







Best Management Practices (BMP) Workshop NOAA, Silver Springs, 7-9 March 2017

#### Characteristics of Sounds Emitted During High Resolution Marine Geophysical Surveys

Mr. Stanley Labak Bureau of Ocean Energy Management stanley.labak@boem.gov

## Acknowledgments

This study was conducted by the Dr. Steven Crocker and his Team at the Naval Undersea Warfare Center Division Newport.

The United States Geological Survey (USGS) was essential in this study with their contribution of equipment, manpower and technical expertise during the testing.

URL for the final Report of Phase I is:

http://www.data.boem.gov/PI/PDFImag es/ESPIS/5/5551.pdf

CSA Ocean Sciences, Inc. for the details on Phase II of this project.



## Background

#### **Marine Mammal Protection Act**

The MMPA prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas, and the importation of marine mammals and marine mammal products into the U.S.

#### Definitions

**Take:** To harass, hunt, capture, or kill, or attempt to harass, hunt, capture, or kill any marine mammal.

**Harass:** Any act of pursuit, torment, or annoyance which - (i) has the potential to injure a marine mammal or marine mammal stock in the wild [Level A]; or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering [Level B].

Sources: Marine Mammal Protection Act (MMPA) Sec. 3 (18); http://www.nmfs.noaa.gov/pr/laws/mmpa/; http://www.boem.gov/BOEM-Science-Note-March-2015/

#### **Acoustic Spectrum Usage**



1) Hastings and Popper, 2005

2) Southhall et. al., 2007

#### **Project Plan Development**

- BOEM realized that this project needed to address the following issues:
  - Utilized by BOEM's 3 Programs Oil & Gas, Marine Minerals and Renewables Programs
  - Wide range of source types and models
  - Concentrate on shallow water primarily the continental shelf
  - Applicable throughout the US EEZ waters
  - The project couldn't measure every situation and that ultimately predictive acoustic modeling would be needed
  - Required measured data to "prove" or validate future analyses and environmental compliance documents
  - Needed to examine the entire acoustic scenario source to receiver, near & far field issues, etc.
  - Needed to examine current "hot" issues harmonics and subharmonics, SPL and SEL, etc.
- BOEM recognized that USGS had similar issues and approached them to team on this project.

#### • BOEM identified a 3 Phased approach to minimize technical uncertainties:

- Phase I Quantify what the sources were actually producing
- **Phase II** In-situ measurements at three general depths (10, 30, and 50-100m), in areas with 2 sediment types if possible. Utilize Phase I data to optimize the test planning.
- **Phase III** Use results from Phases I & II to examine the acoustic propagation models and the supporting databases currently to identify which should be used in this shallow water situation and to identify recommendations for best practices in their employment.

#### **Project Schedule**

#### • **Phase I** – Calibrated Source Measurements

- Measurements completed.
- Final Report available in online through BOEM's ESPIS
- **Phase II** At-Sea System Measurements
  - Test completed, analysis is currently underway
  - Measurements at 5 Mid-Atlantic Sites in June/July 2016

#### Phase III – Acoustic Propagation Modeling Analysis

- RFP released in Winter 2017, for FY 2018 start (funding permitting).
- To be completed in early FY 2019.

## **Study Objective**

Given the scientific questions and uncertainty about the potential impact of noise in the marine environment, a number of regulatory requirements and precautionary mitigation strategies are being applied to lower energy geophysical surveys.

The U.S. Bureau of Ocean Energy Management is working to ensure that environmental mitigation requirements are scientifically supported, cost effective, operationally feasible and impact reducing. The Bureau is advancing this objective by characterizing the acoustic energy radiated by geophysical survey systems used in shallow bodies of water under U.S. jurisdiction.

The objective of this study is to characterize the acoustic fields radiated by marine geophysical survey systems as a critical first step to understanding the potential impacts to marine ecosystems.

## **Geophysical Survey Systems**

| Seafle                                                  | oor Mapping            | Sub-Bottom Profiling           |          |  |  |  |  |
|---------------------------------------------------------|------------------------|--------------------------------|----------|--|--|--|--|
| System                                                  | Description            | System                         | Signal   |  |  |  |  |
| Echotrac CV100                                          | Single Beam Fathometer | AA* 200                        | Impulse  |  |  |  |  |
| Reson 7111                                              | Multibeam Fathometer   | AA <sup>*</sup> 251            | Impulse  |  |  |  |  |
| Reson T20-P                                             | Multibeam Fathometer   | AA <sup>*</sup> S-Boom         | Impulse  |  |  |  |  |
| Sea Swath Plus                                          | Interferometer         | FSI <sup>**</sup> Bubble Pulse | Impulse  |  |  |  |  |
| Klien 3000                                              | Side Scan Sonar        | EdgeTech 424                   | FM Chirp |  |  |  |  |
| Klien 3900                                              | Side Scan Sonar        | EdgeTech 512i                  | FM Chirp |  |  |  |  |
| EdgeTech 4200                                           | Side Scan Sonar        | Knudsen 3202                   | FM Chirp |  |  |  |  |
| *Applied Acoustics, Ltd.<br>**Falmouth Scientific, Inc. |                        |                                |          |  |  |  |  |

#### **Reported Parameters**

| Source level (rms 90%)         | dB re 1µPa@1m                |
|--------------------------------|------------------------------|
| Peak acoustic pressure         | dB re 1µPa@1m                |
| Peak-to-peak acoustic pressure | dB re 1µPa@1m                |
| Sound exposure level           | dB re 1µPa <sup>2</sup> s@1m |
| Spectrum level                 | dB re 1µPa²/Hz@1m            |
| Effective (90%) pulse width    | seconds                      |
| Half-power (3 dB) bandwidth    | Hz                           |
| Beam patterns                  | dB                           |
| Half-power (3 dB) beam width   | degree                       |
| 10 dB beam width               | degree                       |
| Principal side lobe level      | dB                           |
| Principal side lobe location   | degree                       |

#### **Sub-Bottom Profiling Systems**



#### **Applied Acoustic S-Boom Sub-Bottom Profiler**





Acoustic data collected using multiple calibrated reference standard hydrophones distributed about a source deployed on the surface in its normal operating

#### Applied Acoustic S-Boom Sub-Bottom Profiler

Signal characteristics measured for a wide variety of user selected operating modes



| Source                                                   | Source Level<br>(dB re 1µPa@1m) |      |     | Pulse | Bandwidth | Beam Pattern |     |                         |  |
|----------------------------------------------------------|---------------------------------|------|-----|-------|-----------|--------------|-----|-------------------------|--|
| (Joules)                                                 | Pk-Pk                           | Pk , | RMS | SEL   | (ms)      | 3 dB (kHz)   | ka  | MRA Width<br>3 dB (deg) |  |
| 100 (1)                                                  | 202                             | 199  | 189 | 157   | 0.6       | 7.5          | 1.2 | N/A                     |  |
| 100 (2)                                                  | 202                             | 199  | 187 | 157   | 1.1       | 4.4          | 2.1 | 98                      |  |
| 100 (3)                                                  | 199                             | 196  | 185 | 155   | 1.2       | 3.3          | 2.6 | 78                      |  |
| 100 (12)                                                 | 203                             | 200  | 190 | 158   | 0.6       | 9.1          | 3.0 | 66                      |  |
| 100 (13)                                                 | 203                             | 200  | 188 | 157   | 0.8       | 5.4          | 3.1 | 64                      |  |
| 200 (1)                                                  | 203                             | 201  | 191 | 159   | 0.7       | 5.7          | 0.6 | N/A                     |  |
| 200 (2)                                                  | 204                             | 201  | 190 | 160   | 1.0       | 4.4          | 2.1 | 98                      |  |
| 200 (3)                                                  | 202                             | 199  | 187 | 158   | 1.2       | 3.5          | 2.5 | 82                      |  |
| 200 (12)                                                 | 205                             | 202  | 192 | 160   | 0.7       | 6.4          | 2.9 | 67                      |  |
| 200 (13)                                                 | 205                             | 202  | 189 | 160   | 1.3       | 4.1          | 2.8 | 70                      |  |
| 300 (1)                                                  | 207                             | 203  | 195 | 164   | 0.8       | 4.5          | 0.0 | N/A                     |  |
| 300 (2)                                                  | 208                             | 204  | 195 | 164   | 0.9       | 4.6          | 2.1 | 98                      |  |
| 300 (3)                                                  | 206                             | 202  | 193 | 163   | 0.9       | 4.0          | 2.1 | 98                      |  |
| 300 (12)                                                 | 209                             | 205  | 196 | 165   | 0.8       | 4.8          | 2.5 | 80                      |  |
| 300 (13)                                                 | 209                             | 205  | 194 | 165   | 1.1       | 4.1          | 2.7 | 75                      |  |
| 300 (123)                                                | 209                             | 206  | 194 | 165   | 1.1       | 4.3          | 3.1 | 62                      |  |
| 400 (12)                                                 | 212                             | 208  | 200 | 168   | 0.6       | 6.1          | 2.7 | 75                      |  |
| 400 (23)                                                 | 212                             | 208  | 199 | 168   | 0.8       | 5.0          | 2.9 | 68                      |  |
| 400 (13)                                                 | 212                             | 208  | 197 | 168   | 1.2       | 4.0          | 2.6 | 78                      |  |
| 400 (123)                                                | 212                             | 208  | 200 | 168   | 0.7       | 5.6          | 3.2 | 60                      |  |
| 500 (12)                                                 | 213                             | 209  | 202 | 170   | 0.7       | 5.5          | 2.6 | 76                      |  |
| 500 (23)                                                 | 214                             | 209  | 201 | 170   | 0.8       | 4.8          | 2.8 | 71                      |  |
| 500 (13)                                                 | 213                             | 209  | 199 | 170   | 1.2       | 3.8          | 2.5 | 80                      |  |
| 500 (123)                                                | 214                             | 210  | 202 | 170   | 0.6       | 6.1          | 3.2 | 61                      |  |
| 600 (12)                                                 | 214                             | 209  | 202 | 170   | 0.6       | 5.7          | 2.5 | 81                      |  |
| 600 (23)                                                 | 214                             | 210  | 201 | 171   | 0.9       | 4.6          | 2.8 | 71                      |  |
| 600 (13)                                                 | 214                             | 209  | 200 | 170   | 1.2       | 3.6          | 2.5 | 80                      |  |
| 600 (123)                                                | 214                             | 210  | 203 | 171   | 0.6       | 6.3          | 3.2 | 60                      |  |
| 700 (123)                                                | 216                             | 211  | 205 | 172   | 0.6       | 6.2          | 3.2 | 61                      |  |
| NOTE: (1) Forward Plate, (2) Middle Plate, (3) Aft Plate |                                 |      |     |       |           |              |     |                         |  |

#### EdgeTech 512i Sub-Bottom Profiler



Tow bodies arranged for both normal (vertical) transmission and for horizontal transmission to measure acoustic beampatterns with an angular resolution on the order of one degree.

LF

HF

#### EdgeTech 512i Sub-Bottom Profiler

Beam patterns measured, with summaries tabulated for user selected operating modes



| Source Settings |                        |                    | Beam Widt | h (degrees) | Attenuation<br>(dB) |      |  |  |
|-----------------|------------------------|--------------------|-----------|-------------|---------------------|------|--|--|
| Power<br>(%)    | Pulse<br>Width<br>(ms) | Bandwidth<br>(kHz) | -3 dB     | -10 dB      | 90°                 | 180° |  |  |
| 100             | 20                     | 2.0-to-12.0        | 51        | 91          | 31                  | 40   |  |  |
| 100             | 40                     | 1.0-to-6.0         | 66        | 112         | 27                  | 31   |  |  |
| 100             | 5                      | 1.0-to-10.0        | 65        | 110         | 29                  | 32   |  |  |
| 100             | 20                     | 0.7-to-12.0        | 60        | 99          | 26                  | 29   |  |  |
| 100             | 5                      | 0.5-to-8.0         | 70        | 108         | 25                  | 26   |  |  |
| 100             | 30                     | 0.5-to-7.2         | 71        | 112         | 24                  | 26   |  |  |
| 100             | 20                     | 0.5-to-7.0*        | 71        | 127         | 20                  | 26   |  |  |
| 100             | 9                      | 0.5-to-6.0         | 65        | 108         | 23                  | 25   |  |  |
| 100             | 50                     | 0.5-to-4.5         | 70        | 128         | 16                  | 19   |  |  |
| 100             | 40                     | 0.4-to-4.0*        | 80        | 153         | 15                  | 20   |  |  |
| 100             | 100                    | 0.5-to-2.7         | 74        | 150         | 16                  | 22   |  |  |
| * wideband      |                        |                    |           |             |                     |      |  |  |

#### **Measurement Summary**



#### **Phase II – At-Sea Measurements Locations**



#### **Phase II – Standard Test Geometry**





#### **Phase II – Receiver Systems**



Bottom-moored Hydrophone waiting to be deployed

Surface Float Buoy & Anchor being deployed

#### **Phase II – Acoustic Source Systems**







#### **Phase II – Preliminary Results**



## Conclusion

Calibrated High Resolution Geophysics (HRG) source data is available now for 19 commonly used source.

In-situ measured source characterizations of these same sources plus a small GI airgun and sparkers are being analyzed and will be available soon.

The final the phase, analysis and recommendations on modeling these same sources for locations and environments not measured (i.e., predictive modeling), looks to be funded in FY2018.

#### **Requisite Sunset Picture & Questions**



## **Backup Slides**

# **Bottom Mapping Systems**

# Multibeam sonar



Sidescan sonar

#### **Multibeam Sonar**



Image: United States Geological Survey



Geometry for measurement of along track beampatterns using closely spaced calibrated reference standards to improve resolution of narrow beam widths.

#### **T20P Multibeam Fathometer**

| Source Settings |                         |                         | (d    | Effective |     |     |                     |
|-----------------|-------------------------|-------------------------|-------|-----------|-----|-----|---------------------|
| Freq.<br>(kHz)  | Source<br>Level<br>(dB) | P ulse<br>Width<br>(µs) | Pk-Pk | Pk        | RMS | SEL | Pulse Width<br>(µs) |
| 200             | 220                     | 300                     | 226   | 221       | 218 | 182 | 250                 |
| 200             | 205                     | 300                     | 213   | 208       | 204 | 168 | 248                 |
| 200             | 190                     | 300                     | 193   | 187       | 184 | 150 | 254                 |
| 300             | 220                     | 300                     | 232   | 227       | 221 | 185 | 253                 |
| 300             | 205                     | 300                     | 215   | 210       | 205 | 169 | 252                 |
| 300             | 190                     | 300                     | 197   | 191       | 185 | 149 | 254                 |
| 400             | 220                     | 300                     | 229   | 223       | 220 | 184 | 254                 |
| 400             | 205                     | 300                     | 214   | 208       | 204 | 168 | 257                 |
| 400             | 190                     | 300                     | 197   | 191       | 185 | 150 | 269                 |







Image: National Oceanic and Atmospheric Administration (USA)

#### Side Scan Sonar

#### Klein 3000 Side Scan Sonar



#### Klein 3000 Side Scan Sonar

| Source Settings |                          |              | Source Level<br>(dB re 1µPa@1m) |     |     |     | Eff.<br>Pulse | Main<br>Lobe             | Max. Side Lobe |               |
|-----------------|--------------------------|--------------|---------------------------------|-----|-----|-----|---------------|--------------------------|----------------|---------------|
| Freq.<br>(kHz)  | P ulse<br>Wid th<br>(us) | Range<br>(m) | Pk-Pk                           | Pk  | RMS | SEL | Width<br>(us) | Width<br>(3 dB)<br>(deg) | Angle<br>(deg) | Level<br>(dB) |
| 132             | 50                       | 25           | 229                             | 224 | 219 | 176 | 44            | 2.4                      | -16            | -10           |
| 132             | 50                       | 50           | 229                             | 224 | 220 | 176 | 44            | 2.4                      | -17            | -9            |
| 132             | 50                       | 100          | 229                             | 224 | 220 | 176 | 42            | 2.2                      | -17            | -10           |
| 132             | 50                       | 400          | 230                             | 225 | 220 | 176 | 44            | 1.9                      | -17            | -10           |
| 132             | 50                       | 600          | 230                             | 225 | 220 | 176 | 44            | 2.2                      | -17            | -9            |
| 132             | 100                      | 100          | 230                             | 224 | 220 | 179 | 81            | 2.1                      | -17            | -10           |
| 132             | 200                      | 200          | 230                             | 225 | 220 | 182 | 168           | 1.8                      | -17            | -10           |
| 132             | 400                      | 400          | 230                             | 224 | 219 | 184 | 343           | 1.7                      | -17            | -11           |
| 132             | 400                      | 600          | 230                             | 224 | 219 | 184 | 343           | 1.8                      | -17            | -11           |
| 445             | 25                       | 50           | 233                             | 227 | 224 | 177 | 21            | 1.2                      | -5             | -16           |
| 445             | 25                       | 600          | 233                             | 227 | 223 | 177 | 21            | 0.8                      | -5             | -17           |
| 445             | 100                      | 100          | 233                             | 227 | 223 | 182 | 88            | 1.2                      | -5             | -19           |

