Experimental Investigation of Flow Models Applied to Worst-Case-Discharge Calculations

New Orleans, LA – Workshop #2 - Sept 28, 2016
LSU Team – Principal Investigators

Paulo Waltrich, PhD. (PI Team Lead)
Assistant Professor
PhD in Petroleum Engineering

Richard Hughes, PhD.
Professional in Residence
PhD in Petroleum Engineering

Mayank Tyagi, PhD.
Associate Professor
PhD in Mechanical Eng.
LSU Team – Principal Investigators

Wesley Williams, PhD.
Professional in Residence
PhD in Nuclear Engineering

Seung Kam, PhD.
Associate Professor
PhD in Petroleum Engineering
LSU Team – Post-Doc and Graduate Students

Muhammad Zulqarnain, PhD.
Post-Doc

PhD in Petroleum Engineering

Woochan Lee, MSc.
PhD Graduate Student

MSc. in Petroleum Engineering

Matheus Capovila, BS
PhD Graduate Student

BS in Mechanical Engineering
Outline

✓ Overview of Project Objectives and Deliverables
✓ Literature Review Findings and Conclusions
✓ Experimental Investigation
✓ Evaluation of Flow Models to Predict Experimental Data
✓ Comparison of Flow Models Applied to WCD Calculations
✓ Conclusions
✓ Future Projects
Project Motivation [1]

- **Blowouts Happen!**

- For **effective contingency** plans, we need **accurate oil spill predictions!**

- For accurate predictions, **we need reliable models!**

- Industry and **regulatory agencies need guidance** from unbiased experts (**universities** and research institutions)

- **Improvement is needed** to avoid future **large environmental and economical impacts**
"Most flow correlations were developed for small diameter pipe, so their **applicability to larger-diameter pipe** and open hole is uncertain."

"The committee proposes that **further research and development** be conducted on appropriate correlations **for high-rate flow in large diameter pipe.**"
Statement of the Problem [1]

Select outflow correlation (TPR)

- Set a discharge point
- General correlations
- Duns and Ross (1963)
- Beggs and Brills (1973)
- Fancher-Brown (1963)

Need correlations for high-rate flow in large diameter pipe

WCD predictions are directly dependent to flowing bottomhole pressure of the well:
Statement of the Problem [3]

- q is calculated using reservoir and fluid properties, and p_{wf}:

$$ q \propto \frac{kh(p_e - p_{wf})}{B_0 \mu \ln \left(\frac{r_e}{r_w}\right)} $$

(reservoir and fluid properties)

(for $p_{wf} > p_{bp}$)

- p_{wf} is obtained from **wellbore flow correlations** and wellhead conditions:

$$ p_{wf} = p_{wh} + \int_{0}^{L} \frac{dp}{dz} \, dz $$

(generic pressure gradient equation)

- Flow regimes
- Superficial velocities
- Pressure & temperature
- Fluid properties
Statement of the Problem [4]

- The use of flow correlations for large diameter pipes is NOT well understood:

Two-Phase flow in a vertical pipe (ID = 10 in)

Ali (2009)
Objective

The goal of this project is to examine the validity of current industry standard flow correlations used in WCD calculations.

Scope of Work:

- Task 1 - A complete literature review
- Task 2 - A comparison between the different flow models applied to WCD
- Task 3&4 – Build apparatus & Generate data for large-diameters pipes and high-velocity flows
- Task 5&6 – Analyze experimental data & Compare with flow models results
Literature Review (Task 1)
Flow rate and total discharge estimations in gas-well blowouts

Ruochen Liu a, A. Rashid Hasan b, M. Sam Mannan a, *

a Mary Kay O’Connor Process Safety Center, Department of Chemical Engineering, Texas A&M University, TX, USA
b Department of Petroleum Engineering, Texas A&M University, TX, USA

ABSTRACT

The model considers flow in the tubing, annulus and riser, and the multiphase flow system. To gauge safety concerns, a computationally efficient, yet very detailed, multiphase model of blowout flow is presented in this paper, coupling the flow in a reservoir with wellbore and surface blowout systems. The model considers the multiphase nature of the flow.
BOEM’S ENGINEERING WORKFLOW

Generate WCD Rate

Reservoir model (IPR)

Wellbore flow models

WCD₁ WCD₂

Tubing Curve: Directional Survey, Drilling Program, Casing Design, and Open Hole Configuration

Reservoir Simulator: Enter Rock and Fluid Properties to determine Absolute Open Flow at Reservoir Nodal Analysis: Enter Fluid Parameters

BOEM, 2015, Worst Case Discharge Program Overview, Office of Resource Evaluation Reserves Section, presentation slides
PRESSURE DROP (ΔP) PREDICTION MODELS

- **Empirical Correlations** (strongly based on data)

- **Drift-Flux models** (additional physics but still based on data)

- **Mechanistic Models** (1D solution of conservation equations but also uses empirical correlations)

- **CFD Models** (3D-transient solution of conservation equations but needs calibration and computationally expensive)
Sources of Errors on Flow Models [1]

- Errors in Fluid Properties & Calculation Direction
Sources of Errors on Flow Models [2]

Review of Conditions Used to Develop Flow Models

<table>
<thead>
<tr>
<th>Correlation</th>
<th>Fluid</th>
<th>Pipe ID (in)</th>
<th>Pipe length (ft)</th>
<th>liquid rate (bbl/d)</th>
<th>Gas rate (Mscf/d)</th>
<th>Fluid properties</th>
<th>Degree From horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poettmann and Carpenter (1952)</td>
<td>Oil/gas, gas/oil/water</td>
<td>2.2 1/4 3</td>
<td>1100-11,000</td>
<td>5 - 1,400 (oil)</td>
<td>18 - 1,630</td>
<td>30°-54° API: 0.8-1.15 Gas SG 0.2 < GOR < 41 Mscf/bbl</td>
<td>90</td>
</tr>
<tr>
<td>Baxendell and Thomas (1961)</td>
<td>Gas/oil</td>
<td>2 7/8, 3 1/2</td>
<td>6,250</td>
<td>200-5,100 (oil)</td>
<td>N/A</td>
<td>Oil: 34° API 2.58 cp at 160° F 120 < GOR < 160 vol/vol</td>
<td>90</td>
</tr>
</tbody>
</table>

Duns and Ros (1963)	1, 5/8, 3 1/2, 6 in ID Vertical Pipe	Tested with Forties field, Ekofisk field, and Prudhoe Bay flow line data
Asheim (1986) (Mona)	Developed with data from TUFFP Databank	
Ansari (1994)	Validated against TUFFP Databank	
Gomez et al. (2000)	Used over 10000 data from SINTEF multiphase flow loop	
OLGA-S 2000 S.S.		

References

- [Hassani and Al-Hayun (2001)](http://example.com)
- [Asheim and Santoro (2002)](http://example.com)
- [Chokshi and Al-Hayun (1998)](http://example.com)

Notes

- Tested with field data from Camacho (1970) and Reinicke et al. (1984), Govier and Fogarasi (1975)
- Evaluated with TUFFP
- Validated against TUFFP
Review of Databases Used to Develop Flow Models

<table>
<thead>
<tr>
<th>Database</th>
<th>Fluids Description</th>
<th>ID Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SINTEF multiphase flow loop (OLGA-S 2000 S.S.)</td>
<td>Nitrogen, Naphtha/diesel, lube oil</td>
<td>8 in ID</td>
</tr>
<tr>
<td>TUFFP databank</td>
<td>Oil/gas/water</td>
<td>1-8 in ID</td>
</tr>
<tr>
<td>Forties field</td>
<td>Oil/gas</td>
<td>3.958, 6.185 in ID</td>
</tr>
</tbody>
</table>
SOURCES OF ERRORS ON FLOW MODELS [4]

Review of Flow Rates Used to Develop Flow Models

\[Q_l < 2,500 \text{ STB/D} \]
Sources of Errors on Flow Models [5]

Why Flow Regime Predictions are Important for WCD calculations?

<table>
<thead>
<tr>
<th>Correlations</th>
<th>Flow patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duns and Ros (1963)</td>
<td>bubble, slug, and froth</td>
</tr>
<tr>
<td>Hagedorn and Brown (1964)</td>
<td>no flow pattern consideration</td>
</tr>
<tr>
<td>Hagedorn and Brown Modified (1965)</td>
<td>bubble, slug</td>
</tr>
<tr>
<td>Orkiszewski (1967)</td>
<td>bubble, slug, annular slug transition, annular mist</td>
</tr>
<tr>
<td>Beggs and Brill Revised (1973)</td>
<td>(horizontal pipe) segregated, intermittently, distributed, froth</td>
</tr>
<tr>
<td>Gray (1974)</td>
<td>no flow pattern consideration</td>
</tr>
<tr>
<td>Govier and Foragasi (1975)</td>
<td>slug, annular mist, froth</td>
</tr>
<tr>
<td>Mukherjee and Brill (1985)</td>
<td>no flow pattern consideration</td>
</tr>
<tr>
<td>Ansari (1994)</td>
<td>bubble, slug, and annular</td>
</tr>
</tbody>
</table>

Flow Regime Maps for Large-Diameter Pipes

Ali (2009) - Experimental conditions tested

<table>
<thead>
<tr>
<th>Study</th>
<th>Qo, BBL/D</th>
<th>Ql, GPM</th>
<th>ID, in</th>
<th>Usl, m/s</th>
<th>GLR, SCF/STB</th>
<th>Qg, MMSCF/D</th>
<th>Qg, SCFM</th>
<th>Usg, m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali</td>
<td>30,300</td>
<td>883</td>
<td>10</td>
<td>1.1</td>
<td>41</td>
<td>0.350</td>
<td>243</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Evaluation of Using CFD models for Multiphase flow in Large Pipe Diameters

Zabaras (2013) - Experimental conditions tested

<table>
<thead>
<tr>
<th>Study</th>
<th>Qo, BBL/D</th>
<th>Ql, GPM</th>
<th>ID, in</th>
<th>Usl, m/s</th>
<th>GLR, SCF/STB</th>
<th>Qg, MMSCF/D</th>
<th>Qg, SCFM</th>
<th>Usg, m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zabaras</td>
<td>5140</td>
<td>150</td>
<td>11</td>
<td>0.15</td>
<td>2640</td>
<td>2.97</td>
<td>2063</td>
<td>15.9</td>
</tr>
</tbody>
</table>

![Pressure Gradient Comparison for U_sl=0.5064 ft/s](image1)

![Steady State Riser Flow](image2)
Gaps in Studies for Large-Diameter Pipes [1]

Review of Studies on Two-Phase Flows for ID > 6 in

- Zabaras et al. (2013)
- Schlegel et al. (2012)
- Ali (2009)
- Omebere et al. (90 bar) (2007)
- Omebere et al. (20 bar) (2007)
- Shen et al. (2006)
- Shen et al. (2005)
- Prasser et al. (2002)
- Yoneda et al. (2002)
- Prasser et al. (2002)
- Shen et al. (2005)
- Shen et al. (2006)
- Omebere et al. (90 bar) (2007)
- Omebere et al. (20 bar) (2007)
- Ali (2009)
- Schlegel et al. (2012)
- Zabaras et al. (2013)

Only study with high-gas/liquid flow rates, but only discloses 2 runs of pressure measurements

Liquid production rate, STB/D

Gas production rate, MMSCF/D
Gap in Studies for Large-Diameter Pipes [2]
Conclusions from Literature Review

- **Flow correlations** were originally developed and are still **NOT** verified for **LARGE-diameters** (ID < 8 in)

- **Lack of studies** on Two-Phase Flows in **large-diameters** (ID > 6) and high liquid/gas flow rates (Q_l > 30,000 bbl/d)

- “**Non-standard” flow correlations** should be evaluated to be used in WCD models

- **WCD models** vastly under studied

- **Models specifically developed for WCD scenarios ARE NEEDED!**
Experimental Investigation

(Task 3-5)
Experimental Apparatus

- Pressure transducer
- Thermocouple
- Ball valve
- Gate valve
- Control valve
- Check valve

8-in test section
12-in test section
4-in test section
2-in test section
Experimental Procedure

Pressure Gradient measurement

Liquid Holdup measurement
Flow Regime Observations

\[D^* = \frac{D}{\sigma \rho L - \rho g} \]

\[D^* > 30 \] (D > ~4 in)

No Slug Flow for:
Flow Regime Observations [2]

- Bubbly/non-bubbly transition zone
- Churn-to-annular transition zone
Liquid Holdup Measurements [1]

\[
1.53 \left[\frac{g (\rho_L - \rho_g)}{\rho_L^2} \sigma \right]^{0.25} (1 - \alpha)^{0.5} \sin(\theta) = \frac{u_{sg}}{\alpha} - 1.2 (u_{sl} + u_{sg})
\]
Liquid Holdup Measurements [2]
Liquid Holdup Measurements [3]
\[\frac{dp}{dz} = g \frac{\bar{\rho}}{g_c} + 2f\bar{\rho}u_m^2 + \frac{\rho}{144243} \Delta(u_m^2 / 2g_c) \]

where

\[\bar{\rho} = H_l \rho_l + (1 - H_l) \rho_g \]

\(p \) pressure, \(\rho \) density, \(g \) gravitational acceleration, \(u_m \) mean velocity, \(f \) friction factor, \(g_c \) critical gravity, and \(H \) fractional flow.
Δp/Δz Measurements [2]

\[
\frac{dp}{dz} = \frac{g}{{g_c}} \bar{\rho} + \frac{2}{14} \frac{(\mu_m^2)}{g_c} + \frac{\Delta u_m^2}{44} \frac{\Delta g}{43}
\]

\[
\bar{\rho} = H_l \rho_l + (1 - H_l) \rho_g
\]
Δp/Δz Measurements [3]
Conclusions from Experimental Investigation

- As previously observed by other investigators, **slug flow** was not observed for pipe diameter larger than 4 inches.

- **Good match** between the **flow regimes, H₁ and dp/dz** measured in this study and reported by other authors.

- Surprisingly, the **pipe diameter has negligible effect** on the **dp/dz** for pipe diameters over 4 inches.

- **Liquid flow rate** has small effects on **dp/dz** for ID > 4 in, particularly for **high-liquid velocities**.

- **Axial flow development** does not seem to impact significantly the **dp/dz** in large-diameter pipes (ID > 4 in).
Evaluation of Flow Models with Experimental Data (Task 6)
Methodology for Comparison of Flow Models

<table>
<thead>
<tr>
<th>Wellbore flow model</th>
<th>Nomenclature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ansari (1994)</td>
<td>ANS</td>
</tr>
<tr>
<td>Beggs and Brill (1973)</td>
<td>BB</td>
</tr>
<tr>
<td>Beggs and Brill Revised (1979)</td>
<td>BBR</td>
</tr>
<tr>
<td>Duns and Ross (1963)</td>
<td>DR</td>
</tr>
<tr>
<td>Govier, Aziz, and Fogarasi (1972)</td>
<td>GA</td>
</tr>
<tr>
<td>Gray Original (1974)</td>
<td>GO</td>
</tr>
<tr>
<td>Gray modified (PipeSim 2011)</td>
<td>GM</td>
</tr>
<tr>
<td>Hagedorn and Brown (1964)</td>
<td>HB</td>
</tr>
<tr>
<td>Hagedorn and Brown with Duns and Ross map (PipeSim 2011)</td>
<td>HBDR</td>
</tr>
<tr>
<td>Mukherjee and Brill (1985)</td>
<td>MB</td>
</tr>
<tr>
<td>No Slip (PipeSim 2011)</td>
<td>NS</td>
</tr>
<tr>
<td>Orkiszewski (1967)</td>
<td>OR</td>
</tr>
<tr>
<td>OLGA-S 2000 V.6.7.2</td>
<td>OLGA</td>
</tr>
<tr>
<td>Computational Fluid Dynamics (Fluent)</td>
<td>CFD</td>
</tr>
</tbody>
</table>

- Common models available in commercial packages
- Models available in PIPESIM at LSU
- Include different model approaches (empirical, mechanistic, CFD)
Comparison and Exp. Data and Flow Model Results

- **Duns & Ros**
 - Bubble
 - Slug

- **GOVIER, AZIZ, and FOGARASI**
 - Bubble
 - Slug
 - Transition
 - Mist

- **Hagedorn & Brown Original**
 - All Slug flow for 4, 8 and 12 in ID

- **Mukherjee and Brill**
 - Bubble/Mist flow transition for 10" and 4" ID
 - Slug/Mist flow transition for 12" and 8" ID

- **OLGA**
 - Bubble
 - Slug

- **Orkiszewski**
 - All Slug flow for 4, 8 and 12 in ID

- **Beggs & Brill Original/Revised**
 - All Intermittent flow
Exp. Data and Flow Model Results for

- **DR**
- **NOSLIP**
- **ANS**
- **GAF**
- **HBO & HBRDR**
- **MB**
- **OLGA**
- **ORK**
- **BBO & BBR**

Δp/Δz (psi/ft):

- **12 in (usl=0.6 ft/s)**
- **11 in (usl=0.5 ft/s)**
- **8 in (usl=0.7 ft/s)**
- **12 in (usl=0.6 ft/s)**

- **All Slug**
- **All Gas**
- **All Slug**
- **All Mist**

Air superficial velocity, u_{sg} (ft/s):

- **Transition/Intermittent boundary for 8” ID**
- **Transition/Intermittent boundary for 12” ID**
Data points from: LSU (2016), Ali (2009), Zabaras et al. (2013)
Oh My God
I NEED A BREAK....
Comparison of Flow Models Applied to WCD (Task 2)
Results for WCD Calculations for Different Wellbore Flow Models

<table>
<thead>
<tr>
<th>Fluid Sample</th>
<th>Reservoir depth (ft)</th>
<th>Reservoir pressure (psi)</th>
<th>Reservoir Temp. (°F)</th>
<th>GOR (scf/stb)</th>
<th>p_{bp} (psi)</th>
<th>ρ_o (API)</th>
<th>μ_o (cp)</th>
<th>PI (STB/D/psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>16,726</td>
<td>11,305</td>
<td>210</td>
<td>1,700</td>
<td>6,306</td>
<td>28</td>
<td>0.8</td>
<td>19.05</td>
</tr>
<tr>
<td>BO1</td>
<td>19,426</td>
<td>10,391</td>
<td>166</td>
<td>1,190</td>
<td>7,693</td>
<td>25.3</td>
<td>1.49</td>
<td>19.05</td>
</tr>
<tr>
<td>BO2</td>
<td>19,553</td>
<td>12,523</td>
<td>251</td>
<td>1,562</td>
<td>5,192</td>
<td>34.5</td>
<td>0.173</td>
<td>19.05</td>
</tr>
</tbody>
</table>

![Graph showing liquid discharge rate and bottom hole pressure for different scenarios](image)

- **Base Case**: Minimizes the liquid discharge rate and maintains the bottom hole pressure within acceptable limits.
- **BO1**: Higher liquid discharge rate compared to the Base Case, with a slight increase in bottom hole pressure.
- **BO2**: Lowest liquid discharge rate among the scenarios, accompanied by the highest bottom hole pressure.

The graph demonstrates the comparative performance of the different scenarios, highlighting the trade-offs between liquid discharge rate and bottom hole pressure.
Effect of Fluid Type

<table>
<thead>
<tr>
<th>Fluid Sample</th>
<th>Reservoir measured depth (ft)</th>
<th>Reservoir pressure (psi)</th>
<th>Reservoir Temperature (°F)</th>
<th>GOR (scf/stb)</th>
<th>Oil gravity (API)</th>
<th>PI (STB/D/psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Case</td>
<td>16,726</td>
<td>11,305</td>
<td>210</td>
<td>1,700</td>
<td>28</td>
<td>19.05</td>
</tr>
<tr>
<td>VO3</td>
<td>14,374</td>
<td>11,009</td>
<td>261</td>
<td>3,803</td>
<td>42.1</td>
<td>19.05</td>
</tr>
</tbody>
</table>

![Graph showing liquid discharge rate for Base Case and VO3](image)

- **Base Case**
- **VO3**
Effect of Roughness [1]
Effect of Roughness [2]

Length fraction of Open-hole

- 0
- 0.25
- 0.5
- 0.75
- 1

Liquid discharge rate (Mstb/d)

ANS BBO BBR DR GAF GRAYM GRAYO HBO HBRDR MB NoSlip ORK OLGA
Results for Flow Regime Prediction for Base Case
Final Remarks

✓ We have done a significant amount of work in 12 months. 😊😊

✓ Pipe diameter has a significantly smaller effect on the pressure gradient for ID over 4 inches than in pipe diameter smaller than 4 inches.

✓ Most flow models show better results for the 4-inch diameter pipe than for larger diameters.

✓ Flow models and laboratory experiments discrepancy is likely caused by the use of the slug flow regime, instead of churn flow (which is observed experimentally)
Final Remarks

✓ Different methods may be suggested for different fluid and flow conditions, making the recommended practice field specific depending on reservoir and fluid properties.

✓ Variation of reservoir fluid properties (p_{bp}, GOR, ρ_o, μ_o) has a relatively small effect (up to 10%) on WCD rate estimates for black oil and volatile oil reservoirs, for the well conditions examined.

✓ Further investigations of benchmarking and calibration of exiting WCD models against representative field and fluid WCD conditions is needed!

✓ Based on preliminary comparisons, significant improvement can be achieved on wellbore flow models for WCD calculations.
Suggestion for Future Projects

- Five-year Research Plan (LSU WCD Group)

“*To foster safety on the development of new oil and gas reserves in the Gulf-of-Mexico*”

- Establish a WCD Research Center at LSU
- Organize a Industry Advisory Committee (IAC) for the WCD group
- Create a Priority List for topics to address challenges on WCD
- Organize a Joint-Industry-Project (JIP) on the validation and development of a Open-Source model for WCD calculations
- Create a Handbook/Manual/Standard and Training Courses for WCD calculations (standardization)
- Disseminate information from LSU WCD group among industry and regulatory agencies
Preliminary Priority List of Topics [1]

- Experimental work for large pipe diameters and inclined pipe! (No well is truly vertical!!!)

New design under development (Investment of ~$150,000)

Old Inclinable flow loop
Flow tests for different pressures and fluid types (fluids other than water and air)

- Industry investment already made of about ~$ 2,000,000
- Closed-loop that allow use of different fluid types (oil, gas, water, nitrogen...)
- Allow use of pressures up to 1,200 psi
- Allow tests with high-liquid rates (15,000 BBL/D) and high-gas rates (4 MMSCFD)
Preliminary Priority List of Topics [3]

- Development of a Flow Models dedicated to WCD calculations
- Development of a web tool to provide unbiased and accurate WCD calculations

Validation with 24 wells – Reinicke et al. (1987)

Validation with 12 wells – Facher and Brown (1963)