WIND AND WATER POWER PROGRAM

Energy Efficiency & Renewable Energy

Offshore Wind Technology Overview

BOEMRE North Carolina Task Force Meeting May 11, 2011

Jesse Johnson

SRA International / U.S. Department of Energy Jesse.johnson@ee.doe.gov

Offshore Wind Energy Overview

Energy Efficiency & Renewable Energy

The Opportunity Technology Overview Cost of Energy National Strategy

Benefits

Energy	Environment	Economy
Large renewable resource close to demand centers	Reduced emissions of GHG and air pollutants	Jobs manufacturing, installing, operating, and maintaining systems
Availability matches peak load	Reduced water consumption	Economic recovery and industrial development
Energy diversity & security	Reduced need for new land-based transmission	Potential for cost- competitive electricity in high-price markets

Price of Electricity

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy.

Author: Billy Roberts - March 30, 2010

Offshore Wind Resource Potential

Energy Efficiency & Renewable Energy

Total gross resource potential does not consider exclusion zones or siting concerns

NC Wind Resource Potential

Land-	Shallow	Transition	Deep
based	(0-30 m)	(30-60 m)	(60+ m)
1,156	28,006	15,544	15,942
km²	km²	km²	km²
0.8 GW	140 GW	78 GW	80 GW

6 | Wind and Water Power Program

The Opportunity **Technology Overview** Cost of Energy National Strategy

Turbine Components

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Evolution of Wind Power Technology

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Facility Layout

U.S. DEPARTMENT OF

Example: Nysted Windpark

Energy Efficiency & Renewable Energy

166 MW capacity 6 miles to shore 72 turbines 6 m depth 0 132 kV export cable 0 92600 homes powered **Approx. 3 miles**

Offshore Wind Industry

U.S. DEPARTMENT OF

- 3,000 MW installed in European waters, ~135 MW in China
- 2 5 MW capacity turbines
- Turbine technology largely adapted from land-based turbines
- 70+ meter tower height on monopiles and gravity bases
- Mostly fixed-bottom foundations in shallow water (0-30m)
- Mature submarine power cable technology
- Leverage existing oil and gas experience
- Early growing pains: reliability shortfalls and turbine shortages
- European industry:
 - 1,000 to 1,500 MW of new offshore wind in 2011
 - 19,000 MW currently fully consented
 - \$3.75B in investments in 2010
 - 6370 jobs in 2007

Development, Construction, and Operations

Energy Efficiency & Renewable Energy

Development

- Wind resource measurement
- Geotechnical & environmental data collection
- Permitting
- Power sale agreement
- Financing

Construction

- Portside staging areas
- Turbine installation vessels
- Cabling vessels
- Narrow weather windows
- Interface issues between multiple contracts

Operations

- Challenging maintenance
 environment
- Difficulties accessing turbines
- Boat access vs helicopter
- Remote sensing and preventative maintenance are critical

The Opportunity Technology Overview **Cost of Energy** National Strategy

Cost of Offshore Wind Energy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Capital Cost for Offshore Wind

Offshore Wind Life-Cycle Costs

Energy Efficiency & Renewable Energy

Offshore Wind Energy Overview

Energy Efficiency & Renewable Energy

The Opportunity
 Technology Overview
 Cost of Energy
 National Strategy

National Offshore Wind Strategy

- Department of Energy & Department of the Interior
- Commitment by federal government to developing offshore wind energy resources in a responsible manner
- Supported by \$50.5 M in funding for offshore wind research and development

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

www1.eere.energy.gov/windandhydro/pdfs/national_offshore_wind_strategy.pdf

Major Challenges & DOE Solutions

Cost of Energy

- Reduce capital costs
 - Larger-scale systems with greater capacities
 - Innovative foundations and platforms
- Decrease IO&M costs
 - Ruggedized designs to reduce maintenance
- Decrease financing costs
 - Design codes & standards to reduce deployment risks
 - Offshore wind characterization to improve output projections
- Increase energy capture
 - Larger rotors, longer blades, and taller towers

Deployment & Infrastructure

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

- Support effective permitting
 - Provide technical input & assistance to federal & state agencies
 - Applied research on key issues
 - Policy and economic analysis to inform decision-makers
- Support resource planning
 - Gather wind resource data for CMSP
 - Provide technical input and data
- Promote infrastructure development
 - Domestic supply chain development
 - Interconnect planning
 - Research on specialized vessels and IO&M technology.

DOE Offshore Wind Initiative

Energy Efficiency & Renewable Energy

21 | Wind and Water Power Program

eere.energy.gov

DOE Offshore Wind Strategy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

ENERGY En

- 1. The environmental & economic benefits of offshore wind energy are significant.
- 2. The offshore wind resource is substantial.
- 3. The challenges facing offshore wind deployment are daunting:
 - High capital & financing costs.
 - Lack of specialized infrastructure.
 - Lack of site data and experience with permitting processes.
- 4. To realize these benefits in spite of the challenges, DOE will:
 - Reduce the levelized cost of energy from 26.9 ¢/kWh to 7 ¢/kWh by 2030.
 - Help reduce project deployment timelines.
 - Partner in the installation of the first demonstration-scale projects.

Activities to Date

- FY09 (\$1.6 M)
 - Lab support on environmental impacts and technology assessments.
 - Broad solicitations including offshore awards.
- Recovery Act (\$77.0 M)
 - Large Blade Test Facility, \$25M: facility will test up to 90-m blades for offshore wind turbines to ensure reliability and performance
 - Large Drivetrain Test Facility, \$45M: facility will test up to 15 MW drivetrains for large offshore turbines to validate designs
 - U-Maine Floating Turbine Development, \$7M: developing innovative floating turbine platforms for deepwater deployment (2450 GW resource)

• FY10 (\$8.8 M)

- Signed MOU with DOI-BOEMRE to facilitate offshore wind deployment.
- NREL published *Large-Scale Offshore Wind Power in the United States*.
- Awarded \$ 500k for research to fill critical data gaps in the permitting process.
- FY11 (\$49.1 M requested)
 - Published *National Offshore Wind Strategy* in conjunction with DOI.
 - Issued \$50.5 M in solicitations for offshore wind R&D.

Offshore Wind Technology Tomorrow

Energy Efficiency & Renewable Energy

Offshore Technology is Dynamic: 7+ MW Power, Vertical Axis Turbines, Tripod, Floating, and Jacket Foundations are already in prototype stage.

27 | Wind and Water Power Program

28 | Wind and Water Power Program