
OCS Study BOEM 2016-037

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 4)

Katherine S. Hedström
Arctic Region Supercomputing Center

University of Alaska Fairbanks

U.S. Department of the Interior
Bureau of Ocean Energy Management

Alaska OCS Region
Anchorage, Alaska

Cooperative Agreement No. M14AC00014

OCS Study BOEM 2016-037

Technical Manual for a Coupled Sea-Ice/Ocean
Circulation Model (Version 4)

Katherine S. Hedström
Arctic Region Supercomputing Center

University of Alaska Fairbanks

April 2016

This study was funded by the Alaska Outer Continental Shelf Region of the Bureau of Ocean
Energy Management, U.S. Department of the Interior, Herndon, Virginia, through Cooperative
Agreement M14AC00014 with the University of Alaska Fairbanks (UAF).

DISCLAIMER

This report was prepared under agreement between the Bureau of Ocean Energy Management
(BOEM) and UAF. This report has been technically reviewed by BOEM, and it has been approved
for publication. Approval does not signify that the contents necessarily reflect the views and policies
of BOEM, nor does mention of trade names or commercial products constitute endorsement or
recommendation for use. It is, however, exempt from review and compliance with BOEM editorial
standards.

REPORT AVAILABILITY

The report may be downloaded from the boem.gov website at: http://www.boem.gov/ESPIS/ or
http://www.boem.gov/akpubs/.

CITATION

K. Hedstrom. 2016. Technical Manual for a Coupled Sea-Ice/Ocean Circulation Model (Version
4). U.S. Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS
Study BOEM 2016-037. 176 pp.

http://www.boem.gov/ESPIS/
http://www.boem.gov/akpubs/

This document was prepared with LATEX xfig, and inkscape.

Acknowledgments
The ROMS model is descended from the SPEM and SCRUM models, but has been entirely

rewritten by Sasha Shchepetkin, Hernan Arango and John Warner, with many, many other con-
tributors. I am indebted to every one of them for their hard work.

Bill Hibler first came up with the viscous-plastic rheology we are using. Paul Budgell has
rewritten the dynamic sea-ice model, improving the solution procedure and making the water-
stress term implicit in time, then changing it again to use the elastic-viscous-plastic rheology of
Hunke and Dukowicz. I am very grateful that he is allowing us to use his version of the code. The
sea-ice thermodynamics is derived from Sirpa Häkkinen’s implementation of the Mellor-Kantha
scheme. She was kind enough to allow Paul and I to start with her code.

Thanks to the internet community for providing great tools like Perl, Python, cpp, svn, git,
and gmake to aid in software development (and to make it more fun).

This work was supported in part by a grant of HPC resources from the Arctic Region Super-
computing Center.

Development and testing of the ROMS model has been funded by many, including the USGS
Coastal and Marine Program, the Office of Naval Research, and the National Ocean Partnership
Program.

UNIX is a registered trademark of the Open Group.
Cygwin is a registered trademark of Red Hat, Inc.

Abstract

The Regional Ocean Modeling System (ROMS), authored by many, most notably Sasha
Shchepetkin, is one approach to regional and basin-scale ocean modeling. This user’s manual for
ROMS describes the model equations and algorithms, as well as additional user configurations
necessary for specific applications. ROMS itself has now branched out as well—the version
described here is that available through the myroms.org svn site with modifications to include
sea ice and other changes. This sea ice branch is also available at github.com.

Contents

1 Introduction 1

2 Getting started 3
2.1 myroms.org . 3
2.2 Prerequisites . 3
2.3 Acquiring the ROMS code . 3
2.4 Compiling ROMS . 4

2.4.1 Environment Variables for make . 4
2.4.2 Providing the Environment . 5
2.4.3 Build scripts . 7

2.5 Running ROMS . 7
2.6 Warnings and bugs . 8

3 Ocean Model Formulation 9
3.1 Equations of motion . 9
3.2 Vertical boundary conditions . 10
3.3 Horizontal boundary conditions . 11
3.4 Terrain-following coordinate system . 11
3.5 Horizontal curvilinear coordinates . 12

4 Numerical Solution Technique 14
4.1 Vertical and horizontal discretization . 14

4.1.1 Horizontal grid . 14
4.1.2 Vertical grid . 14

4.2 Masking of land areas . 15
4.2.1 Velocity . 15
4.2.2 Temperature, salinity and surface elevation 15
4.2.3 Wetting and drying . 16

4.3 Time-stepping overview . 16
4.4 Conservation properties . 19
4.5 Depth-integrated equations . 20
4.6 Density in the mode coupling . 23
4.7 Time stepping: internal velocity modes and tracers 24
4.8 Advection schemes . 24

4.8.1 Second-order Centered . 24
4.8.2 Fourth-order Centered . 25
4.8.3 Fourth-order Akima . 25
4.8.4 Third-order Upwind . 25

4.9 Determination of the vertical velocity and density fields 26
4.10 Horizontal mixing . 27

4.10.1 Deviatory stress tensor (viscosity) . 27
4.10.2 Transverse stress tensor . 28
4.10.3 Rotated Transverse Stress Tensor . 29
4.10.4 Horizontal diffusion . 29
4.10.5 Laplacian . 30
4.10.6 Biharmonic . 30
4.10.7 Rotated mixing tensors . 30

4.11 Vertical mixing schemes . 31
4.11.1 The Large, McWilliams and Doney parameterization 31

i

4.11.2 Mellor-Yamada . 35
4.11.3 Generic length scale . 36

4.12 Timestepping vertical viscosity and diffusion . 37
4.13 Lateral Boundary Conditions . 38

4.13.1 Gradient boundary condition . 39
4.13.2 Wall boundary condition . 39
4.13.3 Clamped boundary condition . 39
4.13.4 Flather boundary condition . 39
4.13.5 Shchepetkin boundary condition . 39
4.13.6 Chapman boundary condition . 39
4.13.7 Radiation boundary condition . 39
4.13.8 Mixed radiation-nudging boundary condition 40

5 Ice Model Formulation 41
5.1 Dynamics . 41
5.2 Thermodynamics . 42

5.2.1 Ocean surface boundary conditions . 47
5.2.2 Frazil ice formation . 49
5.2.3 Differences from Mellor and Kantha . 50

6 Details of the Code 51
6.1 Directory structure . 51
6.2 Main subroutines . 53

6.2.1 master.F . 53
6.2.2 ocean_control.F . 53
6.2.3 ROMS_initialize . 54
6.2.4 ROMS_run . 54
6.2.5 ROMS_finalize . 54

6.3 Initialization . 54
6.3.1 main3d . 57

6.4 Modules . 59
6.5 Functionals . 61
6.6 Other subroutines and functions . 62
6.7 C preprocessor variables . 63
6.8 Important parameters . 73
6.9 Domain decomposition . 73

6.9.1 ROMS internal numbers . 74
6.9.2 MPI exchange . 76
6.9.3 Code syntax . 76
6.9.4 Input/output . 80

7 Configuring ROMS for a Specific Application 82
7.1 Configuring ROMS . 82

7.1.1 Case Name . 82
7.1.2 Case-specific Include File . 83
7.1.3 Functionals . 83
7.1.4 checkdefs.F . 83
7.1.5 Model domain . 84
7.1.6 x, y grid . 84
7.1.7 ξ, η grid . 84
7.1.8 Initial conditions . 85

ii

7.1.9 Equation of state . 85
7.1.10 Boundary conditions . 85
7.1.11 Model forcing . 85
7.1.12 ocean.in . 86
7.1.13 User variables and subroutines . 93

7.2 Upwelling/Downwelling Example . 93
7.2.1 cppdefs.h . 94
7.2.2 Model domain . 95
7.2.3 ana_grid . 96
7.2.4 Initial conditions and the equation of state 96
7.2.5 Boundary conditions . 96
7.2.6 Model forcing . 96
7.2.7 ocean.in . 97
7.2.8 Output . 97

7.3 Arctic example . 111
7.3.1 arctic.h . 111
7.3.2 Arctic code chunks . 117
7.3.3 Model domain . 118
7.3.4 Initial and boundary conditions . 118
7.3.5 Forcing . 119
7.3.6 ocean.in . 119
7.3.7 Output . 120

7.4 Northwest Gulf of Alaska example . 120
7.4.1 nwgoa.h . 120
7.4.2 NWGOA code chunks . 120
7.4.3 Model domain . 120
7.4.4 Initial and boundary conditions . 123
7.4.5 Forcing . 123
7.4.6 ocean.in . 123
7.4.7 Output . 124

A Model Time-stepping Schemes 126
A.1 Euler . 126
A.2 Leapfrog . 126
A.3 Third-order Adams-Bashforth (AB3) . 126
A.4 Forward-Backward . 127
A.5 Forward-Backward Feedback (RK2-FB) . 127
A.6 LF-TR and LF-AM3 with FB Feedback . 128
A.7 Generalized FB with an AB3-AM4 Step . 128

B The vertical σ-coordinate 129
B.1 Transform . 129
B.2 Stretching . 130

C Horizontal curvilinear coordinates 131

D Viscosity and Diffusion 132
D.1 Horizontal viscosity . 132
D.2 Horizontal Diffusion . 132
D.3 Vertical Viscosity and Diffusion . 132

iii

E Radiant heat fluxes 133
E.1 Shortwave radiation . 133
E.2 Longwave radiation . 133
E.3 Sensible heat . 133
E.4 Latent heat . 133

F The C preprocessor 135
F.1 File inclusion . 135
F.2 Macro substitution . 135
F.3 Conditional inclusion . 136
F.4 C comments . 137
F.5 A note on style . 137
F.6 Potential problems . 137
F.7 Modern Fortran . 138

G Makefiles 139
G.1 Introduction to Portable make . 139

G.1.1 Macros . 140
G.1.2 Implicit Rules . 140
G.1.3 Dependencies . 141

G.2 gnu make . 141
G.2.1 Make rules . 142
G.2.2 Assignments . 142
G.2.3 Include and a Few Functions . 143
G.2.4 Conditionals . 144

G.3 Multiple Source Directories the ROMS Way . 145
G.3.1 Directory Structure . 145
G.3.2 Conditionally Including Components . 145
G.3.3 User-defined make Functions . 146
G.3.4 Library Module.mk . 148
G.3.5 Main Program . 148
G.3.6 Top Level Makefile . 149

G.4 Final warnings . 152

H sfmakedepend 153

I Subversion 155
I.1 Overview . 155
I.2 Checking out the code . 155
I.3 Updates . 156
I.4 Code changes . 156
I.5 Conflicts . 156

I.5.1 Merging conflicts by hand . 157
I.5.2 Copying a file onto your working file . 158
I.5.3 Punting: Using svn revert . 158

iv

List of Figures

1 Placement of variables on an Arakawa C grid . 14
2 Placement of variables on staggered vertical grid . 14
3 Masked region within the domain . 15
4 Diagrams of the time stepping and mode coupling used in various ROMS versions. (a)

Rutgers University ROMS (from myroms.org), (b) older ROMS AGRIF, (c) UCLA
ROMS, described in Shchepetkin and McWilliams [2005], (d) non-hydrostatic ROMS
(Kanarska et al. [2007]). In all, the curved arrows update the 3-D fields; those with
“pillars” are leapfrog in nature with the pillar representing the r.h.s. terms. Straight
arrows indicate exchange between the barotropic and baroclinic modes. The shape
functions for the fast time steps show just one option out of many possibilities. The
grey function has weights to produce an estimate at time n+ 1, while the light red
function has weights to produce an estimate at time n+ 1

2 17
5 The split time stepping used in the model. 21
6 Weights for the barotropic time stepping. The upper panel shows the primary

weights, centered at time n + 1, while the lower panel shows the secondary weights
weights, centered at time n+ 1

2 . 22
7 Diagram of the different locations where ice melting and freezing can occur. 44
8 Diagram of internal ice temperatures and fluxes. The hashed layer is the snow. . . . 44
9 ROMS directory structure. 52
10 ROMS main structure. 53
11 Flow chart of the model main program in forward mode. Calls to nesting for nested

grid applications have been left out. 56
12 The whole grid. Note that there are Lm by Mm interior computational points. The

points on the thick outer line and those outside it are provided by the boundary
conditions. 75

13 A tiled grid with some ROMS tile variables. 76
14 A choice of numbering schemes: (a) each tile is numbered the same, and (b) each

tile retains the numbering of the parent domain. 77
15 Some ROMS variables for tiles, for both a periodic and non-periodic case. Shown

are the variables in the i-direction, the j-direction is similar. 78
16 A tiled grid with out-of-date halo regions shown in grey and the interior points

color-coded by tile: (a) before an exchange and (b) after an exchange. 79
17 The upwelling/downwelling bathymetry. 107
18 Surface velocities after one day, showing the flow to the left of the wind (southern

hemisphere). 108
19 Constant ξ slices of the u, v, T and w fields at day 1. 109
20 Constant ξ slices of the u, v, T , and w fields at day 5. 110
21 Bathymetry of the Arctic domain. 112
22 Grid spacing of the Arctic domain. 113
23 Ice concentration averaged over the month of September, 1982. 121
24 Ice thickness averaged over the month of September, 1982. 122
25 Bathymetry of the NWGOA domain. 123
26 Surface salinity for 10 August, 2008. 124
27 Surface temperature and velocities for 10 August, 2008. 125

List of Tables

1 The variables used in the description of the ocean model 10

v

2 The variables used in the vertical boundary conditions for the ocean model 10
3 The time stepping schemes used in the various ROMS versions. α ≡ ωδt is the

Courant number and ω = ck is the frequency for a wave component with wavenumber
k. 18

4 Generic length scale parameters. Note that Mellor-Yamada 2.5 is an example of a
k − kl scheme. 37

5 Variables used in the ice momentum equations . 43
6 Variables used in the ice thermodynamics . 45
7 Ocean surface variables . 48
8 Frazil ice variables . 49
9 Variables used in computing the incoming radiation and latent and sensible heat . . 134

1

1 Introduction
This user’s manual for the Regional Ocean Modeling System (ROMS) describes the model equations
and algorithms, as well as additional user configurations necessary for specific applications. This
manual also describes the sea-ice model that we are using [Budgell, 2005].

The principle attributes of the model are as follows:

General

• Primitive equations with potential temperature, salinity, and an equation of state.
• Hydrostatic and Boussinesq approximations.
• Optional third-order upwind advection scheme.
• Optional Smolarkiewicz advection scheme for tracers (potential temperature, salin-
ity, etc.).
• Optional Lagrangian floats.
• Option for point sources and sinks.

Horizontal

• Orthogonal-curvilinear coordinates.
• Arakawa C grid.
• Closed basin, periodic, prescribed, radiation, and gradient open boundary conditions.
• Masking of land areas.
• Early version of nesting.

Vertical

• σ (terrain-following) coordinate.
• Free surface.
• Tridiagonal solve with implicit treatment of vertical viscosity and diffusivity.

Ice

• Hunke and Dukowicz elastic-viscous-plastic dynamics.
• Mellor-Kantha thermodynamics.
• Orthogonal-curvilinear coordinates.
• Arakawa C grid.
• Smolarkiewicz advection of tracers.

Mixing options

• Horizontal Laplacian and biharmonic diffusion along constant s, z or density surfaces.
• Horizontal Laplacian and biharmonic viscosity along constant s or z surfaces.
• Optional Smagorinsky horizontal viscosity and diffusion (but not recommended for
diffusion).
• Horizontal free-slip or no-slip boundaries.
• Vertical harmonic viscosity and diffusion with a spatially variable coefficient, with
options to compute the coefficients via Large et al. [1994], Mellor and Yamada [1974],
or generic length scale (GLS) Umlauf and Burchard [2003] mixing schemes.

1

Implementation

• Dimensional in meter, kilogram, second (MKS) units.
• Fortran 90.
• Runs under UNIX, requires the C preprocessor, gnu make, and Perl.
• All input and output is done in NetCDF Rew et al. [1996] (Network Common Data
Format), requires the NetCDF and NetCDF-fortran libraries.
• Options include serial, parallel with MPI, and parallel with OpenMP.

The above list hasn’t changed so very much in the past ten to fifteen years, but many of the
numerical details have changed a great deal. Examples include consistent temporal averaging of
the barotropic mode to guarantee both exact conservation and constancy preservation properties for
tracers; redefined barotropic pressure-gradient terms to account for local variations in the density
field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-
monotone advection algorithms.

New with this version of the manual is the introduction of nesting capabilities which requires
Matlab for preprocessing.

ROMS also comes with a full suite of advanced data assimilation routines; these options are
beyond the scope of this document.

Chapter 2 has some information on getting started with ROMS. Chapters 3 and 4 describe the
model physics and numerical techniques and contain information from Shchepetkin and McWilliams
[2009b], Haidvogel et al. [2007]. Chapter 5 describes the ice equations and Chapter 6 lists the
model subroutines and functions. As distributed, ROMS is ready to run with a number of example
problems. The process of configuring ROMS for a particular application and running it is described
in Chapter 7, including a discussion of a few example applications.

2

2 Getting started

2.1 myroms.org

Starting off with ROMS is not the easiest thing to do, and it just seems to be getting more complex
as time goes by. There are some resources, however, beginning with the electronic home for ROMS
users at www.myroms.org. Go to register, which gives you access to the subversion server for the
code and to the discussion forum for all things ROMS. There is also a wiki, a bug tracking system,
and even a developer blog.

The wiki contains parts of this manual, but the nature of wikis is that they can be more fluid,
with more authors, than a document such as this. Dave Robertson (robertson@marine.rutgers.edu)
is the one to talk to if you would like to contribute to the wiki. On the other hand, this manual is
now at github, with all that implies.

2.2 Prerequisites

As mentioned in Chapter 1, ROMS has some external requirements. These are:

• UNIX or UNIX-like environment, such as Cygwin.

• A Fortran 90 compiler.

• The NetCDF library and the netcdf-fortran library compiled with the above compiler (and a
C compiler).

• svn, the subversion revision control software. See Appendix I and the ROMS wiki.

• git is optional, but can be used instead of svn, especially for downloading the ice branch of
roms from github.

• Gnu make version 3.81 or higher. Appendix G contains more than you ever wanted to know
about this software.

• A C preprocessor—the one from gnu with the -traditional flag works well. See Appendix F.

• The Perl scripting language.

• Matlab is optional, but it is a common tool for pre- and post-processing of ROMS files.

• Python is also optional, but might be a good thing to learn if you want an alternative to
Matlab.

Make sure you’ve got the right environment before attempting to download or compile ROMS. In
particular, it’s best to download ROMS using the same environment as will be used when compiling
and running it.

2.3 Acquiring the ROMS code

The main ROMS code is available for download via svn at https://www.myroms.org/svn/src/.
The version of the model described in this document is a merger between ROMS 3.7 and a sea-ice
model. The sea ice code is a branch off a different repository and requires special access—contact
Dave Robertson (as above) for more information. Alternately, it is available at github.

ROMS comes with several cases all ready to go at the flip of a switch. Try these out first and
learn how they are set up.

• §2.4 describes how to pick the cases and set up the build environment.

3

http://www.myroms.org
https://github.com/kshedstrom/roms_manual
http://www.redhat.com/services/custom/cygwin/
http://www.unidata.ucar.edu/software/netcdf/index.html
https://www.unidata.ucar.edu/downloads/netcdf/netcdf-fortran/index.jsp
http://subversion.tigris.org
https://www.myroms.org/wiki/index.php/Subversion
https://git-scm.com/
https://github.com/kshedstrom/roms
http://www.gnu.org/software/make/
http://en.wikipedia.org/wiki/C_preprocessor
http://www.perl.org
http://www.mathworks.com/products/matlab/
https://www.python.org/
https://www.myroms.org/svn/src/
https://github.com/kshedstrom/roms

• §6.7 lists all the ROMS options that can be added to your case.

• §6.5 lists the fields which can be provided to ROMS via analytic expressions.

• §7.1.12 lists the input parameters ROMS reads from a text file at run time.

• Chapters 6 and 7 are meant to be informative for the simple and not-so-simple cases. If that
isn’t the case, please let me know.

In addition to this manual, there are some other ROMS resources:

• You may be best served by going to the ROMS wiki which includes sections called Getting
Started and Tutorials, as well as a Frequently Asked Questions (FAQ) section.

• Don’t be afraid to use the forum. It has everything from employment opportunities to debug-
ging help. Posting there can get you help from one of several people, improving your odds of
success over private emails. Registered users get an email once a day about new postings, so
you might have to wait a day (or more) for a reply.

• There have been ROMS meetings and classes in which a tutorial session is included as part
of the program.

• There are various resources online—please let me know of any I should list here.

2.4 Compiling ROMS

2.4.1 Environment Variables for make

ROMS has a growing list of choices the user must make before starting the compile process. These
are user-defined variables, some about the model, some about your computer. This section is on the
computer/compiler pairing that is your build system. Since we now use gnu make, it is possible
to set the value of these variables in the Unix environment in a build script, rather than necessarily
inside the Makefile (see §G). The user-definable variables understood by the ROMS makefile are:

ROMS_APPLICATION Set the cpp option defining the particular application. This is used
for setting up options inside the code specific to this application and also determines
the name of the .h header file for it. This can be either a predefined case, such as
BENCHMARK, or one of your own, such as NEP5. It should be in all upper case by
convention.

MY_HEADER_DIR Sets the path to the user’s header file, if any. It can be left empty for the
standard cases, since benchmark.h and the like are found in ROMS/Include, which
is already in the search path. In the case of NEP5, this is set to Apps/NEP where
nep5.h resides.

MY_ANALYTICAL_DIR Sets the path to the user’s analytic files described in §6.5, if any.
This can be User/Functionals or some other location. I tend to place both the header
file and the functionals in the same directory, one directory per application.

MY_CPP_FLAGS Set tunable cpp options. Sometimes it is desirable to activate one or more
cpp options to run different variants of the same application without modifying its header
file. If this is the case, specify each option here using the -D syntax. Notice that you need
to use the shell’s quoting syntax (either single or double quotes) to enclose the definition
if you are using one of the build scripts below.

Compiler-specific Options These flags are used by the files inside the Compilers directory.

4

https://www.myroms.org/wiki/

USE_DEBUG Set this to on to turn off optimization and turn on the -g flag for
debugging.

USE_MPI Set this if running an MPI parallel job.
USE_OpenMP Set this if running an OpenMP parallel job.
USE_MPIF90 This flag changes the name of the Fortran compiler to mpif90, while

USE_MPI changes the cpp flags for changing the source code (you might need
both). OpenMPI and others provide a shell script called mpif90 for finding
the required MPI files.

USE_LARGE Some systems support both 32-bit and 64-bit options. Select this to get
64-bit addressing, usually used for programs needing more than 2 GB of memory
on 32-bit systems. Does anyone still need this? I run on machines which are
64-bit by default.

USE_NETCDF4 Set this if linking against the NetCDF4 library. Use this if you have
a working nc-config or nf-config—highly recommended! If you set this, you can
skip the next two.

NETCDF_INCDIR The location of the netcdf.mod and typesizes.mod files.
NETCDF_LIBDIR The location of the NetCDF library.

FORT A shorthand name for the compiler to be used when selecting which system-compiler file
is to be included from the Compilers directory. See section §G.2.3 and §2.4.2.

Local File Options:

BINDIR Directory in which to place the binary executable. The default is “.”, the
current directory.

SCRATCH_DIR Put the .f90 and the temporary binary files in a build directory
to avoid clutter. The default is Build under the current directory. Set it to
something else if you want to keep these files for multiple projects at the same
time, each in their own directory.

2.4.2 Providing the Environment

Before compiling, you will need to find out some background information:

• What is the name of your compiler?

• What is returned by uname -s on your system?

• Is there a working NetCDF-fortran library?

• Where is it?

• Was it built with the above compiler?

• Did it come with a working nc-config?

• Do you have access to MPI or OpenMP?

As described more fully in §G.2.3, themakefile will be looking for a file in theCompilers directory
with the combination of your operating system and your compiler. For instance, using Linux and
the Gnu compiler, the file would be called Linux-gfortran.mk. Is the corresponding file for your
system and compiler in the Compilers directory? If not, you will have to create it following the
existing examples there.

5

Next, there are several ways to provide the location for the NetCDF files (and optional HDF5
library). The recommended way is to take advantage of the nc-config program that comes
with NetCDF 4.0.1 and newer. The files in the Compilers directory will attempt to do this if
USE_NETCDF4 is defined. Specifically, it will invoke “nc-config –flibs” and “nc-config –prefix”
which you can run on the command line yourself for testing purposes:

pacman3 201% nc-config --flibs
-L/usr/local/pkg/netcdf/netcdf-4.3.0.gnu-4.7.3/lib -lnetcdff
-L/usr/local/pkg/hdf5/hdf5-1.8.10-p1.gnu-4.7.3/lib
-L/usr/local/pkg/szip/szip-2.1.gnu/lib
-L/usr/local/pkg/udunits/udunits-2.1.24.gnu-4.7.3/lib
-L/usr/local/pkg/netcdf/netcdf-4.3.0.gnu-4.7.3/lib -lnetcdf -lnetcdf
pacman3 202% nc-config --prefix
/usr/local/pkg/netcdf/netcdf-4.3.0.gnu-4.7.3

As you can see, if it needs to link to the hdf5 library, it does this automatically. Another example:

kate@ThinkPad-W520$ nc-config --flibs

kate@ThinkPad-W520$ nf-config --flibs
-L/usr/local/lib -lnetcdff -lnetcdf -lnetcdf
kate@ThinkPad-W520$ nf-config --prefix
/usr/local

This is an example of a system where nc-config is broken but nf-config works. Edit this line of
the corresponding file in the Compilers directory:

NC_CONFIG ?= nf-config

If you insist on using the old method, it requires setting the location of the NetCDF files in one of
three ways:

• Hardcoding lines in the Compilers/xxx-yyy.mk file:

NETCDF_INCDIR ?= /usr/local/include
NETCDF_LIBDIR ?= /usr/local/lib

• Setting them in the build.bash (if you can figure out where in all those if cases).

• Edit your .profile or .login files to globally set them. Here is an example for tcsh:

setenv NETCDF_INCDIR /usr/local/netcdf4/include
setenv NETCDF_LIBDIR /usr/local/netcdf4/lib
setenv HDF5_LIBDIR /usr/local/hdf5/lib

The bash equivalent is:

export NETCDF_INCDIR=/usr/local/netcdf4/include
export NETCDF_LIBDIR=/usr/local/netcdf4/lib
export HDF5_LIBDIR=/usr/local/hdf5/lib

Perhaps you can see why we recommend using nc-config!

6

2.4.3 Build scripts

If you have more than one application (or more than one compiler), you will get tired of editing
the makefile. One option is to have a makefile for each configuration, then type:

make -f makefile.circle_pgi

for instance. Another option of keeping track of the user-defined choices in a build script. The
advantage is that updates to the build scripts are less frequent than updates to the makefile.
There are now two of these scripts in the ROMS/Bin directory: build.sh (which is surprisingly
a csh script) and build.bash. The build scripts use environment variables to provide values for
the list above, overwriting those found in the ROMS makefile. Just as in the multiple makefile
option, you will need as many copies of the build script as you have applications. The scope of
these variables is local to the build script, allowing you to compile different applications at the
same time from the same sources as long as each $(SCRATCH_DIR) is unique.

Both scripts have the same options:

-j [N] Compile in parallel using N cpus, omit argument for all available CPUs.

-noclean Do not clean already compiled objects.

Note that the default is to compile serially and to issue a “make clean” before compiling. It is
left as an exercise for the user if you prefer different default behavior.

There are also a few variables which are not recognized by the ROMS makefile, but are used
locally inside the build script. These are:

MY_PROJECT_DIR This is used in setting $(SCRATCH_DIR) and $(BINDIR).

MY_ROMS_SRC Set the path to the user’s local current ROMS source code. This is used so
that the script can be run from any directory, not necessarily only from the top ROMS
directory.

2.5 Running ROMS

ROMS expects to read a number of variables from an ASCII file (details of the file are in §7.1.12).
For serial or OpenMP execution, the syntax is:

oceanS (or oceanO) < ocean.in > roms.out &

while MPI execution requires:

oceanM ocean.in > roms.out &

so that each process can read the ocean.in file.
Realistically, you would only want to run relatively small applications such as UPWELLING

interactively on the command line as shown here. Also, for either of the parallel options, you will
have to provide some information to ROMS and to the operating system about how many threads
or processes to use. Parallel computers may also have some sort of batch queuing system in place
in which you would submit a job script. I have had easy access to a number of systems over the
years, each with its own style of job script. Some MPI environments require that you run ROMS
with:

cd $PBS_O_WORKDIR
mpirun -np 32 ./oceanM ocean_benchmark3.in

while others need:

7

aprun -np 32 ./oceanM ocean_benchmark3.in

You just have to find out from the locals, for this as well as the syntax of the batch queue scripts.
If all goes according to plan, ROMS will create both a collection of NetCDF files and a verbose

text file on standard out. There is a large and ever-changing list of ways to view NetCDF files,
but I like ncview for a first view of what’s going on. Other tools include Matlab, Python, NCL
Fortran and ferret.

If things don’t go according to plan, the text output file is your friend. Examine it carefully. If
it fails on the UPWELLING problem, you can compare your output to that in §7.2.8. If it fails
on your application, make sure simple domains like UPWELLING work on your system.

2.6 Warnings and bugs

ROMS is not a large program by some standards, but it is still complex enough to require some
effort to use effectively. Some specific things to be wary of include:

• It is recommended that you use 64 bits of precision rather than 32 bits.

• The code must be run through the C preprocessor before it is compiled. This can occasionally
be dangerous, especially with the newer ANSI C versions of cpp. Potential problems are listed
in Appendix F. The gnu cpp with the -traditional flag is known to work well. On the other
hand, the output of cpp is saved in the $(SCRATCH_DIR), where it can be examined.

• The vertical σ-coordinate was chosen as being a sensible way to handle variations in the
water depth as seen in the coastal oceans. Changes to the code have allowed us to expand the
well-behaved range of depths and the range of values for THETA_S, plus there are some
new vertical coordinate options.

• σ-coordinates have long had a bad reputation because errors in the pressure gradient terms
can lead to spurious currents. These errors are much less troublesome than in the past due to
code improvements and there are more improvements possible through an alternate equation
of state [Shchepetkin and McWilliams, 2011], though they are not yet in the myroms.org code.
The pressure gradient errors can also be controlled with some smoothing of the bathymetry.
This in turn changes the shape of the basin and leads to its own set of problems, such as
altered sill depths. Also, the currents will react to the change in shelf slope—you are now
solving a different problem.

• I occasionally get the model to run for multiple days/months, then suddenly blow up mid-
depth. Just restart with a smaller timestep and keep on going.

• There remain bugs in ROMS. If you find any, please report them on the forum and/or the
bug tracking system at myroms.org.

8

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://www.mathworks.com/products/matlab/
http://www.python.org/
http://www.ncl.ucar.edu/
https://www.myroms.org/wiki/index.php/Plotting_Package_Installation
http://www.ferret.noaa.gov/Ferret/

3 Ocean Model Formulation

3.1 Equations of motion

ROMS is a member of a general class of three-dimensional, free-surface, terrain-following numer-
ical models that solve the Reynolds-averaged Navier-Stokes equations using the hydrostatic and
Boussinesq assumptions. The governing equations in Cartesian coordinates can be written:

∂u

∂t
+ ~v · ∇u− fv = −∂φ

∂x
− ∂

∂z

(
u′w′ − ν ∂u

∂z

)
+ Fu +Du (1)

∂v

∂t
+ ~v · ∇v + fu = −∂φ

∂y
− ∂

∂z

(
v′w′ − ν ∂v

∂z

)
+ Fv +Dv (2)

∂φ

∂z
= −ρg

ρo
(3)

with the continuity equation:
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (4)

and scalar transport given by:

∂C

∂t
+ ~v · ∇C = − ∂

∂z

(
C ′w′ − νθ

∂C

∂z

)
+ FC +DC . (5)

An equation of state is also required:

ρ = ρ(T, S, P) (6)

The variables are shown in Table 3.1. An overbar represents a time average and a prime represents
a fluctuation about the mean. These equations are closed by parameterizing the Reynolds stresses
and turbulent tracer fluxes as:

u′w′ = −KM
∂u

∂z
; v′w′ = −KM

∂v

∂z
; C ′w′ = −KC

∂C

∂z
. (7)

Equations (1) and (2) express the momentum balance in the x- and y-directions, respectively.
The time evolution of all scalar concentration fields, including those for T (x, y, z, t) and S(x, y, z, t),
are governed by the advective-diffusive equation (5). The equation of state is given by equation
(6). In the Boussinesq approximation, density variations are neglected in the momentum equations
except for their contribution to the buoyancy force in the vertical momentum equation (3). Under
the hydrostatic approximation, it is further assumed that the vertical pressure gradient balances
the buoyancy force. Lastly, equation (4) expresses the continuity equation for an incompressible
fluid. For the moment, the effects of forcing and horizontal dissipation will be represented by the
schematic terms F and D, respectively. The horizontal and vertical mixing will be described more
fully in §4.10.

9

Variable Description
C(x, y, z, t) scalar quantity, i.e. temperature, salinity, nutrient concentration
Du,Dv,DC optional horizontal diffusive terms
Fu,Fv,FC forcing/source terms
f(x, y) Coriolis parameter
g acceleration of gravity

h(x, y) depth of sea floor below mean sea level
Hz(x, y, z) vertical grid spacing

ν, νθ molecular viscosity and diffusivity
KM ,KC vertical eddy viscosity and diffusivity

P total pressure P ≈ −ρogz
φ(x, y, z, t) dynamic pressure φ = (P/ρo)

ρo + ρ(x, y, z, t) total in situ density
S(x, y, z, t) salinity

t time
T (x, y, z, t) potential temperature
u, v, w the (x, y, z) components of vector velocity ~v
x, y horizontal coordinates
z vertical coordinate

ζ(x, y, t) the surface elevation

Table 1: The variables used in the description of the ocean model

3.2 Vertical boundary conditions

The vertical boundary conditions can be prescribed as follows:

top (z = ζ(x, y, t)) Km
∂u
∂z = τxs (x, y, t)

Km
∂v
∂z = τys (x, y, t)

KC
∂C
∂z = QC

ρocP

w = ∂ζ
∂t

and bottom (z = −h(x, y)) Km
∂u
∂z = τxb (x, y, t)

Km
∂v
∂z = τyb (x, y, t)

KC
∂C
∂z = 0

−w + ~v · ∇h = 0.

Variable Description
QC surface concentration flux
τxs , τ

y
s surface wind stress

τxb , τ
y
b bottom stress

Table 2: The variables used in the vertical boundary conditions for the ocean model

The surface boundary condition variables are defined in Table 3.2. Since QT is a strong function
of the surface temperature, we usually choose to compute QT using the surface temperature and
the atmospheric fields in an atmospheric bulk flux parameterization. This bulk flux routine also
computes the wind stress from the winds.

On the variable bottom, z = −h(x, y), the horizontal velocity has a prescribed bottom stress
which is a choice between linear, quadratic, or logarithmic terms. The vertical concentration flux

10

may also be prescribed at the bottom, although it is usually set to zero.

3.3 Horizontal boundary conditions

As distributed, the model can easily be configured for a periodic channel, a doubly periodic domain,
or a closed basin. Code is also included for open boundaries which may or may not work for your
particular application. Horizontal boundary conditions are described more fully in §4.13 and are
provided for u, v, T, S, and ζ.

The model domain is logically rectangular, but it is possible to mask out land areas on the
boundary and in the interior. Boundary conditions on these masked regions are straightforward,
with a choice of no-slip or free-slip walls.

If biharmonic friction is used, a higher order boundary condition must also be provided. The
model currently has this built into the code where the biharmonic terms are calculated. The high
order boundary conditions used for u are ∂

∂x

(
ν ∂

2u
∂x2

)
= 0 on the eastern and western boundaries

and ∂
∂y

(
ν ∂

2u
∂y2

)
= 0 on the northern and southern boundaries. The boundary conditions for v and

C are similar. These boundary conditions were chosen because they preserve the property of no
gain or loss of volume-integrated momentum or scalar concentration.

3.4 Terrain-following coordinate system

From the point of view of the computational model, it is highly convenient to introduce a stretched
vertical coordinate system which essentially “flattens out” the variable bottom at z = −h(x, y).
Such “σ” coordinate systems have long been used, with slight appropriate modification, in both
meteorology and oceanography [e.g., Phillips, 1957, Freeman et al., 1972]. To proceed, we make
the coordinate transformation:

x̂ = x
ŷ = y

σ = σ(x, y, z)
z = z(x, y, σ)

and
t̂ = t.

See Appendix B for the form of σ used here. Also, see Shchepetkin and McWilliams [2005] for a
discussion about the nature of this form of σ and how it differs from that used in SCRUM.

In the stretched system, the vertical coordinate σ spans the range −1 ≤ σ ≤ 0; we are therefore
left with level upper (σ = 0) and lower (σ = −1) bounding surfaces. The chain rules for this
transformation are: (

∂

∂x

)
z

=
(
∂

∂x

)
σ
−
(1
Hz

)(
∂z

∂x

)
σ

∂

∂σ(
∂

∂y

)
z

=
(
∂

∂y

)
σ

−
(1
Hz

)(
∂z

∂y

)
σ

∂

∂σ

∂

∂z
=
(
∂s

∂z

)
∂

∂σ
= 1
Hz

∂

∂σ

where
Hz ≡

∂z

∂σ
As a trade-off for this geometric simplification, the dynamic equations become somewhat more
complicated. The resulting dynamic equations are, after dropping the carats:

∂u

∂t
− fv + ~v · ∇u = −∂φ

∂x
−
(
gρ

ρo

)
∂z

∂x
− g ∂ζ

∂x
+ 1
Hz

∂

∂σ

[
Km

Hz

∂u

∂σ

]
+ Fu +Du (8)

11

∂v

∂t
+ fu+ ~v · ∇v = −∂φ

∂y
−
(
gρ

ρo

)
∂z

∂y
− g ∂ζ

∂y
+ 1
Hz

∂

∂σ

[
Km

Hz

∂v

∂σ

]
+ Fv +Dv (9)

∂C

∂t
+ ~v · ∇C = 1

Hz

∂

∂σ

[
KC

Hz

∂C

∂σ

]
+ FT +DT (10)

ρ = ρ(T, S, P) (11)
∂φ

∂σ
=
(−gHzρ

ρo

)
(12)

∂Hz

∂t
+ ∂(Hzu)

∂x
+ ∂(Hzv)

∂y
+ ∂(HzΩ)

∂σ
= 0 (13)

where
~v = (u, v,Ω)

~v · ∇ = u
∂

∂x
+ v

∂

∂y
+ Ω ∂

∂σ
.

The vertical velocity in σ coordinates is

Ω(x, y, σ, t) = 1
Hz

[
w −

(
z + h

ζ + h

)
∂ζ

∂t
− u∂z

∂x
− v ∂z

∂y

]
and

w = ∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
+ ΩHz.

In the stretched coordinate system, the vertical boundary conditions become:

top (σ= 0)
(
Km
Hz

)
∂u
∂σ = τxs (x, y, t)(

Km
Hz

)
∂v
∂σ = τys (x, y, t)(

KC
Hz

)
∂C
∂σ = QC

ρocP

Ω = 0

and bottom (σ = −1)
(
Km
Hz

)
∂u
∂σ = τxb (x, y, t)(

Km
Hz

)
∂v
∂σ = τyb (x, y, t)(

KC
Hz

)
∂C
∂s = 0

Ω = 0.

Note the simplification of the boundary conditions on vertical velocity that arises from the σ
coordinate transformation.

3.5 Horizontal curvilinear coordinates

In many applications of interest (e.g., flow adjacent to a coastal boundary), the fluid may be confined
horizontally within an irregular region. In such problems, a horizontal coordinate system which
conforms to the irregular lateral boundaries is advantageous. It is often also true in many geo-
physical problems that the simulated flow fields have regions of enhanced structure (e.g., boundary
currents or fronts) which occupy a relatively small fraction of the physical/computational domain.
In these problems, added efficiency can be gained by placing more computational resolution in such
regions.

The requirement for a boundary-following coordinate system and for a laterally variable grid
resolution can both be met, for suitably smooth domains, by introducing an appropriate orthogonal

12

coordinate transformation in the horizontal. Let the new coordinates be ξ(x, y) and η(x, y), where
the relationship of horizontal arc length to the differential distance is given by:

(ds)ξ =
(1
m

)
dξ (14)

(ds)η =
(1
n

)
dη (15)

Here, m(ξ, η) and n(ξ, η) are the scale factors which relate the differential distances (∆ξ,∆η) to
the actual (physical) arc lengths. Appendix C contains the curvilinear version of several common
vector quantities.

Denoting the velocity components in the new coordinate system by

~v · ξ̂ = u (16)

and
~v · η̂ = v (17)

the equations of motion (8)-(13) can be re-written [see, e.g., Arakawa and Lamb, 1977] as:

∂

∂t

(
Hzu

mn

)
+ ∂

∂ξ

(
Hzu

2

n

)
+ ∂

∂η

(
Hzuv

m

)
+ ∂

∂σ

(
HzuΩ
mn

)
−
{(

f

mn

)
+ v

∂

∂ξ

(1
n

)
− u ∂

∂η

(1
m

)}
Hzv =

−
(
Hz

n

)(
∂φ

∂ξ
+ gρ

ρo

∂z

∂ξ
+ g

∂ζ

∂ξ

)
+ 1
mn

∂

∂σ

[
Km

Hz

∂u

∂σ

]
+ Hz

mn
(Fu +Du) (18)

∂

∂t

(
Hzv

mn

)
+ ∂

∂ξ

(
Hzuv

n

)
+ ∂

∂η

(
Hzv

2

m

)
+ ∂

∂σ

(
HzvΩ
mn

)
+
{(

f

mn

)
+ v

∂

∂ξ

(1
n

)
− u ∂

∂η

(1
m

)}
Hzu =

−
(
Hz

m

)(
∂φ

∂η
+ gρ

ρo

∂z

∂η
+ g

∂ζ

∂η

)
+ 1
mn

∂

∂σ

[
Km

Hz
∂v∂σ

]
+ Hz

mn
(Fv +Dv) (19)

∂

∂t

(
HzC

mn

)
+ ∂

∂ξ

(
HzuC

n

)
+ ∂

∂η

(
HzvC

m

)
+ ∂

∂σ

(
HzΩC
mn

)
=

1
mn

∂

∂s

[
KC

Hz

∂C

∂σ

]
+ Hz

mn
(FC +DC) (20)

ρ = ρ(T, S, P) (21)
∂φ

∂σ
= −

(
gHzρ

ρo

)
(22)

∂

∂t

(
Hz

mn

)
+ ∂

∂ξ

(
Hzu

n

)
+ ∂

∂η

(
Hzv

m

)
+ ∂

∂σ

(
HzΩ
mn

)
= 0. (23)

All boundary conditions remain unchanged.

13

4 Numerical Solution Technique

4.1 Vertical and horizontal discretization

4.1.1 Horizontal grid

In the horizontal (ξ, η), a traditional, centered, second-order finite-difference approximation is
adopted. In particular, the horizontal arrangement of variables is as shown in Fig. 1. This is
equivalent to the well known Arakawa “C” grid, which is well suited for problems with horizontal
resolution that is fine compared to the first radius of deformation [Arakawa and Lamb, 1977].

f

-�

6

?

- -

6

6

∆ξ

∆η
(ρ, h, f,Ω)i,jui,j ui+1,j

vi,j

vi,j+1

Figure 1: Placement of variables on an Arakawa C grid

4.1.2 Vertical grid

The vertical discretization also uses a second-order finite-difference approximation. Just as we use
a staggered horizontal grid, the model was found to be more well-behaved with a staggered vertical
grid. The vertical grid is shown in Fig. 2.

v
v
v
v
v
v

wN
ρN

ρ1

ρ2
w1

w0

w2

wN−1
ρN−1

Figure 2: Placement of variables on staggered vertical grid

14

CBA

D E

G H I J

K L

M N

F

– u points

– v points

– ρ points

– ψ points

Figure 3: Masked region within the domain

4.2 Masking of land areas

ROMS has the ability to work with interior land areas, although the computations occur over the
entire model domain. One grid cell is shown in Fig. 1 while several cells are shown in Fig. 3,
including two land cells. The process of defining which areas are to be masked is external to ROMS
and is usually accomplished in Matlab or Python; this section describes how the masking affects
the computation of the various terms in the equations of motion.

4.2.1 Velocity

At the end of every time step, the values of many variables within the masked region are set to zero
by multiplying by the mask for either the u, v or ρ points. This is appropriate for the v points E
and L in Fig. 3, since the flow in and out of the land should be zero. It is likewise appropriate for
the u point at I, but is not necessarily correct for point G. The only term in the u equation that
requires the u value at point G is the horizontal viscosity, which has a term of the form ∂

∂ην
∂u
∂η .

Since point G is used in this term by both points A and M, it is not sufficient to replace its value
with that of the image point for A. Instead, the term ∂u

∂η is computed and the values at points D
and K are replaced with the values appropriate for either free-slip or no-slip boundary conditions.
Likewise, the term ∂

∂ξν
∂v
∂ξ in the v equation must be corrected at the mask boundaries.

This is accomplished by having a fourth mask array defined at the ψ points, in which the values
are set to be no-slip in metrics. For no-slip boundaries, we count on the values inside the land
(point G) having been zeroed out. For point D, the image point at G should contain minus the
value of u at point A. The desired value of ∂u

∂η is therefore 2uA while instead we have simply uA.
In order to achieve the correct result, we multiply by a mask which contains the value 2 at point
D. It also contains a 2 at point K so that ∂u

∂η there will acquire the desired value of −2uM. The
corner point F is set to have a value of 1.

4.2.2 Temperature, salinity and surface elevation

The handling of masks by the temperature, salinity and surface elevation equations is similar to
that in the momentum equations, and is in fact simpler. Values of T , S and ζ inside the land

15

masks, such as point H in Fig. 3, are set to zero after every time step. This point would be used by
the horizontal diffusion term for points B, J, and N. This is corrected by setting the first derivative
terms at points E, I, and L to zero, to be consistent with a no-flux boundary condition. Note that
the equation of state must be able to handle T = S = 0 since these are the values inside masked
regions.

4.2.3 Wetting and drying

There is now an option to have wetting and drying in the model, in which a cell can switch between
being wet or being dry as the tides come in and go out, for instance. Cells which are masked out
as in Fig. 3 are never allowed to be wet, however.

• In the case of wetting and drying, a critical depth, Dcrit, is supplied by the user.

• The total water depth (D = h + ζ) is compared to Dcrit. If the water level is less than this
depth, no flux is allowed out of that cell. Water can always flow in and resubmerge the cell.

• The wetting and drying only happens during the 2-D computations; the 3-D computations
see a depth of Dcrit in the “dry” areas, though surface fluxes are turned off in the dry cells,
as are some other processes.

• The ice component now checks for dry cells when computing the ice rheology and ice ther-
modynamics.

4.3 Time-stepping overview

While time stepping the model, we have a stored history of the model fields at time n − 1, an
estimate of the fields at the current time n, and we need to come up with an estimate for time
n + 1. For reasons of efficiency, we choose to use a split-explicit time step, integrating the depth-
integrated equations with a shorter time step than the full 3-D equations. There is an integer ratio
M between the time steps. The exact details of how the time stepping is done vary from one version
of ROMS to the next, with the east coast ROMS described here being older than other branches.
Still, all versions have these steps:

1. Take a predictor step for at least the 3-D tracers to time n+ 1
2 .

2. Compute ρ and ρ∗ for use in the depth-integrated time steps, from the density either at time
n or time n+ 1

2 .

3. Depth integrate the 3-D momentum right-hand side terms at time n+ 1
2 for use in the depth-

integrated time steps (or extrapolate to obtain an estimate of those terms).

4. Take all the depth-integrated steps. Store weighted time-means of the u, v fields centered at
both time n+ 1

2 and time n+ 1 (plus ζ at time n+ 1). The latter requires this time stepping
to extend past time n+ 1, using M∗ steps rather than just M .

5. Use the weighted time-means from depth-integrated fields to complete the corrector step for
the 3-D fields to time n+ 1.

Great care is taken to avoid the introduction of a mode-splitting instability due to the use of shorter
time steps for the depth-integrated computations.

The mode coupling has evolved through the various ROMS versions, as shown in Fig. 4 [from
Shchepetkin and McWilliams, 2009a]. The time stepping schemes are also listed in Table 4.3 and
described in detail in Shchepetkin and McWilliams [2005] and Shchepetkin and McWilliams [2009b];
the relevant ones are described in Appendix A.

16

Figure 4: Diagrams of the time stepping and mode coupling used in various ROMS versions.
(a) Rutgers University ROMS (from myroms.org), (b) older ROMS AGRIF, (c) UCLA ROMS, de-
scribed in Shchepetkin and McWilliams [2005], (d) non-hydrostatic ROMS (Kanarska et al. [2007]).
In all, the curved arrows update the 3-D fields; those with “pillars” are leapfrog in nature with the
pillar representing the r.h.s. terms. Straight arrows indicate exchange between the barotropic and
baroclinic modes. The shape functions for the fast time steps show just one option out of many
possibilities. The grey function has weights to produce an estimate at time n + 1, while the light
red function has weights to produce an estimate at time n+ 1

2 .

17

SC
R
U
M

3.0
R
utgers

A
G
R
IF

U
C
LA

N
on-hydrostatic

R
eference

H
edstrom

[2000]
H
aidvogelet

al.[2000]
Penven

et
al.[2006]

Shchepetkin
and

M
cW

illiam
s
[2005]

K
anarska

et
al.[2007]

B
arotropic

LF-T
R

LF-A
M
3
w
ith

LF-A
M
3
w
ith

G
en.

FB
G
en.

FB
m
ode

FB
feedback

FB
feedback

a
(A

B
3-A

M
4)

(A
B
3-A

M
4)

2-D
α

m
ax ,iter.

√
2,(2) b

1.85,(2)
1.85,(2)

1.78,(1)
1.78,(1)

3-D
m
om

enta
A
B
3

A
B
3

LF-A
M
3

LF-A
M
3

A
B
3
(m

od)
Tracers

A
B
3

LF-T
R

LF-A
M
3

LF-A
M
3

A
B
3
(m

od)
Internal

A
B
3

G
en.FB

LF-A
M
3,

LF-A
M
3,

G
en.FB

w
aves

(A
B
3-T

R
)

FB
feedback

FB
feedback

(A
B
3-A

M
4)

α
m

ax ,advect.
0.72

0.72
1.587

1.587
0.78

α
m

ax ,C
or.

0.72
0.72

1.587
1.587

0.78
α

m
ax ,int.

w
.

0.72,(1)
1.14,(1,2)

1.85,(2)
1.85,(2)

1.78,(1)

Table
3:

T
he

tim
e
stepping

schem
es

used
in

the
various

R
O
M
S
versions.

α
≡
ω
δtis

the
C
ourant

num
ber

and
ω

=
ck

is
the

frequency
for

a
w
ave

com
ponent

w
ith

w
avenum

ber
k.

aT
he

generalized
FB

barotropic
m
ode

w
as

ported
into

the
new

est
A
G
R
IF

code
at

the
end

of2007.
bT

he
num

ber
in

parentheses
(e.g.,2)

indicates
the

num
ber

ofr.h.s.
com

putations
per

tim
e
step.

Ifthere
are

tw
o
parenthesized

num
ber,the

first
one

is
for

m
om

enta,
the

second
for

tracers.

18

4.4 Conservation properties

From Shchepetkin and McWilliams [2005], we have a tracer concentration equation in advective
form:

∂C

∂t
+ (u · ∇)C = 0 (24)

and also a tracer concentration equation in conservation form:

∂C

∂t
+∇ · (uC) = 0. (25)

The continuity equation:
(∇ · u) = 0 (26)

can be used to get from one tracer equation to the other. As a consequence of eq. (24), if the tracer is
spatially uniform, it will remain so regardless of the velocity field (constancy preservation). On the
other hand, as a consequence of (25), the volume integral of the tracer concentration is conserved
in the absence of internal sources and fluxes through the boundary. Both properties are valuable
and should be retained when constructing numerical ocean models.

The semi-discrete form of the tracer equation (20) is:

∂

∂t

(
HzC

mn

)
+δξ

(
uHz

ξ
C
ξ

nξ

)
+δη

(
vHz

η
C
η

mη

)
+δσ

(
C
σHzΩ
mn

)
= 1
mn

∂

∂σ

(
Km

∆z
∂C

∂σ

)
+DC+FC (27)

Here δξ, δη and δσ denote simple centered finite-difference approximations to ∂/∂ξ, ∂/∂η and ∂/∂σ
with the differences taken over the distances ∆ξ, ∆η and ∆σ, respectively. ∆z is the vertical
distance from one ρ point to another. ()ξ, ()η and ()σ represent averages taken over the
distances ∆ξ, ∆η and ∆σ.

The finite volume version of the same equation is no different, except that a quantity C is
defined as the volume-averaged concentration over the grid box ∆V :

C = mn

Hz

∫
∆V

HzC

mn
δξ δη δσ (28)

The quantity
(
uHz

ξ
C
ξ

nξ

)
is the flux through an interface between adjacent grid boxes.

This method of averaging was chosen because it internally conserves first moments in the model
domain, although it is still possible to exchange mass and energy through the open boundaries. The
method is similar to that used in Arakawa and Lamb [1977]; though their scheme also conserves
enstrophy. Instead, we will focus on (nearly) retaining constancy preservation while coupling the
barotropic (depth-integrated) equations and the baroclinic equations.

The time step in eq. (27) is assumed to be from time n to time n+1, with the other terms being
evaluated at time n+ 1

2 for second-order accuracy. Setting C to 1 everywhere reduces eq. (27) to:

∂

∂t

(
Hz

mn

)
+ δξ

(
uHz

ξ

nξ

)
+ δη

(
vHz

η

mη

)
+ δσ

(
HzΩ
mn

)
= 0 (29)

If this equation holds true for the step from time n to time n+ 1, then our constancy preservation
will hold.

In a hydrostatic model such as ROMS, the discrete continuity equation is needed to compute
vertical velocity rather than grid-box volume Hz

mn (the latter is controlled by changes in ζ in the
barotropic mode computations). Here, HzΩ

mn is the finite-volume flux across the moving grid-box
interface, vertically on the w grid.

19

The vertical integral of the continuity eq. (23), using the vertical boundary conditions on Ω, is:

∂

∂t

(
ζ

mn

)
+ δξ

(
uD

ξ

nξ

)
+ δη

(
vD

η

mη

)
= 0 (30)

where ζ is the surface elevation, D = h + ζ is the total depth, and u, v are the depth-integrated
horizontal velocities. This equation and the corresponding 2-D momentum equations are time
stepped on a shorter time step than eq. (27) and the other 3-D equations. Due to the details in
the mode coupling, it is only possible to maintain constancy preservation to the accuracy of the
barotropic time steps.

4.5 Depth-integrated equations

The depth average of a quantity A is given by:

A = 1
D

∫ 0

−1
HzAdσ (31)

where the overbar indicates a vertically averaged quantity and

D ≡ ζ(ξ, η, t) + h(ξ, η) (32)

is the total depth of the water column. The vertical integral of equation (18) is:

∂

∂t

(
Du

mn

)
+ ∂

∂ξ

(
Duu

n

)
+ ∂

∂η

(
Duv

m

)
− Dfv

mn

−
[
vv

∂

∂ξ

(1
n

)
− uv ∂

∂η

(1
m

)]
D = −D

n

(
∂φ2
∂ξ

+ g
∂ζ

∂ξ

)

+ D

mn

(
Fu +Dhu

)
+ 1
mn

(
τ ξs − τ

ξ
b

)
(33)

where φ2 includes the ∂z
∂ξ term, Dhu is the horizontal viscosity, and the vertical viscosity only

contributes through the upper and lower boundary conditions. The corresponding vertical integral
of equation (19) is:

∂

∂t

(
Dv

mn

)
+ ∂

∂ξ

(
Duv

n

)
+ ∂

∂η

(
Dvv

m

)
+ Dfu

mn

+
[
uv

∂

∂ξ

(1
n

)
− uu ∂

∂η

(1
m

)]
D = −D

m

(
∂φ2
∂η

+ g
∂ζ

∂η

)

+ D

mn

(
Fv +Dhv

)
+ 1
mn

(
τηs − τ

η
b

)
. (34)

We also need the vertical integral of equation (23), shown above as eq. (30).
The presence of a free surface introduces waves which propagate at a speed of

√
gh. These

waves usually impose a more severe time-step limit than any of the internal processes. We have
therefore chosen to solve the full equations by means of a split time step. In other words, the depth
integrated equations (33), (34), and (30) are integrated using a short time step and the values of
u and v are used to replace those found by integrating the full equations on a longer time step. A
diagram of the barotropic time stepping is shown in Fig. 5.

Some of the terms in equations (33) and (34) are updated on the short time step while others
are not. The contributions from the slow terms are computed once per long time step and stored.

20

m=M

Barotropic steps

m=Mm=0

n n+1

*

Figure 5: The split time stepping used in the model.

If we call these terms Ruslow and Rvslow , equations (33) and (34) become:

∂

∂t

(
Du

mn

)
+ ∂

∂ξ

(
Duu

n

)
+ ∂

∂η

(
Duv

m

)
− Dfv

mn

−
[
v v

∂

∂ξ

(1
n

)
− u v ∂

∂η

(1
m

)]
D = Ruslow −

gD

n

∂ζ

∂ξ
+ D

mn
Du −

1
mn

τ ξb (35)

∂

∂t

(
Dv

mn

)
+ ∂

∂ξ

(
Duv

n

)
+ ∂

∂η

(
Dv v

m

)
+ Dfu

mn

+
[
u v

∂

∂ξ

(1
n

)
− uu ∂

∂η

(1
m

)]
D = Rvslow −

gD

m

∂ζ

∂η
+ D

mn
Dv −

1
mn

τηb . (36)

When time stepping the model, we compute the right-hand-sides for equations (18) and (19) as
well as the right-hand-sides for equations (35) and (36). The vertical integral of the 3-D right-
hand-sides are obtained and then the 2-D right-hand-sides are subtracted. The resulting fields are
the slow forcings Ruslow and Rvslow . This was found to be the easiest way to retain the baroclinic
contributions of the non-linear terms such as uu− uu.

The model is time stepped from time n to time n+1 by using short time steps on equations (35),
(36) and (30). Equation (30) is time stepped first, so that an estimate of the new D is available for
the time rate of change terms in equations (35) and (36). A third-order predictor-corrector time
stepping is used. In practice, we actually time step all the way to time (n + dtfast ×M?), while
maintaining weighted averages of the values of u, v and ζ. The averages are used to replace the
values at time n+ 1 in both the baroclinic and barotropic modes, and for recomputing the vertical
grid spacing Hz. Fig. 6 shows one option for how these weights might look.

The primary weights, am, are used to compute 〈ζ〉n+1 ≡
∑M?

m=1 amζ
m. There is a related set of

secondary weights bm, used as 〈〈u〉〉n+ 1
2 ≡

∑M?

m=1 bmu
m. In order to maintain constancy preservation,

this relation must hold:

〈ζ〉n+1
i,j = 〈ζ〉ni,j − (mn)i,j∆t

[〈〈
Du

n

〉〉n+ 1
2

i+ 1
2 ,j
−
〈〈
Du

n

〉〉n+ 1
2

i− 1
2 ,j

+
〈〈
Dv

m

〉〉n+ 1
2

i,j+ 1
2

−
〈〈
Dv

m

〉〉n+ 1
2

i,j− 1
2

]
(37)

Shchepetkin and McWilliams [2005] introduce a range of possible weights, but the ones used here
have a shape function:

A(τ) = A0

{(
τ

τ0

)p [
1−

(
τ

τ0

)q]
− r τ

τ0

}
(38)

where p, q are parameters and A0, τ0, and r are chosen to satisfy normalization, consistency, and
second-order accuracy conditions,

In =
∫ τ?

0
τnA(τ)dτ = 1, n = 0, 1, 2 (39)

21

Figure 6: Weights for the barotropic time stepping. The upper panel shows the primary weights,
centered at time n+1, while the lower panel shows the secondary weights weights, centered at time
n+ 1

2 .

22

using Newton iterations. τ? is the upper limit of τ with A(τ) ≥ 0. In practice we initially set

A0 = 1, r = 0 and τ = (p+ 2)(p+ q + 2)
(p+ 1)(p+ q + 1) ,

compute A(τ) using eq. (38), normalize using:

M?∑
m=1

am ≡ 1,
M?∑
m=1

am
m

M
≡ 1, (40)

and adjust r iteratively to satisfy the n = 2 condition of (39). We are using values of p = 2, q = 4,
and r = 0.284. This form allows some negative weights for small m, allowing M? to be less than
1.5M .

ROMS also supports an older cosine weighting option, which isn’t recommended since it is only
first-order accurate.

4.6 Density in the mode coupling

Equation (35) contains the term Ruslow , computed as the difference between the 3-D right-hand-side
and the 2-D right-hand-side. The pressure gradient therefore has the form:

− gD

n

∂ζ

∂ξ
+
[
gD

n

∂ζ

∂ξ
+ F

]
(41)

where the term in square brackets is the mode coupling term and is held fixed over all the barotropic
steps and

F = − 1
ρ0n

∫ ζ

−h

∂P

∂ξ
dz (42)

is the vertically integrated pressure gradient. The latter is a function of the bathymetry, free surface
gradient, and the free surface itself, as well as the vertical distribution of density.

The disadvantage of this approach is that after the barotropic time stepping is complete and
the new free surface is substituted into the full baroclinic pressure gradient, its vertical integral will
no longer be equal to the sum of the new surface slope term and the original coupling term based
on the old free surface. This is one form of mode-splitting error which can lead to trouble because
the vertically integrated pressure gradient is not in balance with the barotropic mass flux.

Instead, let us define the following:

ρ = 1
D

∫ ζ

−h
ρdz, ρ? = 1

1
2D

2

∫ ζ

−h

{∫ ζ

z
ρdz′

}
dz (43)

Changing the vertical coordinate to σ yields:

ρ =
∫ 0

−1
ρdσ, ρ? = 2

∫ 0

−1

{∫ 0

σ
ρdσ′

}
dσ (44)

which implies that ρ and ρ? are actually independent of ζ as long as the density profile ρ = ρ(σ)
does not change. The vertically integrated pressure gradient becomes:

− 1
ρ0

g

n

{
∂

∂ξ

(
ρ?D2

2

)
− ρD∂h

∂ξ

}
= − 1

ρ0

g

n
D

{
ρ?
∂ζ

∂ξ
+ D

2
∂ρ?

∂ξ
+ (ρ? − ρ)∂h

∂ξ

}
(45)

In the case of uniform density ρ0, we obtain ρ? ≡ ρ ≡ ρ0, but we otherwise have two new terms.
The accuracy of these terms depends on an accurate vertical integration of the density, as described
in Shchepetkin and McWilliams [2005].

23

4.7 Time stepping: internal velocity modes and tracers

The momentum equations (18) and(19) are advanced before the tracer equation, by computing all
the terms except the vertical viscosity and then using the implicit scheme described in §4.12 to
find the new values for u and v. The depth-averaged component is then removed and replaced by
the 〈u〉 and 〈v〉 computed as in §4.5. A third-order Adams-Bashforth (AB3) time stepping is used,
requiring multiple right-hand-side time levels (see Appendix A). These stored up r.h.s. values can
be used to extrapolate to a value at time n+ 1

2 for use in the barotropic steps as shown in Fig. 4.
The tracer concentration equation (27) is advanced in a predictor-corrector leapfrog-trapezoidal

step, with great care taken to optimize both the conservation and constancy-preserving properties
of the continuous equations. The corrector step can maintain both, as long as it uses velocities
and column depths which satisfy eq. (37). This also requires tracer values centered at time n+ 1

2 ,
obtained from the predictor step. The vertical diffusion is computed as in §4.12.

The predictor step cannot be both constancy-preserving and conservative; it was therefore
decided to make it constancy-preserving. Also, since it is only being used to compute the advection
for the corrector step, the expensive diffusion operations are not carried out during the predictor
step.

The preceeding notes on tracer advection refer to all but the MPDATA option. The MPDATA
algorithm has its own predictor-corrector with emphasis on not allowing values to exceed their
original range; it therefore gives up the constancy-preservation. This is most noticeable in shallow
areas with large tides.

4.8 Advection schemes

The advection of a tracer C has an equation of the form

∂

∂t

HzC

mn
= − ∂

∂ξ
F ξ − ∂

∂η
F η − ∂

∂σ
F σ, (46)

where we have introduced the advective fluxes:

F ξ = HzuC

n
(47)

F η = HzvC

m
(48)

F σ = HzΩC
mn

. (49)

4.8.1 Second-order Centered

The simplest form of the advective fluxes is the centered second-order:

F ξ = Hz
ξ
uC

ξ

nξ
(50)

F η = Hz
η
vC

η

mη (51)

F σ = Hz
σΩCσ

mn
. (52)

This scheme is known to have some unfortunate properties in the presence of strong gradients,
such as large over- and under-shoots of tracers, leading to the need for large amounts of horizontal
smoothing. ROMS provides alternative advection schemes with better behavior in many situations,
but retains this one for comparison purposes.

24

4.8.2 Fourth-order Centered

The barotropic advection is centered fourth-order unless you specifically pick centered second-order
as your horizontal advection scheme. To get fourth-order, create gradient terms:

Gξ =
(
∂C

∂ξ

)ξ
(53)

Gη =
(
∂C

∂η

)η
(54)

Gσ =
(
∂C

∂σ

)σ
. (55)

The fluxes now become:

F ξ = Hz
ξ

nξ
u

(
C
ξ − 1

3
∂Gξ

∂ξ

)
(56)

F η = Hz

mη

η

v

(
C
η − 1

3
∂Gη

∂η

)
(57)

F σ = Hz
σ

mn
Ω
(
C
σ − 1

3
∂Gσ

∂σ

)
. (58)

4.8.3 Fourth-order Akima

An alternate fourth-order algorithm is that by Akima:

Gξ = 2∂C
∂ξ i

∂C

∂ξ i+1

/(
∂C

∂ξ i
+ ∂C

∂ξ i+1

)
(59)

Gη = 2∂C
∂η j

∂C

∂η j+1

/(
∂C

∂η j
+ ∂C

∂η j+1

)
(60)

Gσ = 2∂C
∂σ k

∂C

∂σ k−1

/(
∂C

∂σ k
+ ∂C

∂σ k−1

)
(61)

(62)

With the fluxes as in 56–58.

4.8.4 Third-order Upwind

There is a class of third-order upwind advection schemes, both one-dimensional [Leonard, 1979]
and two-dimensional [Rasch, 1994, Shchepetkin and McWilliams, 1998]. This scheme is known
as UTOPIA (Uniformly Third-Order Polynomial Interpolation Algorithm). Applying flux limiters
to UTOPIA is explored in Thuburn [1996], although it is not implemented in ROMS. The two-
dimensional formulation in Rasch contains terms of order u2C and u3C, including cross terms
(uvC). The terms which are nonlinear in velocity have been dropped in ROMS, leaving one extra
upwind term in the computation of the advective fluxes:

F ξ = Hzu

n

(
C − γ ∂

2C

∂ξ2

)
(63)

F η = Hzv

m

(
C − γ ∂

2C

∂η2

)
(64)

25

The second derivative terms are centered on a ρ point in the grid, but are needed at a u or v point
in the flux. The upstream value is used:

F ξi,j,k = Hz
ξ

nξ
[max(0, ui,j,k)Ci−1,j,k + min(0, ui,j,k)Ci,j,k] . (65)

The value of γ in the model is 1
8 while that in Rasch [1994] is 1

6 .
Because the third-order upwind scheme is designed to be two-dimensional, it is not used in the

vertical (though one might argue that we are simply performing one-dimensional operations here).
Instead, we use a centered fourth-order scheme in the vertical when the third-order upwind option
is turned on:

F s = Hzw

mn

[
− 1

16Ci,j,k−1 + 9
16Ci,j,k + 9

16Ci,j,k+1 −
1
16Ci,j,k+2

]
(66)

One advantage of UTOPIA over MPDATA is that it can be used on variables having both
negative and positive values. Therefore, it can be used on velocity as well as scalars. For the
u-velocity, we have:

F ξ =
(
u− γ ∂

2u

∂ξ2

)[
Hzu

n
− γ ∂

2

∂ξ2

(
Hzu

n

)]
(67)

F η =
(
u− γ ∂

2u

∂η2

)[
Hzv

m
− γ ∂

2

∂ξ2

(
Hzv

m

)]
(68)

F σ = Hzw

mn

[
− 1

16ui,j,k−1 + 9
16ui,j,k + 9

16ui,j,k+1 −
1
16ui,j,k+2

]
(69)

while for the v-velocity we have:

F ξ =
(
v − γ ∂

2v

∂ξ2

)[
Hzu

n
− γ ∂

2

∂η2

(
Hzu

n

)]
(70)

F η =
(
v − γ ∂

2v

∂η2

)[
Hzv

m
− γ ∂

2

∂η2

(
Hzv

m

)]
(71)

F σ = Hzw

mn

[
− 1

16vi,j,k−1 + 9
16vi,j,k + 9

16vi,j,k+1 −
1
16vi,j,k+2

]
(72)

In all these terms, the second derivatives are evaluated at an upstream location.

4.9 Determination of the vertical velocity and density fields

Having obtained a complete specification of the u, v, T, and S fields at the next time level by the
methods outlined above, the vertical velocity and density fields can be calculated. The vertical
velocity is obtained by combining equations (23) and (30) to obtain:

∂

∂ξ

(
Hzu

n

)
+ ∂

∂η

(
Hzv

m

)
+ ∂

∂σ

(
HzΩ
mn

)
− ∂

∂ξ

(
Du

n

)
− ∂

∂η

(
Dv

m

)
= 0. (73)

Solving for HzΩ/mn and using the semi-discrete notation of §4.4 we obtain:

HzΩ
mn

=
∫ [

δξ

(
uD

ξ

nξ

)
+ δη

(
vD

η

mη

)
− δξ

(
uHz

ξ

nξ

)
− δη

(
vHz

η

mη

)]
dσ. (74)

The integral is actually computed as a sum from the bottom upwards and also as a sum from the
top downwards. The value used is a linear combination of the two, weighted so that the surface
down value is used near the surface while the other is used near the bottom.

26

The density is obtained from temperature and salinity via an equation of state. ROMS provides
a choice of a nonlinear equation of state ρ = ρ(T, S, z) or a linear equation of state ρ = ρ(T). The
nonlinear equation of state has been modified and now corresponds to the UNESCO equation of
state as derived by Jackett and McDougall [1995]. It computes in situ density as a function of
potential temperature, salinity and pressure.

Warning: although we have used it quite extensively, McDougall (personal communication)
claims that the single-variable (ρ = ρ(T)) equation of state is not dynamically appropriate as is.
He has worked out the extra source and sink terms required, arising from vertical motions and the
compressibility of water. They are quite complicated and we have not implemented them to see if
they alter the flow.

4.10 Horizontal mixing

In Chapter 3, the diffusive terms were written simply as Du,Dv,DT , and DS . The vertical compo-
nent of these terms is described in §4.12. Here we describe the ROMS options for representing the
horizontal component of these terms, first the viscosity then the diffusion.

4.10.1 Deviatory stress tensor (viscosity)

Note: this material was copied from the wiki, where it was contributed by Hernan Arango. He uses
“s” where we have been using “σ” while here σ is the stress tensor.

The horizontal components of the divergence of the stress tensor [Wajsowicz, 1993] in nondime-
sional, orthogonal curvilinear coordinates (ξ, η, s) with dimensional, spatially-varying metric factors
(1
m , 1

n , Hz) and velocity components (u, v, ωHz) are given by:

F u ≡ ξ̂ · (∇ · ~σ) = mn

Hz

[
∂

∂ξ

(
Hzσξξ
n

)
+ ∂

∂η

(
Hzσξη
m

)
+ ∂

∂s

(
σξs
mn

)
+ (75)

Hzσξη
∂

∂η

(1
m

)
−Hzσηη

∂

∂ξ

(1
n

)
− 1
n
σss

∂Hz

∂ξ

]
(76)

F v ≡ η̂ · (∇ · ~σ) = mn

Hz

[
∂

∂ξ

(
Hzσηξ
n

)
+ ∂

∂η

(
Hzσηη
m

)
+ ∂

∂s

(
σηs
mn

)
+ (77)

Hzσηξ
∂

∂ξ

(1
n

)
−Hzσξξ

∂

∂η

(1
m

)
− 1
m
σss

∂Hz

∂η

]
(78)

where

σξξ = (AM + ν) eξξ + (ν −AM) eηη, (79)

σηη = (ν −AM) eξξ + (AM + ν) eηη, (80)

σss = 2 ν ess, (81)

σξη = σηξ = 2AM eξη, (82)

σξs = 2KM eξs, (83)

σηs = 2KM eηs, (84)

and the strain field is:

27

eξξ = m
∂u

∂ξ
+mnv

∂

∂η

(1
m

)
, (85)

eηη = n
∂v

∂η
+mnu

∂

∂ξ

(1
n

)
, (86)

ess = 1
Hz

∂ (ωHz)
∂s

+ m

Hz
u
∂Hz

∂ξ
+ n

Hz
v
∂Hz

∂η
, (87)

2 eξη = m

n

∂ (nv)
∂ξ

+ n

m

∂ (mu)
∂η

, (88)

2 eξs = 1
mHz

∂ (mu)
∂s

+mHz
∂ω

∂ξ
, (89)

2 eηs = 1
nHz

∂ (nv)
∂s

+ n Hz
∂ω

∂η
. (90)

Here, AM (ξ, η) and KM (ξ, η, s) are the spatially varying horizontal and vertical viscosity coef-
ficients, respectively, and ν is another (very small, often neglected) horizontal viscosity coefficient.
Notice that because of the generalized terrain-following vertical coordinates of ROMS, we need
to transform the horizontal partial derivatives from constant ”z-”surfaces to constant ”s-”surfaces.
And the vertical metric or level thickness is the Jacobian of the transformation, Hz = ∂z

∂s . Also in
these models, the ”vertical” velocity is computed as ωHz

mn and has units of m3/s.

4.10.2 Transverse stress tensor

Assuming transverse isotropy, as in Sadourny and Maynard [1997] and Griffies and Hallberg [2000],
the deviatoric stress tensor can be split into vertical and horizontal sub-tensors. The horizontal
(or transverse) sub-tensor is symmetric, it has a null trace, and it possesses axial symmetry in the
local vertical direction. Then, the transverse stress tensor can be derived from eq. (76) and (78),
yielding

HzF
u = n2m

∂

∂ξ

(
HzF

uξ

n

)
+m2n

∂

∂η

(
HzF

uη

m

)
(91)

HzF
v = n2m

∂

∂ξ

(
HzF

vξ

n

)
+m2n

∂

∂η

(
HzF

vη

m

)
(92)

where

F uξ = 1
n
AM

[
m

n

∂ (nu)
∂ξ

− n

m

∂ (mv)
∂η

]
, (93)

F uη = 1
m
AM

[
n

m

∂ (mu)
∂η

+ m

n

∂ (nv)
∂ξ

]
, (94)

F vξ = 1
n
AM

[
m

n

∂ (nv)
∂ξ

+ n

m

∂ (mu)
∂η

]
, (95)

F vη = 1
m
AM

[
n

m

∂ (mv)
∂η

− m

n

∂ (nu)
∂ξ

]
. (96)

Notice the flux form of eq. (91) and (92) and the symmetry between the F uξ and F vη terms
which are defined at density points on a C-grid. Similarly, the F uη and F vξ terms are symmetric

28

and defined at vorticity points. These staggering positions are optimal for the discretization of the
tensor; it has no computational modes and satisfies first-moment conservation.

The biharmonic friction operator can be computed by applying the tensor operator eq. (91) and
(92) twice, but with the squared root of the biharmonic viscosity coefficient [Griffies and Hallberg,
2000]. For simplicity and momentum balance, the thickness Hz appears only when computing the
second harmonic operator as in Griffies and Hallberg [2000].

4.10.3 Rotated Transverse Stress Tensor

In some applications with tall and steep topography, it will be advantageous to substantially reduce
the contribution of the stress tensor eq. (91) and (92) to the vertical mixing when operating along
constant s-surfaces. The transverse stress tensor rotated along geopotentials (constant depth) is
then given by

HzR
u = n2m

∂

∂ξ

(
HzR

uξ

n

)
+m2n

∂

∂η

(
HzR

uη

m

)
+ ∂

∂s

(
Rus

)
(97)

HzR
v = n2m

∂

∂ξ

(
HzR

vξ

n

)
+m2n

∂

∂η

(
HzR

vη

m

)
+ ∂

∂s

(
Rvs

)
(98)

where

Ruξ = 1
n
AM

[1
n

(
m
∂ (nu)
∂ξ

−m∂z

∂ξ

1
Hz

∂ (nu)
∂s

)
− 1
m

(
n
∂ (mv)
∂η

− n∂z
∂η

1
Hz

∂ (mv)
∂s

)]
, (99)

Ruη = 1
m
AM

[1
m

(
n
∂ (mu)
∂η

− n∂z
∂η

1
Hz

∂ (mu)
∂s

)
+ 1
n

(
m
∂ (nv)
∂ξ

−m∂z

∂ξ

1
Hz

∂ (nv)
∂s

)]
, (100)

Rus =m∂z

∂ξ
AM

[1
n

(
m
∂z

∂ξ

1
Hz

∂ (nu)
∂s

−m∂ (nu)
∂ξ

)
− 1
m

(
n
∂z

∂η

1
Hz

∂ (mv)
∂s

− n∂ (mv)
∂η

)]
+ (101)

n
∂z

∂η
AM

[1
m

(
n
∂z

∂η

1
Hz

∂ (mu)
∂s

− n∂ (mu)
∂η

)
+ 1
n

(
m
∂z

∂ξ

1
Hz

∂ (nv)
∂s

−m∂ (nv)
∂ξ

)]
, (102)

Rvξ = 1
n
AM

[1
n

(
m
∂ (nv)
∂ξ

−m∂z

∂ξ

1
Hz

∂ (nv)
∂s

)
+ 1
m

(
n
∂ (mu)
∂η

− n∂z
∂η

1
Hz

∂ (mu)
∂s

)]
, (103)

Rvη = 1
m
AM

[1
m

(
n
∂ (mv)
∂η

− n∂z
∂η

1
Hz

∂ (mv)
∂s

)
− 1
n

(
m
∂ (nu)
∂ξ

−m∂z

∂ξ

1
Hz

∂ (nu)
∂s

)]
, (104)

Rvs =m∂z

∂ξ
AM

[1
n

(
m
∂z

∂ξ

1
Hz

∂ (nv)
∂s

−m∂ (nv)
∂ξ

)
+ 1
m

(
n
∂z

∂η

1
Hz

∂ (mu)
∂s

− n∂ (mu)
∂η

)]
+ (105)

n
∂z

∂η
AM

[1
m

(
n
∂z

∂η

1
Hz

∂ (mv)
∂s

− n∂ (mv)
∂η

)
− 1
n

(
m
∂z

∂ξ

1
Hz

∂ (nu)
∂s

−m∂ (nu)
∂ξ

)]
. (106)

Notice that the transverse stress tensor remains invariant under coordinate transformation. The
rotated tensor (97) and (98) retains the same properties as the unrotated tensor (91) and (92). The
additional terms that arise from the slopes of s-surfaces along geopotentials are discretized using a
modified version of the triad approach of Griffies et al. [1998].

4.10.4 Horizontal diffusion

In Chapter 3, the diffusive terms were written simply as DT and DS . The vertical component
of these terms is described in §4.12. Here we describe the various options for representing the
horizontal component of these terms.

29

4.10.5 Laplacian

The Laplacian of a scalar C in curvilinear coordinates is (see Appendix C):

∇2C = ∇ · ∇C = mn

[
∂

∂ξ

(
m

n

∂C

∂ξ

)
+ ∂

∂η

(
n

m

∂C

∂η

)]
(107)

In ROMS, this term is multiplied by ν2Hz
mn and becomes[

∂

∂ξ

(
ν2Hzm

n

∂C

∂ξ

)
+ ∂

∂η

(
ν2Hzn

m

∂C

∂η

)]
(108)

where C is any tracer. This form guarantees that the term does not contribute to the volume-
integrated equations.

4.10.6 Biharmonic

The biharmonic operator is ∇4 = ∇2∇2; the corresponding term is computed using a temporary
variable Y :

Y = mn

Hz

[
∂

∂ξ

(
ν4Hzm

n

∂C

∂ξ

)
+ ∂

∂η

(
ν4Hzn

m

∂C

∂η

)]
(109)

and is
−
[
∂

∂ξ

(
ν4Hzm

n

∂Y

∂ξ

)
+ ∂

∂η

(
ν4Hzn

m

∂Y

∂η

)]
(110)

where C is once again any tracer and ν4 is the square root of the input value so that it can be
applied twice.

4.10.7 Rotated mixing tensors

Both the Laplacian and biharmonic terms above operate on surfaces of constant s and can contribute
substantially to the vertical mixing. However, the oceans are thought to mix along constant density
surfaces so this is not entirely satisfactory. Therefore, the option of using rotated mixing tensors
for the Laplacian and biharmonic operators has been added. Options exist to diffuse on constant
z surfaces (MIX_GEO_TS) and constant potential density surfaces (MIX_ISO_TS).

The horizontal Laplacian diffusion operator is computed by finding the three components of
the flux of the quantity C. The ξ and η components are locally horizontal, rather than along the
s surface. The diffusive fluxes are:

F ξ = ν2


m
∂C

∂ξ
−

m∂z

∂ξ
+Sx︸︷︷︸

MIX_ISO

 ∂C

∂z︸ ︷︷ ︸
MIX_GEO


(111)

F η = ν2


n
∂C

∂η
−

n∂z∂η +Sy︸︷︷︸
MIX_ISO

 ∂C

∂z︸ ︷︷ ︸
MIX_GEO


(112)

F s = − 1
Hz

m∂z

∂ξ
+Sx︸︷︷︸

MIX_ISO

F ξ
︸ ︷︷ ︸

MIX_GEO

− 1
Hz

n∂z∂η +Sy︸︷︷︸
MIX_ISO

F η
︸ ︷︷ ︸

MIX_GEO

(113)

30

where

Sx =
∂ρ
∂x
∂ρ
∂z

=

[
m∂ρ
∂ξ −

m
Hz

∂z
∂ξ

∂ρ
∂s

]
1
Hz

∂ρ
∂s

Sy =
∂ρ
∂y
∂ρ
∂z

=

[
n∂ρ∂η −

n
Hz

∂z
∂η

∂ρ
∂s

]
1
Hz

∂ρ
∂s

and there is some trickery whereby the computational details depend on the sign of ∂z∂ξ and of ∂z
∂η .

No flux boundary conditions are easily imposed by setting

F ξ = 0 at ξ walls
F η = 0 at η walls
F s = 0 at s = −1, 0

Finally, the flux divergence is calculated and is added to the right-hand-side term for the field
being computed:

∂

∂ξ

(
HzF

ξ

n

)
+ ∂

∂η

(
HzF

η

m

)
+ ∂

∂s

(
HzF

s

mn

)
(114)

The biharmonic rotated mixing tensors are computed much as the non-rotated biharmonic
mixing. We define a temporary variable Y based on equation (114):

Y = mn

Hz

[
∂

∂ξ

(
ν4HzF

ξ

n

)
+ ∂

∂η

(
ν4HzF

η

m

)
+ ∂

∂s

(
ν4HzF

s

mn

)]
. (115)

We then build up fluxes of Y as in equations (111)–(113). We then apply equation (114) to these
Y fluxes to obtain the biharmonic mixing tensors. Again, the value of ν4 is the square root of that
read in so that it can be applied twice.

4.11 Vertical mixing schemes

ROMS contains a variety of methods for setting the vertical viscous and diffusive coefficients. The
choices range from simply choosing fixed values to the KPP, generic lengthscale (GLS) and Mellor-
Yamada turbulence closure schemes. See Large [1998] for a review of surface ocean mixing schemes.
Many schemes have a background molecular value which is used when the turbulent processes are
assumed to be small (such as in the interior). All assume that there is some Km(ζ, η, s) such that
the vertical turbulent mixing can be applied as:

u′w′ = −Km
∂u

∂z
and v′w′ = −Km

∂v

∂z
(116)

with a similar Ks for temperature, salinity and other tracers. The primed quantities represent
perturbations of smaller scale than those resolved by the model while the unprimed u and v are
those in the model.

4.11.1 The Large, McWilliams and Doney parameterization

The vertical mixing parameterization introduced by Large et al. [1994] is a versatile first order
scheme which has been shown to perform well in open ocean settings. Its design facilitates experi-
mentation with additional or modified representations of specific turbulent processes.

31

Surface boundary layer The Large, McWilliams and Doney scheme (LMD) matches separate
parameterizations for vertical mixing of the surface boundary layer and the ocean interior. A
formulation based on boundary layer similarity theory is applied in the water column above a
calculated boundary layer depth hsbl. This parameterization is then matched at the interior with
schemes to account for local shear, internal wave and double diffusive mixing effects.

Viscosity and diffusivities at model levels above a calculated surface boundary layer depth
(hsbl) are expressed as the product of the length scale hsbl, a turbulent velocity scale wx and a
non-dimensional shape function.

νx = hsblwx(σ)Gx(σ) (117)

where σ is a non-dimensional coordinate ranging from 0 to 1 indicating depth within the surface
boundary layer. The x subscript stands for one of momentum, temperature and salinity.

Surface Boundary layer depth The boundary layer depth hsbl is calculated as the minimum
of the Ekman depth, estimated as,

he = 0.7u∗/f (118)

(where u∗ is the friction velocity u∗ =
√
τ2
x + τ2

y /ρ), the Monin-Obukhov depth:

L = u3
∗/(κBf) (119)

(where κ = 0.4 is von Karman’s contant and Bf is the surface buoyancy flux), and the shallowest
depth at which a critical bulk Richardson number is reached. The critical bulk Richardson number
(Ric) is typically in the range 0.25–0.5. The bulk Richardson number (Rib) is calculated as:

Rib(z) = (Br −B(d))d
|~Vr − ~V (d)|2 + Vt

2(d)
(120)

where d is distance down from the surface, B is the buoyancy, Br is the buoyancy at a near surface
reference depth, ~V is the mean horizontal velocity, ~Vr the velocity at the near surface reference
depth and Vt is an estimate of the turbulent velocity contribution to velocity shear.

The turbulent velocity shear term in this equation is given by LMD as,

V 2
t (d) = Cv(−βT)1/2

Ricκ
(csε)−1/2dNws (121)

where Cv is the ratio of interior N to N at the entrainment depth, βT is ratio of entrainment flux
to surface buoyancy flux, cs and ε are constants, and ws is the turbulent velocity scale for scalars.
LMD derive (121) based on the expected behavior in the pure convective limit. The empirical rule
of convection states that the ratio of the surface buoyancy flux to that at the entrainment depth be
a constant. Thus the entrainment flux at the bottom of the boundary layer under such conditions
should be independent of the stratification at that depth. Without a turbulent shear term in the
denominator of the bulk Richardson number calculation, the estimated boundary layer depth is too
shallow and the diffusivity at the entrainment depth is too low to obtain the necessary entrainment
flux. Thus by adding a turbulent shear term proportional to the stratification in the denominator,
the calculated boundary layer depth will be deeper and will lead to a high enough diffusivity to
satisfy the empirical rule of convection.

Turbulent velocity scale To estimate wx (where x is m - momentum or s - any scalar)
throughout the boundary layer, surface layer similarity theory is utilized. Following an argument
by Troen and Mahrt [1986], Large et al. [1994] estimate the velocity scale as

wx = κu∗
φx(ζ) (122)

32

where ζ is the surface layer stability parameter defined as z/L. φx is a non-dimensional flux profile
which varies based on the stability of the boundary layer forcing. The stability parameter used in
this equation is assumed to vary over the entire depth of the boundary layer in stable and neutral
conditions. In unstable conditions it is assumed only to vary through the surface layer which is
defined as εhsbl (where ε is set at 0.10) . Beyond this depth ζ is set equal to its value at εhsbl.

The flux profiles are expressed as analytical fits to atmospheric surface boundary layer data. In
stable conditions they vary linearly with the stability parameter ζ as

φx = 1 + 5ζ (123)

In near-neutral unstable conditions common Businger-Dyer forms are used which match with the
formulation for stable conditions at ζ = 0. Near neutral conditions are defined as

− 0.2 ≤ ζ < 0 (124)

for momentum and,
− 1.0 ≤ ζ < 0 (125)

for scalars. The non dimensional flux profiles in this regime are,

φm = (1− 16ζ)1/4 (126)
φs = (1− 16ζ)1/2 (127)

In more unstable conditions φx is chosen to match the Businger-Dyer forms and with the free
convective limit. Here the flux profiles are

φm = (1.26− 8.38ζ)1/3 (128)
φs = (−28.86− 98.96ζ)1/3 (129)

The shape function The non-dimensional shape function G(σ) is a third order polynomial
with coefficients chosen to match the interior viscosity at the bottom of the boundary layer and
Monin-Obukhov similarity theory approaching the surface. This function is defined as a 3rd order
polynomial.

G(σ) = ao + a1σ + a2σ
2 + a3σ

3 (130)

with the coefficients specified to match surface boundary conditions and to smoothly blend with
the interior,

ao = 0 (131)
a1 = 1 (132)

a2 = −2 + 3νx(hsbl)
hwx(1) + ∂xνx(h)

wx(1) + νx(h)∂σwx(1)
hw2

x(1) (133)

a3 = 1− 2νx(hsbl)
hwx(1) −

∂xνx(h)
wx(1) −

νx(h)∂σwx(1)
hw2

x(1) (134)

where νx(h) is the viscosity calculated by the interior parameterization at the boundary layer depth.

Countergradient flux term The second term of the LMD scheme’s surface boundary layer
formulation is the non-local transport term γ which can play a significant role in mixing during
surface cooling events. This is a redistribution term included in the tracer equation separate from
the diffusion term and is written as

− ∂

∂z
Kγ. (135)

33

LMD base their formulation for non-local scalar transport on a parameterization for pure free
convection from Mailhôt and Benoit [1982]. They extend this parameterization to cover any un-
stable surface forcing conditions to give

γT = Cs
wT0 + wTR
wT (σ)h (136)

for temperature and

γS = Cs
wS0

wS(σ)h (137)

for salinity (other scalar quantities with surface fluxes can be treated similarly). LMD argue that
although there is evidence of non-local transport of momentum as well, the form the term would
take is unclear so they simply specify γm = 0.

The interior scheme The interior scheme of Large, McWilliams and Doney estimates the viscos-
ity coefficient by adding the effects of several generating mechanisms: shear mixing, double-diffusive
mixing and internal wave generated mixing.

νx(d) = νsx + νdx + νwx (138)

Shear generated mixing The shear mixing term is calculated using a gradient Richardson
number formulation, with viscosity estimated as:

νsx =


ν0 Rig < 0,
ν0[1− (Rig/Ri0)2]3 0 < Rig < Ri0,

0 Rig > Ri0.

(139)

where ν0 is 5.0× 10−3, Ri0 = 0.7.

Double diffusive processes The second component of the interior mixing parameteriza-
tion represents double diffusive mixing. From limited sources of laboratory and field data LMD
parameterize the salt fingering case (Rρ > 1.0)

νds (Rρ) =

1× 10−4[1− ((Rρ−1
R0
ρ−1)2)3 for 1.0 < Rρ < R0

ρ = 1.9,
0 otherwise.

(140)

νdθ (Rρ) = 0.7νds (141)

For diffusive convection (0 < Rρ < 1.0) LMD suggest several formulations from the literature
and choose the one with the most significant impact on mixing [Fedorov, 1988].

νdθ = (1.5−6)(0.909 exp(4.6 exp[−0.54(R−1
ρ − 1)]) (142)

for temperature. For other scalars,

νds =
{
νdθ (1.85− 0.85R−1

ρ)Rρ for 0.5 <= Rρ < 1.0,
νdθ0.15Rρ otherwise.

(143)

34

Internal wave generated mixing Internal wave generated mixing serves as the background
mixing in the LMD scheme. It is specified as a constant for both scalars and momentum. Eddy
diffusivity is estimated based on the data of Ledwell et al. [1993]. While Peters et al. [1988] suggest
eddy viscosity should be 7 to 10 times larger than diffusivity for gradient Richardson numbers
below approximately 0.7. Therefore LMD use

νwm = 1.0× 10−4m2s−1 (144)
νws = 1.0× 10−5m2s−1 (145)

4.11.2 Mellor-Yamada

One of the more popular closure schemes is that of Mellor and Yamada [1974, 1982]. They actually
present a hierarchy of closures of increasing complexity. ROMS provides only the “Level 2.5” closure
with the Galperin et al. [1988] modifications as described in Allen et al. [1995]. This closure scheme
adds two prognostic equations, one for the turbulent kinetic energy (1

2q
2) and one for the turbulent

kinetic energy times a length scale (q2l).
The turbulent kinetic energy equation is:

D

Dt

(
q2

2

)
− ∂

∂z

[
Kq

∂

∂z

(
q2

2

)]
= Ps + Pb − ξd (146)

where Ps is the shear production, Pb is the buoyant production and ξd is the dissipation of turbulent
kinetic energy. These terms are given by

Ps = Km

[(
∂u

∂z

)2
+
(
∂v

∂z

)2]
, (147)

Pb = −KsN
2, (148)

ξd = q3

B1l
(149)

where B1 is a constant. One can also add a traditional horizontal Laplacian or biharmonic diffusion
(Dq) to the turbulent kinetic energy equation. The form of this equation in the model coordinates
becomes

∂

∂t

(
Hzq

2

mn

)
+ ∂

∂ξ

(
Hzuq

2

n

)
+ ∂

∂η

(
Hzvq

2

m

)
+ ∂

∂s

(
HzΩq2

mn

)
− ∂

∂s

(
Kq

mnHz

∂q2

∂s

)
=

2HzKm

mn

[(
∂u

∂z

)2
+
(
∂v

∂z

)2]
+ 2HzKs

mn
N2 − 2Hzq

3

mnB1l
+ Hz

mn
Dq. (150)

The vertical boundary conditions are:

top (z = ζ(x, y, t)) HzΩ
mn = 0
Kq

mnHz
∂q2

∂s = B
2/3
1
ρo

[(
τ ξs

)2
+ (τηs)2

]
HzKm

(
∂u
∂z ,

∂v
∂z

)
= 1

ρo

(
τ ξs , τ

η
s

)
HzKsN

2 = Q
ρocP

and bottom (z = −h(x, y)) HzΩ
mn = 0
Kq

mnHz
∂q2

∂s = B
2/3
1
ρo

[(
τ ξb

)2
+
(
τηb
)2]

HzKm

(
∂u
∂z ,

∂v
∂z

)
= 1

ρo

(
τ ξb , τ

η
b

)
HzKsN

2 = 0

35

There is also an equation for the turbulent length scale l:

D

Dt

(
lq2
)
− ∂

∂z

[
Kl
∂lq2

∂z

]
= lE1(Ps + Pb)−

q3

B1
W̃ (151)

where W̃ is the wall proximity function:

W̃ = 1 + E2

(
l

kL

)2
(152)

L−1 = 1
ζ − z

+ 1
H + z

(153)

The form of this equation in the model coordinates becomes

∂

∂t

(
Hzq

2l

mn

)
+ ∂

∂ξ

(
Hzuq

2l

n

)
+ ∂

∂η

(
Hzvq

2l

m

)
+ ∂

∂s

(
HzΩq2l

mn

)
− ∂

∂s

(
Kq

mnHz

∂q2l

∂s

)
=

Hz

mn
lE1(Ps + Pb)−

Hzq
3

mnB1
W̃ + Hz

mn
Dql. (154)

where Dql is the horizontal diffusion of the quantity q2l. Both equations (150) and (154) are
timestepped much like the model tracer equations, including an implicit solve for the vertical
operations and options for centered second and fourth-order advection. They are timestepped with
a predictor-corrector scheme in which the predictor step is only computing the advection.

Given these solutions for q and l, the vertical viscosity and diffusivity coefficients are:

Km = qlSm +Kmbackground (155)
Ks = qlSh +Ksbackground (156)
Kq = qlSq +Kqbackground (157)

and the stability coefficients Sm, Sh and Sq are found by solving

Ss [1− (3A2B2 + 18A1A2)Gh] = A2
[
1− 6A1B

−1
1

]
(158)

Sm [1− 9A1A2Gh]− Ss
[
Gh(18A2

1 + 9A1A2)Gh
]

= A1
[
1− 3C1 − 6A1B

−1
1

]
(159)

Gh = min(− l
2N2

q2 , 0.028). (160)

Sq = 0.41Sm (161)

The constants are set to (A1, A2, B1, B2, C1, E1, E2) = (0.92, 0.74, 16.6, 10.1, 0.08, 1.8, 1.33). The
quantities q2 and q2l are both constrained to be no smaller than 10−8 while l is set to be no larger
than 0.53q/N .

4.11.3 Generic length scale

[Umlauf and Burchard, 2003] have come up with a generic two-equation turbulence closure scheme
which can be tuned to behave like several of the traditional schemes, including that of Mellor and
Yamada §(4.11.2). This is known as the Generic Length Scale, or GLS vertical mixing scheme and
was introduced to ROMS in [Warner et al., 2005]. Its parameters are set in the ROMS input file.

The first of Warner et al.’s equations is the same as (146) with k = 1/2q2. Their dissipation is
given by

ε = (c0
µ)3+p/nk3/2+m/nψ−1/n (162)

36

where ψ is a generic parameter that is used to establish the turbulence length scale. The equation
for ψ is:

Dψ

Dt
= ∂

∂z

(
Kψ

∂ψ

∂z

)
+ ψ

k
(c1Ps + c3Pb − c2εFwall) (163)

Coefficients c1 and c2 are chosen to be consistent with observations of decaying homogeneous,
isotropic turbulence. The parameter c3 has differing values for stable (c+

3) and unstable (c−3)
stratification. Also

ψ = (c0
µ)pkmln (164)

l = (c0
µ)3k3/2ε−1 (165)

Depending on the choice of the various parameters, these two equations can be made to solve
a variety of traditional two-equation turbulence closure models. The list of parameters is shown in
table 4.11.3 and is also given inside the comments section of the ROMS input file.

k − kl k − ε k − ω gen
ψ = k1l1 ψ = (c0

µ)3k3/2l−1 ψ = (c0
µ)−1k1/2l−1 ψ = (c0

µ)2k1l−2/3

p 0.0 3.0 -1.0 2.0
m 1.0 1.5 0.5 1.0
n 1.0 -1.0 -1.0 -0.67
σk = KM

Kk
1.96 1.0 2.0 0.8

σψ = KM
Kψ

1.96 1.3 2.0 1.07
c1 0.9 1.44 0.555 1.0
c2 0.52 1.92 0.833 1.22
c−3 2.5 -0.4 -0.6 0.1
c+

3 1.0 1.0 1.0 1.0
kmin 5.0e-6 7.6e-6 7.6e-6 1.0e-8
ψmin 5.0e-6 1.0e-12 1.0e-12 1.0e-8
c0
µ 0.5544 0.5477 0.5477 0.5544

Table 4: Generic length scale parameters. Note that Mellor-Yamada 2.5 is an example of a k − kl
scheme.

4.12 Timestepping vertical viscosity and diffusion

The Du, Dv, and DC terms in equations (18)–(20) represent both horizontal and vertical mixing
processes. The horizontal options were covered in §4.10. The model has several options for com-
puting the vertical coefficients; these will be described in §4.11. The vertical viscosity and diffusion
terms have the form:

∂

∂σ

(
K

Hzmn

∂φ

∂σ

)
(166)

where φ represents one of u, v, or C, and K is the corresponding vertical viscous or diffusive
coefficient. This is timestepped using a semi-implicit Crank-Nicholson scheme with a weighting of
0.5 on the old timestep and 0.5 on the new timestep. Specifically, the equation of motion for φ can
be written as:

∂(Hzφ)
∂t

= mnRφ + ∂

∂σ

(
K

Hz

∂φ

∂σ

)
(167)

where Rφ represents all of the forcing terms other than the vertical viscosity or diffusion. Since we
want the diffusion term to be evaluated partly at the current timestep n and partly at the next

37

timestep n+ 1, we introduce the parameter λ and rewrite equation (167) as:

∂(Hzφ)
∂t

= mnRφ + (1− λ) ∂
∂σ

(
K

Hz

∂φn

∂σ

)
+ λ

∂

∂σ

(
K

Hz

∂φn+1

∂σ

)
. (168)

The discrete form of equation (168) is:

Hn+1
zk

φn+1
k −Hn

zk
φnk

∆t = mnRφ + (1− λ)
∆s2

[
Kk

Hzk

(φnk+1 − φnk)− Kk−1
Hzk−1

(φnk − φnk−1)
]

+ λ

∆s2

[
Kk

Hzk

(φn+1
k+1 − φ

n+1
k)− Kk−1

Hzk−1

(φn+1
k − φn+1

k−1)
]

(169)

where k is used as the vertical level index. This can be reorganized so that all the terms involving
φn+1 are on the left and all the other terms are on the right. The equation for φn+1

k will contain
terms involving the neighbors above and below (φn+1

k+1 and φn−1
k+1) which leads to a set of coupled

equations with boundary conditions for the top and bottom. The general form of these equations
is:

Akφ
n+1
k+1 +Bkφ

n+1
k + Ckφ

n+1
k−1 = Dk (170)

where the boundary conditions are written into the coefficients for the end points. In this case the
coefficients become:

A(1) = 0 (171)

A(2 : N) = − λ∆tKk−1

∆σ2Hn+1
zk−1

(172)

B(1) = Hn+1
z1 + λ∆tK1

∆σ2Hn+1
z1

(173)

B(2 : Nm) = Hn+1
zk

+ λ∆tKk

∆σ2Hn+1
zk

+ λ∆tKk−1

∆σ2Hn+1
zk−1

(174)

B(N) = Hn+1
zN + λ∆tKNm

∆σ2Hn+1
zNm

(175)

C(1 : Nm) = − λ∆tKk

∆σ2Hn+1
zk

(176)

C(N) = 0 (177)

D(1) = Hn
z1φ

n
1 + ∆tmnRφ1 + ∆t(1− λ)

∆σ2
K1
Hn
z1

(φn2 − φn1)− ∆t
∆στb (178)

D(2 : Nm) = Hn
zk
φnk + ∆tmnRφk + (179)

∆t(1− λ)
∆σ2

[
Kk

Hn
zk

(φnk+1 − φnk)− Kk−1
Hn
zk−1

(φnk − φnk−1)
]

(180)

D(N) = Hn
zNφ

n
N + ∆tmnRφN −

∆t(1− λ)
∆σ2

KNm
Hn
zNm

(φnN − φnNm) + ∆t
∆στs (181)

This is a standard tridiagonal system for which the solution procedure can be found in any standard
reference, such as Press et al. [1986].

4.13 Lateral Boundary Conditions

ROMS comes with a variety of boundary conditions, including open, closed, and periodic. See
Marchesiello et al. [2001] for a more thorough exploration of the options. Some options require a
value for the boundary points from either an included analytic expression (§6.5) or from an external
NetCDF file. Here, φext represents the exterior value of a quantity φ.

38

4.13.1 Gradient boundary condition

This boundary condition is extremely simple and consists of setting the gradient of a field to zero
at the edge. The outside value is set equal to the closest interior value.

4.13.2 Wall boundary condition

ROMS now assumes a wall condition if no other boundary condition is chosen. This is a zero
gradient condition for tracers and the surface elevation and zero flow for the normal velocity. For
tangential velocities, the wall is treated as either no-slip or free-slip, depending on the value of
gamma2 chosen by the user.

4.13.3 Clamped boundary condition

Almost as simple is setting the boundary value to a known exterior value.

φ = φext (182)

4.13.4 Flather boundary condition

For the normal component of the barotropic velocity, one option is to radiate out deviations from
exterior values at the speed of the external gravity waves [Flather, 1976]:

u = uext −
√
g

D
(ζ − ζext) (183)

The exterior values are often used to provide tidal boundary contitions to the barotropic mode.
However, there are times when only the tidal elevation is known. A reduced physics option is
available for estimating uext in that case.

4.13.5 Shchepetkin boundary condition

Similar to Flather in purpose is the Shchepetkin boundary condition [Mason et al., 2010]. As in
the Flather condition, it will use a reduced physics option if uext is not available.

4.13.6 Chapman boundary condition

The condition for surface elevation to be used with either the Flather or Shchepetkin momentum
boundary is that of [Chapman, 1985], assuming all outgoing signals leave at the shallow-water wave
speed of

√
gD.

∂ζ

∂t
= ±

√
gD

∂ζ

∂ξ
(184)

The time derivative here can be handled either explicitly or implicitly in ROMS, depending on how
the term ∂ζ

∂ξ is evaluated.

4.13.7 Radiation boundary condition

In realistic domains, open boundary conditions can be extremely difficult to get right. There are
situations in which incoming flow and outgoing flow happen along the same boundary or even at
different depths at the same horizontal location. Orlanski [1976] proposed a radiation scheme in
which a local normal phase velocity is computed and used to radiate things out (if it is indeed going
out). This works well for a wave propagating normal to the boundary, but has problems when waves
approach the boundary at an angle. Raymond and Kuo [1984] have modified the scheme to account

39

for propagation in all three directions. In ROMS, only the two horizontal directions are accounted
for (with the recommended RADIATION_2D option):

∂φ

∂t
= −

(
φξ
∂φ

∂ξ
+ φη

∂φ

∂η
)
)

(185)

where

φξ =
F ∂φ
∂ξ(

∂φ
∂ξ

)2
+
(
∂φ
∂η

)2 (186)

φη =
F ∂φ
∂η(

∂φ
∂ξ

)2
+
(
∂φ
∂η

)2 (187)

F = −∂φ
∂t

(188)

These terms are evaluated at the closest interior point in a manner consistent with the time stepping
scheme used. The phase velocities are limited so that the local CFL condition is satisfied. They are
then applied to the boundary point using equation (185), again using a consistent time stepping
scheme. Raymond and Kuo give the form used for centered differencing and a leapfrog time step
while ROMS uses one-sided differences.

The radiation approach is appropriate for waves leaving the domain. A check is made to see
which way the phase velocity is headed. If it is entering the domain, a zero gradient condition is
applied unless the next option is also specified.

4.13.8 Mixed radiation-nudging boundary condition

As described in [Marchesiello et al., 2001], ROMS has an option for providing radiation conditions
on outflow and nudging to a known exterior value on inflow. This is implemented as a variation
on the radiation condition, requiring two timescales: the inflow nudging timescale and the outflow
nudging timescale. These timescales are provided in the input to ROMS (§7.1.12).

40

5 Ice Model Formulation
The sea-ice component of ROMS is a combination of the elastic-viscous-plastic (EVP) rheology
[Hunke and Dukowicz, 1997, Hunke, 2001] and simple one-layer ice and snow thermodynamics with
a molecular sublayer under the ice [Mellor and Kantha, 1989]. It is tightly coupled, having the
same grid (Arakawa-C) and timestep as the ocean and sharing the same parallel coding structure
for use with MPI or OpenMP [Budgell, 2005].

5.1 Dynamics

The momentum equations describe the change in ice/snow velocity due to the combined effects of
the Coriolis force, surface ocean tilt, air and water stress, and internal ice stress: (189) and (190):

d

dt
(Aρihiu) = Aρihifv −Aρihig

∂ζw
∂x

+A(τxa + τxw) + Fx (189)

d

dt
(Aρihiv) = −Aρihifu−Aρihig

∂ζw
∂y

+A(τya + τyw) + Fy. (190)

In this model, we neglect the nonlinear advection terms as well as the curvilinear terms in the
internal ice stress. Nonlinear formulae are used for both the ocean-ice and air-ice surface stress:

~τa = ρaCa|~V10|~V10 (191)

Ca = 1
2Cd [1− cos(2πmin(hi + .1, .5)] (192)

~τw = ρwCw|~vw − ~v|(~vw − ~v). (193)

The force due to the internal ice stress is given by the divergence of the stress tensor σ. The rheology
is given by the stress-strain relation of the medium. We would like to emulate the viscous-plastic
rheology of Hibler [1979]:

σij = 2ηε̇ij + (ζ − η)ε̇kkδij −
P

2 δij (194)

ε̇ij ≡
1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(195)

where the nonlinear viscosities are given by:

ζ = P

2
[
(ε211 + ε222)(1 + 1/e2) + 4e−2ε212 + 2ε11ε22(1− 1/e2)

]1/2 (196)

η = ζ

e2 . (197)

Hibler’s ice strength is given by:
P = P ∗Ahie

−C(1−A) (198)

while Overland and Pease [1988] advocate a nonlinear strength:

P = P ∗Ah2
i e
−C(1−A) (199)

in which P ∗ now depends on the grid spacing. Both options are available in ROMS.
We would also like to have an explicit model that can be solved efficiently on parallel computers.

The EVP rheology has a tunable coefficient E (the Young’s modulus) which can be chosen to make
the elastic term small compared to the other terms. We rearrange the VP rheology:

1
2ησij + η − ζ

4ηζ σkkδij + P

4ζ δij = ε̇ij (200)

41

then add the elastic term:

1
E

∂σij
∂t

+ 1
2ησij + η − ζ

4ηζ σkkδij + P

4ζ δij = ε̇ij (201)

Much like the ocean model, the ice model has a split timestep. The internal ice stress term is
updated on a shorter timestep so as to allow the elastic wave velocity to be resolved.

Once the new ice velocities are computed, the ice tracers can be advected using the MPDATA
scheme [Smolarkiewicz and Grabowski, 1990]. The tracers in this case are the ice thickness, ice
concentration, snow thickness, internal ice temperature, and surface melt ponds. The continuity
equations describing the evolution of these parameters (equations (202)–(204)) also include ther-
modynamic terms (Sh, Ss and SA), which will be described in §5.2:

∂Ahi
∂t

= −∂(uAhi)
∂x

− ∂(vAhi)
∂y

+ Sh +Dh (202)

∂Ahs
∂t

= −∂(uAhs)
∂x

− ∂(vAhs)
∂y

+ Ss +Ds (203)

∂A

∂t
= −∂(uA)

∂x
− ∂(vA)

∂y
+ SA +DA 0 ≤ A ≤ 1. (204)

The first two equations represent the conservation of ice and snow. Equation (204) is discussed
in some detail in MK89, but represents the advection of ice blocks in which no ridging occurs as
long as there is any open water. The symbols used in these equations along with the values for the
constants are listed in Table 5.

Note that Hibler’s hI variable is equivalent to our Ahi combination - his hI is the average
thickness over the whole gridbox while our hi is the average thickness over the ice-covered fraction
of the gridbox.

5.2 Thermodynamics

The thermodynamics is based on calculating how much ice grows and melts on each of the surface,
bottom, and sides of the ice floes, as well as frazil ice formation [Mellor and Kantha, 1989]. Once
the ice tracers are advected, the ice concentration and thickness are timestepped according to the
terms on the right:

Equations (202) and (204) become:

DAhi
Dt

= ρo
ρi

[A(Wio −Wai) + (1−A)Wao +Wfr] (205)

DA

Dt
= ρo
ρihi

[Φ(1−A)Wao + (1−A)Wfr] 0 ≤ A ≤ 1. (206)

The term Ahi is the “effective thickness”, a measure of the ice volume. Its evolution equation
is simply quantifying the change in the amount of ice. The ice concentration equation is more
interesting in that it provides the partitioning between ice melt/growth on the sides vs. on the top
and bottom. The parameter Φ controls this and has differing values for ice melt and retreat. In
principle, most of the ice growth is assumed to happen at the base of the ice while rather more of
the melt happens on the sides of the ice due to warming of the water in the leads.

The heat fluxes through the ice are based on a simple one layer Semtner [1976] type model with
snow on top. The temperature is assumed to be linear within the snow and within the ice. The ice
contains brine pockets for a total ice salinity of 3.2 or the surface salinity, whichever is less. The
surface ocean temperature and salinity is half a dz below the surface. The water right below the
surface is assumed to be at the freezing temperature; a logarithmic boundary layer is computed
having the temperature and salinity matched at freezing.

42

Variable Value Description
A(x, y, t) ice concentration

Ca nonlinear air drag coefficient
Cd 2.2× 10−3 air drag coefficient
Cw 10× 10−3 water drag coefficient

(Dh,Ds,DA) diffusion terms
δij Kronecker delta function
E Young’s modulus
e 2 eccentricity of the elliptical yield curve

εij(x, y, t) strain rate tensor
η(x, y, t) nonlinear shear viscosity
f(x, y) Coriolis parameter
(Fx,Fy) internal ice stress

g 9.8ms−2 acceleration of gravity
H Heaviside function

hi(x, y, t) ice thickness of ice-covered fraction
ho 1 m ice cutoff thickness

hs(x, y, t) snow thickness on ice-covered fraction
M(x, y, t) ice mass (density times thickness)
P (x, y, t) ice pressure or strength
(P ∗, C) (2.75× 104, 20) ice strength parameters

(Sh, Ss, SA) thermodynamic terms
σij(x, y, t) stress tensor

~τa air stress
~τw water stress

(u, v) the (x, y) components of ice velocity ~v
(~V10, ~vw) 10 meter air and surface water velocities
(ρa, ρw) (1.3 kgm−3, 1025 kgm−3) air and water densities
ζ(x, y, t) nonlinear bulk viscosity
ζw(x, y, t) height of the ocean surface

Table 5: Variables used in the ice momentum equations

43

Here, the W variables are the freeze or melt rates as shown in Fig. 7 and Table 6. The frazil
ice growth Wfr will be discussed further in §5.2.2—note that it contributes to changes in A as well
as to changes in hi. The other term that contributes to A is Wao. This term includes a factor Φ
which Mellor and Kantha set to different values depending on whether ice is melting or freezing:

Φ = 4.0 Wao ≥ 0 (207)
Φ = 0.5 Wao < 0 (208)

6 6

6

?

�
�
��

?

�
���

Wao

Wro

Wai

WioWfr

Ws

Wsm

Figure 7: Diagram of the different locations where ice melting and freezing can occur.

Similar to Eq. (205) is the snow equation:

DAhs
Dt

= [A(Ws −Wsm)] (209)

where Ws and Wsm are the snowfall and snow melt rates, respectively, in units of equivalent water.
Currently all snow and ice melt ends up in Wro, though melt ponds could be added with some
effort.

Figure 8 shows the locations of the ice and snow temperatures and the heat fluxes. The tem-
perature profile is assumed to be linear between adjacent temperature points. The interior of the
ice contains “brine pockets”, leading to a prognostic equation for the temperature T1.

�����������������
�����������������
�����������������
�����������������

�����
�����
�����
�����

FT

FT

Qio

Qi2

QaoQs

Qai

hi

hs

T0

T3

T2

T1

Figure 8: Diagram of internal ice temperatures and fluxes. The hashed layer is the snow.

44

Variable Value Description
αw 0.10 shortwave albedo of water
αi 0.60 shortwave albedo of wet ice
αi 0.65 shortwave albedo of dry ice
αs 0.72 shortwave albedo of wet snow
αs 0.85 shortwave albedo of dry snow
Ck snow correction factor
Cpi 2093 J kg−1 K−1 specific heat of ice
Cpo 3990 J kg−1 K−1 specific heat of water
εw 0.97 longwave emissivity of water
εi 0.97 longwave emissivity of ice
εs 0.99 longwave emissivity of snow

E(T, r) enthalpy of the ice/brine system
FT ↑ heat flux from the ocean into the ice
h? test for thick snow pushing ice surface under water
H ↓ sensible heat
Io part of (1− αi)SW↓ shortwave radiation entering ice
iw fraction of the solar heating transmitted

through a lead into the water below
ki 2.04 W m−1 K−1 thermal conductivity of ice
ks 0.31 W m−1 K−1 thermal conductivity of snow
Li 302 MJ m−3 latent heat of fusion of ice
Ls 110 MJ m−3 latent heat of fusion of snow
LE ↓ latent heat
LW↓ incoming longwave radiation
m −0.054◦C coefficient in linear Tf (S) = mS equation
Φ contribution to A equation from freezing water
Qai heat flux out of the snow/ice surface
Qao heat flux out of the ocean surface
Qi2 heat flux up out of the ice
Qio heat flux up into the ice
Qs heat flux up through the snow
r 0 ≤ r ≤ 0.2 brine fraction in ice
ρi 910 m3/kg density of ice
Si 3.2 salinity of the ice
SW↓ incoming shortwave radiation
σ 5.67× 10−8 W m−2 K−4 Stefan-Boltzmann constant
T0 temperature of the bottom of the ice
T1 temperature of the interior of the ice
T2 temperature at the upper surface of the ice
T3 temperature at the upper surface of the snow
Tf freezing temperature

Tmelt_i mSi melting temperature of ice
Tmelt_s 0◦ C melting temperature of snow
Wai melt rate on the upper ice/snow surface
Wao freeze rate at the air/water interface
Wfr rate of frazil ice growth
Wio freeze rate at the ice/water interface
Wro rate of run-off of surface melt water
Ws snowfall rate
Wsm snow melt rate

Table 6: Variables used in the ice thermodynamics45

The surface flux to the air is:

Qai = −H ↓ −LE ↓ −εsLW↓ −(1− αs)SW↓ +εsσ(T3 + 273)4 (210)

The incoming shortwave and longwave radiations are assumed to come from an atmospheric model.
The formulae for sensible heat, latent heat, and outgoing longwave radiation are the same as in
Parkinson and Washington [1979] and are shown in Appendix E. The sensible heat is a function
of T3, as is the heat flux through the snow Qs. Setting Qai = Qs, we can solve for T3 by setting
Tn+1

3 = Tn3 + ∆T3 and linearizing in ∆T3. As in Parkinson and Washington, if T3 is found to be
above the melting temperature, it is set to Tmelt and the extra energy goes into melting the snow
or ice:

Wai = Qai −Qi2
ρoL3

(211)

L3 ≡ [E(T3, 1)− E(T1, r)] (212)

Note that L3 = (1− r)Li plus a small sensible heat correction.
If there is no snow, there is an option to allow some of the incoming shortwave radiation

(Io = 0.17(1−αi)SW↓) to enter the ice and contribute to heating up the ice rather than to melting
the surface ice [Maykut and Untersteiner, 1971]. It essentially reduces Qi2 by the amount Io in
both equations (211) and (220).

Inside the ice there are brine pockets in which there is salt water at the in situ freezing tem-
perature. It is assumed that the ice has a uniform overall salinity of Si and that the freezing
temperature is a linear function of salinity. The brine fraction r is given by

r = Sim

T1

The enthalpy of the combined ice/brine system is given by

E(T, r) = r(Li + CpoT) + (1− r)CpiT (213)

Substituting in for r and differentiating gives:

∂E

∂T1
= −SimLi

T 2
1

+ Cpi (214)

Inside the snow, we have
Qs = ks

hs
(T2 − T3) (215)

The heat conduction in the upper part of the ice layer is

QI2 = 2ki
hi

(T1 − T2) (216)

These can be set equal to each other to solve for T2

T2 = T3 + CkT1
1 + Ck

(217)

where
Ck ≡

2kihs
hiks

.

Substituting into (216), we get:

Qs = QI2 = 2ki
hi

(T1 − T3)
(1 + Ck)

(218)

46

Note that in the absence of snow, Ck becomes zero and we recover the formula for the no-snow
case in which T3 = T2.

At the bottom of the ice, we have

QI0 = 2ki
hi

(T0 − T1) (219)

The difference between QI0 and QI2 goes into the enthalpy of the ice:

ρihi

[
∂E

∂t
+ ~v · ∇E

]
= QI0 −QI2 (220)

We can use the chain rule to obtain an equation for timestepping T1:

ρihi
∂E

∂T1

[
∂T1
∂t

+ ~v · ∇T1

]
= QI0 −QI2 (221)

where

QI0 −QI2 = 2ki
hi

[
(T0 − T1)− (T1 − T3)

1 + Ck

]
= 2ki

hi

[
(T0 + T3 − (2 + Ck)T1

1 + Ck

]
When the snow gets thick enough, it pushes the ice down to the point where seawater floods

onto the ice where it can possibly refreeze. The condition for such thick snow is h? > 0, where

h? = hs −
(ρw − ρi)

ρs
hi (222)

An optional model process is to convert the thick snow into ice directly:

hs = hs −
ρih

?

ρw
(223)

hi = hi + ρsh
?

ρw
(224)

5.2.1 Ocean surface boundary conditions

The ocean receives surface stresses from both the atmosphere and the ice, according to the ice
concentration:

Km
∂uw
∂z

= A

ρo
τxio + 1−A

ρo
τxao (225)

Km
∂vw
∂z

= A

ρo
τyio + 1−A

ρo
τyao (226)

where the relevant variables are in Table 7.
The surface ocean is assumed to be at the freezing temperature for the surface salinity (T0 =

mS0) in the presense of ice. We also have T and S at the uppermost computed ocean point
1
2dz below the surface. In order to solve for T0 and S0, we assume a [Yaglom and Kader, 1974]
logarithmic boundary layer. The upper ocean heat flux is:

FT
ρoCpo

= −CTz(T0 − T) z → 0 (227)

47

Variable Value Definition
b 3.14 factor
Ė evaporation
k 0.4 von Karman’s constant
Km vertical viscosity of seawater
ν 1.8× 10−6m2s−1 kinematic viscosity of seawater
Ṗ precipitation
Pr 13.0 molecular Prandtl number
Prt 0.85 turbulent Prandtl number
S internal ocean salinity
S0 surface salinity
Sc 2432.0 molecular Schmidt number
τio stress on the ocean from the ice
τao stress on the ocean from the wind
T internal ocean temperature
T0 surface temperature
uτ friction velocity |τio|1/2ρ−1/2

o

z0 roughness parameter

Table 7: Ocean surface variables

where

CTz = uτ
Prtk−1 ln(−z/z0) +BT

(228)

BT = b

(
z0uτ
ν

)1/2
Pr2/3 (229)

Likewise, we have the following equation for the surface salt flux:

FS = −CSz(S0 − S) z → 0 (230)

where

CSz = uτ
Prtk−1 ln(−z/z0) +BS

(231)

BS = b

(
z0uτ
ν

)1/2
Sc2/3 (232)

The ocean model receives the following heat and salt fluxes:

FT = AQio + (1−A)Qao −WoLo (233)
FS = (Wo −AWro)(Si − S0) + (1−A)So(Ṗ− Ė) (234)
Wo ≡ AWio + (1−A)Wao (235)

[Mellor and Kantha, 1989] describe solving simultaneously for the five unknowns Wo, T0, S0,
FT and FS . Instead, we use the old value of T0 to find Wio and therefore Wo. Using the new value
of Wio, solve for a new value of S0 and then find the new T0 as the freezing temperature for that
salinity:

Wio = 1
Lo

[
Qio
ρo

+ CpoCTz(To − T)
]

(236)

S0 = CSzS + (Wro −Wio))Si
CSz +Wro −Wio

(237)

48

Variable Value Definition
Cpi 1994 J kg−1 K−1 specific heat of ice
Cpw 3987 J kg−1 K−1 specific heat of water
γ mi/mw2 fraction of water that froze
L 3.16e5 J kg−1 latent heat of fusion
mi mass of ice formed
mw1 mass of water before freezing
mw2 mass of water after freezing
m −0.0543 constant in freezing equation
S1 salinity before freezing
S2 salinity after freezing
T1 temperature before freezing
T2 temperature after freezing

Table 8: Frazil ice variables

5.2.2 Frazil ice formation

Following Steele et al. [1989], we check to see if any of the ocean temperatures are below freezing
at the end of each timestep. If so, frazil ice is formed, changing the local temperature and salinity.
The ice that forms is assumed to instantly float up to the surface and add to the ice layer there.
We balance the mass, heat, and salt before and after the ice is formed:

mw1 = mw2 +mi (238)
mw1(CpwT1 + L) = mw2(CpwT2 + L) +miCpiT2 (239)

mw1S1 = mw2S2. (240)

The variables are defined in Table 8. Defining γ = mi/mw2 and dropping terms of order γ2 leads
to:

T2 = T1 + γ

[
L

Cpw
+ T1

(
1− Cpi

Cpw

)]
(241)

S2 = S1(1 + γ). (242)

We also want the final temperature and salinity to be on the freezing line, which we approximate
as:

Tf = mS. (243)

We can then solve for γ:

γ = −T1 +mS1

LCpw + T1
(
1− Cpi

Cpw

)
−mS1

. (244)

The ocean is checked at each depth k and at each timestep for supercooling. If the water is below
freezing, the temperature and salinity are adjusted as in equations (241) and (242) and the ice
above is thickened by the amount:

∆h = γk∆zk
ρw
ρi
. (245)

Note that Steele et al. [1989] include a compressibility term in equations (243) and (244), but we
use potential temperature instead of in situ temperature.

49

5.2.3 Differences from Mellor and Kantha

We have tried to modify the hakkis model to more closely follow MK89. However, there are also
ways in which we have deviated from it.

• Add advection of snow.

• Add lateral melting of snow when ice is melting laterally.

• Add various limiters:

– Ice concentration:Amin ≤ A ≤ 1.0, Amin = 1.e− 30.
– Ice thickness: hi ≥ 0.0.
– Snow thickness: hs ≥ 0.0.
– Brine fraction: r ≤ rmax, rmax = 0.2

50

6 Details of the Code

6.1 Directory structure

The directory structure is as shown in Fig. 9, with the ability to run the ocean alone or coupled to
atmospheric and/or wave models. If running just the ocean, the model can be run forward in time
(the nonlinear model) or as an adjoint, tangent linear, or representer model for data assimilation
purposes. This document describes the uncoupled forward model only, specifically the version used
for our domains containing sea ice and other changes from the main trunk code. Details are subject
to change without notice - check your own source code for specific details as they apply to you.

The directories shown here are:

Apps This directory contains a subdirectory for each of my personal applications and is not
in the trunk code. The subdirectories contain files used by each application: the ROMS
header file for setting cpp definitions, the analytic formulations for fields computed in the
model rather than read from files (bottom heat flux of zero, for instance), and ASCII
input files read by ROMS on startup to set things such as forcing file names and model
time-step. Some of these applications are:

Arctic This is the curvilinear grid covering the whole Arctic ocean, with 5–6 km reso-
lution off Alaska, coarser to the far side.

Bering This is a 10 km grid of the Bering Sea, generated for coupling to WRF in the
COAWST branch, but also tested with CICE.

Circle This is a circular domain wave propagation problem with an analytic solution
used as a test problem [Lamb, 1932].

NEP This is the Northeast Pacific domain covering the waters off the west coast of
the US, from California to the Bering Sea. It is a rectangular domain at about
11 km resolution when viewed in a conformal conic projection with standard
latitudes of 40 and 60 N.

NWGOA This is a 1.5 km grid of the Northwest Gulf of Alaska. It gets boundary
conditions from the Northeast Pacific grid, but is not aligned with it.

Other unsupported applications are also here. The application-specific files included in
the main trunk ROMS are elsewhere.

Atmosphere This directory is under development, not currently supported. If you want to
run with a coupled atmosphere or wave model, contact John Warner for access to the
COAWST branch.

Compilers This contains makefile fragments as described in §G.3.

Data Directories under here contain example forcing, grid, and initial condition NetCDF files.
There is also a directory containing the headers of these files in the format produced by
ncdump (CDL).

Lib The ARPACK and MCT libraries are needed by the data assimilation codes and by the
coupled models, respectively.

makefile This is the standard ROMS makefile as described in §G.

Master The ROMS main program is here, in various forms for the forward model, coupled models
and others. See §6.2.

README A few words about the code, recommended for all github projects.

51

Sediment/

NEP/
Circle/
Bering/
Arctic/

Adjoint/
Bin/
Drivers/
External/
Functionals/
Include/

License_ROMS.txt
Modules/
Nonlinear/
Obsolete/
Programs/
Representer/
SeaIce/
Tangent/
Utility/

Version

Atmosphere/
Compilers/
Data/
Lib/

makefile
Master/

README
README.CICE
ROMS/
User/
Waves/

Apps/

Biology/

NWGOA/

Figure 9: ROMS directory structure.

README.CICE A few words about the coupling to the Los Alamos CICE model.

ROMS These files are for the ocean model, as opposed to other components of the coupled system.

Adjoint This is the adjoint of the forward model, for data assimilation.
Bin Various shell and Perl scripts for use with the model. Note that the .sh files are

actually csh scripts, not sh scripts.
Drivers The main program includes one of these files, depending on how you are running

the model. The forward model is in nl_ocean.h.
External ROMS reads an ASCII file on startup. Here are examples for various applica-

tions, also examples of the optional files for extra components such as a sediment
model or a stations file.

Functionals The file analytical.F can include one or more code bits for the analytic
specification of for instance the initial conditions. Here are examples for the
supported model test problems.

Include Each application has a header file with C preprocessor options for that applica-
tion. For instance, the UPWELLING case has the include file upwelling.h
containing C preprocessor options for its periodic channel domain. The full list
of available options is in cppdefs.h.

License_ROMS.txt The open source license under which ROMS is copyrighted.
Modules The ROMS data structures are now in Fortran 90 module files, located here.

52

mpi_init
ROMS_initialize
ROMS_run
ROMS_finalize
mpi_finalize

initialize_parallel
inp_par
wclock_on
mod_arrays

initial

main3d or main2d

wclock_off
close_out

if (trouble)wrt_rst

Figure 10: ROMS main structure.

Nonlinear The routines used by the nonlinear forward model are here, implementing the
physics described in §4.

Biology The files for the ecosystem parts of the forward model are here.
Sediment The files for the sediment parts of the forward model are here.

Obsolete Long unused versions of the boundary conditions are stored here.
Programs Not all computer architectures or compilers are the same. The types.F pro-

gram checks your compiler for the sizes of the Fortran floating point types.
Representer This is the representer of the forward model, for data assimilation.
SeaIce The sea ice model described in §5 is here.
Tangent This is the tangent linear of the forward model, for data assimilation.
Utility Here are utility functions used by the various ROMS routines, many dealing with

I/O.
Version A file containing the time and date of this svn revision, also the svn URL—if

and only if you check out with svn. At least the date in the file is kept current
by Hernan.

SeaIce This is code for coupling to the Los Alamos CICE model with some tips in README.CICE.

User Some might choose to use this directory rather than the Apps directory. It serves the
same purpose but is arranged by file type rather than by application.

Waves The SWAN wave model is here.

6.2 Main subroutines

6.2.1 master.F

The main program is in master.F. It is simply a shell, including one of mct_coupler.h,
esmf_coupler.h or ocean.h. In our case, ocean.h contains the actual main program, which
initializes MPI (if needed), calls ROMS_initialize, calls ROMS_run with an argument for how
long to run for, then ROMS_finalize, and finally wraps up the MPI. See Fig. 10.

6.2.2 ocean_control.F

This is again a shell which includes one of many other files to do the actual work. In this case, the
worker files all contain ROMS_initialize, ROMS_run and ROMS_finalize and live in the
ROMS/Drivers directory. The driver file we will be looking at is nl_ocean.h.

53

6.2.3 ROMS_initialize

This is called at the beginning of the run and therefore starts off by finding out how many parallel
processes are running and which one this is, then calls the following ROMS routines:

initialize_parallel In the mod_parallel module, sets up a few variables, including some for the
built-in profiling.

inp_par Call read_phypar to read in the ASCII input file(s) used by ROMS, sets up the parallel
tiles, then calls routines to read in the rest of the ASCII input for biology, ice, etc.

wclock_on In timers.F, initialize a timer for the built-in profiling.

mod_arrays Allocate and initialize the dynamically sized arrays in ROMS based on the grid sizes
read in by inp_par.

initial Read in the initial conditions from one or more NetCDF files (one per grid) or computes
them analytically. Likewise for the grid, plus it sets up the vertical grid spacing to be
used and many other details.

6.2.4 ROMS_run

This calls one of these two routines with the RunInterval argument:

main3d or main2d Solve the full equations described in §4 (main3d) or the depth-integrated
version only (main2d).

6.2.5 ROMS_finalize

This is called at the end of the run, whether it was otherwise successful or not. The routines called
are:

wrt_rst If the run had an error code set, write out a restart record of the current model fields in
case they are useful in diagnosing the trouble.

wclock_off End the built-in timers and cause them to print out a report.

close_io Close all open files so as to flush the buffers and put NetCDF files into a finished state.

6.3 Initialization

checkdefs Report on which C preprocessor variables have been #defined and check their consis-
tency (called from inp_par).

ana_grid Compute the grid(s) internally.

ana_mask Compute the land mask internally.

get_grid Read in the curvilinear coordinate arrays as well as f and h from one NetCDF file per
grid.

set_scoord Set and initialize relevant variables associated with the vertical transformation to
nondimensional σ-coordinate described in Appendix B.

set_weights Set the barotropic time-step average weighting function.

metrics Compute the metric term combinations which do not depend on the surface elevation and
therefore remain constant in time.

54

ini_strengthcoef Compute a field for the nonlinear ice strength option [Overland and Pease,
1988].

ana_wtype Compute the Jerlov water type field internally.

ana_nudgcoef Compute the nudging time scales.

get_nudgcoef Read the nudging time scales from a file.

ini_hmixcoef Initialize the horizontal mixing coefficients.

ana_sponge Compute the horizontal mixing coefficients internally.

ana_initial Analytic initial conditions for momentum and active tracers.

ana_passive Analytic initial conditions for passive tracers.

ana_biology Analytic initial conditions for ecosystem tracers.

ana_sediment Analytic initial conditions for sediment tracers.

ana_ice Analytic initial conditions for ice variables.

get_state Read initial fields from disk—either restart or from some other source which has been
converted to the appropriate format of NetCDF file.

get_wetdry or wetdry Initialize wet/dry masks.

set_depth Compute time-evolving depths.

set_massflux Compute initial horizontal mass fluxes.

omega Compute initial vertical velocities.

rho_eos Compute initial density fields.

ana_psource Set up analytic point sources.

check_multifile Read input files in which one or more file is specified to find out time-ranges,
etc.

get_idata Read in time-invariant forcing data.

get_data Read in the first record of time-varying forcing fields, boundary conditions, etc.

set_masks Compute I/O masks.

ana_drag Compute bottom drag coefficients internally.

stiffness Compute grid stiffness.

grid_coords Convert initial float and station locations to fractional grid coordinates.

nesting Perform inter-grid communications.

55

- - rhs3d
my25_prestep
gls_prestep

step2d
step2d

set_depth
step3d_uv
omega
my25_corstep
gls_corstep
biology

sediment
step3d_t
step_floats

<loop>

<loop> set_vbc
ntimesteps
get_data
set_data
First step only:

ini_zeta
set_depth
ini_fields

set_massflux
rho_eos
diag
radiation_stress
cawdir_eval
ana_albedo
albedo_eval
ccsm_flux

ncep_flux

bblm

bulk_flux

set_tides
First rst step only:

ice_flux_rst

seaice
ana_vmix
lmd_vmix
bvf_mix
hmixing
omega
wvelocity
set_zeta
set_diags
set_filter
set_avg
set_avg2
output

Exit if time
is reached

Figure 11: Flow chart of the model main program in forward mode. Calls to nesting for nested
grid applications have been left out.

56

6.3.1 main3d

This solves the full three-dimensional equations described in §4. It has siblings main2d for solving
the depth-integrated equations and main3d_offline for reading files from a prior simulation and
using them to advect the biological tracers or the Lagrangian floats. The full version is shown
in Fig. 11, where the outer loop is over both timesteps and grids. Note that many subroutines
are optional and only get called if the appropriate C preprocessor switches have been set. The
subroutines are described as follows:

ntimesteps Find out how many timesteps to take on each grid.

get_data Read in the second and subsequent records of time-varying forcing fields, boundary
conditions, etc.

set_data Time interpolate between the records read in by get_data.

ini_zeta Check for wet/dry cells if needed and initializes all the time levels of zeta.

ini_fields Initialize the 2-D velocities to match the vertical integral of the 3-D velocities, making
all the time levels match.

set_massflux Compute horizontal mass fluxes, Hzun and Hzv
m .

rho_eos Compute the nonlinear equation of state.

diag Compute some global sums, prints them, and checks them to see if they are sensible. If
not, it stops the model run.

radiation_stress Compute the radiation stresses due to wave-current interactions [Mellor, 2003,
2005].

cawdir_eval , ana_albedo or albedo_eval Compute the albedo at the ice and ocean surface.

ccsm_flux Compute the surface fluxes from the atmosphere based on a marine boundary layer.
This version comes from CCSM [Large and Yeager, 2009] and is reputed to do better
outside of the tropics.

bulk_flux Compute the surface fluxes from the atmosphere based on a marine boundary layer.
This version comes from COARE version 3.0 [Fairall et al., 2003, Taylor and Yelland,
2001, Oost et al., 2002].

ncep_flux Compute the surface fluxes from the NCEP atmospheric model.

bblm compute the bottom stresses from one of three bottom boundary layer models.

set_vbc Compute the surface and bottom fluxes and stresses that aren’t computed elsewhere—set
vertical boundary conditions.

set_tides Compute the tidal boundary conditions from the tidal constituents.

seaice Run the sea ice model described in §5. It changes the surface boundary conditions for the
ocean and therefore gets called before the call to output or anything else that would be
needing the surface boundary conditions. In the case of a perfect restart, ice_flux_rst
is called instead on the first timestep—this restores surface fluxes from the restart file.

ana_vmix Called if there’s an analytic profile for the vertical mixing coefficient.

57

lmd_vmix Called when using the K-profile parameterization of vertical mixing [Large et al., 1994,
Large, 1998].

bvf_mix Compute the vertical mixing as a function of the Brunt-Väisälä frequency.

hmixing Compute time-dependent horizontal mixing coefficients [Smagorinsky, 1963, Holland
et al., 1998, Webb et al., 1998, Griffies and Hallberg, 2000].

omega Compute the Ω vertical velocity from the horizontal divergences.

wvelocity Compute the physical vertical velocity for the model output.

set_zeta Set the surface elevation to the time-mean over the last baroclinic time-step.

set_diags Accumulate the time-average of the diagnostics fields.

set_filter Accumulate a weighted sum using a Lanczos filter for detiding the most important of
the output fields. Not in the trunk code.

set_avg Accumulate time-averaged fields for the averages output.

set_avg2 Accumulate the time-averaged surface fields for the second averages output. Not in the
trunk code.

output Write to various output NetCDF files.

rhs3d Call pre_step3d which computes a predictor step on the three-dimensional variables,
then compute right-hand-sides of the three-dimensional velocity fields for the corrector
step, including pressure gradients.

my25_prestep Compute the predictor step for turbulent kinetic energy prognostic variables, tke
and gls.

gls_prestep Compute the predictor step for turbulent kinetic energy prognostic variables, tke
and gls.

step2d Compute the depth-integrated time-step. It is called in a loop over all the short time-
steps, first as a predictor step, then as a corrector step.

step3d_uv Complete the time-step for the three-dimensional velocities.

omega Compute the Ω vertical velocity.

my25_corstep Perform the corrector step for turbulent kinetic energy and length scale prognostic
variables, tke and gls [Mellor and Yamada, 1982, Galperin et al., 1988].

gls_corstep Perform the corrector step for turbulent kinetic energy and length scale prognostic
variables, tke and gls [Umlauf and Burchard, 2003, Warner et al., 2005].

biology Compute the changes to the biological tracers due to biological activity using one of
several options for the ecosystem model.

sediment Compute changes to the sediment tracers [Warner et al., 2008].

step3d_t Complete the tracer time-step.

ice_frazil Compute the frazil ice growth, if any. Now called from inside step3d_t.

step_floats Time-step the Lagrangian floats.

58

6.4 Modules

Now that we are using Fortran 90, the method of choice for managing data structures is modules.
The ROMS/Modules directory contains all of the ROMS modules that contain globally used
variables. The complete list is:

mod_arrays.F This actually has no data structures, but has the routine that calls the allocate
and initialize routines for all the others.

mod_average.F If AVERAGES is defined, this will provide the storage for the running means
of the fields you are averaging.

mod_average2.F If AVERAGES2 is defined, this will provide the storage for the surface run-
ning means of the fields you are averaging.

mod_bbl.F If BBL_MODEL is defined, this will provide the storage for the bottom boundary
fields.

mod_behavior.F If FLOAT_BIOLOGY is defined, this will include a file for adding behavior
to floats, such as oysters sinking to the bottom.

mod_biology.F If BIOLOGY is defined, this will provide the storage for the biology interaction
parameters.

mod_boundary.F This contains the storage for the open boundary conditions. If they aren’t
provided analytically, this will also provide the storage for fields read from a file that need
to be time-interpolated.

mod_clima.F If one of LsshCLM or several other options is set to .true., this will provide the
storage for the climatology fields.

mod_coupler.F If either MODEL_COUPLING or ESMF_LIB is defined, this will set up
the requisite fields and data structures for the coupling.

mod_coupling.F If SOLVE3D is defined, this will provide the storage for the fields used in
coupling the 2-D and 3-D components of the simulation.

mod_diags.F If DIAGNOSTICS is defined, this will provide the storage for the various ten-
dency terms.

mod_eclight.F If both BIOLOGY and ECOSIM are defined, this will set up the spectral
irradiance variables.

mod_eoscoef.F If NONLIN_EOS is defined, this will provide the polynomial expansion coef-
ficients for the nonlinear equation of state for sea water.

mod_filter.F If FILTERED is defined, this will provide the storage for the weighted means
used in detiding the averages. Not in the trunk code.

mod_floats.F If FLOATS is defined, this will provide the storage for the float tracking variables.

mod_forces.F This provides the storage for the surface and bottom forcing fields.

mod_fourdvar.F If either FOUR_DVAR or VERIFICATION is defined, this will set up
the variational data assimilation variables.

mod_grid.F This provides the storage for the model grid fields.

59

mod_ice.F If ICE_MODEL is defined, this will provide storage for the ice fields.

mod_iounits.F This contains a number of variables used by the I/O, including file names and
file IDs.

mod_kinds.F This contains the integers associated with the various integer and real Fortran
types. If you find more systems supporting 128-bit reals, let us know.

mod_mixing.F This contains the arrays for the various optional horizontal and vertical mixing
parameterizations.

mod_ncparam.F This contains all sorts of parameters relating to the NetCDF I/O files, includ-
ing those read from the varinfo.dat file. The parameters MV and NV are set here,
giving the maximum number of variables that can be read [this is a change from the
trunk code].

mod_nesting.F IfNESTING is defined, this module defines generic structures used for nesting,
composed, and mosaic grids. Still in development, but some cases do now work.

mod_netcdf.F This brings in netcdf.mod and defines wrapper functions for many of the netcdf
functions.

mod_ocean.F This contains the 2-D and 3-D fields of the primitive ocean variables and optionally
the sediment variables.

mod_parallel.F This sets up some global variables such as Master, which is true for the master
thread or process. It also initializes the internal ROMS profiling arrays.

mod_param.F This contains the sizes of each grid used, plus things like how many tidal con-
stituents are being used. Many of these are read from the input files during initialization,
not known at compile time.

mod_scalars.F This contains a large number of scalars, i.e. values which don’t have spatial
dependence. Some are fixed constants such as itemp referring to the temperature tracer.
Others could have a different value on each grid.

mod_sedbed.F If either SEDIMENT or BBL_MODEL is defined, this contains parameters
for the sediment bed layers.

mod_sediment.F If either SEDIMENT or BBL_MODEL is defined, this contains parame-
ters for the respective model.

mod_sources.F This contains the variables used for point sources, only allocated if one of
LuvSrc, LwSrc or LtracerSrc is set to .true.

mod_stepping.F This contains the time-stepping variables used to point to the relevant time
level.

mod_storage.F If PROPAGATOR is defined, this module defines the work space for the
Generalized Stability Theory (GST) Analysis package (ARPACK).

mod_strings.F This contains strings such as a title for the run, the list of cpp options defined,
and the names of the sections of code being profiled.

mod_tides.F If SSH_TIDES and/or UV_TIDES is defined, this will provide the storage for
the tidal constituents.

mod_trc_sources.F If TRC_PSOURCE is defined, this contains the variables used for tracer
point sources. Not in the trunk code.

60

6.5 Functionals

The Functionals directory contains analytical.F which conditionally includes code bits for com-
puting analytic values for a wide variety of fields. Many are alternates for reading from NetCDF
files, especially for idealized problems.

ana_aiobc Compute open boundary conditions for the ice concentration.

ana_albedo Compute analytic surface albedo.

ana_biology Compute analytic initial conditions for the biology tracers.

ana_btflux Compute analytic kinematic bottom flux of tracer type variables (default of zero).

ana_cloud Compute analytic cloud fraction.

ana_diag Compute customized diagnostics.

ana_dqdsst Compute analytic variation of surface heat flux as a function of SST.

ana_drag Compute customized bottom drag coefficients.

ana_fsobc Compute analytic open boundary conditions for the free surface.

ana_grid Set up an analytic grid.

ana_hiobc Compute open boundary conditions for the ice thickness.

ana_hsnobc Compute open boundary conditions for the snow thickness.

ana_hsnobc Compute open boundary conditions for the snow thickness.

ana_humid Compute analytic atmospheric humidity.

ana_ice Compute analytic initial conditions for the sea ice.

ana_initial Set up analytic initial conditions for the ocean.

ana_lrflux Compute analytic kinematic surface downward longwave radiation.

ana_m2clima Set up an analytic climatology for the two-dimensional momentum.

ana_m2obc Compute open boundary conditions for the two-dimensional momentum.

ana_m3clima Set up an analytic climatology for the three-dimensional momentum.

ana_m3obc Compute open boundary conditions for the three-dimensional momentum.

ana_mask Set up an analytic mask.

ana_ncep Set up analytic fields as if they came from NCEP.

ana_nudgcoef Set up spatially dependent nudging coefficients for nudging to a climatology.

ana_pair Compute analytic sea-level air pressure.

ana_passive Compute analytic initial conditions for passive tracers.

ana_perturb Compute analytic perturbations to the initial conditions.

ana_psource Compute analytic point source fluxes.

61

ana_rain Compute analytic rainfall.

ana_scope Set adjoint sensitivity spatial scope masking arrays.

ana_sediment Compute analytic initial conditions for the sediment tracers.

ana_smflux Compute analytic kinematic surface momentum flux (wind stress).

ana_snow Compute analytic snowfall.

ana_specir Set surface solar downwelling spectral irradiance at just beneath the sea surface.

ana_spinning Set time-variable rotation force as the sum of Coriolis and Centripetal accelera-
tions. This is used in polar coordinate applications (annulus grid).

ana_sponge Compute spatially variable horizontal mixing coefficients.

ana_srflux Compute analytic kinematic surface shortwave radiation.

ana_ssh Compute analytic sea surface height.

ana_sss Compute analytic sea surface salinity.

ana_sst Compute analytic sea surface temperature.

ana_stflux Compute analytic kinematic surface flux of tracer type variables.

ana_tair Compute analytic air temperature.

ana_tclima Compute analytic tracer climatology fields.

ana_tobc Compute analytic open boundary conditions for all tracers (active, passive, biology,
and sediment).

ana_vmix Compute analytic vertical mixing coefficients.

ana_winds Compute analytic winds.

ana_wwave Compute analytic wind-induced wave amplitude, direction and period.

6.6 Other subroutines and functions

The ROMS/Utility directory contains an assortment of useful routines, many of which deal with
I/O:

NetCDF I/O The I/O has been cleaned up so that all processes check for the return code on
reads and writes and exit on failure. In many cases, the master process is the only one
actually doing the I/O, but it then broadcasts its status to the rest.

def_* Creates the ROMS NetCDF file of the appropriate type, including dimensions,
attributes, and variables.

def_info Adds some standard scalar variables to any NetCDF file.
get_*fld Reads a field from a netcdf file, perhaps using one of nf_fread2d and its kin.

nf_fread2d is special in that it can read uniformly gridded forcing files and call
regrid to regrid them onto the ROMS grid.

wrt_* Writes to the ROMS NetCDF file of the appropriate type.

62

Text input ROMS can parse text files in a specific format. These files replace what other models
use namelists for.

read_* The ocean_xx.in file is read by read_phypar while others read the stations,
floats, and other text files.

6.7 C preprocessor variables

Before it can be compiled, the model must be run through the C preprocessor cpp, as described
in Appendix F. The C preprocessor has its own variables, which may be defined either with an
explicit #define command or with a command line option to cpp. We have chosen to define these
variables in an application-specific include file, except for some machine-dependent ones, which are
defined in the makefile. These variables allow you to conditionally compile sections of the code.
For instance, if MASKING is not defined, the masking code will not be seen by the compiler, and
the masking variables will not be declared.

The top of each Fortran file contains #include “cppdefs.h”. This file will include the user-
provided file of cpp options and then include globaldefs.h. This latter will set some internal
ROMS cpp variables for you, depending on choices you have made. For instance, if you don’t
provide analytic surface forcing fields by one means or another, globaldefs.h will set FRC_FILE
and ROMS will attempt to read a forcing file. Some combinations of options don’t make sense, so
checkdefs will complain and cause the run to end if it finds any incompatibilities in your setup.

The exact list of user-selectable cpp variables will depend on which ROMS branch you have.
Those listed below are in the sea-ice branch on github. They can be grouped into several categories:

Momentum terms The default horizontal advection is 3rd-order upstream bias for 3D momen-
tum and 4th-order centered for 2D momentum. The default vertical advection is 4th-order
centered for 3D momentum. If this is the case, no flags for momentum advection need to
be activated except for UV_ADV.
The 3rd-order upstream split advection (UV_U3ADV_SPLIT) can be used to correct
for the spurious mixing of the advection operator in terrain-following coordinates. If this
is the case, the advection operator is split into advective and viscosity components and
several internal flags are activated in globaldefs.h. Notice that horizontal and vertical
advection of momentum is 4th-order centered plus biharmonic viscosity to correct for
spurious mixing.

UV_ADV Define to compute the momentum advection terms.
CURVGRID Define to compute the extra non-linear advection terms which arise when

using curvilinear coordinates.
UV_COR Define to compute the Coriolis term.
UV_U3ADV_SPLIT Define for 3rd-order upstream split momentum advection.
UV_C2ADVECTION Define for 2nd-order centered advection.
UV_C4ADVECTION Define for 4rd-order centered advection.
UV_SADVECTION Define for splines vertical advection (for shallow, vertically well-

resolved domains).
UV_VIS2 Define to compute the horizontal Laplacian viscosity.
UV_VIS4 Define to compute the horizontal biharmonic viscosity.
UV_SMAGORINSKY Define for Smagorinsky-like viscosity.
UV_LOGDRAG Define for logarithmic bottom friction.
UV_LDRAG Define for linear bottom friction.

63

UV_QDRAG Define for quadratic bottom friction.
UV_WAVEDRAG Define for extra linear bottom wave drag.
UV_DRAG_GRID Define for spatially variable bottom drag.
SPLINES_VVISC Define for splines reconstruction of vertical viscosity.
LIMIT_BSTRESS Define for bottom drag limiter.

Tracers The default horizontal and vertical advection is 4th-order centered.
The 3rd-order upstream split advection (TS_U3ADV_SPLIT) can be used to cor-
rect for the spurious diapycnal diffusion of the advection operator in terrain-following
coordinates. If this is the case, the advection operator is split in advective and diffusive
components and several internal flags are activated in globaldefs.h. Notice that hori-
zontal and vertical advection of tracer is 4th-order centered plus biharmonic diffusion to
correct for spurious diapycnal mixing. The total time-dependent horizontal mixing coef-
ficient are computed in hmixing.F. It is also recommended to use the rotated mixing
tensor along geopotentials (MIX_GEO_TS) for the biharmonic operator.

TS_U3ADV_SPLIT Define for 3rd-order upstream split tracer advection.
TS_A4HADVECTION Define for 4nd-order Akima horizontal advection.
TS_C2HADVECTION Define for 2nd-order centered horizontal advection.
TS_C4HADVECTION Define for 4rd-order centered horizontal advection.
TS_MPDATA Define for recursive MPDATA 3D advection [Margolin and Smolarkievicz,

1998].
TS_MPDATA_LIMIT Define to limit upwind corrector fluxes for stability.
TS_U3HADVECTION Define for 3nd-order upstream horizontal advection.
TS_A4VADVECTION Define for 4nd-order Akima vertical advection.
TS_C2VADVECTION Define for 2nd-order centered vertical advection.
TS_C4VADVECTION Define for 4rd-order centered vertical advection.
TS_SADVECTION Define for splines vertical advection (for shallow, vertically well-

resolved domains).
TS_DIF2 Define to compute horizontal Laplacian diffusion.
TS_DIF4 Define to compute horizontal biharmonic diffusion.
TS_SMAGORINSKY Define for Smagorinsky-like diffusion.
TS_FIXED Define for a diagnostic calculation in which the tracer fields do not change

in time.
T_PASSIVE Define for passive tracers.
AGE_MEAN Define for computing mean age of passive tracers (requires two passive

tracers per age tracer).
SALINITY Define if salinity is used as one of the active tracers.
NONLIN_EOS Define to use the nonlinear equation of state.
QCORRECTION Define to use the net heat flux correction.
SCORRECTION Define to use freshwater flux correction.
SSSC_THRESHOLD Define to limit the freshwater flux correction.
LIMIT_STFLX_COOLING Define to limit the surface cooling to prevent water from

freezing.

64

SOLAR_SOURCE Define to use solar radiation source term.
SPLINES_VDIFF Define to use splines reconstruction of vertical diffusion.
SRELAXATION Define to use salinity relaxation as a freshwater flux.
TRC_PSOURCE Define for passive tracer point sources/sinks.
ONE_TRACER_SOURCE Define for one value per tracer for all sources.
TWO_D_TRACER_SOURCE Define for one value per tracer per source.

Pressure gradient options If no option is selected, the pressure gradient term is computed
using standard density Jacobian algorithm. Notice that there are two quartic pressure
Jacobian options. They differ on how the WENO reconciliation step is done and in the
monotonicity constraining algorithms.

DJ_GRADPS Define for splines density Jacobian [Shchepetkin and McWilliams, 2003].
PJ_GRADP Define for finite volume Pressure Jacobian [Lin, 1997].
PJ_GRADPSQ2 Define for quartic 2 Pressure Jacobian [Shchepetkin and McWilliams,

2003].
PJ_GRADPSQ4 Define for quartic 4 Pressure Jacobian [Shchepetkin and McWilliams,

2003].
DJ_GRADPS Define for weighted density Jacobian [Song, 1998].
ATM_PRESS Define to impose atmospheric sea-level pressure onto the sea surface.

Atmospheric boundary layer There are now four ways to provide longwave radiation in the at-
mospheric boundary layer: (1) Compute the net longwave radiation internally using the
Berliand (1952) equation (LONGWAVE) as function of air temperature, sea surface
temperature, relative humidity, and cloud fraction; (2) provide (read) longwave down-
welling radiation only and then add outgoing longwave radiation (LONGWAVE_OUT)
as a function of the model sea surface temperature; (3) provide net longwave radiation
(default); (4) provide analytic longwave radiation (net or downwelling) via ana_lrflux.h.

BULK_FLUXES Define for bulk flux computation (required for either Fairall et al.
[2003] or Large and Yeager [2009]).

CCSM_FLUXES Define for CCSM version of bulk flux computation [Large and Yeager,
2009].

NCEP_FLUXES Define if NCEP forcing files are used.
GLOBAL_PERIODIC Define if letting ROMS interpolate onto a grid which spans

the full longitude range of the globe.
NL_BULK_FLUXES Define to use bulk fluxes computed by nonlinear (forward)

model.
COOL_SKIN Define for cool skin correction.
LONGWAVE Define to compute net longwave radiation.
LONGWAVE_OUT Define to compute outgoing longwave radiation.
EMINUSP Define to compute evaporation minus precipitation.
EMINUSP_SSH Define to compute changes in SSH due to evaporation minus precip-

itation.
RUNOFF Define to read freshwater runoff as a second rain-like field.
RUNOFF_SSH Define to compute changes in SSH due to RUNOFF.

65

The shortwave radiation can be provided as net without an albedo correction for ocean-
only simulations. For sea-ice, it is best to provide downwelling shortwave radiation and
perform an albedo correction. In addition, input shortwave radiation data computed from
averaged data (with snapshots greater or equal to 24 hours) can be modulated by the local
diurnal cycle which is a function longitude, latitude and day-of-year.

ALBEDO_CLOUD Define to use albedo equation for shortwave radiation (for water).
ALBEDO_CSIM Define to use albedo function of ice type from CSIM model (for ice).
ICE_ALB_EC92 Define to use albedo function of ice type from Ebert and Curry [1993]

(for ice).
ALBEDO_CURVE Define to use albedo function of latitude from Large and Yeager

[2009] (for water).
ALBEDO_FILE Define to use albedo from a file (for both ice and water).
DIURNAL_SRFLUX Define to impose the local diurnal cycle onto the shortwave

radiation.

Wave roughness in bulk fluxes

COARE_TAYLOR_YELLAND Define to use Taylor and Yelland wave roughness
[Taylor and Yelland, 2001].

COARE_OOST Define to use Oost et al. wave roughness [Oost et al., 2002].
DEEPWATER_WAVES Define to use deep water waves approximation.

Model output

PROFILE Define for time profiling.
AVERAGES Define to write out time-averaged model fields.
AVERAGES2 Define to write out secondary time-averaged model fields.
HISTORY2 Define to write out secondary history fields.
AVERAGES_DETIDE Define to write out time-averaged detided fields, one method.
FILTERED Define to write out time-averaged detided fields, using a Lanczos filter.
DIAGNOSTICS_BIO Define to write out ecosystem diagnostics.
DIAGNOSTICS_UV Define to write out momentum diagnostics.
DIAGNOSTICS_TS Define to write out tracer diagnostics.
STATIONS Define to write out time-series information at specific points in the model.
STATIONS_CGRID Define if stations are on native C-grid.

Lagrangian floats

FLOATS Define for simulated Lagrangian drifters.
FLOAT_STICKY Define for floats to stick/reflect when hitting the bottom or surface.
FLOAT_VWALK Define if floats do vertical random walk.
VWALK_FORWARD Define for forward time stepping of vertical random walk.
FLOATS_OYSTER Define to activate oyster behavior on floats.
DIAPAUSE Define to simulate diapause on floats.

General model configuration

66

SOLVE3D Define to solve the 3-D primitive equations.
MASKING Define if there is land in the domain to be masked out.
BODYFORCE Define to apply the surface stress as a body force.
ICESHELF Define for ice shelf cavities.
ICESHELF_3EQ Define for floating three equation ice shelves.
SPHERICAL Define if lat/lon coordinates rather than x/y.
DEBUGGING Define to suppress timestamps for easier comparisons between files.

Analytic fields

ANA_ALBEDO Define for analytic albedo fields.
ANA_BIOLOGY Define for analytic biology initial conditions.
ANA_BPFLUX Define for an analytic bottom passive tracer flux.
ANA_BSFLUX Define for an analytic bottom salt flux.
ANA_BTFLUX Define for an analytic bottom heat flux.
ANA_CLOUD Define for an analytic cloud fraction.
ANA_DIAG Define for customized diagnostics.
ANA_DQDSST Define for an analytic surface heat flux sensitivity to SST.
ANA_DRAG Define for an analytic spatially variable bottom drag.
ANA_FSOBC Define for analytic free-surface boundary conditions.
ANA_GRID Define for an analytic model grid set-up.
ANA_HUMIDITY Define for analytic surface air humidity.
ANA_ICE Define for analytic ice initial conditions.
ANA_INITIAL Define for analytic initial conditions.
ANA_LRFLUX Define for analytic longwave radiation.
ANA_M2CLIMA Define for an analytic 2D momentum climatology.
ANA_M2OBC Define for analytic 2D momentum boundary conditions.
ANA_M3CLIMA Define for an analytic 3D momentum climatology.
ANA_M3OBC Define for analytic 3D momentum boundary conditions.
ANA_MASK Define for an analytic mask.
ANA_NUDGCOEF Define for an analytic nudging coefficients.
ANA_PAIR Define for an analytic surface air pressure.
ANA_PASSIVE Define for analytic initial conditions for inert tracers.
ANA_PERTURB Define for analytic perturbation of initial conditions.
ANA_PSOURCE Define for analytic point sources.
ANA_PTOBC Define for analytic passive tracer boundary conditions.
ANA_RAIN Define for analytic rain fall rate.
ANA_SEDIMENT Define for analytic sediment initial fields.
ANA_SMFLUX Define for an analytic kinematic surface momentum stress.
ANA_SNOW Define for analytic snow fall rate.
ANA_SPFLUX Define for analytic surface passive tracers fluxes.

67

ANA_SPINNING Define for an analytic time-varying rotation force.
ANA_SRFLUX Define for an analytic kinematic surface shortwave radiation.
ANA_SSFLUX Define for an analytic kinematic surface freshwater flux.
ANA_SSH Define for an analytic sea surface height.
ANA_SSS Define for an analytic sea surface salinity.
ANA_SST Define for an analytic SST and ∂Q/∂SST.
ANA_STFLUX Define for an analytic kinematic surface heat flux.
ANA_TAIR Define for analytic surface air temperature.
ANA_TCLIMA Define for an analytic tracer climatology.
ANA_TOBC Define for analytic tracer open boundary conditions.
ANA_TRC_PSOURCE Define for analytic passive tracer point sources.
ANA_VMIX Define for analytic vertical mixing coefficients.
ANA_WINDS Define for analytic surface winds.
ANA_WWAVE Define for an analytic wind induced wave field.

Horizontal mixing of momentum

MIX_GEO_UV Define for viscosity along constant z (geopotential) surfaces.
MIX_S_UV Define for viscosity along constant s surfaces.
VISC_GRID Define for horizontally variable viscosity coefficient.

Horizontal mixing of tracers

DIFF_GRID Define for horizontally variable diffusion coefficient.
MIX_GEO_TS Define for diffusion along constant z (geopotential) surfaces.
MIX_ISO_TS Define for diffusion along constant potential density (epineutral) sur-

faces.
MIX_S_TS Define for diffusion along constant s surfaces.
CLIMA_TS_MIX Define for diffusion of tracer perturbation T − Tclm

Vertical mixing

BVF_MIXING Define to activate Brunt-Väisälä frequency mixing.
GLS_MIXING Define for Generic Length-Scale mixing.

CANUTO_A Define for Canuto A-stability function formulation.
CANUTO_B Define for Canuto B-stability function formulation.
CHARNOK Define for Charnok surface roughness from wind stress.
CRAIG_BANNER Define for Craig and Banner wave breaking surface flux.
KANTHA_CLAYSON Define for Kantha and Clayson stability function.
K_C2ADVECTION Define for 2th-order centered advection.
K_C4ADVECTION Define for 4th-order centered advection.
N2S2_HORAVG Define for horizontal smoothing of buoyancy/shear.
RI_SPLINES Define for splines reconstruction of vertical shear.
ZOS_HSIG Define for surface roughness from wave amplitude.
TKE_WAVEDISS Define for wave breaking surface flux from wave amplitude.

68

LMD_MIXING Define to activate Large/McWilliams/Doney interior closure.
LMD_BKPP Define to add a bottom boundary layer from a local K-Profile

Parameterization (KPP).
LMD_CONVEC Define to add convective mixing due to shear instabilities.
LMD_DDMIX Define to add double-diffusive mixing.
LMD_NONLOCAL Define to add convective nonlocal transport.
LMD_RIMIX Define to add diffusivity due to shear instabilities.
LMD_SHAPIRO Define to Shapiro filtering boundary layer depths.
LMD_SKPP Define to add a surface boundary layer from a local K-Profile

Parameterization (KPP).
WTYPE_GRID Define for spatially dependent Jerlov water type.
RI_SPLINES Define for splines reconstruction of vertical shear.

MY25_MIXING Define to activate Mellor/Yamada Level-2.5 closure.
KANTHA_CLAYSON Define for Kantha and Clayson stability function.
K_C2ADVECTION Define for 2th-order centered advection.
K_C4ADVECTION Define for 4th-order centered advection.
N2S2_HORAVG Define for horizontal smoothing of buoyancy/shear.
RI_SPLINES Define for splines reconstruction of vertical shear.
These two can be used if RI_SPLINES is not defined.

RI_HORAVG Define for horizontal Richardson number smoothing.
RI_VERAVG Define for vertical Richardson number smoothing.

Bottom boundary layer The OptionsMB_Z0BL andMB_Z0RIP should be activated con-
currently.

MB_BBL Define to activate Meinte Blaas BBL closure.
MB_CALC_ZNOT Define to compute bottom roughness internally.
MB_CALC_UB Define to compute bottom orbital velocity internally.
MB_Z0BIO Define for biogenic bedform roughness for ripples.
MB_Z0BL Define for bedload roughness for ripples.
MB_Z0RIP Define for bedform roughness for ripples.

SG_BBL Define to activate Styles/Glenn bottom boundary layer formulation.
SG_CALC_ZNOT Define to compute bottom roughness internally.
SG_CALC_UB Define to compute bottom orbital velocity internally.
SG_LOGINT Define for logarithmic interpolation of (Ur,Vr).

SSW_BBL Define to activate Sherwood/Signell/Warner bottom boundary layer closure.
SSW_CALC_ZNOT Define to compute bottom roughness internally.
SSW_CALC_UB Define to compute bottom orbital velocity internally.
SSW_LOGINT Define for logarithmic interpolation of (Ur,Vr).
SSW_FORM_DRAG_COR Define to activate form drag coefficient.
SSW_Z0BIO Define for biogenic bedform roughness for ripples.
SSW_Z0BL Define for bedload roughness for ripples.
SSW_Z0RIP Define for bedform roughness for ripples.

Sea ice

69

ICE_MODEL Define to use ice component of the model (see §5).
ICE_THERMO Define for ice thermodynamics.
ICE_MK Define for Mellor and Kantha [1989] ice thermodynamics—this is the

only choice.
ICE_MOMENTUM Define for momentum component of the ice.
ICE_MOM_BULK Define for alternate ice-water stress computation.
ICE_EVP Define for elastic-viscous-plastic rheology [Hunke and Dukowicz, 1997,

Hunke, 2001].
ICE_QUAD_STRENGTH Define for quadratic ice strength from Overland

and Pease [1988].
ICE_ADVECT Define for advection of ice tracers.
ICE_SMOLAR Define to use MPDATA for ice tracers (no other option).
ICE_UPWIND Define for upwind advection.
ICE_SHOREFAST Define for simple shorefast-ice algorithm [Budgell, 2005].
ICE_LANDFAST Define for alternate shorefast-ice algorithm [Lemieux et al.,

2015].
FASTICE_CLIMATOLOGY Define for clamping to a climatology of landfast

ice.
ICE_BULK_FLUXES Define for ice part of bulk flux computation.
ICE_I_O Define to allow light into the ice as heat.
ICE_CONVSNOW Define for conversion of flooded snow to ice.
OUTFLOW_MASK Define for Hibler style outflow cells.
INI_GLORYS_ICE Define to read initial conditions for aice, hice, and sur-

face temperature from a GLORYS file.

Boundary conditions

RADIATION_2D Define for tangential phase speed in radiation conditions.

Tides The tidal data is processed in terms of tidal constituents, classified by period. The tidal
forcing is computed for the full horizontal grid. If requested, the tidal forcing is added to
the processed open boundary data.
Both tidal elevation and tidal currents are required to force the model properly. However,
if only the tidal elevation is available, the tidal currents at the open boundary can be esti-
mated by reduced physics. Only the pressure gradient, Coriolis, and surface and bottom
stresses terms are considered at the open boundary. See u2dbc_im.F or v2dbc_im.F
for details. Notice that there is an additional option (FSOBC_REDUCED) for the
computation of the pressure gradient term in both Flather or reduced physics boundary
conditions.

SSH_TIDES Define if imposing tidal elevation.
UV_TIDES Define if imposing tidal currents.
POT_TIDES Define if imposing potential tides.
RAMP_TIDES Define if ramping (over one day) tidal forcing from zero.
ADD_FSOBC Define to tidal elevation to processed OBC data.
ADD_M2OBC Define to tidal currents to processed OBC data.
FSOBC_REDUCED Define for reduced physics when providing SSH boundary con-

ditions but not the 2D momentum fields.

70

TIDES_ASTRO Define to add contributions from the long-period tides as done by
Foreman.

Climatology These are for OFFLINE options only.

OCLIMATOLOGY Define for processing the vertical momentum climatology arrays.
AKTCLIMATOLOGY Define for processing the tracer vertical diffusion climatology

arrays.

Ecosystem models

BIO_FENNEL Define for Fennel et al. [2006] nitrogen-based model.
BIO_SEDIMENT Define to restore fallen material to the nutrient pool.
CARBON Define to add carbon constituents.
DENITRIFICATION Define to add denitrification processes.
OXYGEN Define to add oxygen dynamics.
OCMIP_OXYGEN_SC Define if Schmidt number from Keeling et al. [1998].
TALK_NONCONSERV Define for nonconservative computation of alkalinity.

BEST_NPZ Define for Gibson et al. (personal communication) Bering Sea model.
STATIONARY Define for extra output.
BENTHIC Define for benthic components.
ICE_BIO Define for ice algae.
JELLY Define for jellyfish.
CLIM_ICE_1D Define if 1-D with ice.

BIO_UMAINE Define for Xiu and Chai [2014], Xiu and Chai [2012] model.
OXYGEN
CARBON
SINK_OP1
SINK_OP2
TALK_NONCONVERV
DIURNAL_LIGHT
OPTIC_UMAINE

BIO_GOANPZ Define for Hinckley et al. [2009] Gulf of Alaska model.
NPZD_FRANKS Define for NPZD model of Franks et al. [1986].
NPZD_IRON Define for NPZD model with iron limitation.
NPZD_POWELL Define for NPZD model of Powell et al. [2006].
IRON_LIMIT Define for iron limitation on phytoplankton growth (for a few of the

biology models).
IRON_RELAX Define for nudging to iron over the shelf.
ECOSIM Define for bio-optical EcoSim model.
NEMURO Define for Nemuro ecosystem model [Kishi et al., 2007]. Need to choose a zoo-

plankton grazing option (HOLLING_GRAZING or IVLEV_EXPLICIT).
The default implicit IVLEV algorithm does not work yet.

BIO_SEDIMENT Define to restore fallen material to the nutrient pool.
NEMURO_SED1 Define for sediment remineralization.

71

PRIMARY_PROD Define for primary productivity output.
HOLLING_GRAZING Define for Holling-type s-shaped curve grazing (im-

plicit).
IVLEV_EXPLICIT Define for Ivlev explicit grazing algorithm.

Sediment transport model

SEDIMENT Define to activate sediment transport model [Warner et al., 2008].
BEDLOAD_MPM Define to activate Meyer-Peter-Mueller bed load.
BEDLOAD_SOULSBY Define to activate Soulsby wave/current bed load.
SED_DENS Define to allow sediment to affect equation of state.
SED_MORPH Define to allow bottom model elevation to evolve.
SUSPLOAD Define to activate suspended load transport.

Nearshore options

WET_DRY Define to allow wetting and drying of cells.
NEARSHORE_MELLOR05 Define for radiation stress terms from waves [Mellor,

2005].
NEARSHORE_MELLOR08 Define for radiation stress terms from waves [Mellor,

2008].

Nesting

NESTING Define to activate composite/refinement nesting.
NO_CORRECT_TRACER Define to avoid two-way correction of boundary tracer.
ONE_WAY Define for one-way nesting in refinement grids.
TIME_INTERP_FLUX Time-interpolate coarse mass flux instead of persist.

NetCDF input/output

DEFLATE Define to set compression of NetCDF-4/HDF5 format files.
HDF5 Define to create NetCDF-4/HDF5 format files.
NO_LBC_ATT Define to not check NLM_LBC global attribute on restart.
NO_READ_GHOST Define to not include ghost points during read/scatter.
NO_WRITE_GRID Define to omit writing grid arrays.
PARALLEL_IN Define for parallel input via HDF5 or pnetcdf libraries.
PARALLEL_OUT Define for parallel output via HDF5 or pnetcdf libraries.
PERFECT_RESTART Define to include perfect restart variables.
PNETCDF Define for parallel I/O via pnetcdf library (classic format).
POSITIVE_ZERO Define for positive zero on output.
READ_WATER Define to only read water points.
WRITE_WATER Define to only write water points.
RST_SINGLE Define to write single precision restart fields.
OUT_DOUBLE Define to write double precision output fields.
INLINE_2DIO Define to read/write 3D fields level by level.

72

6.8 Important parameters

The following is a list of some of the important parameters in the model. These are inmod_param.F
and are read from the standard input file as described in §7.1.12.

Ngrids Number of grids.

NestLayers Number of levels of refinement grids.

GridsInLayer Number of grids in each refinement level (needs NestLayers values).

Lm Number of interior grid points in the ξ-direction for each grid.

Mm Number of interior grid points in the η-direction for each grid.

N Number of grid points in the vertical for each grid.

NAT Number of active tracers (usually 2 for temperature and salinity).

NBT Number of biological tracers. This will depend on the ecosystem model used.

NST Number of sediment tracers.

NPT Number of passive tracers.

NT Total number of tracer fields. NT = NAT+NBT+NST+NPT

NtileI Number of tiles in the ξ-direction for each grid.

NtileJ Number of tiles in the η-direction for each grid.

LBC In the old days, the choice of boundary condition was made via cpp options. After a
significant rewrite to support nesting, the boundary condition choices are now loaded into
this array.

6.9 Domain decomposition

ROMS supports serial, OpenMP, and MPI computations, with the user choosing between them at
compile time. The serial code can also take advantage of multiple small tiles which can be sized
to fit in cache. All are accomplished through domain decomposition in the horizontal. All of the
horizontal operations are explicit with a relatively small footprint, so the tiling is a logical choice.
Some goals in the parallel design of ROMS were:

• Minimize code changes.

• Don’t hard-code the number of processes.

• MPI and OpenMP share the same basic structure.

• Don’t break the serial optimizations.

• Same result as serial code for any number of processes.

• Portability—able to run on any (Unix) system.

First, some cpp options. If we’re compiling for MPI, the option -DMPI gets added to the
argument list for cpp. Then, in globaldefs.h, we have:

73

#if defined MPI
define DISTRIBUTE
#endif

The rest of the code uses DISTRIBUTE to identify distributed memory jobs. The OpenMP case
is more straightforward, with -D_OPENMP getting passed to cpp and _OPENMP being the
tag to check within ROMS.

The whole horizontal ROMS grid is shown in Fig. 12. The computations are done over the
cells inside the darker line; the cells are numbered 1 to Lm in the ξ-direction and 1 to Mm in the
η-direction. Those looking ahead to running in parallel would be wise to include factors of two in
their choice of Lm and Mm. ROMS will run in parallel with any values of Lm and Mm, but the
computations might not be load-balanced.

6.9.1 ROMS internal numbers

A domain with tiles is shown in Fig. 13. The overlap areas are known as ghost points or halo
points. Each tile is an MPI process, an OpenMP thread, or a discrete unit of computation in a
serial run. The tile contains enough information to time-step all the interior points, so the number
of ghost points is dictated by the footprint of the algorithm using the largest number of neighbor
points. In ROMS, the halo area would be two grids points wide unless the MPDATA advection or
biharmonic viscosity scheme is used, in which case it needs three. The variable NghostPoints is
set accordingly in inp_par:

#if defined TS_MPDATA || defined UV_VIS4
NghostPoints=3

#else
NghostPoints=2

#endif
IF (ANY(ComposedGrid).or.ANY(RefinedGrid)) THEN

NghostPoints=MAX(3,NghostPoints)
END IF

The grid nesting requires NghostPoints=3, hence the last bit there.
The number of tiles is set in the input file as NtileI and NtileJ. For an MPI job, the product

of the two must equal the number of MPI processes. For an OpenMP job, the number of tiles must
be a multiple of the number of threads. For instance, for NtileI= 4 and NtileJ= 6, you must have
24 MPI processes while 2, 3, 4, 6, 8, 12 and 24 are all valid numbers of OpenMP threads. Also, a
serial run could have 24 tiles and would just compute them sequentially.

Once the input file has been read, we can compute the tile sizes in get_bounds:

ChunkSizeI = (Lm+NtileI-1)/NtileI
ChunkSizeJ = (Mm+NtileJ-1)/NtileJ
MarginI = (NtileI*ChunkSizeI-Lm)/2
MarginJ = (NtileJ*ChunkSizeJ-Mm)/2

Some internal ROMS numbers are shown in Fig. 13 and are in the BOUNDS structure in
mod_param.F. MarginI andMarginJ are zero if the numbers work out perfectly, i.e. Lm/NtileI
and Mm/NtileJ are integers. The tile numbers match the MPI process numbers.

In picking a numbering scheme for indices within a tile, there are two common choices, as shown
in Fig. 14. Each tile can be numbered from 1 to ChunksizeI or it can retain the numbering it
would have in the whole grid. We have chosen this second option for ease when debugging features
such as river inputs which apply to specific locations on the grid. It is simple to do using Fortran
90 dynamic memory allocation.

74

×

d
– u points
– v points
– ρ points

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

d d d d d d d d

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

× × × × × × ×

-

6

ξ

η

i = 0

j = 0

1

1

2

2

...

Mm

Mm

M

M

1 1 2 2 3 3 · · · Lm Lm L L

Figure 12: The whole grid. Note that there are Lm by Mm interior computational points. The
points on the thick outer line and those outside it are provided by the boundary conditions.

75

Itile = 0 1

1

3

5

76

ChunkSizeI

4

2

tile = 0Jtile = 0

1

2

3

ChunkSizeJ

MarginJ

Figure 13: A tiled grid with some ROMS tile variables.

With the tile sizes known, we can assign beginning and ending indices for each tile. Some of
the details depend on whether or not the domain is periodic in that direction, as shown in Fig. 15.

6.9.2 MPI exchange

For MPI jobs, the ghost points need to be updated between interior point computations. The
routines mp_exchange2d, mp_exchange3d and mp_exchange4d can be used to update the
halo points of up to four arrays at a time. Each of these routines calls tile_neighbors to figure
out which tiles are neighboring and whether or not there really is a neighboring tile on each side.
The mp_exchangexd routines then call:

mpi_irecv
mpi_send
mpi_wait

The exchanges happen first in the east-west direction, then in the north-south direction, saving
the need for diagonal exchanges. A figure with interior points colored by tile and grey halo points
needing an update is shown in Fig. 16(a). The updated halo points are shown in Fig. 16(b).

6.9.3 Code syntax

In main3d, many function calls are surrounded by nesting code such as:

DO ig=1,GridsInLayer(nl)
ng=GridNumber(ig,nl)
DO tile=first_tile(ng),last_tile(ng),+1

CALL set_data (ng, tile)
END DO

76

(b)

321

5432 109876 1514131211

54321

1

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

54321 54

Figure 14: A choice of numbering schemes: (a) each tile is numbered the same, and (b) each tile
retains the numbering of the parent domain.

!$OMP BARRIER
END DO
IF (exit_flag.ne.NoError) RETURN

where first_tile and last_tile are set in nl_ocean.h:

#if defined _OPENMP
MyThread=my_threadnum()

#elif defined DISTRIBUTE
MyThread=MyRank

#else
MyThread=0

#endif
DO ng=1,Ngrids

chunk_size=(NtileX(ng)*NtileE(ng)+numthreads-1)/numthreads
first_tile(ng)=MyThread*chunk_size
last_tile (ng)=first_tile(ng)+chunk_size-1

END DO

NtileX and NtileE no longer depend on whether we’re using MPI:

NtileX(1:Ngrids)=NtileI(1:Ngrids)
NtileE(1:Ngrids)=NtileJ(1:Ngrids)

Instead, numthreads varies, being set to 1 for serial jobs, to the number of MPI processes for
MPI and to omp_get_max_threads() for OpenMP jobs. For MPI jobs, integer division gives
chunk_size the value of 1 and first_tile and last_tile are both set to the process number.

In looking at a typical routine that’s called from main3d, the routine is usually quite short,
calling a _tile version of itself in which the actual work happens:

SUBROUTINE set_data (ng, tile)
include "tile.h"

CALL set_data_tile (ng, tile, &
& LBi, UBi, LBj, UBj, &

77

IendR

Istr IendIstrU

IstrR IendR

eastern tile

Istr IendIstrU

IstrR IendR

central tile

Istr IendIstrU

IstrR IendR

central tile

Non−periodic

Periodic

2 5 6 7 8 Lm L

Lm87654321

0 1 3 4

Istr IendIstrU

IendR

western tile

Istr IendIstrU

IendR

western tile

Istr IendIstrU

IstrR

eastern tile

IstrR

IstrR

Figure 15: Some ROMS variables for tiles, for both a periodic and non-periodic case. Shown are
the variables in the i-direction, the j-direction is similar.

& IminS, ImaxS, JminS, JmaxS)
RETURN
END SUBROUTINE set_data

Here, there are two sets of array lower and upper bounds, those in the LBi family and those in the
IminS family. Both depend on the Istr family shown in Fig. 15. The IminS family is for work
arrays that are local to an MPI process or to an OpenMP thread, also local to a _tile routine.
They are initialized:

IminS=BOUNDS(ng)%Istr(tile)-3
ImaxS=BOUNDS(ng)%Iend(tile)+3
JminS=BOUNDS(ng)%Jstr(tile)-3
JmaxS=BOUNDS(ng)%Jend(tile)+3

and used:

real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: work1
real(r8), dimension(IminS:ImaxS,JminS:JmaxS) :: work2

The Istr and LBi families are dimensioned by the number of tiles once it is known by inp_par:

DO ng=1,Ngrids
Ntiles=NtileI(ng)*NtileJ(ng)-1
allocate (BOUNDS(ng) % LBi (-1:Ntiles))

:
allocate (BOUNDS(ng) % Jend (-1:Ntiles))

END DO

They are then initialized in calls to the routines in get_bounds.F. Imin is set to -NghostPoints
or zero, for periodic and non-periodic domains, respectively. The UBi family is set once the Istr
family is known:

78

(a)

(b)

Figure 16: A tiled grid with out-of-date halo regions shown in grey and the interior points color-
coded by tile: (a) before an exchange and (b) after an exchange.

79

IF ((Itile.eq.-1).or.(Itile.eq.0)) THEN
LBi=Imin

ELSE
LBi=Istr-Nghost

END IF

In the case of set_data, we are simply passing array indices for the tiled arrays. To access the
tiled arrays from within set_data_tile, we need to use the relevant modules and then refer to
the array with its full name:

USE mod_forces
:

CALL set_2dfld_tile (ng, tile, iNLM, idCfra, &
& LBi, UBi, LBj, UBj, &
& FORCES(ng)%cloudG, &
& FORCES(ng)%cloud, &
& update)

In other cases, the parent routine would have the use, then would pass the relevant array to the
_tile routine:

USE mod_grid
:

CALL prsgrd_tile (ng, tile, &
:

& GRID(ng) % Hz, &
:

SUBROUTINE prsgrd_tile (ng, tile, &
:

& Hz, z_r, z_w, &
:

real(r8), intent(in) :: Hz(LBi:,LBj:,:)

This allows the _tile routine to use Hz with the same syntax as the pre-parallel, pre-module code
once had.

6.9.4 Input/output

In ROMS, the distributed memory I/O is all happening on the master process (0) unless you specifi-
cally ask it to use MPI-I/O, which requires either or both ofPARALLEL_INPARALLEL_OUT
and either of the HDF5 or PNETCDF cpp flags to be defined. If you choose HDF5, you will
be reading and/or writing HDF5 files and will need to update your pre- and post-processing tools
accordingly. I have tentatively tried the parallel I/O and found it to be exceedingly slow—I’ve been
told since that this is the fault of the NetCDF-4 layer sitting on top of HDF5—HDF5 alone
should be fast.

In the case of having all the I/O pass through the master process, we can still read and write
classic NetCDF-3 files. Care must be taken though, in the event of an error. ROMS has been
cleaned up so that the master process will broadcast its return state to the other processes and
they can all die gracefully together when there is a problem.

An example of a routine which reads from disk is get_grid, called from initial. Each MPI
process calls get_grid:

80

CALL get_grid (ng, iNLM)
ifdef DISTRIBUTE

CALL mp_bcasti (ng, iNLM, exit_flag)
endif

if (exit_flag.ne.NoError) RETURN

If any one of the processes has trouble, it will enter into the exit_flag which is then shared by all.
To read in an array variable, all processes in get_grid use nf_fread2d and friends:

status=nf_fread2d(ng, model, ncname, ncGRDid(ng), &
& var_name(it), var_id(it), &
& 0, gtype, Vsize, &
& LBi, UBi, LBj, UBj, &
& Fscl, Fmin, Fmax, &
& GRID(ng) % rmask, &
& GRID(ng) % rmask)

IF (status.ne.nf90_noerr) THEN
exit_flag=2
ioerror=status
EXIT

END IF

Within nf_fread2d, we get to a call to the NetCDF library from just the master process:

IF (InpThread) THEN
status=nf90_get_var(ncid, ncvarid, wrk, start, total)

:
END IF

ifdef DISTRIBUTE
CALL mp_bcasti (ng, model, status)

endif
IF (status.ne.nf90_noerr) THEN

exit_flag=2
ioerror=status
nf_fread2d=status
RETURN

END IF

At this point, the master process has the entire 2-D array stored in wrk. This then needs to be
divvied out to the various tiles to their copy of the array in question (stored in the A argument to
nf_fread2d):

ifdef DISTRIBUTE
CALL mp_scatter2d (ng, model, LBi, UBi, LBj, UBj, &

& Nghost, MyType, Amin, Amax, &
if defined READ_WATER && defined MASKING

& NWpts, SCALARS(ng)%IJwater(:,wtype), &
endif

& Npts, wrk, A)

Something similar happens when writing to output files.

PIO I have a branch in which I linked to the Parallel-IO or PIO library from NCAR. It’s unstable
for fewer writers than processes, but let me know if you’d like to try it.

81

https://github.com/NCAR/ParallelIO

7 Configuring ROMS for a Specific Application

This chapter describes the parts of ROMS for which the user is responsible when configuring it
for a given application. Section 7.1 describes the process in a generic fashion while §7.2 and §7.3
step through the application of ROMS to upwelling/downwelling and wind-driven Arctic problems,
respectively. As distributed, ROMS is ready to run quite a few examples, where the C preprocessor
flags determine which is to be executed. Some of these examples are described in Haidvogel and
Beckmann [1999], some are listed here:

BASIN This is a rectangular, flat-bottomed basin with double-gyre wind forcing. When run, it
produces a western boundary current flowing into a central “Gulf Stream” which goes un-
stable and generates eddies. The goal is to run adiabatically to study the homogenization
of potential vorticity. It earned its nickname of Big Bad Basin by taking a long time to
run and causing difficulties for the spectral versions of SPEM.

GRAV_ADJ The gravitational adjustment problem takes place in a long narrow domain which
is initialized with dense water at one end and light water at the other. At time zero, the
water is released and it generates two propagating fronts as the light water rushes to fill
the top and the dense water rushes to fill the bottom. This configuration can be used to
test various advection schemes.

OVERFLOW This configuration is similar to the GRAV_ADJ problem, but is initialized with
dense water in the shallow part of a domain with a sloping bottom.

SEAMOUNT The seamount test has been used to test the pressure gradient errors. It has
an idealized seamount in a periodic channel. See Beckmann and Haidvogel [1993] and
McCalpin [1994] for more information.

UPWELLING The upwelling/downwelling example was contributed by Macks and Middleton
[1993] and consists of a periodic channel with shelves on each side. There is along-channel
wind forcing and the Coriolis term leads to upwelling on one side and downwelling on the
other side. If you run it for several days without vertical mixing, you end up with dense
water over light water.

Some NetCDF input files for the ROMS examples can be found under Data/ROMS in the ROMS
distribution while many others can be downloaded as part of the ROMS test package. The ASCII
input files are under ROMS/External.

7.1 Configuring ROMS

The four main sections you need to change in ROMS are the makefile or build.bash, an include
file with cpp options, any analytic functions, and the ASCII input file. If more realistic fields are
desired, you will have to provide other input files as well, for instance for the grid and the wind
forcing.

7.1.1 Case Name

First, you need to decide on a name for your particular application or configuration. This name is
provided via the ROMS_APPLICATION in either the makefile or the build script. This name
should be reasonably short, all uppercase, with spaces converted to underscores. For example, let’s
say we pick the name WIKI_TEST. This name gets defined during the build, so you can add
code protected by #ifdef WIKI_TEST as needed. This would be a good time to either copy
the makefile or the build Script to create one specific to this case prior to editing it.

82

http://www.myroms.org/svn/src/test

7.1.2 Case-specific Include File

Each application has its own include file, included by cppdefs.h. The name of this file is the name of
your application (WIKI_TEST here) turned into lower case, with ’.h’ appended (wiki_test.h).
The location of this file is set by MY_HEADER_DIR, pointing to User/Include or some
other location of your choosing.

The complete list of options to be set prior to compilation are listed in §6.7. Place those you
need in the wiki_test.h file. These include algorithm choices (e.g. advection and turbulence
closure schemes), output options (averages, diagnostics, stations, floats), and application modules
(biology, sediments). Each line should be of the form:

#define SOME_VAR

Note that any undefined variable need not be mentioned.
Also note that if you copy a predefined application from ROMS/Include as a template for

your application, you must rename it. If you don’t change the name, ROMS will use the one in
ROMS/Include and your file will be ignored during the build procedure.

7.1.3 Functionals

Some of the cpp options have names beginning with ANA_. For each one of these, you will be
expected to provide an analytic expression for the field in question in the corresponding include file.
These files are listed in §6.5 and their location is determined by MY_ANALYTICAL_DIR.
You may chose to copy those fromUser/Functionals to some new directory and place your version
of the assignments within

#ifdef WIKI_TEST
! Set weird and wonderful winds

:
#endif

This makes it easy to search for later, if nothing else.

7.1.4 checkdefs.F

If you add new cpp variables to the code (other than your application name), it is recommended
that you also add the appropriate code to checkdefs.F, such as:

#ifdef SLEET
IF (Master) WRITE(stdout,20) ’SLEET’, &

& ’Sleet falling on the ice option.’
is=lenstr(Coptions)+1
Coptions(is:is+7)=’ SLEET,’

#endif /* SLEET */

Note that the number “7” on the Coptions line must be set according to the length of the string
you are adding. In this case 7 is for “ SLEET,”, including the comma and the space. You do
not need to do this for your application name (WIKI_TEST here), since checkdefs will print
whatever is in MyAppCPP.

83

7.1.5 Model domain

It is assumed in this manual that Ngrids will be set to 1. Having multiple grids talk to each other
is brand new in ROMS 3.7, with documentation appearing on the ROMS wiki.

One of the first things the user must decide is how many grid points to use, and can be
afforded. There are three parameters in ocean.in which specify the grid size and one parameter
for the number of active tracers:

Lm Number of finite-difference points in ξ.
Mm Number of finite-difference points in η.
N Number of finite-difference points in the vertical.
NAT Number of active tracers.

The number of biological tracers is set in the biology.in file. There are no constraints on these
except Lm ≥ 2, Mm ≥ 2, N ≥ 2 and NAT ≥ 1. Lm and Mm should be at least 3 if the domain
is periodic in that direction.

7.1.6 x, y grid

The subroutine get_grid or ana_grid is called by initial to set the grid arrays, the bathymetry,
and the Coriolis parameter. Most of the simple test problems have their grid information specified
in ana_grid.h in the directory ROMS/Functionals. More realistic problems require a NetCDF
grid file, produced by the grid generation programs described in Wilkin and Hedstrom [1991], by
the Matlab SeaGrid, or by some other method. The variables which are read by get_grid are:

xl, el, spherical, f, h, pm, pn, x_rho, y_rho, lon_rho, lat_rho, angle.

If the grid is curved, get_grid will also read:

dndx, dmde.

Likewise, if MASKING is defined, it will read:

mask_rho, mask_u, mask_v, mask_psi.

7.1.7 ξ, η grid

Before providing initial conditions and boundary conditions, the user must understand the model
grid. The fields are laid out on an Arakawa C grid as in Fig. 1. The overall grid is shown in Fig. 12.
The thick outer line shows the position of the model boundary. The points inside this boundary
are those which are advanced in time using the model physics. The points on the boundary and
those on the outside must be supplied by the boundary conditions.

The three-dimensional model fields are carried in four-dimensional arrays, where the fourth
array index refers to one of two or three time levels. The tracers have a fifth array index telling
which tracer is being referred to. For instance, itemp = 1 refers to potential temperature while
isalt = 2 refers to salinity. The integers i, j, and k are used throughout the model to index the
three spatial dimensions:

i Index variable for the ξ-direction.
j Index variable for the η-direction.
k Index variable for the σ-direction. k = 1 refers to the bottom
while k = N refers to the surface.

84

7.1.8 Initial conditions

The initial values for the model fields are provided by either ana_initial or get_state. get_state
is also used to read a restart file if the model is being restarted from a previous run.

Also in initial, rho_eos is called to initialize the density field. rho_eos also computes rhoA,
the vertically averaged density, and rhoS, the density perturbation. Both rhoA and rhoS are
used in the barotropic pressure gradient.

7.1.9 Equation of state

The equation of state is defined in the subroutine rho_eos. Two versions are provided in ROMS:
a nonlinear ρ = ρ(T, S, z) from Jackett and McDougall [1995] and a linear ρ(T, S). The linear form
is

ρ = R0−Tcoef · (T − T0) + Scoef · (S − S0)

or
ρ = R0 + Tcoef · (T − T0),

depending on whether or not SALINITY is defined. Specify which equation of state you would
like to use with the NONLIN_EOS C preprocessor flag in your application include file. The
linear coefficients R0, T0, Tcoef, S0, and Scoef are set in ocean.in. Note that we are computing
in situ density from potential temperature and salinity. Some of the vertical mixing schemes require
potential density and some other fields, which are computed by rho_eos as well.

7.1.10 Boundary conditions

The horizontal boundary conditions are provided by the subroutines in u3dbc_im, v3dbc_im,
u2dbc_im, v2dbc_im, t3dbc_im, and zetabc. They are called every time-step and provide
the boundary values for the fields u, v, u, v, all tracers, and ζ, respectively. They are currently
configured for a closed basin, a periodic channel, a doubly periodic domain or a domain with
various open boundary conditions. Each side is controlled independently with “West” being the
i=1 boundary, “East” being the i=L boundary, “South” being the j=1 boundary, and “North”
being the j=M boundary. These choices are set in ocean.in via the LBC array.

Many of the choices for open boundaries require that the model have some boundary val-
ues for the field in question. These can be specified in the appropriate ana_xxx.h file for say
ANA_TOBC or they can be read from a boundary NetCDF file. There is logic in globaldefs.h
by which ROMS decides whether or not it needs to read a boundary file.

7.1.11 Model forcing

(a) Winds and thermal fluxes
There are two different ways to apply a wind forcing: as a surface momentum flux in the vertical

viscosity term, or as a body force over the upper water column. Usually, we set the vertical σ-
coordinate parameters to retain some resolution near the surface and apply the fluxes as boundary
conditions to the vertical viscosity/diffusivity. In either case, the surface and bottom fluxes are
either defined analytically, read from a forcing file, or computed inside ROMS using a bulk flux
formula from the appropriate atmospheric fields (air temperature and winds, for instance). You
must either edit the appropriate ana_xxx.h or create a NetCDF forcing file in the format expected
by ROMS. Note that it is quite common to put the surface variables in the forcing file while having
an analytic bottom heat flux. ROMS now has the capability of reading in a list of forcing fields—it
can be convenient to have one file per field rather than stuffing tides, winds, river inputs all into
one file.

85

In the past, our vertical resolution was relatively coarse and the vertical viscosity would have
to have been unreasonably large for us to resolve the surface Ekman layer. If that is your situation,
define BODYFORCE in cppdefs.h and provide a value for levsfrc in ocean.in. The forcing is
applied over the levels from levsfrc to N. The above caution about vertical resolution also applies
to the surface fluxes of T and S, although BODYFORCE only refers to wind stress, not the
surface tracer fluxes.
(b) Climatology

One way to force the model is via a nudging to the tracer and/or momentum climatolo-
gies. Nudging to tracers was used in the North Atlantic simulations in sponge layers along the
northern and southern boundaries. Set the climatologies in ana_tclima.h or in a file read by
get_data, set LtracerCLM in ocean_wiki_test.in and also set the array Tnudgcof in either
ana_nudgcoef.h or in a file (with name in NUDNAME variable in the ocean.in).
(c) Tides

There is also more than one way to force with tides. One way is to provide boundary conditions
with enough temporal resolution to resolve the tides. Another is to provide ROMS with the tidal
constituents at all grid points and to have ROMS reconstruct the tidal currents (UV_TIDES)
and/or elevations (SSH_TIDES) for any given time. An example of such a tidal forcing file is in
Data/ROMS/Forcing/test_head_frc.nc.

The non-trunk code with ice, etc. includes the TIDES_ASTRO option to add on the long-
period tides from Foreman [1996a] and Foreman [1996b]. There is also an option to include the
tidal potential forcing term (POT_TIDES), requiring the tidal potential to be included in the
tides forcing file.
(d) Rivers

Point sources can be used to provide river inflow to the model. These too can be specified in a
forcing file if not provided via ana_psource.

7.1.12 ocean.in

ROMS expects to read a number of variables from an ASCII file as described in §2.5. Example input
files are in ROMS/External with names like ocean_grav_adj.in, where “grav_adj” refers to
the name of the application. Lines beginning with “!” are comments and will be ignored by ROMS
on reading them.

The input is organized as key/value pairs, separated by one or two equals signs. It is possible
for ROMS to run on more than one grid simultaneously, with the number of grids being read from
the input file. If there is one equals sign (=), ROMS will use the corresponding value for all grids.
If there are two (==), ROMS will read a value for each grid. Thus far, our domains have used just
one grid since the inter-grid coupling has only been released very recently.

ROMS will ignore the parameters not needed by the current simulation, e.g., the GLS parame-
ters will not be read if you are not using that mixing scheme. Most of the example files contain all
possible parameters, with User/External/ocean.in being for sure updated with each addition.
The parameters are described in comments at the bottom of the ocean.in files. Skipping those
having to do with data assimilation, the input parameters are as follows:

Header

TITLE A text string to put in the output files.
MyAppCPP The shorthand name for this application.
VARNAME The location of the varinfo.dat file containing information about fields to

read/write from/to NetCDF files.
Ngrids The number of grids to compute on.

86

NestLayers The number of levels of nested grids.
GridsInLayer The number of grids in each nesting level.

Grid-dimension parameters

Lm Number of i-direction INTERIOR RHO-points.
Mm Number of j-direction INTERIOR RHO-points.
N Number of vertical levels.
Nbed Number of sediment bed layers.
NAT Number of active tracers (usually 2).
NPT Number of passive tracers.
NCS Number of cohesive (mud) sediment tracers.
NNS Number of non-cohesive (sand) sediment tracers.

Domain-decomposition parameters

NtileI Number of i-direction partitions.
NtileJ Number of j-direction partitions.

Boundary conditions

LBC A line is given for each field, each line containing four values, one for each side
in the order “West”, “South”, “East”, “North”. Each value is a string, with the
possible values being:

Cha Chapman implicit.
Che Chapman explicit.
Cla Clamped.
Clo Closed.
Fla Flather.
Gra Gradient.
Mix Ice only—mixed clamped and radiation.
Nes Nested.
Per Periodic—should match the opposing boundary.
Rad Radiation.
RadNud Radiation and nudging.
Red Reduced Physics—note that this also requires the FSOBC_REDUCED

cpp flag.
Shc Schepetkin.

VolCons Four values for the volume conservation, one for each edge.

Time-stepping parameters

NTIMES Number of time-steps to evolve the 3-D equations in the current run. This is
actually the total number, including any previous segments of the same run. For
instance, if you already did a three-month run and wish to continue for another
three months, set NTIMES to the number of steps needed for six months.

DT Time-step in seconds for the 3-D equations.

87

NDTFAST Number of time-steps for the 2-D equations to be executed each dt. This is
the number shown as M in Figure 5—the model will compute M∗ at run time.

Input/Output parameters
ROMS has several possible output files. The output files can include a restart file, a
history file, an averages file, and a station file, for instance. The restart file often contains
only two records with the older record being overwritten during the next write. The
history file can contain a subset of the restart fields, for instance just the surface elevation
and the surface temperature. The averages file contains time-averages of the model fields,
for instance daily or monthly means, depending on NAVG. The station file contains
timeseries for specified points, possibly quite frequently since each record is small. For
some, machinery is in place to write multiple files, numbering them _0001, _0002, etc.

NRREC Record number of the restart file to read as the initial conditions. Set to 0 at
the beginning of the run, -1 to read the latest record.

LcycleRST Logical, true to cycle between two records of the restart file.
NRST Number of time-steps between writing of restart fields.
NSTA Number of time-steps between writing fields into the stations file.
NFLT Number of time-steps between writing fields into the floats file.
NINFO Number of time-steps between calling diag to write some global information

and to check for NaN values.

History, average, diagnostic output parameters

LDEFOUT True for creating new output files for stations, history, floats, etc. If false,
output is appended to these files.

NHIS Number of time-steps between writing history records.
NDEFHIS Number of time-steps between starting new history files.
NHIS2 Number of time-steps between writing secondary history records.
NDEFHIS2 Number of time-steps between starting new secondary history files.
NTSAVG Starting time-step for the accumulation of output time-averaged data. For

instance, you might want to average over the last day of a thirty-day run.
NAVG Number of time-steps between writing time-averaged data into the averages file.
NDEFAVG Number of time-steps between starting new averages files.
NTSAVG2 Starting time-step for the accumulation of output secondary time-averaged

data. For instance, you might want to average over the last day of a thirty-day
run.

NAVG2 Number of time-steps between writing time-averaged data into the secondary
averages file.

NDEFAVG2 Number of time-steps between starting new secondary averages files.
NTSDIA Starting time-step for the accumulation of output diagnostics data. For in-

stance, you might want to write diagnostics for the last day of a thirty-day run.
NDIA Number of time-steps between writing diagnostics data into the diagnostics file.
NDEFDIA Number of time-steps between starting new diagnostics files.

Horizontal mixing of tracers

88

TNU2 Constant mixing coefficient for the horizontal Laplacian diffusion of each tracer.
A value is expected for each of the NAT+NPT tracers.

TNU4 Constant mixing coefficient for the horizontal biharmonic diffusion of each tracer.
A value is expected for each of the NAT+NPT tracers.

Horizontal viscosity coefficients

VISC2 Constant mixing coefficient for the horizontal Laplacian viscosity.
VISC4 Constant mixing coefficient for the horizontal biharmonic viscosity.

Horizontal sponge

LuvSponge Logical for applying a sponge (increased horizontal viscosity) to momentum
fields.

LtracerSponge Logical for applying a sponge (increased horizontal diffusivity) to tracer
fields.

Vertical mixing coefficients for tracers

AKT_BAK Background vertical mixing coefficient for the tracers (NAT+NPT val-
ues).

Vertical mixing coefficient for momentum

AKV_BAK Background vertical mixing coefficient for momentum.

Turbulent closure parameters

AKK_BAK Background vertical mixing coefficient for turbulent kinetic energy.
AKP_BAK Background vertical mixing coefficient for turbulent generic statistical field.
TKENU2 Constant mixing coefficient for the horizontal Laplacian diffusion of turbulent

kinetic energy.
TKENU4 Constant mixing coefficient for the horizontal biharmonic diffusion of turbu-

lent kinetic energy.

Generic length-scale turbulence closure parameters

GLS_P Stability exponent.
GLS_M Turbulent kinetic energy exponent.
GLS_N Turbulent length scale exponent.
GLS_Kmin Minimum value of specific turbulent kinetic energy.
GLS_Pmin Minimum value of dissipation.
GLS_CMU0 Stability coefficient.
GLS_C1 Shear production coefficient.
GLS_C2 Dissipation coefficient.
GLS_C3M Buoyancy production coefficient (minus).
GLS_C3P Buoyancy production coefficient (plus).
GLS_SIGK Constant Schmidt number (non-dimensional) for turbulent kinetic energy

diffusivity.

89

GLS_SIGP Constant Schmidt number (non-dimensional) for turbulent generic statisti-
cal field, “psi”.

Constants used in surface TKE flux computation

CHARNOK_ALPHA Charnok surface roughness.
ZOS_HSIG_ALPHA Roughness from wave amplitude.
SZ_ALPHA Roughness from wave dissipation.
CRGBAN_CW Craig and Banner wave breaking.

Bottom drag coefficients

RDRG Linear bottom drag coefficient.
RDRG2 Quadratic bottom drag coefficient.
Zob Bottom roughness.
Zos Surface roughness (under ice shelves).

Height of atmospheric measurements for bulk flux parameterizations

BLK_ZQ Height of air humidity values.
BLK_ZT Height of air temperature values.
BLK_ZW Height of wind values.

Wetting and drying parameter

DCRIT Minimum depth for dry cells.

Various parameters

WTYPE Jerlov water type.
LEVSFRC Deepest level to apply surface momentum stresses as a body force. Used

when the C-preprocessor option BODYFORCE is defined.
LEVBFRC Shallowest level to apply bottom momentum stresses as a body force. Used

when the C-preprocessor option BODYFORCE is defined.

Vertical coordinate parameters

Vtransform Transformation equation, 1 for old style, 2 now recommended.
Vstretching Stretching function, 1 for old style, 4 now recommended.

Vertical σ-coordinates parameters

THETA_S σ-coordinate surface control parameter, [0 < theta_s < 20 for old style].
THETA_B σ-coordinate bottom control parameter, [0 < theta_b < 1 for old style].
TCLINE Width of the surface or bottom boundary layer in which higher vertical reso-

lution is required during stretching.

Mean Density and Brunt-Väisälä frequency

RHO0 Mean density used in the Boussinesq approximation.
BVF_BAK Background Brunt-Väisälä frequency squared.

Time parameters

90

DSTART Time stamp assigned to model initialization (days).
TIDE_START Time of tidal origin relative to model origin.
TIME_REF Reference time in the format yyyymmdd.dd or else a special value for

specific calendars as documented in the ocean.in files.

Nudging time scales

TNUDG Time scale (days) of nudging towards tracer climatology at the interior and at
the boundaries. A value is expected for each active tracer.

ZNUDG Time scale (days) of nudging towards free surface climatology at the interior
and at the boundaries.

M2NUDG Time scale (days) of nudging towards 2-D momentum climatology at the
interior and at the boundaries.

M3NUDG Time scale (days) of nudging towards 3-D momentum climatology at the
interior and at the boundaries.

TNUDG_SSS Time scale (days) of nudging towards surface salinity climatology.
SSS_MISMATCH_THRESHOLD Parameter when both SCORRECTION and

SSSC_THRESHOLD are used.

Open boundary factor

OBCFAC Ratio of inflow and outflow nudging time scales.

Linear equation of state parameters

R0 Background density value used in the linear equation of state.
T0 Background potential temperature constant.
S0 Background salinity constant.
TCOEF Thermal expansion coefficient in the linear equation of state.
SCOEF Saline contraction coefficient in the linear equation of state.

Slipperiness parameter

GAMMA2 Slipperiness variable, either 1.0 (free slip) or −1.0 (no slip).

Point sources

LuvSrc Logical for lateral flux point sources.
LwSrc Logical for vertical flux point sources.
LtracerSrc Logical, one value per tracer, whether or not point sources have tracer values.

Climatology nudging

LsshCLM Logical for SSH climatology.
Lm2CLM Logical for 2D momentum climatologies.
Lm3CLM Logical for 3D momentum climatologies.
LtracerCLM Logical, one value per tracer, whether or not to have tracer climatologies.
LnudgeM2CLM Logical for nudging to 2D momentum climatologies.
LnudgeM3CLM Logical for nudging to 3D momentum climatologies.

91

LnudgeTCLM Logical, one value per tracer, whether or not to nudge to tracer clima-
tologies.

Logical switches to activate the writing of history/averages fields Values for all of these
for the ice model are now set in ice.in.

Hout History output switches, one line per variable. Check the ocean.in file for the
names of the fields involved.

Hout2 Secondary history output switches, one line per variable. Check the ocean.in
file for the names of the fields involved.

Aout Averages output switches, one line per variable. Check the ocean.in file for the
names of the fields involved.

Aout2 Averages2 output switches, one line per variable. Check the ocean.in file for
the names of the fields involved.

Dout Diagnostics output switches, one line per term. Check the ocean.in file for the
names of the fields involved.

User parameters

NUSER Number of user parameters
USER Values of user parameters (NUSER values).

NetCDF-4/HDF5 parameters

NC_SHUFFLE If non-zero, turn on shuffle filter.
NC_DEFLATE If non-zero, turn on deflate filter.
NC_DLEVEL Deflate level (0–9).

Input NetCDF file names

GRDNAME Grid file.
ININAME Initial conditions file.
ITLNAME Initial tangent linear file.
IRPNAME Initial representer file.
IADNAME Initial adjoint file.
FWDNAME Forward model file.
ADSNAME Adjoint sensitivity functional file.
NGCNAME Nesting connectivity file.
NUDNAME Nudging coefficients file.
SSFNAME Sources/sinks forcing file.

Boundary, Climatology and Forcing NetCDF files These can each have an array of files,
with one set of files per variable, each file in a set for a different range of times. See
ocean.in for syntax. Note that the trunk code only does this for forcing files.

NCLMFILES Number of climatology files.
CLMNAME Climatology file.
NBCFILES Number of boundary files.
BRYNAME Boundary condition file.

92

NFFILES Number of forcing files.
FRCNAME Forcing files.

Output NetCDF file names

GSTNAME GST analysis restart file.
RSTNAME Restart file.
HISNAME History file.
HIS2NAME Secondary history file.
TLMNAME Tangent linear file.
TLFNAME Impulse forcing file (for tangent linear model).
ADJNAME Adjoint file.
AVGNAME Averages file.
AVG2NAME Secondary averages file.
DIANAME Diagnostics file.
STANAME Stations file.
FLTNAME Lagrangian floats file.

ASCII input file names

APARNAM Assimilation parameters.
SPOSNAM Stations positions.
FPOSNAM Initial drifter positions.
IPARNAM Ice parameters.
BPARNAM Biology parameters.
SPARNAM Sediment parameters.
USRNAME User’s generic input.

The bottom of the sample files contain comments describing some of these in greater detail, includ-
ing the data assimilation parameters.

7.1.13 User variables and subroutines

It is possible for the user to add new variables and functionality, though it is discouraged. The
design goal is to isolate the most common features a user would change to the cpp switches (§6.7),
the ana_xx.h files (§6.5) and the ASCII input file (§7.1.12). A query on the ROMS forum might
be in order if you have something specific in mind.

If you do choose to add bits, know that themakefile fragments calledModule.mk will attempt
to compile and link into a library anything with a .F extension in the directories already generating
a library from such files.

7.2 Upwelling/Downwelling Example

The application which ROMS is configured to run as distributed is a wind-driven upwelling and
downwelling example, described in Macks and Middleton [1993]. There is a shelf on each wall
of a periodic channel and an along-channel wind forcing, which drives upwelling at one wall and
downwelling at the other. This problem depends on the Ekman layer, therefore a surface stress is
used with vertical viscosity. The Ekman depth is estimated to be 9 m if Av = 0.01m2/s, so the

93

vertical grid spacing must resolve this. The maximum depth is 150 m and our choice of the vertical
grid parameters leads to a surface ∆z of 1.6 m. A possible update to this example would be to
increase N and decrease Lm, the latter because the solution does not vary in the along-channel
direction.

7.2.1 cppdefs.h

The C preprocessor variable UPWELLING is used for the upwelling configuration of the model.
The makefile will direct cppdefs.h to include the file upwelling.h:

#define UV_ADV
#define UV_COR
#define UV_LDRAG
#define UV_VIS2
#undef MIX_GEO_UV
#define MIX_S_UV
#define SPLINES_VDIFF
#define SPLINES_VVISC
#define TS_U3HADVECTION
#define TS_C4VADVECTION
#undef TS_MPDATA
#define DJ_GRADPS
#define TS_DIF2
#undef TS_DIF4
#undef MIX_GEO_TS
#define MIX_S_TS

#define SALINITY
#define SOLVE3D
#define AVERAGES
#define DIAGNOSTICS_TS
#define DIAGNOSTICS_UV

#define ANA_GRID
#define ANA_INITIAL
#define ANA_SMFLUX
#define ANA_STFLUX
#define ANA_SSFLUX
#define ANA_BTFLUX
#define ANA_BSFLUX

#if defined GLS_MIXING || defined MY25_MIXING
define KANTHA_CLAYSON
define N2S2_HORAVG
define RI_SPLINES
#else
define ANA_VMIX
#endif

#if defined BIO_FENNEL || defined ECOSIM || \
defined NPZD_POWELL || defined NEMURO || \

94

defined BIO_UMAINE
define ANA_BIOLOGY
define ANA_SPFLUX
define ANA_BPFLUX
define ANA_SRFLUX
#endif

#if defined NEMURO
define HOLLING_GRAZING
undef IVLEV_EXPLICIT
#endif

#ifdef BIO_FENNEL
define CARBON
define DENITRIFICATION
define BIO_SEDIMENT
define DIAGNOSTICS_BIO
#endif

#ifdef BIO_UMAINE
define OXYGEN
undef CARBON
#endif

#ifdef PERFECT_RESTART
undef AVERAGES
undef DIAGNOSTICS_BIO
undef DIAGNOSTICS_TS
undef DIAGNOSTICS_UV
define OUT_DOUBLE
#endif

Here we have declared that we want a three-dimensional solution, but no masking. There is salinity
but we’re using a linear equation of state. The momentum equations have advection, Coriolis force
and pressure gradients. There is both horizontal viscosity and diffusion, but they are along constant
σ-surfaces and if you check the input file, you find that the horizontal diffusion is set to zero.

There are ifdefs for various biology cases, none of which have been defined. Likewise, we are
using the default of ANA_VMIX as distributed. We are asking for many other analytic functions
too, including the grid. We are asking for diagnostic output with the DIAGNOSTICS_TS and
DIAGNOSTICS_UV.

7.2.2 Model domain

The flow does not vary in x, so Lm can be almost anything. Set the values for Lm, Mm, N and
NT in the input file:

Lm == 41 ! Number of I-direction INTERIOR RHO-points
Mm == 80 ! Number of J-direction INTERIOR RHO-points
N == 16 ! Number of vertical levels

NAT = 2 ! Number of active tracers (usually, 2)

95

A historical note: Lm here really is 41 for 41 boxes in the x-direction. It was originally set to 41
for 40 boxes, but the periodic boundary conditions are now more efficient and no longer need an
extra box. One could just as well set it to 40 (or even 5).

7.2.3 ana_grid

For this geometry one has a choice of using one of the external grid-generation programs or of using
ana_grid to create the grid analytically. The code in ana_grid.h was modified to produce a
bathymetry with a shelf on both walls of the channel when UPWELLING is defined. The fluid
depth ranges from 27 m on the shelves to 150 m in the center of the channel. The horizontal grid
spacing is uniform at 1 km and the Coriolis parameter f is set to a constant value suitable for
Sydney, Australia.

7.2.4 Initial conditions and the equation of state

We would like the initial conditions to be a motionless fluid with an exponential stratification. The
UPWELLING section of ana_initial.h is configured accordingly.

The stratification can be provided by either T or S, or by both T and S. For simplicity we
will only have an active temperature field and we will use the linear equation of state by setting
NONLIN_EOS to #undef. We want the density to be 26.35 at the bottom and 24.22 at the top
with an e-folding scale of 50 meters. The initial temperature is set to T0+8ez/50 in ana_initial.
The linear equation of state parameters are set in ocean_upwelling.in:

R0 == 1027.0d0 ! kg/m3
T0 == 14.0d0 ! Celsius
S0 == 35.0d0 ! PSU

TCOEF == 1.7d-4 ! 1/Celsius
SCOEF == 0.0d0 ! 1/PSU

Since density does not depend on salinity, we have a choice of how to handle the second tracer.
The salinity is set to a uniform value of S0, though it could be left out entirely if we undefine
SALINITY and set NAT to 1.

7.2.5 Boundary conditions

In ocean_upwelling.in, the variable LBC is set to be periodic in the East-West direction, with
closed walls to the North and South. No boundary values are required.

7.2.6 Model forcing

In this problem we want to resolve the surface Ekman layer and to use a surface wind stress
rather than a body force. We want the amplitude of the wind to ramp up with time so we modify
ana_smflux.h accordingly. The wind will build to an amplitude of 0.1 Pascals / ρo, or 10−4m2s−2.

We need to edit ana_vmix.h to make sure that the vertical viscosity Akv is set to the value
we want. This must be large at the surface (10−2m2s−1) to create a thick Ekman layer, but has
been chosen to decrease with depth. We also need to check that ana_sbflux, ana_stflux, etc.
are set correctly, in this case taking the default of zero rather than explicitly setting anything for
UPWELLING. However, we do set ana_srflux to be non-zero in case we opt to turn on one of
the biology models.

96

7.2.7 ocean.in

The model has been set up to run for five days with an internal time-step of 300 s and an external
time-step of 10 s.

NTIMES == 1440
DT == 300.0d0

NDTFAST == 30

We will write history, averages, and diagnostics records every 1/4 day, restart records once a day.

NRREC == 0
LcycleRST == T

NRST == 288
LDEFOUT == T

NHIS == 72
NDEFHIS == 0
NTSAVG == 1

NAVG == 72
NDEFAVG == 0
NTSDIA == 1

NDIA == 72
NDEFDIA == 0

As stated before, there is no horizontal diffusivity, but a small horizontal viscosity has been set.
The value of the linear bottom friction coefficient rdrg is set to 3.0 × 10−4 and the channel walls
are set to be free-slip:

TNU2 == 0.0d0 0.0d0 ! m2/s
VISC2 == 5.0d0 ! m2/s
RDRG == 3.0d-04 ! m/s

GAMMA2 == 1.0d0

The vertical stretching is set to a modest value of theta_s= 3:

Vtransform == 2 ! transformation equation
Vstretching == 4 ! stretching function

THETA_S == 3.0d0 ! surface stretching parameter
THETA_B == 0.0d0 ! bottom stretching parameter
TCLINE == 25.0d0 ! critical depth (m)

7.2.8 Output

The model writes much information to standard out. While I like having ninfo set to 1 in general,
I set it to 72 here to save space:

Model Input Parameters: ROMS/TOMS version 3.7
Thursday - December 3, 2015 - 9:53:11 AM

Wind-Driven Upwelling/Downwelling over a Periodic Channel

Operating system : Darwin

97

CPU/hardware : x86_64
Compiler system : gfortran
Compiler command : /usr/local/bin/gfortran
Compiler flags : -frepack-arrays -O3 -ffree-form -ffree-form

SVN Root URL : https:://myroms.org/svn/src
SVN Revision : Unversioned directory

Local Root : /Users/kate/roms/feedme
Header Dir : /Users/kate/roms/feedme/ROMS/Include
Header file : upwelling.h
Analytical Dir: /Users/kate/roms/feedme/ROMS/Functionals

Resolution, Grid 01: 0041x0080x016, Parallel Threads: 1, Tiling: 001x001

Physical Parameters, Grid: 01
=============================

1440 ntimes Number of timesteps for 3-D equations.
300.000 dt Timestep size (s) for 3-D equations.

30 ndtfast Number of timesteps for 2-D equations between
each 3D timestep.

1 ERstr Starting ensemble/perturbation run number.
1 ERend Ending ensemble/perturbation run number.
0 nrrec Number of restart records to read from disk.
T LcycleRST Switch to recycle time-records in restart file.

288 nRST Number of timesteps between the writing of data
into restart fields.

72 ninfo Number of timesteps between print of information
to standard output.

T ldefout Switch to create a new output NetCDF file(s).
72 nHIS Number of timesteps between the writing fields

into history file.
1 ntsAVG Starting timestep for the accumulation of output

time-averaged data.
72 nAVG Number of timesteps between the writing of

time-averaged data into averages file.
1 ntsDIA Starting timestep for the accumulation of output

time-averaged diagnostics data.
72 nDIA Number of timesteps between the writing of

time-averaged data into diagnostics file.
0.0000E+00 nl_tnu2(01) NLM Horizontal, harmonic mixing coefficient

(m2/s) for tracer 01: temp
0.0000E+00 nl_tnu2(02) NLM Horizontal, harmonic mixing coefficient

(m2/s) for tracer 02: salt
5.0000E+00 nl_visc2 NLM Horizontal, harmonic mixing coefficient

(m2/s) for momentum.
F LuvSponge Turning OFF sponge on horizontal momentum.
F LtracerSponge(01) Turning OFF sponge on tracer 01: temp

98

F LtracerSponge(02) Turning OFF sponge on tracer 02: salt
1.0000E-06 Akt_bak(01) Background vertical mixing coefficient (m2/s)

for tracer 01: temp
1.0000E-06 Akt_bak(02) Background vertical mixing coefficient (m2/s)

for tracer 02: salt
1.0000E-05 Akv_bak Background vertical mixing coefficient (m2/s)

for momentum.
3.0000E-04 rdrg Linear bottom drag coefficient (m/s).
3.0000E-03 rdrg2 Quadratic bottom drag coefficient.
2.0000E-02 Zob Bottom roughness (m).

2 Vtransform S-coordinate transformation equation.
4 Vstretching S-coordinate stretching function.

3.0000E+00 theta_s S-coordinate surface control parameter.
0.0000E+00 theta_b S-coordinate bottom control parameter.

25.000 Tcline S-coordinate surface/bottom layer width (m) used
in vertical coordinate stretching.

1025.000 rho0 Mean density (kg/m3) for Boussinesq approximation.
0.000 dstart Time-stamp assigned to model initialization (days).
0.00 time_ref Reference time for units attribute (yyyymmdd.dd)

0.0000E+00 Tnudg(01) Nudging/relaxation time scale (days)
for tracer 01: temp

0.0000E+00 Tnudg(02) Nudging/relaxation time scale (days)
for tracer 02: salt

9.0000E+01 Tnudg_SSS Nudging/relaxation time scale (days)
for sea surface salinity.

0.0000E+00 Znudg Nudging/relaxation time scale (days)
for free-surface.

0.0000E+00 M2nudg Nudging/relaxation time scale (days)
for 2D momentum.

0.0000E+00 M3nudg Nudging/relaxation time scale (days)
for 3D momentum.

0.0000E+00 obcfac Factor between passive and active
open boundary conditions.

F VolCons(1) NLM western edge boundary volume conservation.
F VolCons(2) NLM southern edge boundary volume conservation.
F VolCons(3) NLM eastern edge boundary volume conservation.
F VolCons(4) NLM northern edge boundary volume conservation.

14.000 T0 Background potential temperature (C) constant.
35.000 S0 Background salinity (PSU) constant.

1027.000 R0 Background density (kg/m3) used in linear Equation
of State.

1.7000E-04 Tcoef Thermal expansion coefficient (1/Celsius).
0.0000E+00 Scoef Saline contraction coefficient (1/PSU).

1.000 gamma2 Slipperiness variable: free-slip (1.0) or
no-slip (-1.0).

F LuvSrc Turning OFF momentum point Sources/Sinks.
F LwSrc Turning OFF volume influx point Sources/Sinks.
F LtracerSrc(01) Turning OFF point Sources/Sinks on tracer 01: temp
F LtracerSrc(02) Turning OFF point Sources/Sinks on tracer 02: salt
F LsshCLM Turning OFF processing of SSH climatology.

99

F Lm2CLM Turning OFF processing of 2D momentum climatology.
F Lm3CLM Turning OFF processing of 3D momentum climatology.
F LtracerCLM(01) Turning OFF processing of climatology tracer 01: temp
F LtracerCLM(02) Turning OFF processing of climatology tracer 02: salt
F LnudgeM2CLM Turning OFF nudging of 2D momentum climatology.
F LnudgeM3CLM Turning OFF nudging of 3D momentum climatology.
F LnudgeTCLM(01) Turning OFF nudging of climatology tracer 01: temp
F LnudgeTCLM(02) Turning OFF nudging of climatology tracer 02: salt
T Hout(idFsur) Write out free-surface.
T Hout(idUbar) Write out 2D U-momentum component.
T Hout(idVbar) Write out 2D V-momentum component.
T Hout(idUvel) Write out 3D U-momentum component.
T Hout(idVvel) Write out 3D V-momentum component.
T Hout(idWvel) Write out W-momentum component.
T Hout(idOvel) Write out omega vertical velocity.
T Hout(idTvar) Write out tracer 01: temp
T Hout(idTvar) Write out tracer 02: salt

T Aout(idFsur) Write out averaged free-surface.
T Aout(idUbar) Write out averaged 2D U-momentum component.
T Aout(idVbar) Write out averaged 2D V-momentum component.
T Aout(idUvel) Write out averaged 3D U-momentum component.
T Aout(idVvel) Write out averaged 3D V-momentum component.
T Aout(idWvel) Write out averaged W-momentum component.
T Aout(idOvel) Write out averaged omega vertical velocity.
T Aout(idTvar) Write out averaged tracer 01: temp
T Aout(idTvar) Write out averaged tracer 02: salt

T Dout(M2rate) Write out 2D momentum acceleration.
T Dout(M2pgrd) Write out 2D momentum pressure gradient.
T Dout(M2fcor) Write out 2D momentum Coriolis force.
T Dout(M2hadv) Write out 2D momentum horizontal advection.
T Dout(M2xadv) Write out 2D momentum horizontal X-advection.
T Dout(M2yadv) Write out 2D momentum horizontal Y-advection.
T Dout(M2hvis) Write out 2D momentum horizontal viscosity.
T Dout(M2xvis) Write out 2D momentum horizontal X-viscosity.
T Dout(M2yvis) Write out 2D momentum horizontal Y-viscosity.
T Dout(M2sstr) Write out 2D momentum surface stress.
T Dout(M2bstr) Write out 2D momentum bottom stress.

T Dout(M3rate) Write out 3D momentum acceleration.
T Dout(M3pgrd) Write out 3D momentum pressure gradient.
T Dout(M3fcor) Write out 3D momentum Coriolis force.
T Dout(M3hadv) Write out 3D momentum horizontal advection.
T Dout(M3xadv) Write out 3D momentum horizontal X-advection.
T Dout(M3yadv) Write out 3D momentum horizontal Y-advection.
T Dout(M3vadv) Write out 3D momentum vertical advection.
T Dout(M3hvis) Write out 3D momentum horizontal viscosity.
T Dout(M3xvis) Write out 3D momentum horizontal X-viscosity.
T Dout(M3yvis) Write out 3D momentum horizontal Y-viscosity.

100

T Dout(M3vvis) Write out 3D momentum vertical viscosity.

T Dout(iTrate) Write out rate of change of tracer 01: temp
T Dout(iTrate) Write out rate of change of tracer 02: salt
T Dout(iThadv) Write out horizontal advection, tracer 01: temp
T Dout(iThadv) Write out horizontal advection, tracer 02: salt
T Dout(iTxadv) Write out horizontal X-advection, tracer 01: temp
T Dout(iTxadv) Write out horizontal X-advection, tracer 02: salt
T Dout(iTyadv) Write out horizontal Y-advection, tracer 01: temp
T Dout(iTyadv) Write out horizontal Y-advection, tracer 02: salt
T Dout(iTvadv) Write out vertical advection, tracer 01: temp
T Dout(iTvadv) Write out vertical advection, tracer 02: salt
T Dout(iThdif) Write out horizontal diffusion, tracer 01: temp
T Dout(iThdif) Write out horizontal diffusion, tracer 02: salt
T Dout(iTxdif) Write out horizontal X-diffusion, tracer 01: temp
T Dout(iTxdif) Write out horizontal X-diffusion, tracer 02: salt
T Dout(iTydif) Write out horizontal Y-diffusion , tracer 01: temp
T Dout(iTydif) Write out horizontal Y-diffusion , tracer 02: salt
T Dout(iTvdif) Write out vertical diffusion, tracer 01: temp
T Dout(iTvdif) Write out vertical diffusion, tracer 02: salt

Output/Input Files:

Output Restart File: ocean_rst.nc
Output History File: ocean_his.nc

Output Averages File: ocean_avg.nc
Output Diagnostics File: ocean_dia.nc

Tile partition information for Grid 01: 0041x0080x0016 tiling: 001x001

tile Istr Iend Jstr Jend Npts

Number of tracers: 2
0 1 41 1 80 52480

Tile minimum and maximum fractional coordinates for Grid 01:
(interior points only)

tile Xmin Xmax Ymin Ymax grid

0 -1.50 42.50 0.50 81.50 RHO-points

0 -2.00 42.00 0.50 81.50 U-points

0 -1.50 42.50 0.00 81.00 V-points

Lateral Boundary Conditions: NLM
============================

Variable Grid West Edge South Edge East Edge North Edge

101

--------- ---- ---------- ---------- ---------- ----------

zeta 1 Periodic Closed Periodic Closed

ubar 1 Periodic Closed Periodic Closed

vbar 1 Periodic Closed Periodic Closed

u 1 Periodic Closed Periodic Closed

v 1 Periodic Closed Periodic Closed

temp 1 Periodic Closed Periodic Closed

salt 1 Periodic Closed Periodic Closed

Activated C-preprocessing Options:

UPWELLING Wind-Driven Upwelling/Downwelling over a Periodic Channel
ANA_BSFLUX Analytical kinematic bottom salinity flux.
ANA_BTFLUX Analytical kinematic bottom temperature flux.
ANA_GRID Analytical grid set-up.
ANA_INITIAL Analytical initial conditions.
ANA_SMFLUX Analytical kinematic surface momentum flux.
ANA_SSFLUX Analytical kinematic surface salinity flux.
ANA_STFLUX Analytical kinematic surface temperature flux.
ANA_VMIX Analytical vertical mixing coefficients.
ASSUMED_SHAPE Using assumed-shape arrays.
AVERAGES Writing out time-averaged nonlinear model fields.
DIAGNOSTICS_TS Computing and writing tracer diagnostic terms.
DIAGNOSTICS_UV Computing and writing momentum diagnostic terms.
DJ_GRADPS Parabolic Splines density Jacobian (Shchepetkin, 2002).
DOUBLE_PRECISION Double precision arithmetic.
MIX_S_TS Mixing of tracers along constant S-surfaces.
MIX_S_UV Mixing of momentum along constant S-surfaces.
NONLINEAR Nonlinear Model.
!NONLIN_EOS Linear Equation of State for seawater.
POWER_LAW Power-law shape time-averaging barotropic filter.
PROFILE Time profiling activated .
!RST_SINGLE Double precision fields in restart NetCDF file.
SALINITY Using salinity.
SOLVE3D Solving 3D Primitive Equations.
SPLINES_VDIFF Parabolic Spline Reconstruction for Vertical Diffusion.
SPLINES_VVISC Parabolic Spline Reconstruction for Vertical Viscosity.
TS_U3HADVECTION Third-order upstream horizontal advection of tracers.
TS_C4VADVECTION Fourth-order centered vertical advection of tracers.
TS_DIF2 Harmonic mixing of tracers.
UV_ADV Advection of momentum.
UV_COR Coriolis term.
UV_U3HADVECTION Third-order upstream horizontal advection of 3D momentum.

102

UV_C4VADVECTION Fourth-order centered vertical advection of momentum.
UV_LDRAG Linear bottom stress.
UV_VIS2 Harmonic mixing of momentum.
VAR_RHO_2D Variable density barotropic mode.

Process Information:

Thread # 0 (pid= 7266) is active.

INITIAL: Configuring and initializing forward nonlinear model ...

Vertical S-coordinate System, Grid 01:

level S-coord Cs-curve Z at hmin at hc half way at hmax

16 0.0000000 0.0000000 0.000 0.000 0.000 0.000
15 -0.0625000 -0.0019442 -0.809 -0.806 -1.348 -1.589
14 -0.1250000 -0.0078455 -1.668 -1.661 -2.966 -3.687
13 -0.1875000 -0.0179119 -2.580 -2.568 -4.867 -6.321
12 -0.2500000 -0.0324983 -3.549 -3.531 -7.077 -9.535
11 -0.3125000 -0.0521190 -4.581 -4.558 -9.630 -13.397
10 -0.3750000 -0.0774659 -5.686 -5.656 -12.573 -17.996
9 -0.4375000 -0.1094327 -6.875 -6.837 -15.967 -23.445
8 -0.5000000 -0.1491465 -8.162 -8.114 -19.889 -29.890
7 -0.5625000 -0.1980075 -9.564 -9.506 -24.435 -37.512
6 -0.6250000 -0.2577387 -11.104 -11.034 -29.721 -46.531
5 -0.6875000 -0.3304460 -12.808 -12.724 -35.892 -57.218
4 -0.7500000 -0.4186931 -14.709 -14.609 -43.121 -69.903
3 -0.8125000 -0.5255915 -16.846 -16.726 -51.622 -84.987
2 -0.8750000 -0.6549105 -19.266 -19.124 -61.651 -102.953
1 -0.9375000 -0.8112096 -22.028 -21.859 -73.518 -124.388
0 -1.0000000 -1.0000000 -25.200 -25.000 -87.600 -150.000

Time Splitting Weights for Grid 01: ndtfast = 30 nfast = 42
==================================

Primary Secondary Accumulated to Current Step

1-0.0008094437383769 0.0333333333333333-0.0008094437383769 0.0333333333333333
2-0.0014053566728197 0.0333603147912792-0.0022148004111966 0.0666936481246126
3-0.0017877524645903 0.0334071600137066-0.0040025528757869 0.1001008081383191
4-0.0019566842408176 0.0334667517625262-0.0059592371166046 0.1335675599008454
5-0.0019122901320372 0.0335319745705535-0.0078715272486418 0.1670995344713989
6-0.0016548570247459 0.0335957175749547-0.0095263842733877 0.2006952520463537
7-0.0011849025289723 0.0336508794757796-0.0107112868023601 0.2343461315221333
8-0.0005032751608632 0.0336903762267453-0.0112145619632232 0.2680365077488786
9 0.0003887272597151 0.0337071520654408-0.0108258347035082 0.3017436598143194

10 0.0014892209965583 0.0336941944901170-0.0093366137069498 0.3354378543044363
11 0.0027955815694920 0.0336445537902317-0.0065410321374578 0.3690824080946680

103

12 0.0043042707117221 0.0335513677379153-0.0022367614257357 0.4026337758325833
13 0.0060106451121704 0.0334078920475245 0.0037738836864347 0.4360416678801078
14 0.0079087469427945 0.0332075372104522 0.0116826306292293 0.4692492050905600
15 0.0099910761708920 0.0329439123123590 0.0216737068001212 0.5021931174029191
16 0.0122483446563884 0.0326108764399960 0.0339220514565097 0.5348039938429150
17 0.0146692120341107 0.0322025982847830 0.0485912634906204 0.5670065921276980
18 0.0172400033810439 0.0317136245503127 0.0658312668716643 0.5987202166780107
19 0.0199444086685725 0.0311389577709445 0.0857756755402368 0.6298591744489552
20 0.0227631639997064 0.0304741441486588 0.1085388395399432 0.6603333185976140
21 0.0256737146312911 0.0297153720153352 0.1342125541712343 0.6900486906129493
22 0.0286498597812017 0.0288595815276255 0.1628624139524359 0.7189082721405748
23 0.0316613792205220 0.0279045862015855 0.1945237931729579 0.7468128583421604
24 0.0346736416507075 0.0268492068942347 0.2291974348236654 0.7736620652363951
25 0.0376471948657328 0.0256934188392112 0.2668446296893983 0.7993554840756063
26 0.0405373376992233 0.0244385123436867 0.3073819673886216 0.8237939964192931
27 0.0432936737565711 0.0230872677537126 0.3506756411451927 0.8468812641730057
28 0.0458596469320356 0.0216441452951603 0.3965352880772283 0.8685254094681659
29 0.0481720587108285 0.0201154903974257 0.4447073467880568 0.8886408998655917
30 0.0501605672561820 0.0185097551070648 0.4948679140442388 0.9071506549726565
31 0.0517471682814031 0.0168377361985254 0.5466150823256418 0.9239883911711818
32 0.0528456577069106 0.0151128305891453 0.5994607400325525 0.9391012217603271
33 0.0533610761022577 0.0133513086655816 0.6528218161348102 0.9524525304259086
34 0.0531891349131380 0.0115726061288397 0.7060109510479481 0.9640251365547483
35 0.0522156244733761 0.0097996349650684 0.7582265755213241 0.9738247715198167
36 0.0503158038019030 0.0080591141492892 0.8085423793232271 0.9818838856691059
37 0.0473537721847153 0.0063819206892258 0.8558961515079425 0.9882658063583316
38 0.0431818225418188 0.0048034616164019 0.8990779740497613 0.9930692679747335
39 0.0376397765791563 0.0033640675316746 0.9367177506289176 0.9964333355064081
40 0.0305543017255205 0.0021094083123694 0.9672720523544381 0.9985427438187775
41 0.0217382098544503 0.0010909315881854 0.9890102622088884 0.9996336754069629
42 0.0109897377911117 0.0003663245930371 1.0000000000000000 1.0000000000000000

ndtfast, nfast = 30 42 nfast/ndtfast = 1.40000

Centers of gravity and integrals (values must be 1, 1, approx 1/2, 1, 1):

1.000000000000 1.047601458608 0.523800729304 1.000000000000 1.000000000000

Power filter parameters, Fgamma, gamma = 0.28400 0.18933

Metrics information for Grid 01:
===============================

Minimum X-grid spacing, DXmin = 1.00000000E+00 km
Maximum X-grid spacing, DXmax = 1.00000000E+00 km
Minimum Y-grid spacing, DYmin = 1.00000000E+00 km
Maximum Y-grid spacing, DYmax = 1.00000000E+00 km
Minimum Z-grid spacing, DZmin = 8.08965824E-01 m
Maximum Z-grid spacing, DZmax = 2.56123321E+01 m

104

Minimum barotropic Courant Number = 2.22358627E-01
Maximum barotropic Courant Number = 5.42494240E-01
Maximum Coriolis Courant Number = 2.47800000E-02

Basin information for Grid 01:

Maximum grid stiffness ratios: rx0 = 6.931666E-02 (Beckmann and Haidvogel)
rx1 = 8.661243E-01 (Haney)

Initial basin volumes: TotVolume = 3.8843755884E+11 m3
MinVolume = 8.4521383562E+05 m3
MaxVolume = 2.5612332106E+07 m3

Max/Min = 3.0302783777E+01

NL ROMS/TOMS: started time-stepping: (Grid: 01 TimeSteps: 00000001 - 00001440)

STEP Day HH:MM:SS KINETIC_ENRG POTEN_ENRG TOTAL_ENRG NET_VOLUME
C => (i,j,k) Cu Cv Cw Max Speed

0 0 00:00:00 0.000000E+00 6.585677E+02 6.585677E+02 3.884376E+11
(00,00,00) 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

DEF_HIS - creating history file, Grid 01: ocean_his.nc
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000001
DEF_AVG - creating average file, Grid 01: ocean_avg.nc
DEF_DIAGS - creating diagnostics file, Grid 01: ocean_dia.nc
72 0 06:00:00 8.578634E-06 6.585677E+02 6.585677E+02 3.884376E+11

(01,01,13) 4.614888E-03 3.202922E-04 2.134530E-03 1.975948E-02
:
1440 5 00:00:00 2.448524E-02 6.585713E+02 6.585958E+02 3.884376E+11

(01,02,10) 1.604228E-01 8.313453E-03 4.693175E-02 6.425970E-01
WRT_HIS - wrote history fields (Index=1,1) into time record = 0000021
WRT_AVG - wrote averaged fields into time record = 0000020
WRT_DIAGS - wrote diagnostics fields into time record = 0000020
WRT_RST - wrote re-start fields (Index=1,1) into time record = 0000001

Elapsed CPU time (seconds):

Thread # 0 CPU: 219.878
Total: 219.878

Nonlinear ocean model elapsed time profile, Grid: 01

Allocation and array initialization 0.083 (0.0377 %)
Ocean state initialization 0.009 (0.0043 %)
Reading of input data 0.006 (0.0028 %)
Processing of input data 0.099 (0.0452 %)
Processing of output time averaged data 22.404 (10.1894 %)
Computation of vertical boundary conditions 0.082 (0.0373 %)

105

Computation of global information integrals 0.047 (0.0213 %)
Writing of output data 1.255 (0.5708 %)
Model 2D kernel 111.940 (50.9101 %)
2D/3D coupling, vertical metrics 2.108 (0.9589 %)
Omega vertical velocity 1.248 (0.5676 %)
Equation of state for seawater 0.872 (0.3965 %)
3D equations right-side terms 9.147 (4.1603 %)
3D equations predictor step 20.887 (9.4995 %)
Pressure gradient 5.047 (2.2954 %)
Harmonic mixing of tracers, S-surfaces 3.353 (1.5250 %)
Harmonic stress tensor, S-surfaces 3.882 (1.7657 %)
Corrector time-step for 3D momentum 18.233 (8.2926 %)
Corrector time-step for tracers 15.304 (6.9604 %)

Total: 216.009 98.2406

All percentages are with respect to total time = 219.878

ROMS/TOMS - Output NetCDF summary for Grid 01:
number of time records written in HISTORY file = 00000021
number of time records written in RESTART file = 00000002
number of time records written in AVERAGE file = 00000020

Analytical header files used:

ROMS/Functionals/ana_btflux.h
ROMS/Functionals/ana_grid.h
ROMS/Functionals/ana_initial.h
ROMS/Functionals/ana_smflux.h
ROMS/Functionals/ana_stflux.h
ROMS/Functionals/ana_vmix.h

ROMS/TOMS: DONE... Thursday - December 3, 2015 - 9:56:54 AM

Note that it ends by printing out a profile of where the time was used—the ratios will vary depending
on the application.

NetCDF history and restart files are also created, containing the model fields at the requested
times. We have asked it to save restart records every day. In this case, the restart file has been told
to “cycle”, or to write over the second last record. The restart file at the end of the run contains
the fields at day 4 and day 5. The history file contains records for 0, 1/4, 1/2, 3/4, and 1 day,
etc., while the averages and diagnostics files are at 1/8, 3/8, 5/8, and 7/8 day, etc.. Plots can be
made from any one of these files, using the plotting software described in ROMS plotting package.
Selected frames from such plots for an older run are shown in Fig. 17 to 20.

106

https://www.myroms.org/wiki/index.php/Plotting_Package_Installation

Figure 17: The upwelling/downwelling bathymetry.

107

Figure 18: Surface velocities after one day, showing the flow to the left of the wind (southern
hemisphere).

108

Figure 19: Constant ξ slices of the u, v, T and w fields at day 1.

109

Figure 20: Constant ξ slices of the u, v, T , and w fields at day 5.

110

7.3 Arctic example

The upwelling/downwelling examples is one in which all the start-up fields are defined analytically.
The other extreme is one in which everything is read from files, as in our Arctic simulations. Figure
21 shows the bathymetry and the extent of this domain. The grid is non-uniform, having more
resolution close to Alaska—a measure of grid spacing is shown in Figure 22.

7.3.1 arctic.h

The C preprocessor variable ARCTIC has been chosen to label our Arctic domain—the header
include file then becomes arctic.h:

/*
** svn Id

** Copyright (c) 2002-2015 The ROMS/TOMS Group
**
** Licensed under a MIT/X style license
**
** See License_ROMS.txt
**

**
** Options for ARCTIC simulation
*/

#define NO_HIS
#define GLOBAL_PERIODIC
#define HDF5
#define DEFLATE
#undef PARALLEL_IN
#undef PARALLEL_OUT
#define PERFECT_RESTART

/* general */

#define CURVGRID
#define MASKING
#define NONLIN_EOS
#define SOLVE3D
#define SALINITY
#ifdef SOLVE3D
define SPLINES_VDIFF
define SPLINES_VVISC
define RI_SPLINES
#endif
#define FLOATS
#define STATIONS
#undef WET_DRY

#define T_PASSIVE
#ifdef T_PASSIVE

111

Figure 21: Bathymetry of the Arctic domain.

112

Figure 22: Grid spacing of the Arctic domain.

113

define ANA_BPFLUX /* analytical bottom passive tracers fluxes */
define ANA_SPFLUX
define ANA_PASSIVE
define TRC_PSOURCE
define ANA_TRC_PSOURCE
define AGE_MEAN
define PTOBC
#endif

/* ice */

#ifdef SOLVE3D
undef CICE_MODEL
ifdef CICE_MODEL
define SNOWFALL
define SNOW_FROM_RAIN
define INI_GLORYS_ICE
endif

define ICE_MODEL
ifdef ICE_MODEL
define ANA_ICE
define INI_GLORYS_ICE
define OUTFLOW_MASK
define FASTICE_CLIMATOLOGY
undef ICE_LANDFAST
define ICE_THERMO
define ICE_MK
define ICE_MOMENTUM
define ICE_MOM_BULK
define ICE_EVP
define ICE_STRENGTH_QUAD
define ICE_ADVECT
define ICE_SMOLAR
define ICE_UPWIND
define ICE_BULK_FLUXES
define ICE_CONVSNOW
define ICE_I_O
endif
#endif

/* output stuff */

#define NO_WRITE_GRID
#undef OUT_DOUBLE
#ifndef PERFECT_RESTART
define RST_SINGLE
#endif
#define AVERAGES
#define AVERAGES2

114

#ifdef SOLVE3D
undef AVERAGES_DETIDE
undef DIAGNOSTICS_TS
#endif
#undef DIAGNOSTICS_UV

/* advection, dissipation, pressure grad, etc. */

#ifdef SOLVE3D
define DJ_GRADPS
#endif

#define UV_ADV
#define UV_COR

#ifdef SOLVE3D
define TS_U3HADVECTION
define TS_C4VADVECTION
undef TS_MPDATA
#endif

#define UV_VIS2
#undef UV_SMAGORINSKY
#undef VISC_3DCOEF
#define MIX_S_UV
#define VISC_GRID

#ifdef SOLVE3D
define TS_DIF2
define MIX_GEO_TS
define DIFF_GRID
#endif

/* vertical mixing */

#ifdef SOLVE3D
define WTYPE_GRID

undef LMD_MIXING
ifdef LMD_MIXING
define LMD_RIMIX
define LMD_CONVEC
define LMD_SKPP
undef LMD_BKPP
define LMD_NONLOCAL
define LMD_SHAPIRO
undef LMD_DDMIX
endif

define GLS_MIXING

115

undef MY25_MIXING

if defined GLS_MIXING || defined MY25_MIXING
define KANTHA_CLAYSON
define N2S2_HORAVG
endif
#endif

/* surface forcing */

#ifdef SOLVE3D
define CORE_FORCING
define BULK_FLUXES
define CCSM_FLUXES
define ARCTIC_MERRA_HACK
if defined BULK_FLUXES
define LONGWAVE_OUT
undef DIURNAL_SRFLUX
define SOLAR_SOURCE
define EMINUSP
undef ALBEDO_CLOUD
define ALBEDO_CURVE /* for water */
undef ICE_ALB_EC92 /* for ice */
define ALBEDO_CSIM /* for ice */
undef ALBEDO_FILE /* for both */
undef LONGWAVE
endif
#endif

/* surface and side corrections */

#ifdef SOLVE3D
define SCORRECTION
define NO_SCORRECTION_ICE
#endif

#ifdef SOLVE3D
define ANA_NUDGCOEF
#endif

/* point sources (rivers, line sources) */

/* Using both for different regions */
#ifdef SOLVE3D
define RUNOFF
define TWO_D_TRACER_SOURCE
#endif

/* tides */

116

#define LTIDES
#ifdef LTIDES
ifndef USE_DEBUG
define FILTERED
endif
define SSH_TIDES
define UV_TIDES
define ADD_FSOBC
define ADD_M2OBC
undef RAMP_TIDES
define TIDES_ASTRO
define POT_TIDES

define UV_DRAG_GRID
define ANA_DRAG
define LIMIT_BSTRESS
undef UV_LDRAG
define UV_QDRAG
#else
define UV_QDRAG
#endif

/* Boundary conditions...careful with grid orientation */

#define RADIATION_2D

/* roms quirks */

#ifdef SOLVE3D
define ANA_BSFLUX
define ANA_BTFLUX
#else
define ANA_SMFLUX
#endif

We’ve got masking, salinity, sea ice and the non-linear equation of state. We want Laplacian viscos-
ity on σ-surfaces, diffusion along constant z-surfaces and the full non-linear, curvilinear momentum
equations.

Notice that comments are allowed in this file as long as they are in the C syntax. Also,
conditionals are fine—some parts are only wanted when SOLVE3D is on. Sources are now turned
on in the ocean_arctic2.in file, while RUNOFF is still a cpp option. We have both in this
domain, using different fresh water inputs for different parts of the domain.

7.3.2 Arctic code chunks

The Apps/Arctic directory contains the ana_ family of include files for setting the bottom drag,
the horizontal nudging coefficients and the passive tracers. The bottom drag is a function of the
bottom depth with a tunable parameter which was adjusted to give a reasonable Bering Strait
throughflow.

Doing a search for ARCTIC shows up a few other bits of code. One is in output.F, forcing
a new station file after every restart:

117

#ifdef ARCTIC
CALL def_station (ng, .true.)

#else
CALL def_station (ng, ldefout(ng))

#endif

A better fix (someday) would be to allow the station files to be numbered just like the averages
files. Why not set ldefout to be true? It is shared by many outputs, including the floats, and you
can only restart floats with ldefout set to false.

There is a hack in grid_coords.F so that floats and stations are placed at the correct i, j
position. Otherwise, the code to find i, j from longitude, latitude finds two boxes with the correct
range, one where I want it, the other at the same latitude, but where the longitude jumps from 360
back to 0.

There is code in set_masks.F to position the mask for the ice outflow cells off the coast of
Greenland.

Finally, there is a kludge in step_floats.F for a float reuse strategy, restarting them each year.
Having a handy tag like ARCTIC allows me to search for these little hacks later.

7.3.3 Model domain

A number of horizontal grid points was chosen to resolve the domain at roughly 6 km near Alaska,
less well across the basin. Values for Lm, Mm, and N are:

Lm == 688 ! Number of I-direction INTERIOR RHO-points
Mm == 1088 ! Number of J-direction INTERIOR RHO-points
N == 50 ! Number of vertical levels

The vertical structure is set to our new favorite, using the new stretching function:

Vtransform == 2 ! transformation equation
Vstretching == 4 ! stretching function

THETA_S == 7.0d0 ! surface stretching parameter
THETA_B == 2.0d0 ! bottom stretching parameter
TCLINE == 250.0d0 ! critical depth (m)

7.3.4 Initial and boundary conditions

The best ocean fields we knew of when setting this up are known as SODA, a reanalysis from
1958 through 2008 by Carton et al. [2005]. There are global HYCOM fields for later years. There
are Python scripts to create initial, climatology and boundary conditions from the SODA and
HYCOM files. Snow and ice initial conditions are set to uniform thicknesses where the SST is cold,
zero otherwise. Ice boundary conditions are assumed to be not needed with the boundaries so far
from the pack ice.

The side known as “South” is across the North Pacific and the “East” and “West” sides are only
open for a short bit in the North Pacific. The “North” boundary is on the Atlantic side; these all
have our usual combination of radiation and nudging for the ocean. The ice boundary conditions
are closed here, but “outflow cells” have been created along the “North” side.

LBC(isFsur) == Che Che Che Che ! free-surface
LBC(isUbar) == Shc Shc Shc Shc ! 2D U-momentum
LBC(isVbar) == Shc Shc Shc Shc ! 2D V-momentum
LBC(isUvel) == RadNud RadNud RadNud RadNud ! 3D U-momentum

118

LBC(isVvel) == RadNud RadNud RadNud RadNud ! 3D V-momentum
LBC(isMtke) == Clo Clo Clo Clo ! mixing TKE

LBC(isTvar) == RadNud RadNud RadNud RadNud \ ! temperature
RadNud RadNud RadNud RadNud \ ! salinity
Clo Clo Clo Clo \ ! inert(1)
Clo Clo Clo Clo \ ! inert(2)
Clo Clo Clo Clo \ ! inert(3)
Clo Clo Clo Clo \ ! inert(4)
Clo Clo Clo Clo \ ! inert(5)
Clo Clo Clo Clo ! inert(6)

! Ice boundary conditions

LBC(isAice) == Clo Clo Clo Clo ! ice concentration
LBC(isHice) == Clo Clo Clo Clo ! ice thickness
LBC(isHsno) == Clo Clo Clo Clo ! snow thickness
LBC(isTice) == Clo Clo Clo Clo ! ice temperature
LBC(isApond)== Clo Clo Clo Clo ! surface water
LBC(isHpond)== Clo Clo Clo Clo ! surface water
LBC(isSig11)== Clo Clo Clo Clo ! sigma-11
LBC(isSig12)== Clo Clo Clo Clo ! sigma-12
LBC(isSig22)== Clo Clo Clo Clo ! sigma-22
LBC(isUice) == Gra Gra Gra Gra ! ice U-momentum
LBC(isVice) == Gra Gra Gra Gra ! ice V-momentum

7.3.5 Forcing

We are using the MERRA forcing files [Rienecker et al., 2011] and computing the momentum,
heat and salt fluxes from the atmospheric conditions and the model’s surface temperature. There
are two options, one provided by bulk_flux.F and the other provided by ccsm_flux.F. We are
using the second. We have Python scripts for downloading MERRA so that the MERRA files can
be used as is, on their native grid, then interpolated by ROMS internally to the domain at hand.
We have added a processing step to the MERRA files so that only values from over the ocean
are used—these are extrapolated into the land points in the MERRA fields (R. Dussin, personal
communication).

For fresh water input from land, we have the ARDAT fields for the Arctic ocean [Whitefield
et al., 2015], which includes monthly river temperature. These are applied as point sources to
include the effects of bringing in warm water. For the rest of the domain, we are applying Dai
et al. [2009] as the RUNOFF field. Other forcings include a nudging to sea surface salinity, a
fastice climatology from Andy Mahoney, tides from OTPS and a nudging to a monthly climatology
around the edges from the same sources as the boundary conditions.

7.3.6 ocean.in

We use an internal time-step of 200 s and an external time-step of 10 s. The horizontal viscosity
and diffusion is:

TNU2 == 5.0d0 5.0d0 ! m2/s
VISC2 == 25.0d0 ! m2/s

119

7.3.7 Output

The model writes voluminous information to standard out, as shown for the UPWELLING case.
It also writes out NetCDF files for restart, daily averages, three-hourly averages2, stations and
floats. Plots can be made from any of these files; some examples are shown in Fig. 23–24 .

7.4 Northwest Gulf of Alaska example

The Northwest Gulf of Alaska (NWGOA) domain is set up much like the Arctic, described in §7.3.
This is a rectangular domain with uniform 1.5 km resolution over Cook Inlet and beyond, as shown
in Fig. 25.

The bathymetry was clipped to 20 m elevation above sea level for the wetting and drying algo-
rithm. Smoothing and editing was done to give a stable simulation, but the usual bottom steepness
metric depends on water depth being everywhere positive. The assumption is that extremely shal-
low waters would be vertically well-mixed, so that pressure gradient errors would vanish. It was
discovered that the rotated mixing tensors for horizontal diffusion were unstable in the near-shore,
with high-and-dry points next to relatively deep wet points; thus the explicit horizontal diffusion
was turned off. The model ran stably with the third-order upwind advection scheme providing
some implicit diffusion.

The bathymetry is a combination of ARDEM (Danielson, personal communication) and a Cook
Inlet product from Lyon Lanerolle (personal communication). This melding was found to give
better tides at Anchorage than either product alone.

7.4.1 nwgoa.h

The C preprocessor variable NWGOA has been chosen to label this domain—the header include
file then becomes nwgoa.h. It shares many of the options with the Arctic domain, differing in that
has neither outflow cells nor any attempt at landfast ice. One notable change is the inclusion of
the WET_DRY option, which was challenging to get to run stably. Another change is that fresh
water is now all coming from the output of a hydrology model—RUNOFF is not used here.

7.4.2 NWGOA code chunks

The Apps/NWGOA directory contains the ana_ family of include files for setting the bottom
drag, the horizontal nudging coefficients and the passive tracers. Doing a search for NWGOA
shows up a few other bits of code. The only such bit not shared byARCTIC is inmod_scalars.F:

#ifdef NWGOA
real(r8) :: max_speed = 80.0_r8 ! m/s

#else
real(r8) :: max_speed = 20.0_r8 ! m/s

#endif

This is because the summer river flows can be large enough to exceed the default “speed limit” put
into the code to check for growing instabilities.

7.4.3 Model domain

A number of horizontal grid points was chosen to resolve the domain at 1.5 km everywhere. Values
for Lm, Mm, and N are:

Lm == 792 ! Number of I-direction INTERIOR RHO-points
Mm == 360 ! Number of J-direction INTERIOR RHO-points
N == 50 ! Number of vertical levels

120

Figure 23: Ice concentration averaged over the month of September, 1982.

121

Figure 24: Ice thickness averaged over the month of September, 1982.

122

Figure 25: Bathymetry of the NWGOA domain.

The vertical structure is again our current favorite:

Vtransform == 2 ! transformation equation
Vstretching == 4 ! stretching function

THETA_S == 7.0d0 ! surface stretching parameter
THETA_B == 2.0d0 ! bottom stretching parameter
TCLINE == 250.0d0 ! critical depth (m)

7.4.4 Initial and boundary conditions

All initial and boundary conditions were extracted from prior runs in the NEP6 domain covering
the Northeast Pacific. The LBC options are the same as in the Arctic for all open boundaries.
There is no need for any nudging to climatology in this case.

7.4.5 Forcing

We are using the same MERRA forcing with extrapolation into land as described above, as well as a
tidal file from OTPS. The fresh water forcing is daily output from a hydrology model, interpolated
to the ROMS grid and then converted to lateral “sources” along the coastline.

7.4.6 ocean.in

We use an internal time-step of 30 s and an external time-step of 3 s. The horizontal viscosity is:

VISC2 == 25.0d0 ! m2/s

while the explicit horizontal diffusivity was turned off.

123

Figure 26: Surface salinity for 10 August, 2008.

7.4.7 Output

The model writes voluminous information to standard out, as shown for the UPWELLING case.
It also writes out NetCDF files for restart, daily averages, stations and floats. We also saved hourly
history output. Plots can be made from any of these files; some examples are shown in Fig. 26–27 .

124

Figure 27: Surface temperature and velocities for 10 August, 2008.

125

A Model Time-stepping Schemes
Numerical time stepping uses a discrete approximation to:

∂φ(t)
∂t

= F(t) (246)

where φ represents one of u, v, C, or ζ, and F(t) represents all the right-hand-side terms. In ROMS,
the goal is to find time-stepping schemes which are accurate where they are valid and damping on
unresolved signals [Shchepetkin and McWilliams, 2009b]. Also, the preference is for time-stepping
schemes requiring only one set of the right-hand-side terms so that different time-stepping schemes
can be used for different terms in the equations. Finally, as mentioned in Table 4.3, not all versions
of ROMS use the same time-stepping algorithm. We list some time-stepping schemes here which
are used or have been used by the ROMS/SCRUM family of models, plus a few to help explain
some of the more esoteric ones.

A.1 Euler

The simplest approximation is the Euler time step:

φ(t+ ∆t)− φ(t)
∆t = F(t) (247)

where you predict the next φ value based only on the current fields. This method is accurate to
first order in ∆t; however, it is unconditionally unstable with respect to advection.

A.2 Leapfrog

The leapfrog time step is accurate to O(∆t2):

φ(t+ ∆t)− φ(t−∆t)
2∆t = F(t). (248)

This time step is more accurate, but it is unconditionally unstable with respect to diffusion. Also,
the even and odd time steps tend to diverge in a computational mode. This computational mode
can be damped by taking correction steps. SCRUM’s time step on the depth-integrated equations
was a leapfrog step with a trapezoidal correction (LF-TR) on every step, which uses a leapfrog step
to obtain an initial guess of φ(t+ ∆t). We will call the right-hand-side terms calculated from this
initial guess F∗(t+ ∆t):

φ(t+ ∆t)− φ(t)
∆t = 1

2 [F(t) + F∗(t+ ∆t)] . (249)

This leapfrog-trapezoidal time step is stable with respect to diffusion and it strongly damps the
computational mode. However, the right-hand-side terms are computed twice per time step.

A.3 Third-order Adams-Bashforth (AB3)

The time step on SCRUM’s full 3-D fields is done with a third-order Adams-Bashforth step. It
uses three time-levels of the right-hand-side terms:

φ(t+ ∆t)− φ(t)
∆t = αF(t) + βF(t−∆t) + γF(t− 2∆t) (250)

where the coefficients α, β and γ are chosen to obtain a third-order estimate of φ(t+ ∆t). We use
a Taylor series expansion:

φ(t+ ∆t)− φ(t)
∆t = φ′ + ∆t

2 φ′′ + ∆t2

6 φ′′′ + · · · (251)

126

where

F(t) = φ′

F(t−∆t) = φ′ −∆tφ′′ + ∆t2

2 φ′′′ + · · ·

F(t− 2∆t) = φ′ − 2∆tφ′′ + 2∆t2φ′′′ + · · ·

We find that the coefficients are:

α = 23
12 , β = −4

3 , γ = 5
12

This requires one time level for the physical fields and three time levels of the right-hand-side
information and requires special treatment on startup.

A.4 Forward-Backward

In equation 246 above, we assume that multiple equations for any number of variables are time
stepped synchronously. For coupled equations, we can actually do better by time stepping asyn-
chronously. Consider these equations:

∂ζ

∂t
= F(u)

∂u

∂t
= G(ζ)

(252)

If we time step them alternately, we can always be using the newest information:

ζn+1 = ζn + F(un)∆t
un+1 = un + G(ζn+1)∆t

(253)

This scheme is second-order accurate and is stable for longer time steps than many other schemes.
It is however unstable for advection terms.

A.5 Forward-Backward Feedback (RK2-FB)

One option for solving equation 252 is a predictor-corrector with predictor step:

ζn+1,? = ζn + F(un)∆t

un+1,? = un +
[
βG(ζn+1,?) + (1− β)G(ζn)

]
∆t

(254)

and corrector step:

ζn+1 = ζn + 1
2
[
F(un+1,?) + F(un)

]
∆t

un+1 = un + 1
2
[
εG(ζn+1) + (1− ε)G(ζn+1,?) + G(ζn)

]
∆t

(255)

Setting β = ε = 0 in the above, it becomes a standard second order Runge-Kutta scheme, which is
unstable for a non-dissipative system. Adding the β and ε terms adds Forward-Backward feedback
to this algorithm, and allows us to improve both its accuracy and stability. The choice of β =
1/3 and ε = 2/3 leads to a stable third-order scheme with αmax = 2.14093 [Shchepetkin and
McWilliams, 2009b].

127

A.6 LF-TR and LF-AM3 with FB Feedback

Another possibility is a leapfrog predictor:

ζn+1,? = ζn−1 + 2F(un)∆t

un+1,? = un−1 + 2
{

(1− 2β)G(ζn) + β
[
G(ζn+1,?) + G(ζn−1)

]}
∆t

(256)

and either a two-time trapezoidal or a three-time Adams-Moulton corrector:

ζn+1 = ζn +
[(1

2 − γ
)
F(un+1,?) +

(1
2 + 2γ

)
F(un)− γF(un−1)

]
∆t

un+1 = un +
{(1

2 − γ
) [
εG(ζn+1) + (1− ε)G(ζn+1,?)

]
+
(1

2 + 2γ
)
G(ζn)− γG(ζn−1)

}
∆t

(257)

where the parameters β and ε introduce FB-feedback during both stages, while γ controls the type
of corrector scheme. Without FB-feedback, we have:

β = ε = 0⇒


γ = 0 ⇒ LF-TR αmax =

√
2

γ = 1/12 ⇒ LF-AM3 αmax = 1.5874
γ = 0.0804 ⇒ max stability αmax = 1.5876

Keeping γ = 1/12 maintains third-order accuracy. The most accurate choices for β and ε are
β = 17/120 and ε = 11/20, which yields a fourth-order scheme with low numerical dispersion and
diffusion and αmax = 1.851640 [Shchepetkin and McWilliams, 2009b].

A.7 Generalized FB with an AB3-AM4 Step

One drawback of the previous two schemes is the need to evaluate the right-hand-side (r.h.s.) terms
twice per time step. The original forward-backward scheme manages to achieve αmax = 2 while
only evaluating each r.h.s. term once. It is possible to contruct a robust scheme using a combination
of a three-time AB3-like step for ζ with a four-time AM4-like step for u:

ζn+1 = ζn +
[(3

2 + β

)
F(un)−

(1
2 + 2β

)
F(un−1) + βF(un−2)

]
∆t

un+1 = un +
[(1

2 + γ + 2ε
)
G(ζn+1) +

(1
2 − 2γ − 3ε

)
G(ζn) + γG(ζn−1) + εG(ζn−2)

]
∆t

(258)

This is second-order accurate for any set of values for β, γ, and ε. It is third-order accurate if
β = 5/12. However, it has a wider stability range for β = 0.281105. [Shchepetkin and McWilliams,
2009b] choose to use this scheme for the barotropic mode in their model with β = 0.281105,
γ = 0.0880, and ε = 0.013, to obtain αmax = 1.7802, close to the value of 2 for pure FB, but with
better stability properties for the combination of waves, advection, and Coriolis terms.

128

B The vertical σ-coordinate
ROMS now supports several vertical coordinate systems as fully described on the ROMS wiki.
See also Shchepetkin and McWilliams [2005]. The currently recommended values correspond to
Vtransform= 2 and Vstretching= 4, therefore that is what is described here.

B.1 Transform

The vertical coordinate corresponding to Vtransform= 2 is:
z(x, y, σ, t) = ζ(x, y, t) + [ζ(x, y, t) + h(x, y)] S(x, y, σ), (259)

S(x, y, σ) = hc σ + h(x, y)C(σ)
hc + h(x, y) (260)

where hc is a (positive) thickness above which we wish to have more resolution and C(σ) is a
nondimensional, monotonic, vertical stretching function ranging from −1 ≤ C(σ) ≤ 0.

In an undisturbed ocean state, corresponding to zero free-surface, z = S(x, y, σ) so that in
our coordinate system, the depths are not affected by the displacements of the free-surface. This
ensures that the vertical mass fluxes generated by a purely barotropic motion will vanish at every
interface.

We find it convenient to define:
Hz ≡

∂z

∂σ
(261)

We compute Hz discretely as ∆z/∆σ since this leads to the vertical sum of Hz being exactly the
total water depth D.

Notice that, unlike our previous stretching function,

S(x, y, σ) =
{

0, if σ = 0, C(σ) = 0, at the free-surface;
−1, if σ = −1, C(σ) = −1, at the ocean bottom; (262)

The new stretching is superior in that:
• Regardless of the design of C(σ), it behaves like equally-spaced sigma-coordinates in shallow
regions, where h(x, y)� hc. This is advantageous because it avoids excessive resolution and
associated CFL limitation is such areas.

• Near-surface refinement behaves more or less like geopotential coordinates in deep regions
(level thicknesses, Hz, do not depend or weakly depend on bathymetry), while near-bottom
like sigma coordinates (Hz is roughly proportional to depth). This reduces the extreme
r-factors near the bottom and reduces pressure gradient errors.

• The “true” sigma-coordinate system is recovered as hc → ∞. This is useful when configur-
ing applications with “flat” bathymetry and “uniform” level thickness. Practically, you can
achieve this by setting Tcline to 1.0d+16 in ocean.in. This will set hc = 1.0x1016. Although
not necessary, we also recommend that you set θS = 0 and θB = 0.

• In an undisturbed ocean state, ζ ≡ 0, transformation (2) yields the following unperturbed
depths, ẑ,

ẑ(x, y, σ) ≡ h(x, y)S(x, y, σ) = h(x, y)
[
hc σ + h(x, y)C(σ)

hc + h(x, y)

]
(263)

and
dẑ = dσ h(x, y)

[
hc

hc + h(x, y)

]
(264)

As a consequence, the uppermost grid box retains very little dependency from bathymetry in
deep areas, where hc � h(x, y). For example, if hc = 250m and h(x, y) changes from 2000 to
6000m, the uppermost grid box changes only by a factor of 1.08 (less than 10%).

129

https://www.myroms.org/wiki/index.php/Vertical_S-coordinate

B.2 Stretching

In ROMS, we recommend Vstretching= 4. C(σ) is defined as a continuous, double stretching
function:

• Surface refinement function:

C(σ) = 1− cosh(θS σ)
cosh(θS)− 1 , for θS > 0, C(σ) = −σ2, for θS ≤ 0 (265)

• Bottom refinement function:

C(σ) = exp(θB C(σ))− 1
1− exp(−θB) , for θB > 0 (266)

Notice that the bottom function (266) is the second stretching of an already stretched transform
(265). The resulting stretching function is continuous with respect to θS and θB as their values
approach zero. The range of meaningful values for θS and θB are:

0 ≤ θS ≤ 10 and 0 ≤ θB ≤ 4

However, users need to pay attention to extreme r-factor rx1 values near the bottom.

130

C Horizontal curvilinear coordinates
The requirement for a boundary-following coordinate system and for a laterally variable grid res-
olution can both be met (for suitably smooth domains) by introducing an appropriate orthogonal
coordinate transformation in the horizontal. Let the new coordinates be ξ(x, y) and η(x, y) where
the relationship of horizontal arc length to the differential distance is given by:

(ds)ξ =
(1
m

)
dξ (267)

(ds)η =
(1
n

)
dη (268)

Here, m(ξ, η) and n(ξ, η) are the scale factors which relate the differential distances (∆ξ,∆η) to
the actual (physical) arc lengths.

It is helpful to write the equations in vector notation and to use the formulas for div, grad, and
curl in curvilinear coordinates [see Batchelor, 1967, Appendix 2]:

∇φ = ξ̂m
∂φ

∂ξ
+ η̂n

∂φ

∂η
(269)

∇ · ~a = mn

[
∂

∂ξ

(
a

n

)
+ ∂

∂η

(
b

m

)]
(270)

∇× ~a = mn

∣∣∣∣∣∣∣∣
ξ̂1
m

ξ̂2
n k̂

∂
∂ξ

∂
∂η

∂
∂z

a
m

b
n c

∣∣∣∣∣∣∣∣ (271)

∇2φ = ∇ · ∇φ = mn

[
∂

∂ξ

(
m

n

∂φ

∂ξ

)
+ ∂

∂η

(
n

m

∂φ

∂η

)]
(272)

where φ is a scalar and ~a is a vector with components a, b, and c.

131

D Viscosity and Diffusion

D.1 Horizontal viscosity

The horizontal viscosity and diffusion coefficients are scalars which are read in from ocean.in.
Several factors to consider when choosing these values are:

spindown time The spindown time on wavenumber k is 1
k2ν2

for the Laplacian operator and 1
k4ν4

for the biharmonic operator. The smallest wavenumber corresponds to the length 2∆x
and is k = π

∆x , leading to

∆t < tdamp = ∆x2

π2ν2
or ∆x4

π4ν4
(273)

This time should be short enough to damp out the numerical noise which is being gen-
erated but long enough on the larger scales to retain the features you are interested in.
This time should also be resolved by the model timestep.

boundary layer thickness The western boundary layer has a thickness proportional to

∆x < LBL =
(
ν2
β

) 1
3

and
(
ν4
β

) 1
5

(274)

for the Laplacian and biharmonic viscosity, respectively. We have found that the model
typically requires the boundary layer to be resolved with at least one grid cell. This leads
to coarse grids requiring large values of ν.

D.2 Horizontal Diffusion

We have chosen anything from zero to the value of the horizontal viscosity for the horizontal
diffusion coefficient. One common choice is an order of magnitude smaller than the viscosity.

D.3 Vertical Viscosity and Diffusion

ROMS stores the vertical mixing coefficients in arrays with three spatial dimensions called Akv
and Akt. Akt also has a fourth dimension specifying which tracer, so that temperature and salt
can have differing values. Both Akt and Akv are stored at w-points in the model; horizontal
averaging is done to obtain Akv at the horizontal u and v-points. The values for these coefficients
can be set in a number of ways, as described in §4.11.

132

E Radiant heat fluxes
As was seen in §5.2, the model thermodynamics requires fluxes of latent and sensible heat and
longwave and shortwave radiation. We follow the lead of Parkinson and Washington [1979] in
computing these terms.

E.1 Shortwave radiation

The Zillman equation for radiation under cloudless skies is:

Qo = S cos2 Z

(cosZ + 2.7)e× 10−5 + 1.085 cosZ + 0.10 (275)

where the variables are as in Table 9. The cosine of the zenith angle is computed using the formula:
cosZ = sinφ sin δ + cosφ cos δ cosHA. (276)

The declination is
δ = 23.44◦ × cos [(172− day of year)× 2π/365] (277)

and the hour angle is
HA = (12 hours− solar time)× π/12. (278)

The correction for cloudiness is given by
SW↓= Qo(1− 0.6c3). (279)

E.2 Longwave radiation

The clear sky formula for incoming longwave radiation is given by:

F ↓= σT 4
a

{
1− 0.261 exp

[
−7.77× 10−4(273− Ta)2

]}
(280)

while the cloud correction is given by:
LW ↓= (1 + 0.275c)F ↓ . (281)

E.3 Sensible heat

The sensible heat is given by the standard aerodynamic formula:
H ↓= ρacpCHVwg(Ta − Tsfc). (282)

E.4 Latent heat

The latent heat depends on the vapor pressure and the saturation vapor pressure given by:
e = 611× 10a(Td−273.16)/(Td−b) (283)
es = 611× 10a(Tsfc−273.16)/(Tsfc−b) (284)

The vapor pressures are used to compute specific humidities according to:

q10m = εe

p− (1− ε)e (285)

qs = εes
p− (1− ε)es

(286)

The latent heat is also given by a standard aerodynamic formula:
LE ↓= ρaLCEVwg(q10m − qs). (287)

Note that these need to be computed independently for the ice-covered and ice-free portions of each
gridbox since the empirical factors a and b and the factor L differ depending on the surface type.

133

Variable Value Description
(a, b) (9.5, 7.66) vapor pressure constants over ice
(a, b) (7.5, 35.86) vapor pressure constants over water
c cloud cover fraction
CE 1.75× 10−3 transfer coefficient for latent heat
CH 1.75× 10−3 transfer coefficient for sensible heat
cp 1004 J kg−1 K−1 specific heat of dry air
δ declination
e vapor pressure in pascals
es saturation vapor pressure
ε 0.622 ratio of molecular weight of water to dry air
HA hour angle
L 2.5× 106 J kg−1 latent heat of vaporization
L 2.834× 106 J kg−1 latent heat of sublimation
φ latitude
Qo incoming radiation for cloudless skies
qs surface specific humidity
q10m 10 meter specific humidity
ρa air density
S 1353 W m−2 solar constant
σ 5.67× 10−8 W m−2 K−4 Stefan-Boltzmann constant
Ta air temperature
Td dew point temperature
Tsfc surface temperature of the water/ice/snow
Vwg geostrophic wind speed
Z solar zenith angle

Table 9: Variables used in computing the incoming radiation and latent and sensible heat

134

F The C preprocessor

The C preprocessor, cpp, is a standalone program which comes with most C compilers. On older
UNIX systems it was not in the default path, but in /lib or in /usr/lib. Most modern systems have
some version of gcc which comes with a quite capable cpp. Just be sure to give it the -traditional
flag.

This Appendix describes the C preprocessor as used in ROMS with the Fortran language. A
more complete description is given by Kernighan and Ritchie [1988]. More practical advice on using
cpp is given by Hazard [1991].

F.1 File inclusion

Placing common blocks in smaller files, which are then included in each subroutine, is the easiest
way to make sure that the common blocks are declared consistently. Many Fortran compilers
support an include statement where the compiler replaces the line

include ’file.h’

with the contents of file.h; file.h is assumed to be in the current directory. The C preprocessor
has an equivalent include statement:

#include "file.h"

We are using the C preprocessor style of include because many of the ROMS include files are not
pure Fortran and must be processed by cpp.

F.2 Macro substitution

A macro definition has the form

#define name replacement text

where “name” would be replaced with “replacement text” throughout the rest of the file. This was
used in SCRUM as a reasonably portable way to get 64-bit precision:

#define BIGREAL real*8

It is customary to use uppercase for cpp macros—the C preprocessor is case sensitive.
It is also possible to define macros with arguments, as in

#define av2(a1,a2) (.5 * ((a1) + (a2)))

although this is riskier than the equivalent statement function

av2(a1,a2) = .5 * (a1 + a2)

The statement function is preferable because it allows the compiler to do type checking and because
you don’t have to be as careful about using enough parentheses.

The third form of macro has no replacement text at all:

#define MASKING

In this case, MASKING will evaluate to true in the conditional tests described below.

135

F.3 Conditional inclusion

It is possible to control which parts of the code are seen by the Fortran compiler by the use of
cpp’s conditional inclusion. For example, the statements

#ifdef MASKING
include "mask.h"
#endif /* MASKING */

:
ifdef MASKING
c
c Apply Land/Sea mask: slipperiness.
c

do j=1,M
do i=2,Lm

Uflux(i,j)=Uflux(i,j)*pmask(i,j)
enddo

enddo
endif /* MASKING */

will not be in the Fortran source code if MASKING has not been defined. Likewise, #ifndef
tests for a macro being undefined:

#ifndef RMDOCINC
c rmask Mask at RHO-points (0=Land, 1=Sea).
c pmask Slipperiness mask at PSI-points (0=Land, 1=Sea,
c 1-gamma2=boundary).
c umask Mask at U-points (0=Land, 1=Sea).
c vmask Mask at V-points (0=Land, 1=Sea).
c
c===
#endif

There are also #else and #elif (else if) statements. An example using #else and #elif is
shown:

#ifdef SOLITON
real(r8) :: g = 1.0_r8 ! non-dimensional

elif defined WBC_1 || defined WBC_2 || defined WBC_3
real(r8) :: g = 9.8_r8 ! m/s2

elif defined CIRCLE
real(r8) :: g = 3.92e-2_r8 ! m/s2

#else
real(r8) :: g = 9.81_r8 ! m/s2

#endif

Actually, #ifdef is a restricted version of the more general test

#if expression

where “expression” is a constant integer value. Zero evaluates to false and everything else is
considered true. Compound expressions may be built using the C logical operators:

&& logical and
|| logical or
! logical not

136

These symbols would be used as in the following example:

#if defined CANYON_A || defined CANYON_B
do j=0,M

do i=0,L
yc=c32000-c16000*(sin(pi*xr(i,j)/xl))**24
h(i,j)=c20+p5*(hmax-c20)*(c1+tanh((yr(i,j)-yc)/c10000))

enddo
enddo

#endif

F.4 C comments

The C preprocessor will also delete C language comments starting with /* and ending with */ as
in:

#endif /* MASKING */

When mixed with Fortran code, it is safer to use a Fortran comment.

F.5 A note on style

In ROMS, the style adopted is as shown above and here:

#define NEP5
#if defined NEP5 || defined BERING

:
ifdef MASKING

:
endif
#endif

The gnu community has instead adopted this style:

#define NEP5 1
#if NEP5 || BERING

:
if MASKING

:
endif
#endif

Both styles work and you should be aware that there’s more than one way to do it.

F.6 Potential problems

The use of the C preprocessor is not entirely free of problems, but many can be worked around or
avoided by using the gnu version of cpp with the -traditional flag.

1. Apostrophes in Fortran comments. cpp does not know that it is in a comment and some
versions will complain about unmatched apostrophes in the following:

! Some useful comment about Green’s functions.

137

2. C++ comments. Some of the newer versions of cpp will remove C++ comments which go from
’//’ to the end of the line. Some perfectly reasonable Fortran lines contain two consecutive
slashes, such as:

common // var1, var2
44 format(//)

and Fortran 90 string concatenation:

mystring = ’Hello, ’ // ’World!’

3. Macro replacement. One feature of cpp is that you can define macros and have it perform
replacements. The code:

#define REAL double precision
REAL really_long_variable, second_long_variable

becomes

double precision really_long_variable, second_long_variable

and you run the risk of creating lines which are longer than 72 characters in length.
Also, make sure that your macros will not be found anywhere else in the code. I used to
use #define DOUBLE for double precision until it was pointed out to me that DOUBLE
PRECISION is perfectly valid Fortran. Since a string that is simply “defined” becomes 1,
the macro processor would turn this into 1 PRECISION.

F.7 Modern Fortran

I started working on these ocean models before 1990, much less before Fortran 90 compilers were
generally available. Fortran 90’s kind feature as used in ROMS is a better way to handle the
BIGREAL type declarations. On the other hand, Fortran 90 does not include conditional compi-
lation. However, it is deemed useful enough that the Fortran 2003 standard has the coco means of
conditional compilation. We might start using this in about ten years.

138

G Makefiles
One of the software development tools which comes with the UNIX operating system is called
make. Make has many uses, but is most commonly used to keep track of how a large program
should be compiled. ROMS now requires the gnu version of make, sometimes known as gmake
[Mechlenburg, 2005]. This appendix describes generic make, the gnu enhancements to make, as
well as describing the makefile structure used in ROMS. This material first appeared in the ARSC
HPC Newsletter in several segments and has been updated and restructured here.

G.1 Introduction to Portable make

Make gets its instructions from a description file, by default named makefile or Makefile. This
file is called the Makefile, but other files can be used by invoking make with the -f option:

make -f Makefile.yukon

The ancester to ROMS originally had a Makefile that looked something like:

model: main.o init.o plot.o
<TAB> f77 -o model main.o init.o plot.o

main.o: main.f
<TAB> f77 -c -O main.f

init.o: init.f
<TAB> f77 -c -O init.f

plot.o: plot.f
<TAB> f77 -c -O0 plot.f

clean:
<TAB> rm *.o core

The default thing to build is model, the first target. The syntax is:

target: dependencies
<TAB> command
<TAB> command

The target model depends on the object files, main.o and friends. They have to exist and be
up to date before model’s link command can be run. If the target is out of date according to
the timestamp on the file, then the commands will be run. Note that the tab is required on the
command lines.

The other targets tell make how to create the object files and that they in turn have dependen-
cies. To compile model, simply type “make”. Make will look for the file makefile, read it, and
do whatever is necessary to make model up to date. If you edit init.f, that file will be newer than
init.o. Make would see that init.o is out of date and run the “f77 -c -O init.f” command. Now
init.o is newer than model, so the link command “f77 -o model main.o init.o plot.o” must be
executed.

To clean up, type “make clean” and the clean target will be brought up to date. The clean
target has no dependencies. What happens in that case is that the command (“rm *.o core”) will
always be executed.

The original version of this Makefile turned off optimization on plot.f due to a compiler bug,
but hopefully you won’t ever have to worry about that.

139

http://www.arsc.edu/support/news/HPCnews.shtml
http://www.arsc.edu/support/news/HPCnews.shtml

G.1.1 Macros

Make supports a simple string substitution macro. Set it with:

MY_MACRO = nothing today

and refer to it with:

$(MY_MACRO)

The convention is to put the macros near the top of your Makefile and to use upper case. Also,
use separate macros for the name of your compiler and the flags it needs:

F90 = f90
F90FLAGS = -O3
LIBDIR = /usr/local/lib
LIBS = -L$(LIBDIR) -lmylib

Let’s rewrite our Makefile using macros:

#
IBM version
#
F90 = xlf90_r
F90FLAGS = -O3 -qstrict
LDFLAGS = -bmaxdata:0x40000000

model: main.o init.o plot.o
$(F90) $(LDFLAGS) -o model main.o init.o plot.o

main.o: main.f
$(F90) -c $(F90FLAGS) main.f

init.o: init.f
$(F90) -c $(F90FLAGS) init.f

plot.o: plot.f
$(F90) -c $(F90FLAGS) plot.f

clean:
rm *.o core

Now when we change computers, we only have to change the compiler name in one place.
Likewise, if we want to try a different optimization level, we only specify that in one place.

Notice that you can use comments by starting the line with a #.

G.1.2 Implicit Rules

Make has some rules already built in. For fortran, you might be able to get away with:

OBJS = main.o init.o plot.o

model: $(OBJS)
$(FC) $(LDFLAGS) -o model $(OBJS)

140

as your whole Makefile. Make will automatically invoke its default Fortran compiler, possibly
f77 or g77, with whatever default compile options it happens to have (FFLAGS). One built in
rule often looks like:

.c.o:
$(CC) $(CFLAGS) -c $<

which says to compile .c files to .o files using the compiler CC and options CFLAGS. We can
write our own suffix rules in this same style. The only thing to watch for is that make by default
has a limited set of file extentions that it knows about. Let’s write our Makefile using a suffix
rule:

#
Cray version
#
F90 = f90
F90FLAGS = -O3
LDFLAGS =

.f.o:
$(F90) $(F90FLAGS) -c $<

model: main.o init.o plot.o
$(F90) $(LDFLAGS) -o model main.o init.o plot.o

clean:
rm *.o core

G.1.3 Dependencies

There may be additional dependencies beyond the source->object ones. In our little example,
all our source files include a file called commons.h. If commons.h gets modified to add a new
variable, everything must be recompiled. Make won’t know that unless you tell it:

include dependencies
main.o: commons.h
init.o: commons.h
plot.o: commons.h

Fortran 90 introduces module dependencies as well. See §H for how we automatically generate this
dependency information.

The most common newbie mistake is to forget that the commands after a target have to start
with a tab.

G.2 gnu make

Over the years, the community has moved from the stance of writing portable Makefiles to a
stance of just using a powerful, portable make. The previous section described a portable subset
of make features. We now delve into some of the more powerful tools available in gnu make.

141

G.2.1 Make rules

The core of make hasn’t changed in decades, but concentrating on gmake allows one to make use
of its nifty little extras designed by real programmers to help with real projects. The first change
that matters to my Makefiles is the change from suffix rules to pattern rules. I’ve always found
the .SUFFIXES list to be odd, especially since .f90 is not in the default list. Good riddance to
all of that! For a concrete example, the old way to provide a rule for going from file.f90 to file.o
is:

.SUFFIXES: .o .f90 .F .F90

.f90.o:
<TAB> $(FC) -c $(FFLAGS) $<

while the new way is:

%.o: %.f90
<TAB> $(FC) -c $(FFLAGS) $<

In fact, going to a uniform make means that we can figure out what symbols are defined and use
their standard values—in this case, $(FC) and $(FFLAGS) are the built-in default names for the
compiler and its options. If you have any questions about this, you can always run make with the
-p (or --print-data-base) option. This prints out all the rules make knows about, such as:

default
COMPILE.f = $(FC) $(FFLAGS) $(TARGET_ARCH) -c

Printing the rules database will show variables that make is picking up from the environment,
from the Makefile, and from its built-in rules—and which of these sources is providing each value.

G.2.2 Assignments

In the old days, I only used one kind of assignment: = (equals sign). Gmake has several kinds of
assignment (other makes might as well, but I no longer have to know or care). An example of the
power of gnu make is shown by an example from my Cray X1 Makefile. There is a routine which
runs much more quickly if a short function in another file is inlined. The way to accomplish this is
through the -O inlinefrom=file directive to the compiler. I can’t add this option to FFLAGS,
since the inlined routine won’t compile with this directive—there is only the one file that needs it.
I had:

FFLAGS = -O 3,aggress -e I -e m
FFLAGS2 = -O 3,aggress -O inlinefrom=lmd_wscale.f90 -e I -e m

lmd_skpp.o:
<TAB> $(FC) -c $(FFLAGS2) $*.f90

The first change I can make to this using other assignments is:

FFLAGS := -O 3,aggress -e I -e m
FFLAGS2 := $(FFLAGS) -O inlinefrom=lmd_wscale.f90

The := assignment means to evaluate the right hand side immediately. In this case, there is no
reason not to, as long as the second assigment follows the first one (since it’s using the value of
$(FFLAGS)). For the plain equals, make doesn’t evaluate the right-hand side until its second
pass through the Makefile. However, gnu make supports an assignment which avoids the need
for FFLAGS2 entirely:

142

lmd_skpp.o: FFLAGS += -O inlinefrom=lmd_wscale.f90

What this means is that for the target lmd_skpp.o only, append the inlining directive to FFLAGS.
I think this is pretty cool!

One last kind of assignment is to set the value only if there is no value from somewhere else
(the environment, for instance):

FC ?= mpxlf90_r

If we used := or =, we would override the value from the environment.

G.2.3 Include and a Few Functions

One reasonably portable make feature is the include directive. It can be used to clean up the
Makefile by putting bits in an include file. The syntax is simply:

include file

and we use it liberally to keep the project information neat. We can also include a file with the
system/compiler information in it, assuming we have some way of deciding which file to include.
We can use uname -s to find out which operating system we’re using. We also need to know which
compiler we’re using.

One user-defined variable is called FORT, the name of the Fortran compiler. This value is
combined with the result of “uname -s” to provide a machine and compiler combination. For
instance, ftn on Linux is the Cray cross-compiler. This would link to a different copy of the
NetCDF library and use different compiler flags than the Intel compiler which might be on the
same system.

The user sets FORT:
FORT ?= ftn
OS := $(shell uname -s | sed ’s/[\/]/-/g’)

include $(COMPILERS)/$(OS)-$(strip $(FORT)).mk

We pick one include file at compile time, here picking Linux-ftn.mk, containing the Cray cross-
compiler information. The value Linux comes from the uname command, the ftn comes from the
user, and the two are concatenated. The sed command will turn the slash in UNICOS/mp into
a dash; the native Cray include file is UNICOS-mp-ftn.mk. Strip is a built-in function to strip
away any extra white space.

Another tricky system is CYGWIN, which puts a version number in the uname output, such
as CYGWIN_NT-5.1. Gnu make has quite a few built-in functions, one of which allows us to
do string substitution:

OS := $(patsubst CYGWIN_%,CYGWIN,$(OS))

In make, the % symbol is a sort of wild card, much like * in the shell. Here, we match CYGWIN
followed by an underscore and anything else, replacing the whole with simply CYGWIN. Another
example of a built-in function is the substitution we do in:

objects = $(subst .F,.o,$(sources))

where we build our list of objects from the list of sources. There are quite a few other functions,
plus the user can define their own. From Mechlenburg [2005]:

143

GNU make supports both built-in and user-defined functions. A function invocation
looks much like a variable reference, but includes one or more parameters separated
by commas. Most built-in functions expand to some value that is then assigned to a
variable or passed to a subshell. A user-defined function is stored in a variable or macro
and expects one or more parameters to be passed by the caller.

We will show some user-defined functions in §G.3.3.

G.2.4 Conditionals

We used to have way too many Makefiles, a separate one for each of the serial/MPI/OpenMP
versions on each system (if supported). For instance, the name of the IBM compiler changes when
using MPI; the options change for OpenMP. The compiler options also change when using 64-bit
addressing or for debugging. A better way to organize this is to have the user select 64-bit or not,
MPI or not, etc., then use conditionals. The complete list of user definable make variables is given
in §2.4.1.

Gnu make supports two kinds of if test, ifdef and ifeq (plus the negative versions ifndef, ifneq).
The example from the book is:

ifdef COMSPEC
We are running Windows

else
We are not on Windows

endif

An example from the IBM include file is:

ifdef USE_DEBUG
FFLAGS += -g -qfullpath

else
FFLAGS += -O3 -qstrict

endif

To test for equality, an example is:

ifeq ($(USE_MPI),on)
Do MPI things

endif

or

ifeq "$(USE_MPI)" "on"
Do MPI things

endif

The user has to set values for the USE_MPI, USE_DEBUG, and USE_LARGE switches in
the Makefile or the build script before the compiler-dependent piece is included:

USE_MPI ?= on
USE_DEBUG ?=
USE_LARGE ?=

The Makefile uses the conditional assign “?=” in case a build script is used to set them in the
environment. Be sure to leave the switches meant to be off set to an empty string—the string “off”
will test true on an ifdef test.

144

G.3 Multiple Source Directories the ROMS Way

There’s more than one way to divide your sources into separate directories. The choices we have
made include nonrecursivemake and putting the temporary files in their own $(SCRATCH_DIR)
directory. These include the .f90 files which have been through the C preprocessor, object files,
module files, and libraries.

G.3.1 Directory Structure

The directory structure of the source code has the top directory, a Master directory, a ROMS
directory with a number of subdirectories, and several other directories. Master contains the main
program while the rest contain sources for libraries and other files. Note that the bulk of the source
code gets compiled into files that become libraries with the ar command, one library per directory.
There is also a Compilers directory for the system- and compiler-specific Makefile components.

G.3.2 Conditionally Including Components

The makefile will build the lists of libraries to create and source files to compile. They start out
empty at the top of the makefile:

sources :=
libraries :=

That’s simple enough, but the list of directories to search for these sources will depend on the options
chosen by the user, not just in the make options (§2.4.1), but inside the ROMS_HEADER file
as well. How does this happen? Once make knows how to find the ROMS_HEADER, it is
used by cpp to generate an include file telling make about these other options.

MAKE_MACROS := Compilers/make_macros.mk
MACROS := $(shell cpp -P $(ROMS_CPPFLAGS) Compilers/make_macros.h > \

$(MAKE_MACROS); $(CLEAN) $(MAKE_MACROS))

The make_macros.h file contains blocks such as:

#ifdef SWAN_COUPLING
USE_SWAN := on

#else
USE_SWAN :=

#endif

The resulting make_macros.mk file will simply end up with either

USE_SWAN := on

or

USE_SWAN :=

This file can then be included by themakefile and the variableUSE_SWAN will have the correct
state for this particular compilation. We can now use it and all the similar flags to build a list of
directories.

We initialize two lists:

modules :=
includes := ROMS/Include

145

Add the adjoint bits:

ifdef USE_ADJOINT
modules += ROMS/Adjoint

endif
ifdef USE_ADJOINT
includes += ROMS/Adjoint

endif

Add the bits we’ll always need:

modules += ROMS/Nonlinear \
ROMS/Functionals \
ROMS/Utility \
ROMS/Modules

includes += ROMS/Nonlinear \
ROMS/Utility \
ROMS/Drivers

Then we add in some more:

ifdef USE_SWAN
modules += Waves/SWAN/Src
includes += Waves/SWAN/Src

endif

modules += Master
includes += Master Compilers

Now that our lists are complete, let’s put them to use:

vpath %.F $(modules)
vpath %.h $(includes)
vpath %.f90 $(SCRATCH_DIR)
vpath %.o $(SCRATCH_DIR)

include $(addsuffix /Module.mk,$(modules))

CPPFLAGS += $(patsubst %,-I%,$(includes))

1. vpath is a standard make feature for providing a list of directories for make to search for
files of different types. Here we are saying that *.F files can be found in the directories
provided in the $(modules) list, and so on for the others.

2. For each directory in the $(modules) list, make will include the file Module.mk that is
found there. More on these later.

3. For each directory in the $(includes) list, add that directory to the list searched by cpp
with the −I flag.

G.3.3 User-defined make Functions

The Module.mk fragments mentioned before call some user-defined functions. It’s time to show
these functions and talk about how they work. They get defined in the top Makefile:

146

#--
Make functions for putting the temporary files in $(SCRATCH_DIR)
#--

$(call source-dir-to-binary-dir, directory-list)
source-dir-to-binary-dir = $(addprefix $(SCRATCH_DIR)/, $(notdir $1))

$(call source-to-object, source-file-list)
source-to-object = $(call source-dir-to-binary-dir, \

$(subst .F,.o,$(filter %.F,$1)))

$(call f90-source, source-file-list)
f90-source = $(call source-dir-to-binary-dir, \

$(subst .F,.f90,$1))

$(call make-library, library-name, source-file-list)
define make-library

libraries += $(SCRATCH_DIR)/$1
sources += $2

$(SCRATCH_DIR)/$1: $(call source-dir-to-binary-dir, \
$(subst .F,.o,$2))

$(AR) $(ARFLAGS) $$@ $$^
$(RANLIB) $$@

endef

$(call one-compile-rule, binary-file, f90-file, source-files)
define one-compile-rule

$1: $2 $3
cd $$(SCRATCH_DIR); $$(FC) -c $$(FFLAGS) $(notdir $2)

$2: $3
$$(CPP) $$(CPPFLAGS) $$(MY_CPP_FLAGS) $$< > $$@
$$(CLEAN) $$@

endef

$(compile-rules)
define compile-rules

$(foreach f, $(local_src), \
$(call one-compile-rule,$(call source-to-object,$f), \
$(call f90-source,$f),$f))

endef

1. We define a function to convert the path from the source directory to the Build directory,
called source-dir-to-binary-dir. Note that theBuild directory is called $(SCRATCH_DIR)
here. All it does is strip off the leading directory with the the built-in function notdir, then
paste on the Build directory.

2. Next comes source-to-object, which calls the function above to return the object filename
when given the source filename. It assumes that all sources have a .F extension.

147

3. A similar function is f90-source, which returns the name of the intermediate source which
is created by cpp from our .F file.

4. The Module.mk fragment in each library source directory invokes make-library, which
takes the library name and the list of sources as its arguments. The function adds its library
to the global list of libraries and provides rules for building itself. The double dollar signs
are to delay the variable substitution. Note that we call source-dir-to-binary-dir instead
of source-to-object—this is a work-around for a make bug.

5. The next, one-compile-rule, takes three arguments: the .o filename, the .f90 filename, and
the .F filename. From these, it produces the make rules for running cpp and the compiler.
A note on directories: make uses vpath to find the source file where it resides. It would be
possible to compile from the top directory and put the .o file in Build with the appropriate
arguments, but I don’t know how to get the .mod file into Build short of a mv command.
Likewise, if we compile in the top directory, we need to know the compiler option to tell it
to look in Build for the .mod files it uses. Doing a cd to Build before compiling is just
simpler.

6. The last, compile-rules, is given a list of sources, then calls one-compile-rule once per
source file.

Again, you can invoke make -p to see how make internally transforms all this into actual
targets and rules.

G.3.4 Library Module.mk

In each library directory, there is a file called Module.mk which gets included by the top level
makefile. These Module.mk bits build onto the list of sources and libraries to be compiled and
built, respectively. These Module.mk files look something like:

local_sub := ROMS/Nonlinear
local_lib := libNLM.a

local_src := $(wildcard $(local_sub)/*.F)

$(eval $(call make-library,$(local_lib),$(local_src)))

$(eval $(compile-rules))

First, we provide the name of the current directory and the library to be built from the resident
sources. Next, we use the wildcard function to search the subdirectory for these sources. Note
that every .F file found will be compiled. If you have half-baked files that you don’t want used,
make sure they have a different extension.

Each subdirectory is resetting the local_src variable. That’s OK because we’re saving the
values in the global sources variable inside the make-library function, which also adds the local
library to the libraries list. The compile-rules function uses this local_src variable to generate
the rules for compiling each file, placing the resulting files in the Build directory.

G.3.5 Main Program

The main program is in a directory called Master and its Module.mk is similar to the library
one:

148

local_sub := Master
local_src := $(wildcard $(local_sub)/*.F)

local_objs := $(subst .F,.o,$(local_src))
local_objs := $(addprefix $(SCRATCH_DIR)/, $(notdir $(local_objs)))

sources += $(local_src)

ifdef LD_WINDOWS
$(BIN): $(libraries) $(local_objs)

$(LD) $(FFLAGS) $(local_objs) -o $@ $(libraries) $(LIBS_WIN32) $(LDFLAGS)
else
$(BIN): $(libraries) $(local_objs)

$(LD) $(FFLAGS) $(LDFLAGS) $(local_objs) -o $@ $(libraries) $(LIBS)
endif

$(eval $(compile-rules))

Instead of a rule for building a library, we have a rule for building a binary $(BIN). In this case,
the name of the ROMS binary is defined elsewhere. The binary depends on the libraries getting
compiled first, as well as the local sources. During the link, the $(libraries) are compiled from the
sources in the other directories, while $(LIBS) are exteral libraries such as NetCDF.

G.3.6 Top Level Makefile

Now we get to the glue that holds it all together. We’ve covered many things so far, but there’s
still a few bits which might be confusing:

1. There can be rare cases where you might have special code for some systems. You can check
which system you are on in the .F file with:

#ifdef X86_64
! special stuff
#endif

To be sure this is defined on each X86_64 system, it has to be passed to cpp:

CPPFLAGS += -D$(shell echo ${OS} | tr "-" "_" | tr [a-z] [A-Z])
CPPFLAGS += -D$(shell echo ${CPU} | tr "-" "_" | tr [a-z] [A-Z])
CPPFLAGS += -D$(shell echo ${FORT} | tr "-" "_" | tr [a-z] [A-Z])

CPPFLAGS += -D’ROOT_DIR="$(ROOTDIR)"’
ifdef ROMS_APPLICATION

CPPFLAGS += $(ROMS_CPPFLAGS)
CPPFLAGS += -DNestedGrids=$(NestedGrids)
MDEPFLAGS += -DROMS_HEADER="$(HEADER)"

endif

This guarantees that CPPFLAGS will have terms in it such as:

-DLINUX -DX86_64 -DPGI
-D’ROOT_DIR="/export/staffdata/kate/roms/trunk"’ -DSHOREFACE
-D’HEADER="shoreface.h"’ -D’ROMS_HEADER="shoreface.h"’
-DNestedGrids=1

149

2. For mod_strings.F, there is a special case:

$(SCRATCH_DIR)/mod_strings.f90: CPPFLAGS += -DMY_OS=’"$(OS)"’ \
-DMY_CPU=’"$(CPU)"’ -DMY_FORT=’"$(FORT)"’ \
-DMY_FC=’"$(FC)"’ -DMY_FFLAGS=’"$(FFLAGS)"’

allowing ROMS to report in its output:

Operating system : Linux
CPU/hardware : x86_64
Compiler system : pgi
Compiler command : pgf90
Compiler flags : -O3 -tp k8-64 -Mfree

Local Root : /export/staffdata/kate/roms/trunk
Header Dir : ./ROMS/Include
Header file : shoreface.h

Though this doesn’t seem to work on the Mac.

3. The very first makefile I showed had a set list of files to remove on make clean. We now
build a list, called clean_list:

clean_list := core *.ipo $(SCRATCH_DIR)

ifeq "$(strip $(SCRATCH_DIR))" "."
clean_list := core *.o *.oo *.mod *.f90 lib*.a *.bak
clean_list += $(CURDIR)/*.ipo

endif

In other words, we want to clean up the Build directory unless it happens to be the top level
directory, in which case we only want to remove specific files there.

4. “all” is the first target that gets seen by make, making it the default target. In this case,
we know there is only the one binary, whose name we know—Mechlenburg [2005] shows what
to do with more than one binary. Both “all” and “clean” are phony targets in that no files
of those names get generated—make has the .PHONY designation for such targets. Also,
the clean target doesn’t require any compiler information, so the compiler include doesn’t
happen if the target is “clean”:

ifneq "$(MAKECMDGOALS)" "clean"
include $(COMPILERS)/$(OS)-$(strip $(FORT)).mk

endif

$(MAKECMDGOALS) is a special variable containing the current make target.

5. We’ll be creating different executable names, depending on which options we’ve picked:

BIN := $(BINDIR)/oceanS
ifdef USE_DEBUG

BIN := $(BINDIR)/oceanG
else

150

ifdef USE_MPI
BIN := $(BINDIR)/oceanM

endif
ifdef USE_OpenMP

BIN := $(BINDIR)/oceanO
endif

endif

6. The NetCDF library gets included during the final link stage. However, we are now using
the Fortran 90 version of it which requires its module information as well. We just copy the
.mod files into the Build directory:

NETCDF_MODFILE := netcdf.mod
TYPESIZES_MODFILE := typesizes.mod

$(SCRATCH_DIR)/$(NETCDF_MODFILE): | $(SCRATCH_DIR)
cp -f $(NETCDF_INCDIR)/$(NETCDF_MODFILE) $(SCRATCH_DIR)

$(SCRATCH_DIR)/$(TYPESIZES_MODFILE): | $(SCRATCH_DIR)
cp -f $(NETCDF_INCDIR)/$(TYPESIZES_MODFILE) $(SCRATCH_DIR)

Old versions of NetCDF do not have the typesizes.mod file, in which case it has to be
removed from the following dependency list:

$(SCRATCH_DIR)/MakeDepend: makefile \
$(SCRATCH_DIR)/$(NETCDF_MODFILE) \
$(SCRATCH_DIR)/$(TYPESIZES_MODFILE) \
| $(SCRATCH_DIR)

7. Then there is MakeDepend itself. This file is created by the Perl script sfmakedepend.
MakeDepend gets created by “make depend” and included onmake’s second pass through
the makefile:

depend: $(SCRATCH_DIR)
$(SFMAKEDEPEND) $(MDEPFLAGS) $(sources) > $(SCRATCH_DIR)/MakeDepend

ifneq "$(MAKECMDGOALS)" "clean"
-include $(SCRATCH_DIR)/MakeDepend

endif

The dash before the include tells make to ignore errors so that make depend will succeed
before the file exists. The MakeDepend file will contain the include and module dependen-
cies for each source file, such as:

Build/mod_diags.o: tile.h cppdefs.h globaldefs.h shoreface.h
Build/mod_diags.f90: tile.h cppdefs.h globaldefs.h shoreface.h
Build/mod_diags.o: Build/mod_kinds.o Build/mod_param.o Build/mod_diags.f90

Note that the .h files are included by cpp, so that both the .f90 and .o files become out of
date when an include file is modified. Without the module dependencies, make would try to
build the sources in the wrong order and the compiler would fail with a complaint about not
finding mod_param.mod, for instance.

151

G.4 Final warnings

The cost of this nifty make stuff is:

1. We’re a little closer to the gnu make bugs here, and we need a newer version of gnu make
than before (version 3.81, 3.80 if you’re lucky). Hence this stuff at the top of the makefile:

NEED_VERSION := 3.80 3.81 3.82
$(if $(filter $(MAKE_VERSION),$(NEED_VERSION)),, \
$(error This makefile requires one of GNU make version $(NEED_VERSION).))

2. The Makefile dependencies get just a little trickier every change we make. Note that F90
has potentially both include and module use dependencies. The book example uses the C
compiler to produce its own dependencies for each source file into a corresponding .d file to
be included by make. Our Fortran compilers are not so smart. For these hairy compiles, it’s
critical to have accurate dependency information unless we’re willing tomake clean between
compiles.

152

H sfmakedepend
One Perl script I use with Fortran creates the dependency information, much like the X11 program
makedepend. I originally wrote fmakedepend which was used with traditional Fortran include
statements. I later wrote a variant of it for use with the C preprocessor, called sfmakedepend.
The latest version of sfmakedepend does the job of both programs and also searches for the
dependencies introduced by Fortran 90 modules. It is used by the Makefiles described in §G.

It recursively searches for Fortran style includes, for instance if file.f has the statement:

include ’commons.h’

the line

file.o: commons.h

will be added to the bottom of the Makefile. This tells make that file.o depends on commons.h
as well as file.f, and to recompile file.f whenever commons.h is modified. It likewise searches
source files for C style includes such as

#include "commons.h"

and adds the corresponding dependencies to the Makefile. It has several options, including -s,
required for Fortran compilers which will not invoke the C preprocessor for you. In this case the
above dependency line would become

file.o: commons.h
file.f: commons.h

letting make know that the C preprocessor must be rerun on file.F whenever commons.h is
updated.

When using the C preprocessor, you can ask it to search directories other than the current
directory. Likewise, sfmakedepend can be instructed to search other directories with -I dir
options. Note that it is legal to have more than one -I dir option as in:

sfmakedepend -I /usr/local/include -I /home/me/include *.F

Fortran 90 introduces some interesting dependencies. Two compilers I have access to (NAG f90
and IBM xlf) produce a private my_module.mod file if you define module My_Module in
file mod.f90. This file is used by the compiler when you use the module as a consistency check
(type-safe programming). If foo.f90 uses that module, you will need the following dependency
information:

foo.o: my_module.mod
my_module.mod: mod.o

This says that before compiling foo.f90 we need to have the file my_module.mod. This file in
turn depends on mod.o, so that mod.f90 must be compiled before foo.f90. The sgi is similar
except that it uses the file MY_MODULE.kmo to store the private module information. Use
sfmakedepend -g on the SGI.

Rather than creating extra module files, the Cray and Parasoft compilers store the module
information in the object file and then files which use the modules need to be compiled with extra
flags pointing to the module object files. For instance, if foo.f90 uses My_Module which was
defined inmod.f90, then you will need to compilemod.f90 first and provide the Cray compiler with
the extra option -p mod.o when compiling foo.f90. When using the Cray, use sfmakedepend -c
to get the dependency information:

153

foo.o: mod.o
$(FC) $(FFLAGS) -c -p mod.o foo.f90

$(FC) and $(FFLAGS) are assumed to be previously defined as the name of the compiler and
the compiler options, respectively.

Note: Gnu make is robust enough to handle these chained dependencies. Some hasn’t always
been true of other old (very old now) versions of make.

sfmakedepend assumes that all the files using and defining modules are in the same directory
and are all in the list of files to be searched. It seems that the industry has not settled on a practical
way to deal with a separate modules directory, anyway.

I sometimes include non-existent files as a compile time consistency check:

#ifndef PLOTS
#include "must_define_PLOTS" /* bogus include */
#endif

This program warns about include files it can’t find, but not if there is a “bogus” on the same line.
See the comments at the top of sfmakedepend for up-to-date information on the options.

Compiler vendors have managed to more nearly standardize the Fortran module business and just
about all work with these options to sfmakedepend:

--cpp --fext=f90 --file=- --objdir=$(SCRATCH_DIR)

154

I Subversion
The ROMS source code is distributed using Subversion (svn). There are svn clients available for
nearly every operating system and many resources available, including an O’Reilly book [Collins-
Sussman et al., 2008]. I’ll just cover a few basics here, taken in part from the ROMS wiki.

If you wish to maintain your own copy of ROMS in a source code repository, you may want
to investigate git, which has the ability to download from an svn server.I have rambled at length
about git on the ROMS wiki because I truly believe that svn is not the best tool for most ROMS
users (those who can’t check back in). My ramblings about the shortcomings of svn have driven
one ROMS user to adopt Mercurial instead, another valid option.

I.1 Overview

Subversion is a tool for managing software development that keeps track of who modified what and
allows the return to a previous version if changes don’t work as expected. All the ROMS/TOMS
files are stored in a svn repository on www.myroms.org with access controlled by requiring authen-
tication with the same ROMS Username/Password combination assigned to registered users of the
ROMS Forum.

This svn repository is the official version of the code which only the developers are allowed to
change. Users should download the ROMS code to their local machines using an svn client. Don’t
attempt to use a regular web browser to browse or download files from the svn repository - there
are much better tools for interacting with the code repository.

We strongly recommend that users always check out the current trunk version since this has
the most recent updates and bug fixes. The tags version is kept largely as an historical record of
stable releases at the conclusion of major code upgrades.

Below is a general description of how subversion works. Please look at the svn book [Collins-
Sussman et al., 2008] for more detailed information and the wiki for more on some available GUI
clients.

I.2 Checking out the code

WARNING: It is strongly suggested that you checkout the ROMS source code using the same
operating system you wish to compile and run ROMS on. If you download the code on a Windows
machine and wish to run it on a non-Windows machine you will need convert the line endings with
a utility like dos2unix or recode. Even with these utilities you may still have problems compiling
ROMS.

In order download source code from a Subversion repository, the svn client software must be
installed on your local machine. If you are compiling subversion on your own be sure to build
it with SSL support or you will not be able to download the ROMS source code. Most Linux
distributions come with subversion (the command name is svn), so shell commands may be used
without installing additional software. If your username on your local computer is not the same as
your ROMS username you will need to pass the –username <username> option to svn; an example
is given below. The general form of subversion commands is:

svn action from to {optional_qualifiers}

To check-out the files from the ROMS repository trunk:

svn checkout https://www.myroms.org/svn/src/trunk MyDir

where MyDir is the destination directory on your local computer. Note the https rather than http.
If your username on your local computer is not the same as your ROMS username you will need
to pass the –username option to svn:

155

http://subversion.tigris.org
https://www.myroms.org/wiki/index.php/Subversion
http://git-scm.com/
https://www.myroms.org/wiki/index.php/ROMS_git
http://mercurial.selenic.com/

svn checkout --username joe_roms https://www.myroms.org/svn/src/trunk MyDir

You only check out once, after that, a hidden directory called .svn exists to keep track of the source,
destination and a bunch of other information. Your username and password will also be saved.

I.3 Updates

Now and again, you might feel the urge to get up to speed with the latest changes that have been
made to the ROMS repository. When that happens, simply go to the directory that was “MyDir”
above and type:

svn update

Subversion will remember where you checked out from before and see if a newer revision exists. If
so, it will download and apply all the relevant changes.

I.4 Code changes

As you use ROMS, you may find yourself adding new files and new chunks of code to existing files.
Unless you are a developer with write access to the repository at www.myroms.org, you have no
easy way to save your changes within the svn framework, since any one directory can only point
to one repository. To keep getting updates from the trunk, you must keep using the svn server at
myroms.org. At the very least, saving a tarball before fetching major updates is a prudent step.

I.5 Conflicts

Sometimes when you make changes to your copy of the ROMS code, those changes will conflict
with changes made to the repository. This means that the changes from the server overlapped with
your own, and now you have to manually choose between them.

Whenever a conflict occurs, three things typically occur to assist you in resolving that conflict:

• Subversion halts during the update, offering you several choices, and remembers that the file
is in a state of conflict if you don’t clear it right then.

• If Subversion considers the file to be mergeable, it places conflict markers (special strings of
text which delimit the “sides” of the conflict, usually “<” and “>” characters) into the file
to visibly demonstrate the overlapping areas.

• For every conflicted file, Subversion places three extra unversioned (not under Subversion
control) files in your working copy:

filename.mine : This is your file as it existed in your working copy (local copy) before
you updated your working copy. This file has only your latest changes in it. (If
Subversion considers the file to be unmergeable, then the .mine file isn’t created,
since it would be identical to the working file.)

filename.rOLDREV : This is the file that was the BASE revision before you updated your
working copy. That is, the file that you checked out before you made your latest
edits.

filename.rNEWREV : This is the file that your Subversion client just received from the
server when you updated your working copy. This file corresponds to the HEAD
(latest) revision of the repository.

156

For example, let’s say you checked out revision 280 and made some changes to a file, for instance
User/Functionals/ana_hmixcoef.h. Now you want to update your ROMS source code to take
advantage of a new algorithm but when you run svn update your ana_hmixcoef.h is now in
conflict with the new version in the repository:

> svn update
U Version
U ROMS/Modules/mod_mixing.F
U ROMS/Functionals/ana_hmixcoef.h
C User/Functionals/ana_hmixcoef.h
Updated to revision 291.

>

The above is with an older version of svn. The latest, greatest does this:

Conflict discovered in ’ROMS/Utility/inp_par.F’.
Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(s) show all options:

Selecting (p) will behave as the old version.
If you get a conflict, you need to do one of three things:

• Merge the conflicted text “by hand” by examining and editing the conflict markers within
the file.

• Copy one of the temporary files on top of your working file.

• Run svn revert <filename> to throw away all of your local changes.

Once you’ve resolved the conflict, you need to let Subversion know by running “svn resolved”. This
removes the three temporary files and Subversion no longer considers the file to be in a state of
conflict. More on this below.

I.5.1 Merging conflicts by hand

To merge your changes with those from the latest revision in the repository, open ana_hmixcoef.h
in your favorite editor and look for a string of “<” characters. You should see something like this:

<<<<<<< .mine
#ifndef DISTRIBUTE
IF (Lanafile.and.(tile.eq.0)) THEN
#else
IF (Lanafile) THEN
#endif
=======
#ifdef DISTRIBUTE
IF (Lanafile) THEN
#else
IF (Lanafile.and.(tile.eq.0)) THEN
#endif
>>>>>>> .r291

157

After comparing the two code blocks (separated by the “=” symbols), you decide that you prefer
the logic from the repository so you remove the conflict markers and your code so the section now
looks like this:

#ifdef DISTRIBUTE
IF (Lanafile) THEN
#else
IF (Lanafile.and.(tile.eq.0)) THEN
#endif

Now you can save the file and let Subversion know that you have resolved the conflict:

> svn resolved User/Functionals/ana_hmixcoef.h
Resolved conflicted state of ’User/Functionals/ana_hmixcoef.h’

I.5.2 Copying a file onto your working file

If you get a conflict and decide that you want to throw out your changes, you can merely copy one
of the temporary files created by Subversion over the file in your working copy. Let’s say you want
to use the new revision from the repository:

> cd User/Functionals
> ls ana_hmixcoef.h*
ana_hmixcoef.h ana_hmixcoef.h.mine ana_hmixcoef.h.r280
ana_hmixcoef.h.r291

> cp ana_hmixcoef.h.r291 ana_hmixcoef.h
> svn resolved ana_hmixcoef.h
Resolved conflicted state of ’ana_hmixcoef.h’

I.5.3 Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and
start your edits again, just revert your changes:

> cd User/Functionals
> svn revert ana_hmixcoef.h
Reverted ’ana_hmixcoef.h’

Note that when you revert a conflicted file, you don’t have to run “svn resolved”.

158

References
J. S. Allen, P. A. Newberger, and J. Federiuk. Upwelling circulation on the oregon continental
shelf. part i: Response to idealized forcing. J. Phys. Oceanogr., 25:1843–1866, 1995.

A. Arakawa and V. R. Lamb. Methods of computational physics, volume 17, pages 174–265. Aca-
demic Press, 1977.

G. K. Batchelor. An introduction to fluid dynamics. Cambridge University Press, 1967.

A. Beckmann and D. B. Haidvogel. Numerical simulation of flow around a tall, isolated seamount.
part i: Problem formulation and model accuracy. J. Phys. Oceanogr., 23:1736–1753, 1993.

W.P. Budgell. Numerical simulation of ice-ocean variability in the barents sea region: Towards
dynamical downscaling. Ocean Dynamics, 2005. doi:10.1007/s10236-005-0008-3.

J. A. Carton, B. S. Giese, and S. A. Grodsky. Sea level rise and the warming of the oceans in the
soda ocean reanalysis. J. Geophys. Res., 110, 2005. doi:10.1029/2004JC002817.

D. C. Chapman. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean
model. J. Phys. Oceanogr., 15:1060–1075, 1985.

Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Subver-
sion. O’Reilly & Associates, Inc., Sebastopol, CA, second edition, 2008. http://svnbook.red-
bean.com/.

A. Dai, T. Qian, K. E. Trenberth, and J. D Milliman. Changes in continental freshwater discharge
from 1948–2004. J. CLimate, 22:2773–2791, 2009. doi:10.1175/2008JCLI2592.1.

E. E. Ebert and J. A. Curry. An intermediate one-dimensional thermodynamic sea ice model for
investigating ice-atmosphere interactions. J. Geophys. Res., 98:10085–10109, 1993.

C. W. Fairall, E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson. Bulk parameterization
of air-sea fluxes: Updates and verification for the coare algorithm. J. Climate, 16:571–591, 2003.

K. N. Fedorov. Layer thicknesses and effective diffusivities in the diffusive thermocline convection
in the ocean. In J. C. J. Nihoul and B. M. Jamart, editors, Small-scale turbulence and mixing
in the ocean, pages 471–479. Elsevier, New York, 1988.

K. Fennel, J. Wilkin, J. Levin, J. Moisan, J. O’Reilly, and D. Haidvogel. Nitrogen cycling in
the mid atlantic bight and implications for the north atlantic nitrogen budget: Results from a
three-dimensional model. Global Biogeochem. Cycles, 20, 2006. doi:10.1029/2005GB002456.

R. A. Flather. A tidal model of the northwest european continental shelf. Memoires de la Société
Royale de Sciences de Liège, 6:141–164, 1976.

M. G. G. Foreman. Manual for tidal heights analysis and prediction. Technical Report 77-10,
Institute of Ocean Sciences, Patricia Bay, 1996a. Pacific Marine Science Report.

M. G. G. Foreman. Manual for tidal currents analysis and prediction. Technical Report 77-10,
Institute of Ocean Sciences, Patricia Bay, 1996b. Pacific Marine Science Report.

P. J. S. Franks, J. S. Wroblewski, and G. R. Flierl. Behavior of a simple plankton model with
food-level acclimation by herbivores. Mar. Biol., 91:121–129, 1986.

N. G. Freeman, A. M. Hale, and M. B. Danard. A modified sigma equations’ approach to the
numerical modeling of great lake hydrodynamics. J. Geophys. Res., 77(6):1050–1060, 1972.

159

http://dx.doi.org/10.1007/s10236-005-0008-3
http://dx.doi.org/10.1029/2004JC002817
http://dx.doi.org/10.1175/2008JCLI2592.1
http://dx.doi.org/10.1029/2005GB002456

B. Galperin, L. H. Kantha, S. Hassid, and A. Rosati. A quasi-equilibrium turbulent energy model
for geophysical flows. J. Atmos. Sci., 45:55–62, 1988.

S.M. Griffies and R.W. Hallberg. Biharmonic friction with a smagorinsky-like viscosity for use in
large-scale eddy-permitting ocean models. Mon. Wea. Rev., 128:2935–2946, 2000.

S.M. Griffies, A. Gnanadesikan, R.C. Pacanowski, V. Larichev, J.K. Dukowicz, and R.D. Smith.
Isoneutral diffusion in a z-coordinate ocean model. J. Phys. Oceanogr., 28:805–830, 1998.

D. B. Haidvogel and A. Beckmann. Numerical Ocean Circulation Modeling. Imperial College Press,
1999.

D. B. Haidvogel, H. G. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. F.
Shchepetkin. Model evaluation experiments in the north atlantic basin: Simulations in nonlinear
terrain-following coordinates. Dyn. Atmos. Ocean., 32:239–281, 2000.

D. B. Haidvogel, H. G. Arango, W. P. Budgell, B. D. Cornuelle, E. Curchitser, E. Di Lorenzo,
K. Fennel, W. R. Geyer, A. J. Hermann, L. Lanerolle, J. Levin, J. C. McWilliams, A. J.
Miller, A. M. Moore, T. M. Powell, A. F. Shchepetkin, C. R. Sherwood, R. P. Signell, J. C.
Warner, and J. Wilkin. Ocean forecasting in terrain-following coordinates: formulation and
skill assessment of the regional ocean modeling system. J. Comp. Phys., 227:3429–3430, 2007.
doi:10.1016/j.jcp.2007.01.016.

W. P. Hazard. Using cpp to aid portability. Computer Language, 8(11):49–54, 1991.

K. S. Hedstrom. Technical manual for a coupled sea-ice/ocean circulation model (version 2). Tech-
nical report, Institute of Marine and Coastal Sciences, New Brunswick, NJ, June 2000. OCS
Study MMS 2000-047.

W. D. Hibler, III. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9:815–846, 1979.

S. Hinckley, K. O. Coyle, G. Gibson, A. J. Hermann, and E. L. Dobbins. A biophysical npz model
with iron for the gulf of alaska: Reproducing the differences between an oceanic hnlc ecosystem
and a classical northern temperate shelf ecosystem. Deep Sea Res. II, 2009. in press.

W. R. Holland, J. C. Chow, and F. O. Bryan. Application of a third-order upwind scheme in the
ncar ocean model. J. Climate, 11:1487–1493, 1998.

E. C. Hunke. Viscous-plastic sea ice dynamics with the evp model: linearization issues. J. Comp.
Phys., 170:18–38, 2001.

E. C. Hunke and J. K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J. Phys.
Oceanogr., 27:1849–1868, 1997.

D. R. Jackett and T. J. McDougall. Stabilization of hydrographic data. J. Atmos. Ocean. Tech.,
12:381–389, 1995.

Y. Kanarska, A. F. Shchepetkin, and J. C. McWilliams. Algorithm for non-hydrostatic dynamics
in roms. Ocean Modeling, 18:143–174, 2007.

R. F. Keeling, B. B. Stephens, R. G. Najjar, S. C. Doney, D. Archer, and M. Heimann. Seasonal
variations in the atmospherice o2/n2 ratio in relation to kinetics of air-sea gas exchange. Global
Biogeochem. Cycles, 12:141–163, 1998.

B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, Englewood
Cliffs, New Jersey 07632, second edition, 1988.

160

http://dx.doi.org/10.1016/j.jcp.2007.01.016

M. J. Kishi, M. Kashiwai, D. M. Ware, B. A. Megrey, D. L. Eslinger, F. E. Werner, M. Noguchi-Aita,
T. Azumaya, M. Fujii, S. Hashimoto, D. Huang, H. Iizumi, Y. Ishida, S. Kang, G. A. Kantakov,
H.-C. Kim, K. Komatsu, V. V. Navrotsky, S. Lan Smith, K. Tadokoro, A. Tsuda, O. Yamamura,
Y. Yamanaka, K. Yokouchi, N. Yoshie, J. Zhang, Y. I. Zuenko, and V. I. Zvalinsky. Nemuro—a
lower trophic level model for the north pacific marine ecosystem. Ecological Modelling, 2002:
12–25, 2007.

H. Lamb. Hydrodynamcis. Cambridge University Press, 6 edition, 1932. (1945 Dover Publications
reproduction).

W. G. Large. Modeling and parameterization ocean planetary boundary layers. In E. P. Chassignet
and J. Verron, editors, Ocean Modeling and Parameterization, pages 81–120. Kluwer Academic
Publishers, 1998.

W. G. Large and S. G. Yeager. The global climatology of an interannually varying air-sea flux data
set. Clim. Dyn., 33:341–364, 2009. DOI 10.1007/s00382-008-0441-3.

W. G. Large, J. C. McWilliams, and S. C. Doney. Oceanic vertical mixing: a review and a model
with a nonlocal boundary layer parameterization. Rev. Geophys., 32:363–403, 1994.

J. R. Ledwell, A. J. Wilson, and C. S. Low. Evidence for slow mixing across the pycnocline from
an open-ocean tracer-release experiment. Nature, 364:701–703, 1993.

J.-F. Lemieux, B. Tremblay, F. Dupont, M. Plante, G. C. Smith, and D. Dumont. A basal stress
parameterization for modeling landfast ice. J. Geophys. Res., 2015. accepted.

B. P. Leonard. A stable and accurate convective modelling procedure based on quadratic upstream
interpolation. Comput. Method Appl. Mech. Eng., 19:59–98, 1979.

S.-J. Lin. A finite volume integration method for computing pressure gradient force in general
vertical coordinates. Quart. J. R. Met. Soc., 123:1749–1762, 1997.

A. Macks and J. Middleton. Numerical modelling of wind-driven upwelling and downwelling. Uni-
versity of New South Wales, 1993.

J. Mailhôt and R. Benoit. A finite-element model of the atmospheric boundary layer suitable for
use with numerical weather prediction models. J. Atmos. Sci., 39:2249–2266, 1982.

P. Marchesiello, J. C. McWilliams, and A. Shchepetkin. Open boundary conditions for long-term
integration of regional oceanic models. Ocean Modelling, 3:1–20, 2001.

L. Margolin and P. K. Smolarkievicz. Antidiffusive velocities for multipass donor cell advection.
SIAM J. Sci. Comput., pages 907–929, 1998.

E. Mason, J. Molemaker, A. F. Shcheptkin, F. Colas, J. C. McWilliams, and P. Sangrà. Procedures
for offline grid nesting in regional ocean models. Ocean Modelling, 35:1–15, 2010.

G. A. Maykut and N. Untersteiner. Some results from a time-dependent thermodynamic model of
sea ice. J. Geophys. Res., 76:1550–1575, 1971.

John D. McCalpin. A comparison of second-order and fourth-order pressure gradient algorithms in
a σ-coordinate ocean model. Int. J. Num. Meth. Fluids, 18:361–383, 1994.

R. Mechlenburg. Managing Projects with GNU Make. O’Reilly & Associates, Inc., Sebastopol, CA,
2005.

161

G. L. Mellor. The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33:
1978–1989, 2003.

G. L. Mellor. Some consequences of the three-dimensional currents and surface wave equation. J.
Phys. Oceanogr., 35:2291–2298, 2005.

G. L. Mellor. The depth-dependent current and wave interaction equations: a revision. J. Phys.
Oceanogr., 38:2586–2596, 2008.

G. L. Mellor and L. Kantha. An ice-ocean coupled model. J. Geophys. Res., 94:10,937–10,954,
1989.

G. L. Mellor and T. Yamada. A hierarchy of turbulence closure models for planetary boundary
layers. J. Atmos. Sci., 31:1791–1806, 1974.

G. L. Mellor and T. Yamada. Development of a turbulence closure model for geophysical fluid
problems. Rev. Geophys. Space Phys., 20:851–875, 1982.

W. A. Oost, G. J. Komen, C. M. J. Jacobs, and C. van Oort. New evidence for a relation between
wind stress and wave age from measurements during asgamage. Bound.-Layer Meteor., 103:
409–438, 2002.

I. Orlanski. A simple boundary condition for unbounded hyperbolic flows. J. Comp. Phys., 21(3):
251–269, July 1976.

J. E. Overland and C. H. Pease. Modeling ice dynamics of coastal seas. J. Geophys. Res., 93:
15,619–15,637, 1988.

C. L. Parkinson and W. M. Washington. A large-scale numerical model of sea ice. J. Geophys.
Res., 84:6565–6575, 1979.

P. Penven, L. Debreu, P. Marchesiello, and J. C. McWilliams. Evaluation and application of the
roms 1-way embedding procedure to the central california upwelling system. Ocean Modeling,
12:157–187, 2006.

H. Peters, M. C. Gregg, and J. M. Toole. On the parameterization of equatorial turbulence. J.
Geophys. Res., 93:1199–1218, 1988.

N. A. Phillips. A coordinate system having some special advantages for numerical forecasting. J.
Meteorology, 14(2):184–185, 1957.

T. M. Powell, C. V. W. Lewis, E. N. Curchitser, D. B. Haidvogel, A. J. Hermann, and E. L.
Dobbins. Results from a three-dimensional, nested biological-physical model of the california
current system and comparisons with statistics from satellite imagery. J. Geophys. Res., 111
(C07018), 2006. doi:10.1029/2004JC002506.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes, The Art
of Scientific Computing. Cambridge University Press, 1986.

P. J. Rasch. Conservative shape-preserving two-dimensional transport on a spherical reduced grid.
Mon. Wea. Rev., 122:1337–1350, 1994.

W. H. Raymond and H. L. Kuo. A radiation boundary condition for multi-dimensional flows.
Quart. J. R. Met. Soc., 110:535–551, 1984.

R. Rew, G. Davis, S. Emmerson, and H. Davies. NetCDF User’s Guide. Unidata, University
Corporation for Atmospheric Research, Boulder, Colorado, 1996. Version 2.4.

162

http://dx.doi.org/10.1029/2004JC002506

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich,
S. D. Schubert, L. Takacs, G.-K. Kim, S. Bloom, J. Chen, D. Collins, A. Conaty, and A. da Silva.
Merra: Nasa’s modern-era retrospective analysis for research and applications. J. Climate, 24:
3624–3648, 2011. doi:10.1175/JCLI-D-11-00015.1.

R. Sadourny and K. Maynard. Formulations of lateral diffusion in geophysical fluid dynamics
models. In C.A. Lin, R. Laprise, and H. Ritchie, editors, Numerical Methods of Atmospheric and
Oceanic Modelling, pages 547–556. NRC Research Press, 1997.

A. J. Semtner, Jr. A model for the thermodynamic growth of sea ice in numerical investigations of
climate. J. Phys. Oceanogr., 6:379–389, 1976.

A. F. Shchepetkin and J. C. McWilliams. Quasi-monotone advection schemes based on explicit
locally adaptive dissipation. Mon. Wea. Rev., 126:1541–1580, 1998.

A. F. Shchepetkin and J. C. McWilliams. A method for computing horizontal pressure-gradient
force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108:1–34,
2003. doi:10.1029/2001JC001047.

A. F. Shchepetkin and J. C. McWilliams. The regional ocean modeling system (roms): A split-
explicit, free-surface, topography-following coordinates oceanic model. Ocean Modeling, 9:347–
404, 2005.

A. F. Shchepetkin and J. C. McWilliams. A correction note for “ocean forecasting in terrain-
following coordinates: formulation and skill assessment of the regional ocean modeling system”.
J. Comp. Phys., 228:8985–9000, 2009a.

A. F. Shchepetkin and J. C. McWilliams. Computational kernel algorithms for fine-scale, multi-
process, long-time oceanic simulations. In R. Temam and J. Tribbia, editors, Handbook of Nu-
merical Analysis: Computational Methods for the Ocean and the Atmosphere, volume 14, pages
121–183. Elsevier Science, 2009b. published.

A. F. Shchepetkin and J. C. McWilliams. An accurate boussinesq oceanic model with a practical,
“stiffened” equation of state. Ocean Modeling, 38:41–70, 2011.

J. Smagorinsky. General circulation experiments with the primitive equations. i. the basic experi-
ment. Mon. Wea. Rev., 91:99–164, 1963.

P. K. Smolarkiewicz and W. W. Grabowski. The multidimensional positive definite advection
transport algorithm: non-oscillatory option. J. Comp. Phys., 86:355–375, 1990.

Y. Song. A general pressure gradient formulation for ocean models. part i: Scheme design and
diagnostic analysis. Mon. Wea. Rev., 126:3213–3230, 1998.

M. Steele, G. L. Mellor, and M. G. McPhee. Role of the molecular sublayer in the melting or
freezing of sea ice. J. Phys. Oceanogr., 19:139–147, 1989.

P. K. Taylor and M. A. Yelland. The dependence of sea surface roughness on the height and
steepness of the waves. J. Phys. Oceanogr., 31:572–590, 2001.

J. Thuburn. Multidimensional flux-limited advection schemes. J. Comp. Phys., 123:74–83, 1996.

I. B. Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface
evaporation. Boundary-Layer Meteor., 37:129–148, 1986.

L. Umlauf and H. Burchard. A generic length-scale equation for geophysical turbulence models. J.
Marine Res., 61:235–265, 2003.

163

http://dx.doi.org/10.1175/JCLI-D-11-00015.1
http://dx.doi.org/10.1029/2001JC001047

R. C. Wajsowicz. A consistent formulation of the anisotropic stress tensor for use in models of the
large-scale ocean circulation. J. Comp. Phys., 105:333–338, 1993.

J. C. Warner, C. R. Sherwood, H. G. Arango, and R. P. Signell. Performance of four turbulence
closure models implemented using a generic length scale method. Ocean Modelling, 8:81–113,
2005.

J. C. Warner, C. R. Sherwood, R. P. Signell, C. K. Harris, and H. G. Arango. Development of a
three-dimensional, regional, coupled wave, current, and sediment-transport model. Computers
& Geosciences, 34:1284–1306, 2008.

D. J. Webb, B. A. De Cuevas, and C. S. Richmond. Improved advection schemes for ocean models.
J. Atmos. Ocean. Tech., 15:1171–1187, 1998.

Jonathan Whitefield, Peter Winsor, James W. McClelland, and Dimitris Menemenlis. A new river
discharge and river temperature climatology data set for the pan-arctic region. Ocean Modelling,
2015. doi:10.1016/j.ocemod.2014.12.012.

J. Wilkin and K. Hedstrom. User’s manual for an orthogonal curvilinear grid-generation package.
Institute for Naval Oceanography, 1991.

P. Xiu and F. Chai. Spatial and temporal variability in phytoplankton carbon, chlorophyll, and
nitrogen in the north pacific. J. Geophys. Res., 117, 2012. doi:10.1029/2012JC008067.

P. Xiu and F. Chai. Connections between physical, optical and biogeochemical processes in the
pacific ocean. Prog. in Oceanogr., 122:30–53, 2014. doi:10.1016/j.pocean.2013.11.008.

A. M. Yaglom and B. A. Kader. Heat and mass transfer between a rough wall and turbulent fluid
at high reynolds and peclet numbers. J. Fluid. Mech., 62:601–623, 1974.

164

http://dx.doi.org/10.1016/j.ocemod.2014.12.012
http://dx.doi.org/10.1029/2012JC008067
http://dx.doi.org/10.1016/j.pocean.2013.11.008

www.boem.gov

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has
responsibility for most of our nationally owned public lands and natural resources. This
includes fostering the sound use of our land and water resources, protecting our fish,
wildlife and biological diversity; preserving the environmental and cultural values of
our national parks and historical places; and providing for the enjoyment of life through
outdoor recreation. The Department assesses our energy and mineral resources and
works to ensure that their development is in the best interests of all our people by
encouraging stewardship and citizen participation in their care. The Department also
has a major responsibility for Americal Indian reservation communities and for people
who live in island communities.

The Bureau of Ocean Energy Management

The Bureau of Ocean Energy Management (BOEM) works to manage the exploration
and development of the nation's offshore resources in a way that appropriately balances
economic development, energy independence, and environmental protection through oil
and gas leases, renewable energy development and environmental reviews and studies.

	Introduction
	Getting started
	myroms.org
	Prerequisites
	Acquiring the ROMS code
	Compiling ROMS
	Environment Variables for make
	Providing the Environment
	Build scripts

	Running ROMS
	Warnings and bugs

	Ocean Model Formulation
	Equations of motion
	Vertical boundary conditions
	Horizontal boundary conditions
	Terrain-following coordinate system
	Horizontal curvilinear coordinates

	Numerical Solution Technique
	Vertical and horizontal discretization
	Horizontal grid
	Vertical grid

	Masking of land areas
	Velocity
	Temperature, salinity and surface elevation
	Wetting and drying

	Time-stepping overview
	Conservation properties
	Depth-integrated equations
	Density in the mode coupling
	Time stepping: internal velocity modes and tracers
	Advection schemes
	Second-order Centered
	Fourth-order Centered
	Fourth-order Akima
	Third-order Upwind

	Determination of the vertical velocity and density fields
	Horizontal mixing
	Deviatory stress tensor (viscosity)
	Transverse stress tensor
	Rotated Transverse Stress Tensor
	Horizontal diffusion
	Laplacian
	Biharmonic
	Rotated mixing tensors

	Vertical mixing schemes
	The Large, McWilliams and Doney parameterization
	Mellor-Yamada
	Generic length scale

	Timestepping vertical viscosity and diffusion
	Lateral Boundary Conditions
	Gradient boundary condition
	Wall boundary condition
	Clamped boundary condition
	Flather boundary condition
	Shchepetkin boundary condition
	Chapman boundary condition
	Radiation boundary condition
	Mixed radiation-nudging boundary condition

	Ice Model Formulation
	Dynamics
	Thermodynamics
	Ocean surface boundary conditions
	Frazil ice formation
	Differences from Mellor and Kantha

	Details of the Code
	Directory structure
	Main subroutines
	master.F
	ocean_control.F
	ROMS_initialize
	ROMS_run
	ROMS_finalize

	Initialization
	main3d

	Modules
	Functionals
	Other subroutines and functions
	C preprocessor variables
	Important parameters
	Domain decomposition
	ROMS internal numbers
	MPI exchange
	Code syntax
	Input/output

	Configuring ROMS for a Specific Application
	Configuring ROMS
	Case Name
	 Case-specific Include File
	Functionals
	checkdefs.F
	Model domain
	x,y grid
	, grid
	Initial conditions
	Equation of state
	Boundary conditions
	Model forcing
	ocean.in
	User variables and subroutines

	Upwelling/Downwelling Example
	cppdefs.h
	Model domain
	ana_grid
	Initial conditions and the equation of state
	Boundary conditions
	Model forcing
	ocean.in
	Output

	Arctic example
	arctic.h
	Arctic code chunks
	Model domain
	Initial and boundary conditions
	Forcing
	ocean.in
	Output

	Northwest Gulf of Alaska example
	nwgoa.h
	NWGOA code chunks
	Model domain
	Initial and boundary conditions
	Forcing
	ocean.in
	Output

	Model Time-stepping Schemes
	Euler
	Leapfrog
	Third-order Adams-Bashforth (AB3)
	Forward-Backward
	Forward-Backward Feedback (RK2-FB)
	LF-TR and LF-AM3 with FB Feedback
	Generalized FB with an AB3-AM4 Step

	The vertical -coordinate
	Transform
	Stretching

	Horizontal curvilinear coordinates
	Viscosity and Diffusion
	Horizontal viscosity
	Horizontal Diffusion
	Vertical Viscosity and Diffusion

	Radiant heat fluxes
	Shortwave radiation
	Longwave radiation
	Sensible heat
	Latent heat

	The C preprocessor
	File inclusion
	Macro substitution
	Conditional inclusion
	C comments
	A note on style
	Potential problems
	Modern Fortran

	Makefiles
	Introduction to Portable make
	Macros
	Implicit Rules
	Dependencies

	gnu make
	Make rules
	Assignments
	Include and a Few Functions
	Conditionals

	Multiple Source Directories the ROMS Way
	Directory Structure
	Conditionally Including Components
	User-defined make Functions
	Library Module.mk
	Main Program
	Top Level Makefile

	Final warnings

	sfmakedepend
	Subversion
	Overview
	Checking out the code
	Updates
	Code changes
	Conflicts
	Merging conflicts by hand
	Copying a file onto your working file
	Punting: Using svn revert

