases, more drastic measures, such as sand bags, may be implemented until relocation could occur; these structures result in the loss of nesting habitat as well.
5.6.8.2 Associated Impact with Preferred Action Alternative

Project Impacts

Although the Delaware Bay and coastal Virginia represent the largest stopover concentration of *rufa* red knots, coastal North Carolina does support a relatively small number of red knots during their spring migration. In North Carolina, shore protection projects occurring outside the environmental dredging windows, particularly during the months of April through June, may affect migrating red knots. Construction activities will likely cause the birds to seek out other areas for foraging or roosting, expending extra energy to do so. Because the birds arrive at stopover locations with depleted energy reserves, having to seek out alternate foraging areas could be detrimental to weight gain before departing to the next stopover. There is some evidence to suggest that red knots are selective in their foraging sites, and preferred sites may be based on location in relation to night roosts as well as prey size and type (Cohen *et al.*, 2010). The authors of Cohen *et al.* (2010) suggest “commuting” from night roosts to foraging sites is energetically costly; birds were found to prefer a distance no greater than 4 km (~2.5 mi) between the two. The ability of red knots to successfully locate suitable undisturbed habitat outside the project area may therefore depend on the availability of preferred prey, and night roosts that provide adequate space, shelter, and distance to foraging areas. Departing for the next stopover with depleted energy reserves could result in cumulative weight problems that prove detrimental to survival and successful reproduction once the birds reach nesting grounds in the arctic.

Shore protection projects involving sand placement may also indirectly affect the foraging success of red knots by reducing or eliminating the infaunal prey source. Key infaunal prey species for red knots include coquina clams, mole crabs and marine worms, all of which will be susceptible to burial and smothering in a beach nourishment project. Although the infaunal communities will likely be directly impacted during construction, it is expected that these communities would recover in a short period due to re-colonization of infaunal organisms from adjacent undisturbed habitat. In a literature review of the effects of beach nourishment on benthic habitats covering documentation of a wide variety of sites along the United States coasts of the Atlantic Ocean and Gulf of Mexico, Taylor Engineering, Inc. (2009) concluded that most studies have found impacts to benthic habitat to be short-term, as most benthos are adapted to a dynamic environment. Nelson (1985) also found organisms that reside in intertidal zones are more adaptable to fluctuations in their environment, including high sediment transport and turbidity levels. Therefore, long-term affects to the infaunal community are not expected to result from a project placing material onto the beach. An example of a project that constructed a beach fill project spanning a considerable length of shoreline was completed in Nags Head in 2011. The Town of Nags Head implemented a beach nourishment project and placed material along approximately 10 miles of oceanfront shoreline. As discussed in section 5.4.2, results from post-construction benthic monitoring have confirmed that the area impacted by sand placement on Nags Head beach has regained a viable assemblage of benthic organisms that is similar to non-impacted beaches both one year post-construction (CZR Incorporated and CSE, Inc., 2013) and two years post-construction (CZR Incorporated and CSE, Inc., 2014). The year-2 post-construction surveys showed no significant differences between the nourished beach in Nags Head from the control beaches in the study in terms of mean difference of taxa richness or sand grain size. On the nourished beach, wintertime abundance was actually significantly higher two years post nourishment than pre-nourishment (CZR Incorporated and CSE, Inc., 2014).
Conservation Measures

All personnel involved in the construction process along the beach will be trained to recognize the presence of piping plovers and red knots prior to the initiation of beach construction. Personnel will be provided species identification photos, which will be required to be kept at the construction site for quick reference. A contractor representative authorized to stop or redirect work will conduct a shorebird survey prior to 9:00 am each day of sand placement activities. The survey will cover the work area and any locations where equipment is expected to travel. The contractor will note any observance of red knots or piping plovers and submit observations to the USACE Wilmington District Office the next calendar day.

Effects Determination

Beach nourishment activities have the potential to affect red knots directly due to disturbance and indirectly due to impacts to benthic prey sources. A reduction in the infaunal prey base could adversely affect red knots by causing them to expend valuable and depleted energy reserves to locate prey in adjacent areas. However, the adaptability and rapid recovery of benthic communities, sufficient periods between maintenance events and proximity of adjacent non-effected and less disturbed habitats, all serve to reduce the level of impact to _rufa_ red knots. In addition, one of the many planning initiatives identified in the 2010 USFWS Action Plan includes habitat enhancement and restoration, including sand nourishment and beach restoration; hence the proposed project may serve to benefit the species after recovery occurs (USFWS, 2010b). The project therefore may affect, but is not likely to adversely affect the _rufa_ red knot.

5.6.8.3 Associated Impact with No Action Alternative

Impacts to red knots resulting from the no action alternative will be similar to those discussed for piping plovers. With no action, the current long-term erosion rates and risk of storm damage will continue as the status-quo, and may ultimately result in loss of beach and dune habitat over the next 20 to 25 years. Additionally, this habitat may be further degraded by efforts of property owners within the project area to temporarily afford their properties storm protection, including beach scraping, sand fencing and sand bagging. These activities can temporarily disrupt benthic communities (beach scraping) and reduce amount of habitat available (sand bagging). Regardless, it is unlikely red knots would occur within the Project Area due to the level of development and recreational use of the beach. Therefore, the No Action Alternative is not likely to adversely affect red knots.

5.6.9 Roseate Tern

5.6.9.1 Associated Impact with Abandon and Retreat Alternative

This species has rarely been observed within Dare County, and specific nesting locations within the state are largely unknown. The abandon and retreat alternative will have no effect on the roseate tern.

5.6.9.2 Associated Impact with Preferred Action Alternative

Project Impacts

Construction of the proposed project will not affect habitats preferred by this species for nesting (densely vegetated areas of coastal islands, among rock rip-rap or coral rubble piles), or foraging (shallow bays, tidal inlets and channels, sandbars with rapidly moving water) nor will it
significantly affect food resources on which it depends during migrations (most often small schooling fish). The proposed project should therefore have no effect on the roseate tern.

Effects Determination
The proposed project will have no effect on the roseate tern.

5.6.9.3 Associated Impact with No Action Alternative

With the absence of roseate tern habitat and lack of observations within the project area, the No Action Alternative is not likely to affect roseate terns adversely.

5.7 Cultural Resources

5.7.1 Associated Impact with Abandon and Retreat Alternative

There are no imminently threatened structures of historical or cultural importance along the shoreline where sand will be placed. As a result, abandonment or relocation of any structures along the shoreline within the Project Area will not affect any cultural resources.

5.7.2 Associated Impact with Preferred Action Alternative

Excavation of the borrow areas could unearth, crush, or otherwise damage any archaeological resources present within the path of the dredge or in an anchoring location. Cultural resource surveys identified a number of anomalies within both Borrow Area A and C that are potentially culturally significant. The locations of potential pipeline corridors have not been identified at this time, therefore no specific surveys have been performed. However, thorough literature review identified only one shipwreck documented in the vicinity of the borrow area. This shipwreck is located east of Borrow Area C and will be avoided should pipeline corridors need to be established in that area. Should a cutterhead pipeline dredge be used, pipeline corridors will be established by the contractor, and clearance surveys will be performed within the corridors prior to laying of pipe. The clearance surveys will be performed at the site of any submerged pipeline locations in advance of operations in or along the Outer Continental Shelf (shore-ward of the Three Nautical Mile Limit) and will consist of magnetometer and side scan sonar surveys.

Conservation Measures

Within the proposed borrow areas, cultural resource buffers have been established for the protection of the identified potential cultural resources, and will be strictly adhered to. No dredging or anchoring of dredges and associated vessels will occur within the Cultural Resource Buffers.

Should markers indicative of cultural resources be identified within pipeline corridors, a buffer will be established around each potential resource. All bottom disturbing activities, including anchoring, spudding, or laying of pipe will strictly adhere to any buffers established.

In the event that the dredge operators discover any archaeological resources prior to dredging operations in the borrow areas, within pipeline corridors or in the vicinity of placement operations, the appropriate agencies will be notified within 24 hours and will be coordinated with on the measures needed to evaluate, avoid, protect, and, if needed, mitigate adverse impacts from an unanticipated discovery. If any archaeological resources are discovered while conducting
dredging operations, the dredge and/or placement operations will be halted immediately and the
dredge will avoid the resource and contact the resource agencies. If investigations determine that
the resource is significant, the Parties will together determine how best to protect the resource.

Effects Determination

Due to the extensive surveys and establishment of buffer zones around identified potential
cultural resources within the borrow areas, dredging activities are not expected to impact cultural
resources within these areas. Additionally, should cutterhead dredges be used, remote sensing
surveys will be performed within portions of the pipeline corridors that fall within the OCS to
ensure the corridors are free of, and avoid, potential cultural resources. Furthermore, according
to the National Register of Historic Places, there are no historic or culturally significant sites
documented within the Project Area. It is therefore concluded that the proposed dredging and
sand placement activities will not affect cultural resources. It is also not anticipated that the
project will encounter any MEC within the project area.

The USACE’s investigations into the presence of military munitions at the Duck Target Facility
have determined that only practice munitions were used at the site. Additionally, the borrow
areas fall well outside the “range fan” associated with the target site. Finally, the removal
numerous efforts have resulted in over 1,000 tons of munitions being removed from the site,
one of which were identified as MEC. It is therefore not anticipated that the project will
encounter any MEC within the project area.

5.7.3 Associated Impact with No Action Alternative

No impacts are anticipated for cultural resources, offshore or on land, with the no action
alternative.

5.8 Socioeconomic Resources

5.8.1 Associated Impact with Abandon and Retreat Alternative

The economic effects of the abandon retreat alternative are difficult to predict, as it is not known
how many of the property owners would choose relocation or demolition. The change to values
of at-risk structures depends on whether they are moved, or abandoned and demolished. If a
structure is moved, it will maintain its tax value, however the value of the lot will be lost. On the
other hand, if a structure is demolished, the tax value of the building itself will be lost, but the
value of the parcel will be at least partially maintained.

The analyses of potential impacts that could result from both long-term erosion and storms
identified 100 structures that could be impacted during the next 30 years. Of this total, 75
structures could become imminently threatened within the next 15 years, and an additional 25
structures could be threatened over the last 15 years of the analysis period. The tax value of the
75 structures that could become imminently threatened within the next 15 years is about $10
million. The tax value of the 25 structures that could become threatened over the last 15 years is
about $5.5 million. These tax values do not include the Hilton Garden Inn; however, portions of
the hotel complex located near the Kitty Hawk Pier could become threatened near the end of the
30 year analysis period. The tax value of the Hilton Garden Inn is listed at over $13.3 million. In
terms of the total tax base for the Town of Kitty Hawk, which is estimated to be $1.068 billion,
the percent of the Town’s tax base of the ocean front residential structures that could become threatened by long-term erosion over the next 30 years is 1.43%. If the value of the lots is included in the potential damages, the percent of the town’s tax base at risk to long-term erosion (again excluding the Hilton Garden Inn) is 5.25%. If the structures are abandoned, and subsequently demolished, the tax value of these homes and the lots on which they reside would be lost. If the structures were relocated, the value of the lots would still be lost, however a portion of the home value would be maintained. At the present time there are 32 vacant lots in the Town of Kitty Hawk between Highway NC 158 and NC Highway 12. To facilitate orderly retreat of threatened structures, the town would need to purchase all 32 lots which have an average tax value of approximately $202,000. Due to the limited number of vacant lots, not all the threatened structures could be relocated, and those remaining would need to be demolished. SBEACH analyses identified an additional 22 structures would be threatened by storms, but not long-term erosion. The total tax value of all 122 structures deemed at risk of becoming imminently threatened is $16.2 million.

Much of the oceanfront shoreline in Kitty Hawk is subjected to frequent storm overwash events which flood NC Highway 12 and can deposit large amounts of sand onto the road, which must be removed by the NCDOT. This can be a costly endeavor. As an example, during the 5 year period from January 2002 to January 2007, NC DOT spent about $3.2 million on roadway protection projects along a section of NC Highway 12 situated between Kitty Hawk Road and Sanderlin Street. The projects included construction and maintenance of a 1,350 foot sandbag revetment, repairs to the roadway and dunes following Hurricane Isabel, and construction and maintenance of a small beach fill. Relocating NC Highway 12 to the southwest would likely involve purchasing all of the homes and lots on the southwest side of NC 12, as well as relocation of all the existing public utilities that are tied to the present NC Highway 12 right-of-way.

5.8.2 Associated Impact with Preferred Action Alternative

Typically, the costs associated with obtaining material from an offshore borrow area involves relative high costs for mobilization and demobilization of the dredge, pipeline, and all of the ancillary equipment needed to support the operation in addition to the actual cost of pumping the material from the offshore site to the shoreline. If the volume of material for the operation is relatively small, the effective unit cost of a cubic yard of sand (which includes mobilization and demobilization costs plus the actual cost of pumping the material to the shoreline) would be relatively high. With mobilization and demobilization costs running in the millions, the volume of material to be dredged in any one operation should be as large as possible in order to keep the effective unit cost within reason. In this regard, the Kitty Hawk project is being developed concurrently with Duck and Kill Devil Hills. By combining nourishment efforts of all three projects into one operation, the unit cost would be lowered.

To increase efficiency and further reduce project costs, Kitty Hawk, Duck and Kill Devil Hills are pursuing constructing the projects during the warmer summer months. As this period corresponds with more benign weather conditions, the dredging safety and efficiency could be substantially increased, while downtime and overall project costs reduced.

Due to the proposed year-round construction window, there is a high likelihood that construction activities will be performed during the peak of tourist season in Kitty Hawk. During periods of
active construction, sections of the beach will be closed to the public to ensure public safety. Likewise, the borrow areas and pump-out locations will be closed to boat traffic. These safety measures, coupled with increased noise and decreased aesthetics of construction equipment on the beach, may result in a temporary reduction in the number of beach visitors and associated revenue to local hotels, rentals, shops, and restaurants. On the other hand, the project will involve workers temporarily moving into the community and purchasing food, housing, and supplies. These impacts will occur during one summer season while the project is being constructed. Upon completion of the project there will be several benefits to the socioeconomics of the Town. A wider beach will create more space for recreational activities, while affording the residential and commercial properties there a greater level of storm damage reduction. This will sustain the beaches that support the local economy and maintain tax base, as well as prevent the Town from incurring the costs associated with demolition or relocation of the structures. These impacts will likely occur on the order of several years, or the life of the project.

The Outer Banks Visitors Bureau was contacted regarding impacts to tourism incurred during the Nags Head Beach Nourishment project. Through anecdotal information, representatives from the Bureau indicated the project both positively and negatively impacted the Town of Nags Head. Lee Nettles, executive director of the Outer Banks Visitors Bureau stated the importance of disseminating information about the project to the public via hoteliers and rental companies, commenting “…for the most part, if people know what was going to happen, they were able to adjust their expectations appropriately. Many people were genuinely curious…to an extent, it was an attraction of sorts.” An additional comment indicated “It was a hassle and did cause some negative impacts during execution, but the positive of a more substantial shoreline still mostly in place three years after the fact, far outweighs that few months of inconvenience (pers. comm., Lee Nettles, Outer Banks Visitors Bureau).

Based on this information, it is estimated that the project will result in inconveniences to visitors and residents of the beach via traffic disturbances, closures of some beach sections, and unsightly equipment on the beach. However, it is not anticipated that the project will result in a substantial reduction of hotel or vacation rental bookings, and will therefore not drastically impact revenue for the town. Additionally, the Town can be proactive and inform visitors of sand pumping schedule to ensure the quality of their beach vacation is maintained.

5.8.3 Associated Impact with No Action Alternative

Under the No Action alternative, no additional attempts would be made to reduce or mitigate shoreline recession or the threat of storm damages beyond the status quo. As a result, the same structures identified under Alternative 1 as being at-risk of damage due to long-term erosion and storms would still be at risk under Alternative 3. However, in the case of Alternative 3, all 122 at-risk structures would remain in place and would eventually be damaged beyond repair. The inevitable demolition of these structures would remove their tax value (total of $16.2 Million) from the town’s tax base. The lots that the at-risk structures are located on would also likely decrease in tax value.
5.9 Recreational and Scenic Resources

5.9.1 Associated Impact with Abandon and Retreat Alternative

If structures are simply abandoned and left to the elements, the scenic resources will deteriorate along the Project Area. Damages incurred by the structures from coastal processes such as winds, waves and erosion will eventually render the structures uninhabitable and may make the beach area in the immediate vicinity unsafe for any recreational activities. The recreational value of the beach will also depreciate as storm induced erosion reduces the amount of beach available for activities such as beach driving, walking, surf fishing, etc. If, however, structures are relocated, then the beach would likely take on a more natural appearance, as dune vegetation slowly re-establishes the area. Recreational resources provided by the beach would likely increase and decrease as the amount of dry beach available for recreational use would change with natural recession and accretion of the beach.

5.9.2 Associated Impact with Preferred Alternative

The proposed year-round construction window for the project means construction may occur during peak recreation season in Kitty Hawk. Beachgoers will temporarily be exposed to elevated noise levels due to construction activities on the beach, and sections of the beach and nearshore environment will be off-limits to the public for safety reasons.

5.9.3 Associated Impact with No Action Alternative

Scenic resources will deteriorate if the No Action Alternative is implemented. Damages incurred by the structures from coastal processes such as winds, waves and erosion will eventually render the structures uninhabitable and may make the beach area in the immediate vicinity unsafe for any recreational activities. The recreational value of the beach will also depreciate as storm induced erosion reduces the amount of beach available for activities such as beach driving, walking, surf fishing, etc. As storm-induced erosion causes shoreline recession, the short-term protection measures potentially taken by some property owners can alter the recreational and aesthetic value of the beach. Activities such as beach scraping and sand bag placement effectively reduce the amount of recreational beach available, as well as reduce the aesthetic nature of the shoreline. In this way, no action can negatively impact recreational and scenic resources of the Kitty Hawk shoreline.

5.10 Impacts Comparison of Alternatives

For comparative purposes, each of the major impacts discussed for the three alternatives are summarized in Table 29.

Table 29. Comparison of potential impacts for each resource resulting from the three alternatives.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Abandon/Retreat</th>
<th>Proposed Action</th>
<th>No Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality</td>
<td>No impacts.</td>
<td>Temporary turbidity increase at borrow area; temporary increase at fill site; indirect detriment to benthic</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Category</td>
<td>Impact Description</td>
<td>Mitigation</td>
<td>Notes</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Air Quality</td>
<td>No impacts.</td>
<td>Temporary and localized reduction in air quality due to emissions from construction equipment and dredging vessels.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>Noise</td>
<td>Temporary increases due to construction associated with demolition or relocation efforts.</td>
<td>Temporary increase at beach fill site due to construction equipment and activities; temporary increase in marine sound at borrow areas from dredging; higher peak pressure levels produced by hopper dredges may be detrimental to marine life.</td>
<td>Possible temporary and sporadic increase in noise levels due to use of construction equipment used for beach scraping or sand bag emplacement.</td>
</tr>
<tr>
<td>Beach and Dune Habitat</td>
<td>Continued loss of beach/dune in some areas due to long-term erosion and storms.</td>
<td>Increase in beach/dune habitat; temporary elimination of infaunal benthic community. May bury beach or dune vegetation present in the Project Area.</td>
<td>Continued loss of beach/dune in receding areas due to long-term erosion and storms; potential further degradation of habitat from beach scraping or sand bag emplacement.</td>
</tr>
<tr>
<td>EFH – Marine Water Column</td>
<td>No impacts.</td>
<td>Temporary elevated turbidity levels at borrow site(mid-and inner-shelf) and fill site (surf zone) may cause adverse impacts to fish physiology and behavior; burial of benthic infauna in surf zone.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>EFH – Offshore Shoals</td>
<td>No impacts.</td>
<td>Removal of benthic organisms due to sand excavation; alteration of seabed topography may alter habitat value temporarily.</td>
<td>No impacts.</td>
</tr>
<tr>
<td>T&E Species</td>
<td>Unabated erosion may cause continued reduction of habitat for sea turtles, red knots, piping plovers; removal of development from shoreline may reduce human disturbance to sea turtles, red knots, piping plovers.</td>
<td>Adverse impacts include: Entrainment of sea turtles; Noise harassment to sea turtles; Burial of beach/subtidal infaunal prey species; Harassment/injury to nesting and hatching sea turtles from construction lighting and activities; Alteration of sea turtle nesting habitat; Disruption of foraging and roosting activity for piping plovers and red knots during active construction. Positive impacts include: Increased beach habitat for sea turtles (nesting), red knots (foraging, roosting), piping plovers (nesting).</td>
<td>Loss of beach/dune habitat potentially utilized by sea turtles (nesting), red knots (foraging, roosting), piping plovers (nesting, foraging, roosting), seabeach amaranth (germination, growth); degradation of same habitats due to potential use of sand fencing, beach scraping, sand bags.</td>
</tr>
<tr>
<td>Cultural Resources</td>
<td>No impact.</td>
<td>Potential for disturbance to unanticipated cultural resources not documented within the borrow areas, pipeline corridors, and pump-out locations, and sand placement areas.</td>
<td>No impact.</td>
</tr>
</tbody>
</table>

| Socioeconomics | If at-risk structures are abandoned, the value of structures and lots will be removed from tax base; If relocated, structure will maintain value, original lot will decrease; expenditure to purchase new lots for relocation; reduction in volume and cost of material needed to construct beach nourishment project. | Cost of project implementation may be reduced if performed in conjunction with Duck and Kill Devil Hills; temporary reduction in tourism and associated revenue due to construction activity and temporary closure of actively constructed beach sections; post-project increased tourism due to wider recreational beach; maintains the tax base of homes in the Project Area by reducing storm vulnerability | Loss of recreational beach from storms would decrease tourism revenue; Eventual removal of at-risk residential structures from tax base if damaged beyond repair; Reduction of lot value if structures damaged; Temporary impact to habitability of at-risk commercial structure due to storm damages. |

| Recreational and Scenic | If structures are abandoned, storm-induced erosion may reduce amount of recreational opportunities afforded by the beach; Deterioration of abandoned property will temporarily reduce aesthetic value of beach, reduce safety and usage of beach until demolition occurred. Relocation of structure may allow establishment of natural beach/dune communities, improved aesthetics | Temporary reduction in tourism due to construction activity and temporary closure of actively constructed beach sections; Closure of areas in proximity to the offshore borrow areas to recreational boat traffic; Reduced aesthetics due to construction equipment and offshore dredges; Increased beach width supports more recreational activity and creates a more aesthetically pleasing beach | Loss of recreational beach from storm-induced erosion, Reduced aesthetics from beach scraping or sand bag projects, in the long term: reduced aesthetics from derelict structures. |

6 CUMULATIVE IMPACTS

The Council of Environmental Quality defines cumulative impacts as:

“The impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably forseeable future actions regardless of what agency (Federal or non-Federal) or person undertakes such other actions. Cumulative impacts can result from individually minor, but collectively significant actions taking place over a period of time.” (NEPA 40 CFR 1508.7)
Cumulative impacts may occur as temporal (e.g. time crowding or time lagging) or spatial (e.g. space crowding, cross-boundary, or fragmentation). The likelihood that multiple projects will occur throughout coastal North Carolina contributes to time-crowded and space-crowded cumulative effects. Currently, there are several non-federal beach nourishment/construction projects within the state that have been proposed or are currently in the permitting process, some of which also propose to construct outside the environmental windows (Table 30). As can be seen in the table, various other projects are also slated to occur during 2016. Carolina and Kure beaches will be constructed during the winter, within the environmental windows typically recommended for nourishment projects. While they will not occur at the same time as Kitty Hawk, there is the potential for time lag effects to occur simultaneously with those resulting from Kitty Hawk.

The towns of Duck and Kill Devil Hills are pursuing nourishment projects similar in nature to the Kitty Hawk project, and the projects will likely be coordinated between the three towns. The towns are all pursuing constructing their respective projects outside the environmental windows. The proximity of these beaches and timing of the projects leads to the potential of time-crowded and space-crowded impacts in Dare County.
Table 30. Proposed federal and non-federal beach nourishment projects within North Carolina and the projected start dates.

<table>
<thead>
<tr>
<th>Project</th>
<th>Projected Start Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duck</td>
<td>February 2016</td>
</tr>
<tr>
<td>Kitty Hawk</td>
<td>February 2016</td>
</tr>
<tr>
<td>Kill Devil Hills</td>
<td>February 2016</td>
</tr>
<tr>
<td>North Topsail Beach</td>
<td>November 2014</td>
</tr>
<tr>
<td>Topsail Beach</td>
<td>November 2014</td>
</tr>
<tr>
<td>Figure Eight Island</td>
<td>November 2015</td>
</tr>
<tr>
<td>Ocean Isle Beach</td>
<td>November 2015</td>
</tr>
<tr>
<td>Bald Head Island</td>
<td>Winter 2015/2016</td>
</tr>
<tr>
<td>Rodanthe</td>
<td>Summer 2016</td>
</tr>
<tr>
<td>Carolina Beach</td>
<td>Winter 2016/2017</td>
</tr>
<tr>
<td>Kure Beach</td>
<td>Winter 2016/2017</td>
</tr>
<tr>
<td>Nags Head</td>
<td>Summer 2017</td>
</tr>
<tr>
<td>Caswell Beach</td>
<td>Winter 2017/2018</td>
</tr>
<tr>
<td>Wrightsville Beach</td>
<td>Winter 2018/2019</td>
</tr>
<tr>
<td>Atlantic Beach/Ft. Macon</td>
<td>Winter 2019/2020</td>
</tr>
<tr>
<td>Emerald Isle</td>
<td>Winter 2019/2020</td>
</tr>
<tr>
<td>Pine Knoll Shores</td>
<td>Winter 2022/2023</td>
</tr>
<tr>
<td>Salter Path</td>
<td>Winter 2022/2023</td>
</tr>
</tbody>
</table>

It is also important to evaluate the amount of beach habitat that could be impacted by beach nourishment in the foreseeable future, relative to the entire North Carolina shoreline.
Table 31 presents a summary of the miles of shoreline that are currently managed, under development for a beach management program, or could potentially be managed in the future. In the case of Kitty Hawk, the proposed project will involve approximately 1.68 miles of nourished shoreline, representing less than 0.01% of the 326 miles of oceanfront shoreline in North Carolina. Going further, there are 124 miles of shoreline that are either actively managed in a beach nourishment program or under development for one. Additionally, when the municipalities that could potentially seek management in the future are considered, the total amount of managed shoreline could reach 163 miles. Considering an average nourishment interval of 4.4 years, up to 11.4% (37 miles) of shoreline could be nourished per year. This number assumes all projects will be constructed during the same year, and is therefore the maximum amount of shoreline that could be nourished in a given year. Actual mileage of nourished shoreline per year will likely vary from this number. Additionally, it is not likely that all projects will pursue summertime dredging, therefore the type and magnitude of direct and indirect impacts will vary.
Table 31. Summary of beach nourishment projects in North Carolina that are authorized, being pursued, or may be pursued in the foreseeable future.

<table>
<thead>
<tr>
<th>Status of Beach Management</th>
<th>Miles of Shoreline</th>
<th>Average Nourishment Interval</th>
<th>% of NC Shoreline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Managed</td>
<td>86</td>
<td>4.4</td>
<td>6</td>
</tr>
<tr>
<td>Currently Managed and Under Development</td>
<td>124</td>
<td>4.4</td>
<td>8.7</td>
</tr>
<tr>
<td>Currently Managed, Under Development, and Potentially Managed</td>
<td>163</td>
<td>4.4</td>
<td>11.4</td>
</tr>
</tbody>
</table>

6.1 Water Quality

The water quality along the beaches in Kitty Hawk and the Outer Banks in general, is very high. Offshore borrow areas targeted for beach nourishment projects are generally comprised of “clean” sand with a low percentage of fine material. As a result, sediment plumes generated while dredging are generally short-lived, measurable on a scale of thousands of meters, and not considered a source of concern (Michel et al., 2014). In the proposed project, the dredging and placement of high quality sand will limit the amount of turbidity created within both the offshore borrow area and nearshore surfzone. There are no long-term adverse impacts to water quality anticipated for the proposed project. Therefore, cumulative impacts are also not anticipated within the Project Area.

6.2 Air Quality

It can be assumed that insignificant additions of greenhouse gases will be emitted from dredge and construction equipment. There are no long-term adverse impacts to air quality anticipated for the proposed project. As a result, the project will not contribute to cumulative impacts to air quality within or near the Project Area.

6.3 Noise

There are many sources of sound in the marine environment, and sound produced in one location can perpetuate for long distances, reaching areas many miles from the source. Within the Project Area, the most likely sound sources include noise from commercial shipping activities, commercial and recreational fishing vessels and dredging activities. Although the hearing thresholds for many marine organisms are unknown, it has been determined that hopper dredging noise overlaps the hearing spectrum for baleen whales and possibly sea turtles. Although increased noise levels from the proposed project will be temporary, and not likely to cause injury, the cumulative impact of many sources of marine noise may mask biologically important sounds for these and other marine animals.

Additional sources of marine noise that may occur within the project area in the foreseeable future include geological and geophysical (G&G) activities. The survey activities may include various geophysical and geological technologies to search for oil and gas, wind turbine siting locations, as well as sand and other mineral surveys. One of the major concerns with these
activities stems from the potential impacts to marine life that would result from the sound used during the various survey activities. The resulting sound may be detrimental to individual marine mammals, fishes and other marine organisms in the area.

6.4 Natural Setting and Wildlife

Current factors affecting the beach and dune setting include increasing population along the coast, increasing recreational use of coastal habitats and increasing development. In some cases, the presence of hard structures (roads, homes, commercial buildings) prevents the shoreline from naturally responding to erosional forces, precluding natural accretion. Sea level rise and storm-induced erosion have also decreased the amount and quality of natural beach habitat. All of these elements cumulatively encroach upon natural beach and dune habitat that serves as storm protection for the human environment and habitat for wildlife.

It is reasonable to expect that the factors affecting the beach and dune habitat will continue, as will the demand for shoreline nourishment and increased storm protection. The major impacts to these habitats resulting from future nourishment projects will likely be similar to the proposed project. Firstly, burial of the infaunal community will be complete and instantaneous, removing an important food source for many animals. The period anticipated for infaunal recovery varies, but is generally reported to be less than one-year post disturbance. Secondly, the project will artificially create a new, larger beach and dune. As the sand is reshaped by natural forces (sun, wind, rain, waves), the beach can eventually provide habitat suitable for flora and fauna, such as nesting habitat for sea turtles. This is only true if the restored beach is sufficiently representative of the native beach in shape and composition. The restored beach is still subject to the above listed anthropogenic and natural forces that will continually result in loss of the beach. This creates the need for repeated nourishment projects. For example, the volume of material that will be placed along the project shoreline in Kitty Hawk includes five years of advanced nourishment. Thereafter, the beach will be maintained through a program of periodic nourishment. The larger beach welcomes more human activity such as recreation and development and may make it unsuitable habitat for some species, such as piping plovers and seabeach amaranth.

Cumulative impacts to the beach and dune environment may be time crowded (as in maintenance nourishment occurring frequently on a single beach) and/or space crowded (multiple beaches within a region undergoing nourishment simultaneously). In essence, if numerous beach nourishment projects with relatively insignificant negative impacts are clustered spatially and temporally, the result could be a summation of affects such that they become large scale and significant.

6.5 Threatened and Endangered Species

6.5.1 West Indian Manatee

The greatest threat to manatees is watercraft strikes, and it is reasonable to expect that these collisions will continue to take place in the future. However, the proposed project will not occur within primary habitat (warm water sights or areas containing submerged aquatic vegetation), and manatees reportedly do not frequent open ocean areas where dredging will occur. There are
no cumulative impacts to manatees within the Project Area and the proposed project is therefore not expected to contribute to cumulative effects for the West Indian Manatee.

6.5.2 Humpback and North Atlantic Right Whales

In addition to those threats previously discussed in section 4.6.2, it is reasonable to expect that federal and non-federal beach nourishment projects will continue to occur for many coastal towns of North Carolina in the foreseeable future. Although humpback and North Atlantic right whales may be present within coastal waters of North Carolina, they are most commonly observed in the fall, winter and spring; therefore, the proposed project does not pose a significant risk for direct impacts to whales. The proposed project is therefore not expected to contribute to cumulative effects for either whale species.

6.5.3 Sea Turtles

Activities that cumulatively threaten the survival of all sea turtle species include mortality or injury from fisheries by-catch, vessel strikes, marine debris ingestion or entanglement, environmental contamination and disease. Some of these factors may occur within the Project Area and are expected to continue in the future. Threats to nesting and hatchling success include disturbance from humans (unintentional or intentional harassment of nesting females or hatchlings), coastal development (increased lighting issues, reduced nesting habitat quality and quantity), predation and nest washout.

The proposed beach nourishment project may compound several of these threats and therefore may contribute to these negative cumulative impacts. The potential for the project construction 24 hours-per-day exposes nesting females and hatchlings to affects caused by artificial lighting used at night. These affects include false crawls, nest deposition in unfavorable areas and hatchling disorientation and mortality. As artificial lighting from coastal development already poses a great risk to sea turtles, the proposed project could potentially exacerbate these impacts. The construction activities and presence of machinery on the beach may also deter females from nesting, resulting in an increase in the number of false crawls. Other nighttime human activity reduces nesting success by preventing nesting females from emerging to nest, or causing them to abandon a nesting attempt. Additionally, beach furniture and recreational equipment left on the beach overnight can create barriers to females and hatchlings.

The proposed project aims to create a more stable, wider beach that may lead to a greater anthropogenic use such as increased recreational activities and more urban development to support growing tourism. An increase in development increases domesticated animals such as cats, dogs and other wildlife that are attracted to an urban setting such as raccoons and foxes. These animals may prey on eggs and hatchlings, exacerbating the natural predation pressure.

The likelihood that multiple nourishment projects will occur throughout coastal North Carolina also contributes to these cumulative impacts. Currently, there are several non-federal beach nourishment/construction projects within the state that have been proposed or are currently in the permitting process, some of which also propose to construct outside the environmental windows (Table 30). In essence, numerous beach nourishment projects could lead to reduced nesting
success, increased hatchling mortality and a larger draw for tourism, development and subsequent negative impacts across a large area.

It is important to evaluate the amount of sea turtle nesting habitat in North Carolina that could be impacted by beach nourishment in the foreseeable future. Table 31 evaluates the current and potential beach nourishment activities affecting the North Carolina coastline, which spans 326 miles. In the case of the three towns within Dare County - Duck, Kitty Hawk, and Kill Devil Hills - the proposed projects will involve a combined 8 miles of nourished shoreline, representing just over 2% of the oceanfront shoreline in North Carolina. Going further, there are 124 miles of shoreline that are actively managed either in a beach nourishment program or under development for one. Additionally, when the municipalities that could potentially seek management in the future are considered, the total amount of managed shoreline could reach 163 miles. With an average nourishment interval of 4.4 years, up to 11.4% (37 miles) of shoreline could be nourished per year. This number assumes all projects will be constructed during the same year, and is therefore the maximum amount of shoreline that could be nourished in a given year. Actual mileage of nourished shoreline per year will likely vary from this number. It is not likely that all projects will pursue summertime dredging; therefore, the type and magnitude of direct and indirect impacts to sea turtles will vary and are difficult to predict.

Beach erosion is also considered a threat to sea turtles due to loss and degradation of nesting habitat. While erosion can be remedied through beach nourishment projects, if they are designed and constructed such that the new beach does not mimic the native beach in composition or profile, sea turtles can be negatively affected. It follows that if multiple projects produce improperly designed beaches with poor-quality sediment, the cumulative impacts to turtles could be negative and quite substantial. However, when designed and constructed properly, a re-nourished beach may benefit sea turtles by providing a stable nesting habitat. Therefore, if the culmination of beach nourishment projects within the region were able to construct turtle friendly beaches, the resulting cumulative effect would be a substantial increase in habitat available for nesting.

6.5.4 Atlantic and Shortnose Sturgeon

The proposed project will not occur within habitats utilized by the shortnose sturgeon, as this species has rarely been sighted in the marine environment. There are no cumulative effects for this species within the Project Area. However, the Atlantic sturgeon may utilize the offshore marine environment throughout the year, therefore the Project Area may contain habitat used by migrating and foraging individuals. Cumulative effects for Atlantic sturgeon that occur within the Project Area include by-catch of sturgeon in fisheries targeting other species, and habitat degradation of foraging areas resulting from shoal dredging. Continued beach nourishment projects are likely to occur throughout the sturgeon’s range. Many of these projects, like those for beaches on the Outer Banks, will likely propose dredging of offshore sand shoals as a source of beach restoration material that may also serve as foraging or aggregation areas for Atlantic sturgeon. Dredging of multiple offshore sand shoals may result in detrimental changes in physical and environmental characteristics of these features resulting in degradation of this habitat.
6.5.5 Seabeach Amaranth

Seabeach amaranth is threatened, in part, due to loss of suitable habitat caused by dune and beach erosion. Proposed beach nourishment projects will provide suitably sorted, beach-compatible material and will offer potential habitat for seabeach amaranth colonization. Previous beach nourishment projects have rebuilt habitat for seabeach amaranth and have had long-term benefits to populations, as seen in Bogue Inlet (Dale Suiter, pers. comm., 2007) and Wrightsville Beach (USFWS, 1996b). The cumulative impact that would result from multiple beach nourishment projects throughout this species range could therefore considered beneficial.

6.5.6 Piping Plover

Disturbance from humans, motorized vehicles and pets are cited as some of the major contributors to the decline of the Atlantic coast population of this species. As discussed in Section 5.6.4, the proposed project may result in an increase in anthropogenic influence (increased recreational use of the new beach), potentially intensifying the negative disturbances caused by humans and domestic animals.

Piping plovers can be found on many beaches throughout the North Carolina coastline; therefore, the various projects presented in Table 30 may cumulatively affect piping plovers. Of particular note are the Duck and Kill Devil Hills nourishment projects that may occur simultaneously with Kitty Hawk. As previously mentioned, the three shorelines constitute a combined 8 miles, which is just over 2% of the total oceanfront shoreline within North Carolina. The cumulative effects of these projects can be complex; however, as beach nourishment can simultaneously benefit the birds by restoring important foraging habitat for the Atlantic Coast populations, yet also degrade foraging habitat by eliminating infaunal communities within the wet beach. Nourishment projects may also adversely affect wintering and nesting habitat by stabilizing and eliminating dynamic overwash areas. The assumption that the Kitty Hawk project and all other proposed projects will be constructed with quality, compatible sand that allows for recovery of the infaunal community supports the determination that the proposed project will not permanently affect foraging. Nourishment projects in North Carolina may affect a maximum of approximately 11% of the North Carolina coastline annually, which is considered a comparatively small amount of the shoreline available to piping plovers within the state.

6.5.7 Rufa Red Knot

The U.S Fish and Wildlife Service has proposed to list the *rufa* red knot due to several factors including habitat loss from sea level rise, shoreline stabilization, Arctic warming, reduced food availability, increasing asynchronies in timing of the bird’s migratory cycle and food availability and increases in predation at the Arctic breeding grounds (78 FR 60023). Beach nourishment may contribute to these factors, mainly the reduction in food availability and asynchronies between stopovers and feeding opportunities.

Red knots need to encounter favorable food, habitat and weather conditions within narrow seasonal windows at stopover locations to successfully complete the migration and are therefore sensitive to changes in these parameters. This can be exemplified by the reduction in availability of horseshoe crab eggs at the Delaware Bay stopover, which caused a substantial decline in red knot numbers beginning in the 1980’s (78 FR 60023). Therefore, the burial and subsequent
reduction of the infaunal communities caused by beach nourishment activities, combined with already stressed food resources, may cumulatively affect food availability for the migrating birds.

A related and major factor threatening the rufa red knot is the asynchronies between arrival at stop overs with food availability caused by climate change. Timing of stopovers must be precise, as the birds must reach the Artic breeding grounds in time for the short breeding season. The birds arrive at the stopovers nearly depleted of energy; therefore, the ability to accumulate small additional energy reserves at a stopover is crucial, should migration be delayed or feeding conditions be poor at the next location (78 FR 60023). Beach nourishment projects inevitably bury and smother the infaunal communities when fill is placed on the beach. While this impact is expected to be temporary and the infaunal communities are anticipated to recover, the reduction in foraging success could potentially create long-term impacts such as reducing breeding success and increased adult mortality.

Aside from reduced food resources, human disturbance and beach erosion threaten the amount of quality habitat available, which is exacerbated by rising sea levels associated with climate change. Beach nourishment may serve to restore crucial habitat by replacing sand lost to storms and erosion. At the same time, the nourishment can indirectly increase human disturbance and development, create a steeper beach or reduce sediment quality, thereby impeding foraging and invertebrate recovery, all of which can negatively affect the rufa red knot.

As all of the risks are associated with any beach nourishment project, the combined effects of the projects presented in Table 30 could cumulatively affect the food availability, synchrony of rufa red knot presence with prey and habitat quality. Those projects occurring in the same year will produce a cumulative effect of disturbance and reduced infaunal prey available during the year following nourishment, while also creating a synergistic and positive effect on the amount of foraging habitat available (assuming recovery of infaunal communities). But, as discussed for piping plovers above, the assumption that the Kitty Hawk project and all other proposed projects will be constructed with quality, compatible sand that allows for recovery of the infaunal community supports the determination that the proposed project will not permanently affect foraging. Nourishment projects in North Carolina may affect a maximum of approximately 11% of the North Carolina coastline annually (Table 31), which is considered a comparatively small amount of the shoreline available to red knots within the state.

6.5.8 Roseate Tern

The Project Area does not include habitats or other resources utilized by the roseate tern. There are no cumulative effects for this species expected to occur within the Project Area.

6.6 Socioeconomic Resources

Those socioeconomic impacts anticipated for Kitty Hawk are discussed in section 5.8.2, and are considered representative of the anticipated impacts for Duck and Kill Devil Hills projects as well. Because all three projects may be conducted during the same summer season, there is the potential for cumulative impacts to occur. However, the negative impacts are deemed temporary in that they will only be realized during one construction season. Additionally, the projects are
not anticipated to result in a large number of cancelations or a significant reduction in the number of beach visitors within the respective Towns, or Dare County. The maintenance of larger, wider recreational beach may increase the amount of tourism and associated revenue that occurs within each town, and therefore Dare County, in the years following project completion.

7 CONSERVATION AND MONITORING MEASURES

The following describes actions and measures incorporated into the design and implementation of the Preferred Alternative to avoid and minimize direct, indirect and cumulative effects to the resources found within the Permit Area and the species that utilize it.

7.1 Construction Practices

7.1.1 Borrow Area Design

The design and configuration of the borrow area can play a major role in dredging efficiency, as well as the level of risk of sea turtle entrainment. For example, hopper dredging within small and irregularly shaped borrow area with varying and step contours can lead to challenging hopper dredging conditions, resulting in a need for frequent turns, or difficulty keeping the draghead in contact with the bottom at all times during pumping. Both of these scenarios result in lifting the draghead from the bottom, which substantially increases the risk for sea turtles to be entrained in the suction field. Therefore, the size and shape of the borrow areas have been designed such that a minimum number of turns will be required by the hopper dredge, which increases dredge efficiency and reduces the potential for sea turtle entrainment.

7.1.2 Dredge Type

Construction of the project will be accomplished using cutterhead suction dredges, trailing suction hopper dredges, or a combination of the two. To minimize impacts from hopper dredging, the project will follow the standard hopper dredging conditions outline in the 1995 and 1997 South Atlantic Regional Biological Opinion. Specific measures implemented to reduce affects to turtles are discussed in section 5.6.3.2.

7.1.3 Dredge Positioning

DREDGEPAK or similar navigation and positioning software will be used by the contractor to accurately track the dredge location. The software will provide real-time dredge positioning and digging functions to allow color display of dredge shape, physical feature data as found in background Computer Aided Design (CAD) charts and color contour matrix files from hydrographic data collection software described above on a Cathode Ray Tube (CRT) display. The software shall also provide a display of theoretical volume quantities removed during actual dredging operations.

7.1.4 Pipeline Positioning

On the beach, pipelines will transport the sediment to the designated beach placement area. The pipeline alignment will be placed to avoid sea turtle nests. The alignment will be coordinated
with, and approved by, the USACE. As-built positions of the pipeline will be recorded using GPS technology and included in the final construction observation report.

7.2 Construction Observations

Several initiatives will be undertaken by the Town, the Engineer or his duly authorized representative to monitor construction practices. Construction observation and contract administration will be periodically performed seven days per week, approximately twelve hours per day during periods of active construction. Most observations will be during daylight hours; however, random nighttime observations may be conducted. The Town, the Engineer, or his duly authorized representative will provide onsite observation by an individual with training or experience in beach nourishment and construction observation and testing, and that is knowledgeable of the project design and permit conditions. The project manager, a coastal engineer, will coordinate with the field observer. Multiple daily observations of the pump-out location will be made for QA/QC of the material being placed on the beach. The construction contractor will provide redundant observations 24 hours a day during construction.

7.2.1 Sediment Compatibility

The Sediment Criteria Rule, contained in the Technical Standards for Beach Fill Projects (15A NCAC 07H .0312), provides beneficial guidelines for both grain size and percent weigh of calcium carbonate. However, other important characteristics such as organic content, heavy mineral content and color are not addressed. These aspects of the beach material will be considered. Maintaining adherence to this sediment criteria rule for material placed on the beach will reduce adverse impacts to the beach invertebrate community and would also reduce effects to sea turtle nest construction and incubation of the eggs. Multiple daily observations of the active placement locations will be made by the Town, the engineer or his duly authorized representative for QA/QC of the material being placed on the beach. The individual will collect a representative sub-surface (6 in. below grade) grab sediment sample from each 100-ft long (along the shoreline) section of the constructed beach to visually assess grain size, wet Munsell color, granular, gravel, and silt content. Each sample will be archived with the date, time, and location of the sample. Samples will be collected during beach observations. The sample will be visually compared to the acceptable sand criteria. If determined necessary by the Engineer, or his duly authorized representative, quantitative assessments of the sand will be conducted for grain size, wet Munsell color, and content of gravel, granular and silt. A record of these sand evaluations will be provided within the Engineer’s daily inspection reports and submitted to USACE and NC DCM for verification.

Following construction, compaction of placed fill material will be inspected by the Town, the Engineer or his duly authorized representative in coordination with the Division of Coastal Management and USACE. Compaction monitoring will begin after the material has been graded and dressed to the final slope and a period of time will be allowed for finer particles to be washed away and final settling of the material to occur prior to compaction monitoring. If the fill material appears to have a higher degree of compaction than that which is acceptable additional testing such as cone penetration testing will be considered. After subsequent testing, if it is determined that tilling is necessary to reduce compaction based on consultation with the
appropriate agencies, the contractor will till the beach to a minimum depth of 36 inches throughout the constructed portion of the beach to loosen the compaction of the placed material. Beach tilling will only be performed as a result of an identified compaction problem based on agency consultation. Beach compaction monitoring and, if necessary, tilling would ensure that project impacts on sea turtle nesting are minimized.

7.2.2 Escarpments

Visual surveys of escarpments will be made along the beach fill area immediately after completion of construction. Escarpments in the newly placed beach fill that exceed 18 inches for a distance greater than 100 ft. shall be graded to match adjacent grades on the beach. Removal of any escarpments during the sea turtle hatching season (May 1 through November 15) shall be coordinated with the North Carolina Wildlife Resources Commission (NCWRC), USFWS and the USACE. The likelihood of escarpment formation can be reduced by incorporating a beach design that closely resembles the native beach in terms of berm elevation, sediment size, and sediment sorting characteristics. The proposed project will be designed with a berm elevation of +6 ft. NAVD88, and sediment characteristics that fall within the ranges required by the North Carolina State Sediment Criteria.

7.2.3 Water Quality

The nearshore and offshore water columns are classified as SB waters under the North Carolina State water quality standards. North Carolina state standards require that work within the water column shall not cause turbidity levels to exceed 25 NTU or background (ambient) conditions that are above 25 NTU.

Construction operations are expected to temporarily elevate turbidity levels in the water column at the borrow area and beach placement sites. Higher turbidity levels are likely to be found in the discharge zone (nearshore swash zone) during periods of active construction. Turbidity monitoring during construction will be managed by the contractor. The contractor will be responsible for notifying the construction engineer in the event that turbidity levels exceed the state water quality standards. Measures that could be taken to subsequently reduce turbidity include moving the dredge to a different location, or asking the contractor to extend the berm, which would allow more time for fines to settle out before the water flows back into the ocean.

7.2.4 Pipeline Observations

In order to avoid adverse effects associated with the transport of placement material to the active shoreline reach, observation and assessment of the pipeline during construction will also be conducted. This will serve to avoid pressurized leaks from the pipeline couplings or other equipment that may result in sediment plumes, siltation and/or elevated turbidity levels. The Town, along with the associated engineer, will coordinate with the dredgers and have in place a mechanism to cease dredge and fill activities in the event that a substantial leak is detected. In the event that a substantial leak is detected (leaks resulting in turbidity that exceed state water quality standards), the contractor will cease dredge and placement activities until an appropriate repair of the affected equipment has been completed.
7.3 Species Monitoring and Impact Minimization

7.3.1 West Indian Manatee, Humpback and North Atlantic Right Whales Monitoring

During construction or dredging activities, the contractor will adhere to the “Guidelines for Avoiding Impacts to the West Indian Manatee” created by the USFWS. Full-time NMFS-certified endangered species observers will be present on the hopper dredge(s) to alert dredge operators of any whales or manatees in the area. In the event a whale or manatee is spotted, the ship’s captain will make proper maneuvers to avoid collisions or injury to the marine mammals. Vessel operators will abide by the 10 kt (18.5 km/h) speed restrictions in any Dynamic Management Areas (DMAs) that may be established while underway. Operators will abide by NMFS Southeast Region marine mammal viewing guidelines and maintain 50 yds. from sea turtles and dolphins and 100 yds. from whales. Vessel operators will also follow the restricted vessel approach of 500 yds. established for North Atlantic right whales. Participation in the Right Whale Early Warning System is required; therefore, dredging within right whale critical habitat from December through March will follow the protocol established within the Early Warning System (NMFS, 1995).

7.3.2 Sea Turtle Monitoring

Several measures will be taken to reduce impacts to swimming turtles during dredging activities. In the event hopper dredges are used, a turtle relocation trawling plan will be implemented to decrease risk of entrapment. The terms and protocols that will be implemented in association with relocation trawling are discussed in section 2.2.3.4. The Town of Kitty Hawk will electronically monitor the locations of trawlers and hopper dredges so that trawling is implemented to maximum effectiveness. Risk of entrapment can be further reduced by use of a sea turtle deflector, which is a rigid device mounted on the draghead that effectively displaces the sea turtle outside the reach of the suction field. Every effort will be made to keep the dredge pumps disengaged when the hopper dredge dragheads are not firmly on the bottom. Also, the rotating cutterhead will not be lifted from the sediment surface during operations. Additionally, full-time NMFS-certified endangered species observers will be present on the hopper dredge to document any sea turtle activity and monitor turtle takes through screening of inflow and/or outflow. Dredging operations will abide by the terms and conditions deemed necessary to minimize hopper dredging impacts to sea turtles set forth in the 1995 and 1997 South Atlantic Regional Biological Opinion (SARBO).

On the beach, several steps will be taken to minimize construction impacts to nesting and hatchling sea turtles. Artificial lighting used during nighttime construction activities will be angled or shielded to reduce deterrence of sea turtle nesting and hatchling disorientation. A sea turtle nest monitoring and avoidance/relocation plan will be implemented through coordination with USFWS and NCWRC. Sea turtle nest monitoring is also considered an important part of sea turtle conservation. Dare County is included in surveys conducted by Network for Endangered Sea Turtles (N.E.S.T), the volunteer organization which performs systematic surveys of the northern Outer Banks from the Virginia border to the southern tip of Nags Head. Surveys are performed throughout the nesting season (May through August), and include daily morning patrols to mark and protect newly laid nests, as well as monitoring during incubation period and emergence. These surveys have been performed since 1981. Because the Dare County projects
propose nourishment during the summer months (nesting season), monitoring will be needed to identify, and subsequently avoid burial or excavation of, existing nests during construction. This monitoring will be performed by trained individuals knowledgeable of the beach construction operations.

In addition to these monitoring surveys, efforts will be taken to reduce potential impacts to incubating sea turtle eggs. One manner of doing so is to relocate nests deemed in danger of being impacted by construction activities. Sea turtle nest relocation is a management tool with the potential to both aid, or impair, the recovery of sea turtle populations. The primary benefit associated with relocating sea turtle nests (clutches) is to abate threats that would otherwise compromise the hatching and emergence success rate. Where clutches would otherwise have been lost and where populations require intervention, clutch relocation may be an acceptable management practice for conservation of marine turtle populations. Some studies, including Hopkins & Murphy (1983) and Stancyk et al. (1980), have shown that the relocation of presumed “doomed” eggs increases nest productivity. In the case of beach nourishment activities, nests may be crushed, buried, or unearthed by construction equipment; therefore, moving a nest out of the activity area may be beneficial. Nevertheless, there are potential negative effects associated with relocating eggs. Nest relocating that is unnecessary or improperly executed can result in movement-induced mortality of embryos, or adverse changes to hatchling fitness or sex-ratios due to changes in the egg chamber environment. Studies evaluating hatch success reported higher hatch success rates in relocated than in situ nests, lower hatch success rates in relocated than in situ nests and no difference in hatch success between relocated and in situ nests (Bimbi 2009, Pintus et al. 2009, Tuttle 2007, Wyneken et al. 1988). However, implementing measures such as strict adherence to decision criteria for relocation and using only highly trained personnel can improve the effectiveness of this technique. For the proposed project in Kitty Hawk, trained personnel will be used to monitor for sea turtle nests and relocate them out of the project area as necessary.

7.3.3 Sea Turtle Relocation Trawling

Should hopper dredges be utilized, the proposed project will employ relocation trawling as a means to reduce the potential for entrainment of protected species, such as sea turtles and Atlantic sturgeon. Relocation trawling has been employed in select USACE dredging projects since the 1980’s and has proved to be a successful method for temporary displacement of sea turtles from a project area when hopper dredging was ongoing (Bargo et al., 2009).

The protocols and techniques of relocation trawling were researched and developed by the USACE, and have become a standard practice for reducing lethal sea turtle takes during dredging projects. Two types of trawls are used during hopper dredging projects. Sea turtle abundance trawling is employed several days before commencement of dredging activity and is used to determine the abundance of sea turtles in the area. A finding of high sea turtle abundance initiates the need for relocation trawling. Essentially, this method employs a capture-relocation technique and is targeted at the active dredging site within the borrow area. The distance covered by each tow may vary as dictated by large vessel traffic in the area or by the size and configuration of the borrow site. A separate vessel, usually a shrimp trawler, deploys a trawling net ahead of the approaching dredge to remove sea turtles from the dredge’s path. Typically, trawlers tow two specially designed 60-ft trawl nets in the vicinity of the dredge on a 12 or 24
hour schedule. The position at the beginning of each tow is determined from GPS positioning equipment and tow speed is recorded at the approximate midpoint of each tow. Water temperature measurements are also taken twice per day, and weather conditions (air temperature, wind velocity and direction, sea state, wave height, precipitation) are recorded by instrumentation and visual observations aboard the trawler. If relocation trawling is implemented, standard relocation trawling conditions will be observed as set forth by NMFS, including specification for trawl time, handling, holding conditions, take and release and any tagging, etc.

7.3.4 Bird Monitoring

Migrating, wintering and breeding piping plovers in North Carolina are monitored through various systematic and non-systematic surveys. North Carolina participates in an International Piping Plover Winter Census that takes place every five years, and Bodie Island is included in these surveys. The last survey was performed in 2011 but surveys are likely to continue in the future. A Breeding Census for breeding pairs of piping plovers is conducted annually, although not all locations are surveyed every year and Bodie Island has not been surveyed since 2008. Migrating piping plovers are not part of a formal survey; however, they are picked up in International Shorebird Surveys that capture spring and fall migration counts. Additionally, piping plover data are picked up opportunistically in surveys conducted pursuant to permit requirements, research interests for non-governmental groups, consultants and federal agencies (Sarah Schweitzer, pers. comm., 2014).

In the past, *rufa* red knot surveys have been performed annually during the month of May in Dare County (2010 – 2012), Bodie Island (2007 – 2009) and the Cape Hatteras National Seashore (2006 – 2010). The aerial surveys are coordinated out of the New Jersey state department and are dependent upon funding. The North Carolina coast has been flown by biologists with the North Carolina Wildlife Resources Commission, the North Carolina Audubon and/or the Center of Conservation Biology (Sara Schweitzer, pers. comm., June 14, 2014).

All personnel involved in the construction process along the beach will be trained to recognize the presence of piping plovers and red knots prior to the initiation of beach construction. Personnel will be provided photos of each species, which will be required to be kept at the construction site for quick reference. A contractor representative authorized to stop or redirect work will conduct a shorebird survey prior to 9:00 am each day of sand placement activities. The survey will cover the work area and any locations where equipment is expected to travel. The contractor will note any observance of red knots or piping plovers and submit observations to the USACE Wilmington District Office the next calendar day.
REFERENCES

NMFS, USFWS and SEMARNAT. 2011. Bi-National Recovery plan for the Kemp’s ridley sea turtle (Lepidochelys kempii), Second Revision. National Marine Fisheries Service. Silver Spring, MD

Taylor Engineering, Inc. 2009. Literature review of effects of beach nourishment on benthic habitat. Florida Department of Environmental Protection and Martin County, Florida. Jacksonville, Florida

USACE (United States Army Corps of Engineers, Wilmington District). 2013b. 2013 Seabeach amaranth (*Amaranthus pumilus*) survey. U.S. Army Corps of Engineers Wilmington District. 53 pp

USFWS (U.S. Fish and Wildlife Service). 2002. Biological Opinion on the effects of an interim beach fill at the critical zone and south beach areas of the sandy hook unit of gateway national recreation area, Monmouth County, New Jersey on the piping plover (Charadrius melodus) and seabeach amaranth (Amaranthus pumilus). National Park Service, Fort Hancock, NJ. 111 pp.

Welch, L., P. Davis, B. Howard, and C. Pfistner. [no date]. Sea turtle nesting at Juno Beach, Florida, USA: The effects of two construction projects on this beach. Results of a five-year study. Palm Beach County Department of Environmental Resources Management. *Poster presentation.*

Appendix A –
Pertinent Correspondence
Hi

We are doing a No Staffing on this project.

fritz

On Tue, Dec 8, 2015 at 10:33 AM, Culbertson, Jennifer <jennifer.culbertson@boem.gov> wrote:
Hi Fritz,
Any luck locating this review? Thanks again for your help!
Jen

Jennifer Culbertson, Ph.D
Oceanographer
Jennifer.Culbertson@boem.gov
Cell 703-300-7848
Office 703-787-1742
Fax 703-787-1026
Department of the Interior
Bureau of Ocean Energy Management Headquarters
Division of Environmental Assessment
45600 Woodland Road, Sterling, Virginia 20166
www.boem.gov

On Mon, Nov 23, 2015 at 9:13 AM, Fritz Rohde - NOAA Federal <fritz.rohde@noaa.gov> wrote:
I'm teleworking today but will check my files tomorrow.

We've been down 3 positions in the Atlantic Branch and Pace and I have been trying to cover them and still
do our regular work. A number of letters have gotten "lost" on his desk. But if I remember correctly we
didn't have any issues with the projects, other than the usual stuff - try and space out the dredge cuts, don't
go too deep, etc

Fritz

On Mon, Nov 23, 2015 at 8:15 AM, Culbertson, Jennifer <jennifer.culbertson@boem.gov> wrote:
Hi Fritz,
We sent in an EFH Assessment for a batched group of projects in Dare County (Duck, Kitty Hawk, Kill
Devil Hills) earlier in 2015 and I heard from Pace late Spring that the concurrence letter was on it's way.
We never received the letter and I am wondering if you have any knowledge of this project or the status of
the consult? I have emailed Pace but haven't heard back. I know you guys are busy! We are hoping to tie
up this project in December so any info you have may help.
Thanks,
Jen

Jennifer Culbertson, Ph.D
Oceanographer
Jennifer.Culbertson@boem.gov
Cell 703-300-7848
Office 703-787-1742
Fax 703-787-1026
Department of the Interior
Bureau of Ocean Energy Management Headquarters
Division of Environmental Assessment
45600 Woodland Road, Sterling, Virginia 20166
www.boem.gov
Dr. Roy Crabtree
Regional Administrator
NOAA—Fisheries
Southeast Regional Office
263 13th Avenue South
St. Petersburg, Florida 33701

Dear Dr. Crabtree:

The Bureau of Ocean Energy Management (BOEM) would like to request Essential Fish Habitat (EFH) (Section 305) consultation pursuant to the Magnuson-Stevens Fishery and Conservation Management Act (MSA) for the Kill Devil Hills, Duck and Kitty Hawk Shoreline Protection Projects in Dare County, NC. BOEM has worked jointly with the U.S. Army Corps of Engineers (USACE) and the towns’ contractor to prepare the enclosed EFH Assessment for these projects. BOEM is the lead agency for the EFH consultation with the USACE serving in a cooperating role. The EFH Assessment describes the proposed projects, characterizes potentially affected EFH and fish species, assesses the potential effects of these actions on EFH, and identifies measures to mitigate potential adverse impacts.

BOEM and the U.S. Army Corps of Engineers (USACE) have regulatory authority over different aspects of the proposed projects. BOEM may authorize the use of sand from an Outer Continental Shelf (OCS) borrow area for the projects pursuant to the OCS Lands Act, 43 U.S.C. § 1337(k). Under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act, the USACE may permit conveyance, and placement of sand resources. The enclosed EFH Assessment includes a combined review of areas under both the USACE and BOEM’s jurisdictions. BOEM is proposing to issue a negotiated agreement for Borrow Areas A and C, as seen on Page 2 of the EFH Assessment. The USACE is proposing to issue permits for the placement of sand along the shoreline of Kill Devil Hills, Duck, and Kitty Hawk.
Please review this assessment and provide any comments or conservation recommendations you may have. If you have further questions or concerns regarding these projects, please contact Dr. Jennifer Culbertson at (703) 787-1742 or by email at jennifer.culbertson@boem.gov.

Sincerely,

[Signature]

Jill Lewandowski
Acting Chief, Division of Environmental Assessment
Bureau of Ocean Energy Management

Enclosure

cc (with enclosure):

Mr. Fritz Rohde, NOAA--Fisheries

cc (without enclosure):

Mr. Josh Pelletier
USACE, Wilmington District

Mr. Brad Rosov
CB&I
June 23, 2015

Mr. Josh Pelletier
Washington Regulatory Field Office
Wilmington District, Corps of Engineers
2407 W. 5th Street
Washington, North Carolina 27889

Subject: Town of Duck (SAW-2014-02202, USFWS Log No. 04EN2000-2015-F-0443)
Town of Kill Devil Hills (SAW-2014-02203, USFWS Log No. 04EN2000-2015-F-0444)
Town of Kitty Hawk (SAW-2014-02204, USFWS Log No. 04EN2000-2015-F-0445)
Initiation of Consultation under Section 7 of the Endangered Species Act

Dear Mr. Pelletier,

The U.S. Fish and Wildlife Service’s (Service) has received your letters dated March 25, 2015, March 26, 2015, and June 1, 2015, requesting initiation of formal section 7 consultation under the Endangered Species Act (Act). The consultation concerns the possible effects of your proposed authorizations for the Towns of Duck, Kill Devil Hills, and Kitty Hawk on the piping plover (Charadrius melodus), red knot (Calidris canutus rufa), roseate tern (Sterna dougallii), West Indian manatee (Trichechus manatus), seabeach amaranth (Amaranthus pumilus), and the loggerhead (Caretta caretta), green (Chelonia mydas), leatherback (Dermochelys coriacea), Kemp’s ridley (Lepidochelys kempi), and hawksbill (Eretmochelys imbricata) sea turtles.

All information required of you to initiate consultation was either included with your letter or was submitted on June 22, 2015 for our consideration and reference. We have assigned log numbers 04EN2000-2015-F-0443, 04EN2000-2015-F-0444, and 04EN2000-2015-F-0445 to this batched consultation. Please refer to those numbers in future correspondence on this consultation.

Section 7 allows the Service up to 90 calendar days to conclude formal consultation with your agency and an additional 45 calendar days to prepare our biological opinion (unless we mutually agree to an extension). Therefore, we expect to provide you with our biological opinion no later than November 4, 2015.
As a reminder, the Act requires that after initiation of formal consultation, the Federal action agency may not make any irreversible or irretrievable commitment of resources that limits future options. This practice ensures agency actions do not preclude the formulation or implementation of reasonable and prudent alternatives that avoid jeopardizing the continued existence of endangered or threatened species or destroying or modifying their critical habitat.

If you have any questions or concerns about this consultation or the consultation process in general, please feel free to contact Kathy Matthews, of my staff, at 919-856-4520, x. 27.

Sincerely,

[Signature]

Pete Benjamin
Field Supervisor
May 21, 2015

Josh R. Pelletier
US Army Corps of Engineers, Wilmington District
Washington Regulatory Field Office
2407 West Fifth Street
Washington, North Carolina, 27889

Subject: Response to comments received concerning the Public Notice and the Draft Environmental Assessment for the Town of Kitty Hawk Shoreline Protection Project (SAW-2014-02204).

Dear Mr. Pelletier:

This letter provides the responses to written comments received from the North Carolina Wildlife Resources Commission (NCWRC) and the North Carolina Department of Environmental Protection (NCDENR) regarding the subject Public Notice (PN) and the Draft Environmental Assessment (EA) for the Town of Kitty Hawk. This letter also represents a response to the U.S. Fish and Wildlife Service (USFWS) comments, which were not provided.

NCDENR

The NCDENR expressed concern regarding in-water work that will be performed outside of the environmental windows normally enacted for beach nourishment projects, particularly as it relates to potential negative impacts to fish, shellfish and their habitat. In section 5.5.2.1 of the EA, the potential negative effects to the marine water column are evaluated, and include a discussion regarding the physiology and feeding behavior of finfish due to increased turbidity during dredging at the borrow areas. These effects would also adversely affect penaeid shrimp, which utilize the offshore marine habitats for spawning and growth in the late summer and fall (discussed on page 41). Section 5.1.2 discusses that sediment plumes generated within the nearshore due to sand placement will occur, but will likely be temporary, and cites studies supporting this conclusion. Section 5.5.2.1 acknowledges that sediment plumes within the water column at the borrow areas can also be detrimental to fishes, but will likely be temporary and small in scale. Additional information citing a number of studies supporting the conclusion that plumes are brief and spatially limited have been added to section 5.5.2.1. It was concluded that these impacts will be temporary because the sand that will be dredged from the borrow area is comprised of a low percentage of fines and is beach compatible, allowing for rapid fall-out of suspended material. Section 5.1.2 elaborates further on the mechanisms responsible for elevating turbidity within the water column, and how the construction practices of the subject project will help minimize it. Additionally, section 7.2.3 on pages 141 and 142 of the EA explain that turbidity monitoring will be managed by the contractor, and defines measures that can be taken should turbidity levels become exceedingly high. While the immediate and direct effects of turbidity on fish within the water column cannot be avoided, it is concluded that the ephemeral nature of turbidity plumes would reduce lasting adverse effects.

The NCDENR also states the intertidal and nearshore zones of the beach are heavily utilized by finfish and shellfish during the spring and summer months. It is also stated that burial of organisms and
increased turbidity could negatively affect fish and shellfish that are in higher abundance in these areas during the moratorium months. Section 5.5.2.1 of the EA acknowledges that placing sand within the surf zone will directly and adversely affect this Essential Fish Habitat (EFH) due to burial of infaunal communities and an increase in turbidity levels. Because the fishes that depend on this habitat are highly mobile, and the project extent is 3.58 miles, it is expected they will be able to locate adjacent undisturbed habitat for foraging until recovery occurs. On page 104, the EA cites a literature review performed by Taylor Engineering which concludes that, although winter dredge and fill projects appear to have less of an impact on benthic communities, benthic habitats within nourished areas typically recovered in less than a year, regardless of the time of year that construction was performed. Post-construction monitoring associated with the 2011 Nags Head beach nourishment project also shows that within one year, benthic populations within the nourished beach were not significantly different from the control stations. Therefore, while the immediate and direct adverse impacts to the surf zone EFH cannot be avoided, rapid recovery and opportunistic life strategy of the benthic community should preclude lasting adverse effects.

Another concern of the NCDENR is that sediment removal from borrow area during summer could increase biological recovery at the borrow site. Section 5.5.2.2 acknowledges that dredging offshore sand sources can cause detrimental effects to the benthic communities through the physical removal of sediment. As stated, this is a concern for fish that depend on the benthic community for foraging and habitat. As explained on page 105, the borrow areas encompass a small area (2.5 square miles) in comparison to the extensive sand shoals present in the reason. Language explaining that the borrow areas were designed such that the physical nature of the area will not be severely altered in terms of hydrology or bathymetry (page 105). Other studies are cited in section 5.5.2.3 that support the conclusion that the intrinsic nature of the both borrow area environment (larger grained sand, naturally dynamic environment) and benthic community (opportunistic recolonization) would contribute to rapid recovery. The EA acknowledges, on page 105, that there is a difference in recovery rate attributable to the season in which a project is constructed, however studies have shown the recovery still occurs in the short-term (less than one year).

NCWRC

The NCWRC requests adherence to environmental windows during which dredging should not occur for sea turtles (May 1 through November 15) and nesting waterbirds (April 1 through August 31), because higher takes of sensitive species are likely during these periods. The NCWRC states turtle takes are also likely higher with use of a hopper dredge. In Section 5.6.3, the EA acknowledges the many threats to sea turtles both in the water and on the beach posed by the project, and on page 109 states:

>“Beach nourishment activities, including dredging of marine substrate and placement of the material on oceanfront beaches may lead to several effects on swimming and nesting sea turtles. Beach nourishment activities occurring outside the typical environmental windows recommended for sea turtles (November 16 through March 31 for hopper dredges; November 16 through April 30 for cutterhead dredges) could exacerbate these impacts as construction would coincide with warmer water temperatures and periods of increased sea turtle activity within North Carolina waters and beaches.”

Page 110 discusses threats to in-water turtles including vessel collisions and entrainment, and evaluates takes that have occurred during other offshore dredging projects within the state. Conservation measures to reduce these risks are discussed in section 7.3.2 and include implementing relocation trawling (language to elaborate on this methodology has been added as section 2.2.3.4), use of a turtle deflector on the draghead, and careful manipulation of the dredge during operation at the borrow area. Review of the Nags Head beach nourishment project suggests that, with proper implementation of the conservation
measures, hopper dredging may be performed during the summer months with no fatal in-water sea turtles takes. Details of the Nags Head project and associated dredging conservation measures are summarized in Table 25 on page 113.

NCWRC states that increased takes directly reduces turtle populations as well as removes the opportunity for beach nesting. The EA presents a number of conservation measures that will be implemented to reduce the risk of takes of sea turtles. Also, the USACE and BOEM will engage in formal consultation with the U.S. Fish and Wildlife Service and National Marine Fisheries Service, to ensure that any takes that may occur would not jeopardize the existence of any species.

The NCWRC also expresses concern over adverse impacts incurred by nesting and hatchling sea turtles on the beach, such as lost nesting opportunities, destruction of nests missed by monitors, and hatchling disorientation due to lighting. NCWRC also states that crawls and nests can be missed by monitors, while nest relocation can still impact turtle populations. Section 5.6.3.2 details these impacts. While the risk of these impacts occurring cannot be completely avoided, Section 7.3.2 explains the conservation measures that will be enacted to help reduce these risks, including but not limited to: angling or shielding of construction lighting at night to reduce orientation, daily nest monitoring by trained staff to reduce missed nests, and nest relocation performed by only by trained staff to improve effectiveness of the method. As stated on page 144, the sea turtle nest monitoring, avoidance, and relocations plans will be coordinated with the USFWS and NMFS.

NCWRC states that indirect impacts include non-nesting emergence, a reduction in the nesting proportions caused by increased escarpment formation, increased compaction levels, and/or other changes in the beaches’ physical characteristics. Measures will be taken to avoid drastic physical alteration of the beach, which could affect nesting success, including: monitoring of placed sand to ensure sediment is compatible (Section 7.2.1), compaction monitoring and associated tilling when necessary (Section 7.2.1), and monitoring for and removal of escarpments after construction (Section 7.2.2).

Finally, the NCWRC states that there would be negative impacts to beach nesting waterbirds that forage on the beaches during their migration along the Atlantic Coast as a result of disturbance from construction. Although not specifically addressed within the EA, there are numerous species of waterbirds that utilize the beach environment year-round for wintering, nesting and foraging. Bird-sightings data obtained for a “hot spot” in Kitty Hawk indicate many nesting colonial waterbirds have been observed at that location in the spring and summer months. The EA addresses project impacts to piping plovers and red knots, which will be similar for other foraging waterbirds. Comparable to what is discussed for the piping plovers in section 5.6.4.2 of the EA, foraging waterbirds present in the project area will be disturbed by the construction activities. These disturbances will last potentially throughout the year at various times, depending on the contractor’s construction schedule. It is anticipated that this will cause the birds to move out of the construction area in order to seek foraging and roosting habitat along the adjacent shoreline. The maximum extent of the project is 3.58 miles, so the birds will need to travel at least this far to avoid disturbance. The NCWRC is also concerned with impacts resulting from decreased recruitment of invertebrates. The NCWRC points out that “invertebrate populations would be directly affected by the burial and the proposed schedule could impact recruitment and reproduction for several seasons, especially if remedial work is done in subsequent years. The EA address the impacts to the benthic community within the surf zone (section 5.5.2.2) and nourished beach (section 5.4.2), and offers citations associated with the Nags Head beach nourishment project to support the conclusions that the benthic community can recover to pre-construction levels within one year. Based on this information the EA concludes on page 106 that… “With the expected relatively quick recovery of infaunal
communities, non-impacted adjacent communities, use of compatible material, mobility and adaptability of fish species found within the surf zone… the Project is not expected to result in significant or long-term impacts to…benthic prey resources.” As explained in Section 2.2, the proposed project will provide enough sand to last five years. This is expected to provide adequate time for benthic communities to recover. However, as stated, the actual performance of the restored beach and any future maintenance needs will be determined from beach profile monitoring surveys taken at least once a year. In Section 6.4, the EA also acknowledges the potential for time crowded and space crowded cumulative impacts that could result from multiple nourishment events on the same beach. It is important to note, however, that the current project will be a one-time nourishment event, with enough sand placed to maintain the beach for five years.

The NCWRC states that placement on the beaches outside the summer months would minimize these impacts. A discussion of the reasoning behind the proposed year-round construction window is presented in section 2.2.3.5

Thank you for the opportunity to respond to the comments provided by the various agencies for the Draft Environmental Assessment for the Town of Kitty Hawk Shoreline Protection Project. It is hoped the responses above will sufficiently address or clarify any questions or concerns regarding the project details or anticipated impacts to species.

Sincerely,

COASTAL PLANNING & ENGINEERING OF NORTH CAROLINA, INC.

Brad Rosov
MEMORANDUM:

TO: Josh Pelletier, US Army Corps of Engineers

FROM: Shane Staples, DCM Fisheries Resource Specialist

SUBJECT: Town of Kitty Hawk Dredge and Beach Placement (SAW-2014-02204)

DATE: 5/5/15

A North Carolina Division of Coastal Management (DCM) Fisheries Resource Specialist has reviewed the US Army Corps of Engineers Public Notice and Environmental Assessment for proposed actions that impact fish and fish habitats.

The Town of Kitty Hawk proposes to dredge 1.913 million cubic yards of beach quality sediment from two borrow sites ranging from 4.1 to 6.5 miles offshore of Dare County, North Carolina. The sediment will be moved via hopper dredge and/or hydraulic cutterhead pipeline dredge and placed along 3.77 mile stretch of oceanfront shoreline in The Town of Kitty Hawk, North Carolina.

In order to protect finfish and shellfish the condition of a moratorium from April 1 to September 30 on dredge and fill operations such as beach nourishment is normally enacted. The Environmental Assessments for this project states a desire to work year-round and mainly from April thru September. In-water work during this time frame could have negative impacts to fish, shellfish and their habitats. The intertidal and near shore zones of the beach are highly active and heavily used by a multitude of fish and shellfish species during the spring and summer months. Burial of organisms and increased turbidity could negatively affect fish and shellfish that are in higher abundance in these areas during the moratorium months. Ocean floor disturbance during the dredging process will remove benthic organisms using the area. Timing the activity during the summer when organisms are growing and reproducing could increase the biological recovery time at the borrow site. More in-depth comments may be provided when the application for the CAMA major permit is received. Information, specifically an estimated start and finish date for in-water work for the project could help better determine the impacts of the proposed project.

Contact Shane Staples at (252) 948-3950 or shane.staples@ncdenr.gov with further questions or concerns.
MEMORANDUM

TO: Josh Pelletier
US Army Corps of Engineers, Wilmington District

FROM: Maria T. Dunn, Coastal Region Coordinator
Habitat Conservation Program

DATE: May 8, 2015

SUBJECT: Comments for Town Kitty Hawk, Mr. John Stockton, Dare County, North Carolina.
SAW-2014-02204

Biologists with the North Carolina Wildlife Resources Commission (NCWRC) reviewed the public notice with regard to impacts on fish and wildlife resources. The project site is along approximately 3.77 mile section of oceanfront shoreline in Kitty Hawk, NC. Our comments are provided in accordance with provisions of the Coastal Area Management Act (G.S. 113A-100 through 113A-128), as amended, Sections 401 and 404 of the Clean Water Act, as amended, and the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.).

The applicant proposes to place material dredged from identified borrow areas within and outside the three mile area offshore the project area onto the entire 3.58 mile oceanfront of Kitty Hawk. The proposed action is to facilitate a long term management program that includes the above nourishment activities stated to maintain the integrity of the area for a five year period. The Town of Kitty Hawk has stated they will regularly monitor and re-evaluate the area to determine the effectiveness of the project. Borrow Area A is located between 5.0 to 6.5 miles offshore and Borrow Area C is located 4.1 to 5.2 miles offshore. Sand would be dredged using a self-contained ocean certified hopper dredge and / or a hydraulic cutterhead pipeline dredge. Placement onto the beach would be accomplished via submerged pipeline with direct pump-out. Mechanical manipulation of the material once on shore would be done to obtain the desired beach profile.

The NCWRC has reviewed the provided information and has assessed the project for impacts to wildlife resources, particularly sea turtles, coastal waterbirds, and beach invertebrates. To minimize impacts to these resources, we request a sea turtle moratorium (May 1 - November 15) and a beach nesting waterbird moratorium (April 1 – August 31) be implemented rather than work during the summer
months. These moratoria were established to protect threatened and endangered species that use the shoreline for foraging and nesting.

Coastal storm damage reduction (CSDR) operations during these dates would likely increase sea turtle takes, especially with the use of hopper dredges. Increased takes directly reduces turtle populations as well as removes the opportunity for beach nesting. The material placement on beaches during the moratorium would impact turtle nesting by lost nesting opportunities, destruction of nests not located by nesting monitors, and the disorientation of hatchlings by lights used at night on construction equipment. Although monitoring could be used to minimize impacts, nests and crawls can be missed and nests moved by sea turtle monitors still impact turtle populations. Indirect impacts include non-nesting emergence, a reduction in the nesting proportions caused by increased escarpment formation, increased compaction levels, and/or other changes in the beaches’ physical characteristics.

The proposed construction schedule also includes the time of peak migration for beach nesting waterbirds. These birds forage on the beaches during their migration along the Atlantic Coast. Impacts include construction disturbance and the decreased recruitment of invertebrates. The invertebrate populations would be directly affected by burial and the proposed schedule could impact recruitment and reproduction for several seasons, especially if remedial work is done in subsequent years. Placement of material on the beaches outside the summer months would minimize these impacts.

The NCWRC appreciates the opportunity to review and comment on this public notice. If you need further assistance or additional information, please contact me at (252) 948-3916 or at maria.dunn@ncwildlife.org
November 9, 2015

Brian Jordan, PhD
Federal Preservation Officer, HQ Archaeologist
Bureau of Ocean Energy Management
45600 Woodland Road
Sterling, VA 20166

Re: Dredge from Two Offshore Borrow Sources and Deposit Sand Along Multiple Oceanfront Shorelines, Dare County, ER 15-0148, 15-0325, 15-0862

Dear Dr. Jordan:

Thank you for your letter of October 27, 2015, transmitting the report: A Phase I Remote-Sensing Archaeological Survey of Two Proposed Borrow Areas Offshore of Dare County, North Carolina submitted to Coastal Planning & Engineering by Tidewater Atlantic Research. After careful review, we would like to take this opportunity to comment.

We concur with the conclusions and recommendations, identifying and buffering three (3) areas containing potentially significant anomalies in borrow area A and fourteen (14) areas containing potentially significant anomalies in borrow area C. We also concur with BOEM’s recommendation to consolidate three individual buffers from area C (Buffers I, J, and K) into a single larger buffer. If these buffers cannot be avoided, additional archaeological investigation is warranted to assess National Register of Historic Places eligibility.

Any permits issued should also clearly state the “Unexpected Discovery Protocol” recommended on page 92 of the above report that states:

In the event that any project activities expose prehistoric or historic cultural material not identified during the remote-sensing survey, the dredging company under contract to the Dare County townships should immediately cease operations in that vicinity and notify the respective Point of Contact for Dare County, CPE-NC, BOEM, and for the North Carolina SHPO. Notification should address the exact location, where possible, the nature of material exposed by the project activities, and options for immediate archaeological inspection and assessment of the site(s).

These comments are made pursuant to Section 106 of the National Historic Preservation Act of 1966, North Carolina legislation (G.S. 121-22 to 28, Article 3), and the Abandoned Shipwreck Act of 1987 (P.L. 100-298).
Thank you for your cooperation and consideration. If you have questions concerning the above comment, contact Renee Gledhill-Earley, environmental review coordinator, at 919-807-6579 or environmental.review@ncdcr.gov. In all future communication concerning this project, please cite the above referenced tracking number.

Sincerely,

[Signature]

Ramona M. Bartos

cc: Heather Coates, NC DCM, DEQ
 Brad Rosov, CB&I
 Josh Pelletier, USACE Wilmington District
Brian Jordan, PhD
Federal Preservation Officer, HQ Archaeologist
Bureau of Ocean Energy Management
45600 Woodland Road
Sterling, VA 20166
Dr. Kevin Cherry
State Historic Preservation Office
Office of Archives and History
4610 Mail Service Center
Raleigh, North Carolina 27699-4610

Dear Dr. Cherry:

The Bureau of Ocean Energy Management (BOEM) received a request dated August 14, 2015 for a negotiated agreement to utilize approximately 4,700,000 cubic yards of beach compatible sand from two borrow areas (A and C) located in the Federal Outer Continental Shelf (OCS) off the coasts of Duck and Kill Devil Hills, North Carolina. The sand will be utilized to restore beaches along 8.31 miles of shoreline that have critically eroded. Sand from off-shore borrow areas, shall be dredged via hopper dredge, transported to a pump out area, and pumped to shore via pipeline where land-based equipment such as bulldozers will then shape the beach fill.

BOEM and the U.S. Army Corps of Engineers (USACE) are working collaboratively to ensure effective implementation of the required National Environmental Policy Act (NEPA) and the National Historic Preservation Act (NHPA). BOEM has determined that the proposed action, dredging activities associated with the offshore borrow areas (A and C), is an undertaking pursuant to Section 106 of the NHPA. BOEM’s responsibilities under the NHPA are for the offshore borrow areas only; the USACE will be responsible for NHPA coordination with the SHPO for the rehandling, pumpout, and placement areas in state waters.

BOEM considers the area of potential effect (APE) to consist of the two offshore borrow areas (see attached map). Borrow Area A is located between 5.0 and 6.5 miles offshore, while Borrow Area C is located between 4.1 and 5.2 miles offshore. Depths range from approximately -52 to -66 feet mean low water. This is the first use of these newly delineated borrow areas.

Coastal Planning & Engineering of NC, Dare County’s contractor for the beach renourishment project, contracted with Tidewater Atlantic Research, Inc. to conduct a magnetometer, side-scan sonar, sub-bottom profiler and fathometer survey of the proposed borrow sites, to analyze the resultant data, and to identify any evidence indicative of submerged cultural resources. The conclusions of the report, dated April 30, 2015, are as follows:

Analysis of the remote-sensing data generated during the survey of Area A identified ten sonar targets and nine magnetic anomalies. One of the sonar targets
is a small single object, three are bottom surface features and the remaining six appear to be sections of pipe, cable, logs or pilings. None have an association with any of the magnetic anomalies. Four of the magnetic anomalies represent small single objects, three represent moderate single objects and two represent moderate single or multiple objects. Two of the moderate single or multiple object anomalies and one cluster of two moderate single objects are recommended for avoidance and are buffered. The three buffered anomalies located in Area A have signature characteristics suggestive of potentially significant submerged cultural resources.

Analysis of the remote-sensing data generated during the survey of Area C identified 9 sonar targets and 65 magnetic anomalies. Six of the sonar targets represent small single objects and three are bottom surface features. Four of the targets have no association with any of the magnetic anomalies and five have possible associations. Three of the 65 magnetic anomalies lie outside the survey area. Nineteen represent small single objects, seventeen represent moderate single objects, twenty more represent moderate single or multiple objects and six represent complex or clustered objects. Twenty-seven of the anomalies are recommended for avoidance and buffered. The buffered anomalies and anomaly clusters located in Area C have signature characteristics suggestive of potentially significant submerged cultural resources and could be associated with the wreck charted immediately east of the survey area.

Avoidance of buffered anomalies and anomaly clusters is recommended. Should avoidance of the buffers prove impossible, additional investigation is recommended to identify material generating these anomalies and to assess their importance in terms of National Register of Historic Places (NRHP) eligibility.

Based on these cultural resource survey results, there are three areas containing potentially significant anomalies in borrow area A and fourteen areas containing potentially significant anomalies in borrow area C. BOEM has reviewed the data, and has recommended that three of the avoidance areas in area C be combined into a larger buffer, based on the characteristics of the magnetic and side-scan sonar anomalies (see revised figure attached). These have been recommended for avoidance and buffering, and have therefore been established as "No Work Zones" within the borrow areas. Likewise a section of borrow area C in the vicinity of vibracore DCVC-14-76 has been classified as a "no dredge area" based on sediment characteristics and the thickness of the targeted layer in this portion of the borrow area (see pages 2-3 of attachment).

With the avoidance of the buffered anomalies, BOEM has reached a determination of No Historic Properties Affected, pursuant to 36 CFR 800.4(d)(1). BOEM invites comments regarding BOEM's finding and any questions that this undertaking may raise. Should you have any questions about this undertaking, you may contact me at (703) 787-1748 or Brian.Jordan@BOEM.gov. Written correspondence may be sent to the following address:
Bureau of Ocean Energy Management
Division of Environmental Assessment
45600 Woodland Road
Sterling, VA 20166

Thank you in advance for your timely response and cooperation. I look forward to receiving your response within 30 days of receipt of this letter in accordance with 36 CFR 800.3(c)(4).

Sincerely,

[Signature]

Brian Jordan, Ph.D.
Federal Preservation Officer
Headquarters Archaeologist

cc (with attachment):
 Mr. Josh Pelletier, USACE Wilmington District
 Mr. Paul Knorr, Bureau of Ocean Energy Management, Leasing Division
 Mr. Brad Rosov, CB&I
 Mr. John W. Morris, Fort Fisher Underwater Archaeology Branch
 Ms. Ramona Murphy Bartos, NC Division of Archives and History

Attachments (6)
Notes:
2. Color bathymetry surface is based on field data collected by CPE-NC between June 7-13, 2014 and October 21-29, 2014.

Legend:
- 2014 CPE-NC Vibracore
- Preliminary Investigation Area
- Proposed Design Cuts
- Depth in ft. (NAVD88)
- Cultural Resource Survey Boundary
- Cultural Resource Buffers (No Work Zone)
NOT FOR CONSTRUCTION FOR REGULATORY REVIEW ONLY

BORROW AREA A
VOLUME =
17,806,000 C.Y.

BORROW AREA A PLAN VIEW

ATLANTIC OCEAN

GRAPHIC SCALE IN FT

0 1000 2000

LEGEND:

MAXIMUM DEPTH AFTER DREDGE (FT. NAVD88)

BATHYMETRIC CONTOUR

CULTURAL RESOURCE BUFFER

CULTURAL RESOURCE SURVEY BOUNDARY

NOTES:
1. COORDINATES ARE IN FEET BASED ON NORTH CAROLINA STATE PLANE COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1988 (NAD88).
2. BATHYMETRIC SURVEY PERFORMED JUNE-OCTOBER, 2014, BY CPE-NC.
Notes:
2. Color bathymetry surface is based on field data collected by CPE-NC between June 7-13, 2014 and October 21-29, 2014.

Legend:
- 2014 CPE-NC Vibracore
- Preliminary Investigation Area
- Proposed Design Cuts
- Depth in ft. (NAVD88)
- Sidescan Sonar Anomalies
- Magnetic Anomalies
- Cultural Resource Survey Boundary
- Cultural Resource Buffers (No Work Zone)
- No Dredge Zone
NOT FOR CONSTRUCTION FOR REGULATORY REVIEW ONLY

BORROW AREA C VOLUME: 2,049,000 C.Y.

ATLANTIC OCEAN

NO DREDGE AREA

MAXIMUM DEPTH AFTER DREDGE (FT. NAVD88)

BATHYMETRIC CONTOUR

CULTURAL RESOURCE BUFFER

CULTURAL RESOURCE SURVEY BOUNDARY

NOTES:
1. COORDINATES ARE IN FEET BASED ON NORTH CAROLINA STATE PLANE COORDINATE SYSTEM, NORTH AMERICAN DATUM OF 1983 (NAD83).
2. BATHYMETRIC SURVEY PERFORMED JUNE-OCTOBER, 2014, BY CPE-NC.
United States Department of the Interior
BUREAU OF OCEAN ENERGY MANAGEMENT
WASHINGTON, DC 20240-0001

DEC 18 2014

Dr. Miles Croom
Regional Administrator
National Marine Fisheries Service, Southeast Region
263 13th Avenue South
Saint Petersburg, Florida 33701

RE: Request for Section 7 Consultation under the Endangered Species Act for the Dare County, North Carolina Beach Nourishment Projects

Dear Dr. Croom:

The Bureau of Ocean Energy Management (BOEM) would like to request formal consultation under Section 7 of the Endangered Species Act (ESA) for three related beach nourishment projects (Duck, Kitty Hawk and Kill Devil Hills townships) in Dare County, North Carolina. BOEM has worked jointly with the U.S. Army Corps of Engineers (Corps) and Towns' representatives to prepare the enclosed Biological Assessment (BA). BOEM has determined that the proposed action has the potential to affect National Marine Fisheries Service trust species, and BOEM is therefore requesting formal consultation under Section 7 of the ESA (16 USC § 1536(c); 50 CFR § 402).

BOEM and the Corps have regulatory authority over different aspects of the proposed project. BOEM may authorize the use of sand from a borrow area for the project under the Outer Continental Shelf Lands Act, 43 U.S.C. § 1337(k). BOEM is proposing to issue a negotiated agreement for use of Outer Continental Shelf (OCS) Borrow Areas A and C, as seen on pages 3, 11, and 12 of the BA. Under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act, the Corps may authorize dredging of any state borrow area, as well as conveyance and placement of sand resources. This action would completely fall under the revised South Atlantic Regional Biological Opinion if the BO is finalized within the next year. Absent that revised Regional Biological Opinion, potential take associated with dredging on the OCS for these projects would not be covered by the existing Regional Biological Opinion.

If you plan to include reasonable and prudent measures to minimize impacts to ESA-listed species or if you believe a jeopardy or adverse modification determination may apply for all or any part of the proposed action, we ask that you notify us as early as possible, according to 50 CFR 402.14(g)(5), and allow us to jointly discuss the findings. Such discussions will facilitate the consultation process and ensure that any proposed measures are assigned to the appropriate regulatory authority, ensuring proper control and implementation.
If you have further questions or concerns regarding this project, please contact Dr. Jennifer Culbertson at (703) 787-1742 or by email at jennifer.culbertson@boem.gov.

Sincerely,

[Signature]

James F. Bennett
Chief, Division of Environmental Assessment
Bureau of Ocean Energy Management

Enclosure

cc: (without enclosure)

Mr. Josh Pelletier,
USACE, Wilmington District Regulatory Office
Project Manager
United States Army Corps of Engineers
Washington Regulatory Field Office
2407 W. 5th Street
Washington, North Carolina 27889

Mr. Brad Rosov
CB&I
4038 Masonboro Loop Road
Wilmington, North Carolina 28409
PUBLIC NOTICE

Issue Date: April 9, 2015
Comment Deadline: May 8, 2015
Corps Action ID Number: SAW-2014-02204

The Wilmington District, Corps of Engineers (Corps) received an application from the Town of Kitty Hawk seeking Department of the Army authorization to dredge 1.913 million cubic yards of beach-quality sediments from two offshore borrow sources, and deposit the material along approximately 3.77-mile section of oceanfront shoreline, in the Town Kitty Hawk, Dare County, North Carolina.

The Bureau of Ocean and Energy Management (BOEM) and the Corps will be cooperating agencies during the environmental review of this project as the offshore sand resources are located on the Outer Continental Shelf and fall within BOEM’s jurisdiction. BOEM and the Corps will be joint lead agencies for National Environmental Policy Act (NEPA) purposes, and would prepare, in coordination with the applicant/agent, joint NEPA documents.

Specific plans and location information are described below and shown on the attached plans. This Public Notice and all attached plans are also available on the Wilmington District Web Site at http://www.saw.usace.army.mil/Missions/RegulatoryPermitProgram.aspx

Applicant: Town of Kitty Hawk
Attn: Mr. John Stockton
Post Office Box 549
101 Veterans Memorial Park
Kitty Hawk, North Carolina 27949

AGENT (if applicable): Mr. Kenneth Willson
CB&I
4038 Masonboro Loop Road
Wilmington, North Carolina 28409

Authority

The Corps evaluates this application and decides whether to issue, conditionally issue, or deny the proposed work pursuant to applicable procedures of the following Statutory Authorities:

- Section 404 of the Clean Water Act (33 U.S.C. 1344)
Section 10 of the Rivers and Harbors Act of 1899 (33 U.S.C. 403)

☐ Section 103 of the Marine Protection, Research and Sanctuaries Act of 1972 (33 U.S.C. 1413)

Location

Directions to Site: The project begins 1,000 linear feet north of the Kitty Hawk Fishing Pier and ends approximately 1,000 feet south of the Kitty Hawk town limits, in Dare County, North Carolina.

Project Area (acres): 3,544 acres Nearest Town: Town of Kitty Hawk
Nearest Waterway: Atlantic Ocean River Basin: Atlantic Ocean
Latitude and Longitude: 36.0769 N, -75.7047 W

Existing Site Conditions

The Town of Kitty Hawk encompasses approximately 3.58 miles of ocean shoreline on a barrier island located at the northern end of North Carolina’s Outer Banks. The width of the berm of the island’s dune system varies considerably along the town’s beach and with seasonal accretion and erosion events. Along most of the project area, the winter berm is
non-existent due to continuing erosion processes. Dune habitat is currently decreasing due to excessive erosion of the base or toe of the dunes by waves that travel unimpeded over eroded wet beach to directly impact dunes.

Applicant’s Stated Purpose

The purpose of the proposed action is to facilitate a long-term shoreline management program to sustain the eroding beach and provide support to a significant portion of the local economy and maintain local and regional tax bases. In order to accomplish this goal, the Town is proposing to maintain its oceanfront beach and dune system to a configuration that will: (1) provide a reasonable level of storm damage reduction to public and private development; (2) mitigate long-term erosion conditions that could threaten public and private development, recreational opportunities and biological resources, and; (3) maintain a healthy beach habitat that supports valuable shorebird and sea turtle nesting habitat. The project design includes advance nourishment activities to maintain the integrity of the project area for a 5 year period. The Town will regularly monitor and re-evaluate the level of storm damage reduction and erosion mitigation that the existing beach provides.

Project Description

The proposed action will include sand placement along a 3.77-mile section of the Town’s oceanfront shoreline. Beach quality sand would be dredged using a self-contained ocean-certified hopper dredge and/or a hydraulic cutterhead pipeline dredge. Material will be obtained from two Outer Continental Shelf (OCS) borrow areas located in federal waters offshore of Dare County. Borrow Area A is located between 5.0 to 6.5 miles offshore, while Borrow Area C is located 4.1 to 5.2 miles offshore. Placement onto the beach would be accomplished via submerged pipeline with direct pump-out. Once discharged, the sand will be shaped and graded according to the design template using earth-moving equipment such as bulldozers and excavators. Further details explaining the project description are located in Section 2.2 of the Kitty Hawk Environmental Assessment.
Avoidance and Minimization

An extensive alternatives analysis was performed and reviewed for this project. This included the evaluation of a no action alternative; a retreat and relocate alternative; and the preferred alternative. Many alternatives were identified and evaluated through the scoping and pre-application process, and further detailed descriptions of all alternatives may be reviewed in the application and associated applicant prepared Environmental Assessment.

Essential Fish Habitat

Pursuant to the Magnuson-Stevens Fishery Conservation and Management Act, this Public Notice initiates the Essential Fish Habitat (EFH) consultation requirements. The Corps’ initial determination is that the proposed project may affect, but not likely to adversely affect EFH or associated fisheries managed by the South Atlantic or Mid Atlantic Fishery Management Councils or the National Marine Fisheries Service. As part of the pre-application and scoping process, the applicant submitted an EFH assessment to The Nation Marine Fisheries Service for review.
Cultural Resources

Pursuant to Section 106 of the National Historic Preservation Act of 1966, Appendix C of 33 CFR Part 325, and the 2005 Revised Interim Guidance for Implementing Appendix C, the District Engineer consulted district files and records and the latest published version of the National Register of Historic Places and initially determines that:

- Should historic properties, or properties eligible for inclusion in the National Register, be present within the Corps’ permit area; the proposed activity requiring the DA permit (the undertaking) is a type of activity that will have no potential to cause an effect to an historic properties.

- No historic properties, nor properties eligible for inclusion in the National Register, are present within the Corps’ permit area; therefore, there will be no historic properties affected. The Corps subsequently requests concurrence from the SHPO (or THPO).

- Properties ineligible for inclusion in the National Register are present within the Corps’ permit area; there will be no historic properties affected by the proposed work. The Corps subsequently requests concurrence from the SHPO (or THPO).

- Historic properties, or properties eligible for inclusion in the National Register, are present within the Corps’ permit area; however, the undertaking will have no adverse effect on these historic properties. The Corps subsequently requests concurrence from the SHPO (or THPO).

- Historic properties, or properties eligible for inclusion in the National Register, are present within the Corps’ permit area; moreover, the undertaking may have an adverse effect on these historic properties. The Corps subsequently initiates consultation with the SHPO (or THPO).

- The proposed work takes place in an area known to have the potential for the presence of prehistoric and historic cultural resources; however, the area has not been formally surveyed for the presence of cultural resources. No sites eligible for inclusion in the National Register of Historic Places are known to be present in the vicinity of the proposed work. Additional work may be necessary to identify and assess any historic or prehistoric resources that may be present.

The District Engineer’s final eligibility and effect determination will be based upon coordination with the SHPO and/or THPO, as appropriate and required, and with full consideration given to the proposed undertaking’s potential direct and indirect effects on historic properties within the Corps-identified permit area.
Endangered Species

Pursuant to the Endangered Species Act of 1973, the Corps reviewed the project area, examined all information provided by the applicant and consulted the latest North Carolina Natural Heritage Database. Based on available information:

☐ The Corps determines that the proposed project would not affect federally listed endangered or threatened species or their formally designated critical habitat.

☒ The Corps determines that the proposed project may affect, not likely to adversely affect federally listed endangered or threatened species or their formally designated critical habitat. The Corps initiates consultation under Section 7 of the ESA and will not make a permit decision until the consultation process is complete.

☐ The Corps is not aware of the presence of species listed as threatened or endangered or their critical habitat formally designated pursuant to the Endangered Species Act of 1973 (ESA) within the project area. The Corps will make a final determination on the effects of the proposed project upon additional review of the project and completion of any necessary biological assessment and/or consultation with the U.S. Fish and Wildlife Service and/or National Marine Fisheries Service.

Further detailed descriptions of ESA issues are disclosed in Section 5.6 of the Kill Devil Hills Environmental Assessment.

Other Required Authorizations

The Corps forwards this notice and all applicable application materials to the appropriate State agencies for review.

North Carolina Division of Water Resources (NCDWR): The Corps will generally not make a final permit decision until the NCDWR issues, denies, or waives the state Certification as required by Section 401 of the Clean Water Act (PL 92-500). The receipt of the application and this public notice, combined with the appropriate application fee, at the NCDWR Central Office in Raleigh constitutes initial receipt of an application for a 401 Certification. A waiver will be deemed to occur if the NCDWR fails to act on this request for certification within sixty days of receipt of a complete application. Additional information regarding the 401 Certification may be reviewed at the NCDWR Central Office, 401 and Buffer Permitting Unit, 512 North Salisbury Street, Raleigh, North Carolina 27604-2260. All persons desiring to make comments regarding the application for a 401 Certification should do so, in writing, by May 8, 2015 to:

NCDWR Central Office
Attention: Ms. Karen Higgins, 401 and Buffer Permitting Unit
North Carolina Division of Coastal Management (NCDCM):

☑ The application did not include a certification that the proposed work complies with and would be conducted in a manner that is consistent with the approved North Carolina Coastal Zone Management Program. Pursuant to 33 CFR 325.2(b)(2) the Corps cannot issue a Department of Army (DA) permit for the proposed work until the applicant submits such a certification to the Corps and the NCDCM, and the NCDCM notifies the Corps that it concurs with the applicant’s consistency certification. As the application did not include the consistency certification, the Corps will request, upon receipt, concurrence or objection from the NCDCM.

☐ Based upon all available information, the Corps determines that this application for a Department of Army (DA) permit does not involve an activity which would affect the coastal zone, which is defined by the Coastal Zone Management (CZM) Act (16 U.S.C. § 1453).

Evaluation

The decision whether to issue a permit will be based on an evaluation of the probable impacts including cumulative impacts of the proposed activity on the public interest. That decision will reflect the national concern for both protection and utilization of important resources. The benefit which reasonably may be expected to accrue from the proposal must be balanced against its reasonably foreseeable detriments. All factors which may be relevant to the proposal will be considered including the cumulative effects thereof; among those are conservation, economics, aesthetics, general environmental concerns, wetlands, historic properties, fish and wildlife values, flood hazards, flood plain values (in accordance with Executive Order 11988), land use, navigation, shoreline erosion and accretion, recreation, water supply and conservation, water quality, energy needs, safety, food and fiber production, mineral needs, considerations of property ownership, and, in general, the needs and welfare of the people. For activities involving the discharge of dredged or fill materials in waters of the United States, the evaluation of the impact of the activity on the public interest will include application of the Environmental Protection Agency’s 404(b)(1) guidelines.
Commenting Information

The Corps of Engineers is soliciting comments from the public; Federal, State and local agencies and officials, including any consolidated State Viewpoint or written position of the Governor; Indian Tribes and other interested parties in order to consider and evaluate the impacts of this proposed activity. Any comments received will be considered by the Corps of Engineers to determine whether to issue, modify, condition or deny a permit for this proposal. To make this decision, comments are used to assess impacts on endangered species, historic properties, water quality, general environmental effects and the other public interest factors listed above. Comments are used in the preparation of an Environmental Assessment (EA) and/or an Environmental Impact Statement (EIS) pursuant to the National Environmental Policy Act (NEPA). Comments are also used to determine the need for a public hearing and to determine the overall public interest of the proposed activity.

Any person may request, in writing, within the comment period specified in this notice, that a public hearing be held to consider the application. Requests for public hearings shall state, with particularity, the reasons for holding a public hearing. Requests for a public hearing shall be granted, unless the District Engineer determines that the issues raised are insubstantial or there is otherwise no valid interest to be served by a hearing.

The Corps of Engineers, Wilmington District will receive written comments pertinent to the proposed work, as outlined above, until 5pm, May 8, 2015. Comments should be submitted to Josh Pelletier, Washington Regulatory Field Office, 2407 West Fifth Street, Washington, North Carolina 27889, at (910) 251-4605.