TABLE OF CONTENTS

(Electronic Document Page Number)

1. INTRODUCTION (9)
 1.1 Background (9)
 1.2 Material and methods of the present study (9)
 1.3 Previous biostratigraphic work on the COST No. 1 well (10)
 1.4 Observation of marine dinoflagellate cysts (11)
 1.5 Report format (12)
 1.6 Data Files (14)

2. BIOSTRATIGRAPHY AND CHRONOSTRATIGRAPHY (15)
 2.1 Background (15)
 2.2 Global plate tectonic and climatic framework (15)
 2.3 Cenozoic oceanography of the Pacific Ocean (18)
 2.4 Lithostratigraphy of the North Aleutian Basin (18)

3. BIOSTRATIGRAPHIC FRAMEWORK (21)
 3.1 Biostratigraphic background (21)
 3.2 North Pacific – Bering Sea dinocyst zonal schemes (22)
 • Bering Sea (Bujak 1984) (Figures 1, 8) (22)
 • Navarin Basin, Norton Sound and the St. George Basin (Matsuoka & Bujak, 1988) (Figures 1, 9) (23)
 • Sea of Japan (Matsuoka, Bujak & Shimazaki 1987; DSDP Leg 57, offshore northeastern Japan (Kurita & Obuse, 2003) (Figure 1) (23)
• Late Cenozoic of the western and northern Pacific (Bujak & Matsuoka, 1986) (24)
• Mid to high latitude Pacific Eocene dinoflagellate and miospore ranges (25)

3.3 **Relevant Aleutian and southern Alaskan palynological studies (28)**

- Finzel et al. (2009): Bear Lake Formation, central Alaska Peninsula (28)
- Reinink-Smith & Leopold (2005): upper Miocene Homerian type section, southern Alaska (32)

3.4 **Reconstruction of paleotemperatures (33)**

- Global deep-sea oxygen and carbon isotope records of Zachos et al. (2001) (Figures 5, 6) (33)
- North Pacific climatic optima of Barron & Baldauf (1990) (Figure 5) (33)
- Mean Annual Temperatures (MAT) in Beringia of Wolfe (1994) (Figure 5) (34)

4. **NORTH PACIFIC – BERING SEA BIOSTRATIGRAPHIC ZONATION (35)**

4.1 **Background (35)**

4.2 **Definition of zones (35)**

4.3 **Calibration with absolute time (37)**

4.4 **Absolute time scale (37)**

4.5 **Notes on taxonomic nomenclature (37)**

5. **SUMMARY OF RESULTS: NORTH ALEUTIAN SHELF COST 1 WELL (40)**

5.1 **Palynological zonal assignments (40)**

5.2 **Adjustments to depths of zonal tops (41)**

5.3 **Notes on zonal assignments (41)**

5.4 **Absolute age assignments (42)**
6. BIOSTRATIGRAPHIC RESULTS: N. ALEUTIAN SHELF COST NO. 1 WELL (45)

6.1 Introduction (45)

6.2 Biostratigraphic subdivision: N. Aleutian Shelf COST 1 Well (46)

7. LITHOSTRATIGRAPHY AND SEISMIC SEQUENCES (76)

7.1 Lithostratigraphic picks (76)

7.2 Seismic sequence picks (76)

8. PALEOEBATHYMETRIC LISTING (77)

9. VISUAL KEROGEN ANALYSIS OF POSSIBLE AMORPHOUS SaproPEL IN KEY INTERVALS (79)

10. COMPOSITION OF COALS WITH REPORTED HIGH HI VALUES (81)

11. REFERENCES (83)

12. ACKNOWLEDGEMENTS (90)

TABLES

Table 1 (91). Global oceanographic-climatic events and Pacific gateway stages of Ogasawara (2002).

Table 2 (92). Percent values of environmentally sensitive groups of palynomorphs in the COST well. Also available as Microsoft Excel file. Presented with text as 4 successive pages.
Table 3 (96). Percent values of major kerogen types and major palynomorph groups in COST well coals based on the present study. Also available as Microsoft Excel file. Presented with text as 2 successive pages.

Table 4 (98). Sidewall and conventional core samples with a reported HI exceeding 150 by Dow (1983, in Robertson Research, 1983) and Exlog (1983). Most of the samples contain coals.

FIGURES

Figure 1 (99). Location map: North Aleutian Shelf COST No.1 well (red), DSDP Leg 19 sites in orange (Bujak 1984), Navarin Basin, Norton Sound, St. George Basin COST wells in pink (Matsuoka & Bujak 1987), Sea of Japan (Matsuoka, Bujak & Shimazaki, 1987) and DSDP Site Leg 57, offshore northeastern Japan (Jurita & Obosu, 2003) in yellow.

Figure 2 (100). (A) Location map of the area studies by Finzel et al. (2009), showing the Bristol Bay Basin and North Aleutian Shelf COST No. 1 well. The shaded contours are an isopach map of Cenozoic strata. (B) Geological map showing the location of sections studied by Finzel et al. (2009). Figure from Finzel et al. (2009, figure 1; AAPG©2010, reprinted with permission of the AAPG whose permission is required for further use).

Figure 3 (101). Composite stratigraphic section of the Bear Lake Formation in the vicinity of Port Moller, Alaska, showing age, lithology, and palynological and macrofossil data. Stratigraphic locations of the fossil samples are shown on the right of the lithological section. Evidence for interpreted ages is outlined in the third column. Figure from Finzel et al. (2009, figure 6; AAPG©2010, reprinted with permission of the AAPG whose permission is required for further use).

Figure 4 (102). (A) Depositional configuration, interpreted depositional environments, and key sedimentary structures of the Bear Lake Formation at the localities studied by Finzel et al. (2009). Angiosperm conifer forests, freshwater fluvial channels, and peat-forming environments are common in the upper, nonmarine parts of the estuarine system. Carbonaceous shale and mud-rich wavy bedding characterize the supratidal parts of the system. Intertidal channels and flats of the middle and lower parts of the estuarine system are represented by flaser bedding, mussel banks, and lateral accretion surfaces. In the subtidal part
of the estuary, sand-rich macroforms and conglomeratic storm deposits are typical. (B) The stratigraphic configuration of the Bear Lake Formation shows it to be a product of a transgressive estuarine depositional system at the localities studied by Finzel et al. (2009) indicated by the upward change from nonmarine fluvial environments through supratidal and intertidal deposition, culminating in subtidal strata at the top of the section. Reservoir slices highlight how the types of reservoirs change with stratigraphic position in the Bear Lake Formation. (From Finzel et al., 2009, Figure 12; AAPG©2010, reprinted with permission of the AAPG whose permission is required for further use).

Figure 5 (103). North Pacific-Bering Sea Cenozoic palynological zones (this study) plotted against the composite oxygen isotope curve of Zachos et al. (2001), Mean Annual Temperatures (MAT) of Wolfe (1994) and climatic optima of Barron & Baldauf (1990).

Figure 6 (104). North Pacific-Bering Sea Cenozoic palynological zones (this study) plotted against the succession of Pacific gateways (after Ogasawara, 2002) and the composite oxygen isotope curve of Zachos et al. (2001) (see figure 7 for key).

Figure 7 (105). Key to Pacific gateways (after Ogasawara, 2002)

Figure 8 (106). Dinocyst zones erected for the Bering Sea / northern North Pacific DSDP Leg 19 by Bujak (1984). Figure 8 is also available as a Microsoft Excel file. Recommended plot size: 24W X 14.5H (in) or 61W X 37H (cm).

Figure 9 (107). Dinocyst zones erected for the Navarin Basin, Norton Sound and the St. George Basin COST wells by Matsuoka & Bujak (1988). Figure 9 is also available as a Microsoft Excel file. Recommended plot size: 28W X 14H (in) or 72W X 36H (cm).

Figure 10 (108). Regional North Pacific – Bering Sea palynological zonation of Bujak (this study), showing ranges for marker species in the northern North Pacific – Bering Sea area, and extended ranges in warmer water of the central North Pacific-Japanese area. Figure 10 is also available as a Microsoft Excel file. Recommended plot size: 42W X 13H (in) or 107W X 33H (cm).

Figure 11 (109). Regional North Pacific – Bering Sea palynological zonation of Bujak (this study) plotted against other relevant microfossil schemes and Alaskan stages. Figure 11 is also available as a Microsoft Excel file. Recommended plot size: 22W X 15H (in) or 56W X 38H (cm).
PLATE 1: PHOTOGRAPHIC EXAMPLES OF FLUORESCENCE MICROSCOPY (110)

Illustrations of biochemical and thermochemical fluorescence of palynomorphs and kerogen (plate from Bujak & Davies 1982a, b). Recommended plot size: 17W X 22H (in) or 43W X 56H (cm).

Image 7. Miocene, Kopanoar M-13 well, Canadian Beaufort. Dinocyst species (Reticulatosphaera actinocoronata) showing green fluorescence emission under a broad yellow-green fluorescence filter. The specimen is very pale under normal transmitted light (not shown on the plate) and difficult to discern.

Image 8. Miocene, Kopanoar M-13 well, Canadian Beaufort. Tsugaepollenites pollen showing orange fluorescence emission under a broad orange-green fluorescence filter.

Images 9 and 11. Kimmeridgian, Hibernia P-15 well, northeast Newfoundland Basin. Image 9: normal transmitted light, Image 11: same field of view seen under a broad yellow-green fluorescence filter. The clump of material comprises a mixture of amorphous sapropelic kerogen and finely disseminated herbaceous kerogen, which is difficult to distinguish under normal transmitted light, but easier to distinguish under fluorescence. This illustrates the difficulty in recognizing true amorphous sapropel under transmitted light.

Images 10 and 12. Same as Images 9 and 11, with the finely disseminate herbaceous kerogen being more readily visible within the mass of amorphous sapropel.
APPENDIX A: STRATIGRAPHIC CHARTS (111)

APPENDIX B: SPECIES OCCURRENCE CHARTS (114)

SPECIES OCCURRENCE CHART 1 (115): Chart of all taxa arranged alphabetically within major palynomorph groups. Also available as Microsoft Excel file. Recommended plot size: 36W X 36H (in) or 92W X 92H (cm).

SPECIES OCCURRENCE CHART 2 (116): Chart of marker species arranged by highest occurrence. Also available as Microsoft Excel file. Recommended plot size: 30W X 36H (in) or 77W X 92H (cm).

SPECIES OCCURRENCE CHART 3 (117): Chart of all taxa arranged by highest occurrence within major palynomorph groups. Also available as Stratabugs file. Recommended plot size: 46W X 42H (in) or 117W X 107H (cm).
PALYNOLOGICAL BIOSTRATIGRAPHY OF THE
NORTH ALEUTIAN SHELF COST NO. 1 WELL

1. INTRODUCTION

1.1 BACKGROUND

The North Aleutian Shelf COST No.1 well was spudded on September 8, 1982 and was completed on January 14, 1983. The well operator was ARCO, Inc. Water depth at the well site was 277 ft, and KB height above sea level was 85 ft. Well sediment samples were recovered from 1380 to 17,040 ft, MD (TMD = 17,155 ft). Biostratigraphic analysis of the well was undertaken by ‘Biostratigraphics Consulting Micropaleontology’ (denoted throughout this report as ‘BCM’) in 1983 and their interpretations were subsequently incorporated by John Larson in MMS Report 88-0089 on the COST well (Turner et al., 1988).

In addition to intense local tectonic and volcanic episodes, the northern North Pacific - Bering Sea region, including the North Aleutian Basin, underwent major plate tectonic, oceanographic and climatic changes during the Cenozoic that strongly affected its biotas, productivity and petroleum source rock potential. Many of these concepts were developed after BCM’s study was undertaken, more than 25 years ago, and were therefore not included in their interpretation of the well succession.

In addition, the dinoflagellate zonal schemes and most of the zonal markers were not described for the region until the late 1980’s in a series of papers by Jonathan Bujak and Kazumi Matsuoka. These markers were not recorded in BCM’s study although they do occur in the North Aleutian Shelf COST No. 1 well.

1.2 MATERIAL AND METHODS OF THE PRESENT STUDY

The following report is based on palynological analysis of palynological and kerogen slides were prepared from 174 composite cuttings samples and six core samples (Table 2), plus 78 samples that were picked from coal fragments in cuttings samples (Table 3). All of the cuttings
samples were analyzed specifically for this study in 2009 by Jonathan Bujak of Bujak Research International Ltd.

The examined samples are listed on the range charts included in Appendix A of this report and were analysed using a combination of normal transmitted and reflected fluorescence microscopy. This is essential in the Cenozoic section in order to observe the typically pale and often rare specimens of dinoflagellate cysts (dinocysts) and to help distinguish between amorphous sapropel and finely disseminated herbaceous kerogen in the COST well. These applications of fluorescence microscopy are discussed in Bujak & Davies (1982a, b) and illustrated in Plate 1 of this report, which is reproduced from Bujak & Davies (1982a).

1.3 PREVIOUS BIOSTRATIGRAPHIC WORK ON THE COST 1 NO. WELL

The biostratigraphic work on the North Aleutian Shelf COST No. 1 well was primarily based on the analysis of cuttings samples, sidewall cores and 19 conventional cores by Biostratigraphics Consulting Micropaleontology (1983), which is abbreviated as BCM in the remainder of the present report. The examined microfossils included foraminifera, diatoms, silicoflagellates and ebridians, marine and terrestrial palynomorphs including pollen, spores and dinocysts, calcareous nanofossils, ostracodes, and rare radiolaria.

BCM’s data and interpretations were extensively reviewed and synthesized by John Larson in MMS Report 88-0089 on the COST well (Turner et al., 1988), who summarized the distribution of microfossils in the well as follows:

“The biostratigraphy of the Pleistocene, Pliocene, and late Miocene is based primarily on diatoms, with supporting evidence from foraminifera. Calcareous nanofossils and palynomorphs were important for determining the biostratigraphy of the Oligocene, with some support from foraminifera, while palynomorphs were the most important group in the Eocene.”

The data available to Larson therefore provided a relatively high resolution biostratigraphy in the upper Miocene to Pleistocene section of the well, down to approximately 3500 ft. However, the age of most of the well, from approximately 3300-17,155 ft (TMD) was less
certain, and was based on only a few specimens of pollen, fungi and dinoflagellates recorded by BCM (1983) below about 10,000ft in the section assigned to the Eocene, with subdivision of both the Eocene and Oligocene sections of the well being uncertain.

Larson’s interpretation of the COST well biostratigraphy also included data on macrofossils present in conventional cores from the well and ostracodes studied by Elizabeth Brouwers of the U.S. Geological Survey (written communication to Larson, 1985). Interpretation of all other biostratigraphic and geological data were undertaken by Larson, with the exception of siliceous microfossils which were interpreted by Donald Olson of the MMS.

The reader is referred to the original publication of Turner et al. (1988) for further details.

1.4 OBSERVATION OF MARINE DINOFLAGELLATE CYSTS

Relatively few dinoflagellate cysts (dinocysts) were recorded from the North Aleutian Shelf COST No. 1 well by BCM (1983). Certain intervals of the well are devoid of these fossils due to nonmarine depositional environment, but the present study indicates that protoperidiniacean dinocysts occur in most samples from the Miocene-Pleistocene section of the well where they are associated with diatoms. This association was first observed in the region by Bujak (1984) and is discussed in Section 3.2 of this report.

Protoperidiniacean dinocysts have a distinctive morphology, with genera such as *Brigantedinium* being spherical to sub-spherical, sometimes resulting in their incorrect identification as spores or thick-walled pollen. However, most specimens, including those in the North Aleutian Shelf COST No. 1 well, possess an intercalary archeopyle that characterizes protoperidiniacean dinocysts - although this may be difficult to observe under low magnification. It is therefore necessary to examine potential specimens under high-power oil immersion in order to confirm their identification.

Marine intervals of the North Aleutian Shelf COST No. 1 well also contain gonyaulacacean dinocysts, although these are generally less common than protoperidiniacean species in the Neogene section. Many of the gonyaulacacean specimens observed in the well are broken and fragmented, so that they may be overlooked, and several species of gonyaulacacean dinocysts are also relatively thin-walled so that they can only be recognized using fluorescence microscopy, as illustrated in Plate 1. Thin-walled specimens may also be dissolved during
more vigorous palynological processing. The combined difficulty in recognizing some protoperidiniacean and gonyaulacacean dinocysts, and possible destructive processing may explain the documentation of a larger number of marine dinocysts during the present study than during the study of BCM (1983).

1.5 REPORT FORMAT

The report is divided into the following sections and appendices.

Section 2 discusses the plate tectonic, oceanographic, climatic and lithostratigraphic framework of the North Pacific – Bering Sea region including the North Aleutian Basin.

Section 3 documents the underlying data used to define a composite North Pacific – Bering Sea palynological zonation. These zonal schemes and their age justification are illustrated in Figures 5 to 9 and include zones erected for the Bering Sea / northern North Pacific DSDP Leg 19 by Bujak (1984) and for the Navarin Basin, Norton Sound and the St. George Basin COST wells by Matsuoka & Bujak (1988). Relevant Aleutian and southern Alaskan dinocyst studies by Finzel *et al.* (2009) and Reinink-Smith & Leopold (2005) are also reviewed as they are relevant to the distribution of thermophilic pollen in the COST well. These characterize several warm phases within the Miocene that can be correlated with absolute age determination established by Barron & Baldauf (1990) and Wolfe (1994).

Section 4 and Figures 10 and 11 document the newly erected zonal scheme, including details of the stratigraphic ranges of more than 90 zonal markers. These primarily comprise marine dinocysts, plus several pollen, spore and fungal taxa in the mainly nonmarine Eocene and Oligocene sections of the COST well. **Section 4** also discusses thermophilic pollen as these are also important for assigning ages to the Miocene-Neogene interval of the well.

Section 5 summarizes the biostratigraphic results of the present study, including a four-fold degree of confidence given to each zonal assignment, plus absolute ages determined by the occurrence of thermophilic pollen. Some zonal assignments have been adjusted by a few feet to coincide with major stratigraphic breaks or seismic horizons when the observed zonal bioevent is considered to occur slightly low in the well due to poor sample quality or unfavourable depositional environments.
Section 6 gives details of the biostratigraphic subdivision of the well and includes the following subheadings:

- Details of any depth adjustments of the zonal top to coincide with major stratigraphic breaks or seismic horizons.
- Listing of palynomorph bioevents based on the quantitative biostratigraphic data provided in Appendix B as Excel and Stratabugs range charts.
- Listing of absolute age assignments.
- General discussion of the zone.
- Paleobathymetric picks for the zone and discussion of paleoenvironments occurring in the zone.
- Correlation of the zone with other microfossil zones.
- Listing of siliceous microfossil zonal bioevents.
- Discussion of other microfossils occurring in the zone.
- Correlation of the zone with seismic sequences and lithostratigraphic picks.

Section 7 lists the consensus well stratigraphy and seismic sequence picks for the well based on discussions with John Larson and Kirk Sherwood of the Alaskan MMS, Anchorage (pers. comm.).

Section 8 discusses paleoenvironmental interpretations for the well based on the present study and previous biostratigraphic study of BCM (1983) and subsequent interpretations of John Larson in MMS Report 88-0089 on the COST well (Turner et al., 1988). Table 2 lists percent values of environmentally sensitive groups of palynomorphs in the COST well.

Section 9 discusses the visual kerogen analysis of key intervals in the COST well. This is particularly important in the interval from 15,620-17,155 ft, for which Dow (1983, in Robertson Research, 1983) reported values of amorphous kerogen exceeding 40%, suggesting a potential oil source, an interpretation that conflicted with other geochemical data as discussed in Turner et al. (1988). Table 3 gives percent values of major kerogen types in the COST well based on the present study, indicating that most of the amorphous kerogen recorded by Dow is not sapropelic material, but instead represents the highly disseminated remains of herbaceous plant material with little potential for sourcing oil.
Section 10 discusses kerogen analysis of selected coals in the North Aleutian Shelf COST 1 well. High Hydrogen Index (HI) values of several COST well coals have been previously reported and, if correct, would indicate a possible source for liquid hydrocarbons. The coals were therefore examined during the present study to determine if they include algal remains that would have increased their HI values. Table 3 therefore lists percent values for major palynomorph groups as well as kerogen types in the coals. These indicate that little or no recognizable algal material occurs in the coals, although some do contain up to 40% resinous material that has been proposed as a possible source for waxy oils in the Canadian Beaufort Mackenzie Basin (Snowden, 1982).

A full listing of figures, tables and range charts is provided in the table of contents along with links to correlative electronic document pages.

1.6 DATA FILES

Microsoft Excel and Stratabugs digital files are provided with this report (download at MMS website at http://www.mms.gov/alaska/re/reports/rereport.htm) and are also available from Bujak Research International Limited, 288 Newton Drive, Blackpool FY3 8PZ, England; Ph: +44 (1253) 399291; E-mail: jonathan@bujakmudge.com.
2. BIOSTRATIGRAPHY AND CHRONOSTRATIGRAPHY

2.1 BACKGROUND

Figure 5 shows the North Pacific - Bering Sea Cenozoic palynological zones of the this study plotted against the composite oxygen isotope curve of Zachos et al. (2001) Mean Annual Temperatures (MAT) of Wolfe (1994) and climatic optima of Barron & Baldauf (1990).

The palynological succession and zonation of the North Aleutian Shelf COST No. 1 well reflects a combination of global, regional and local controls. On a global scale it reflects the shift from a Mesozoic - early Eocene greenhouse state to the modern bipolar glacial icehouse world. This had an enormous effect on marine and nonmarine biotas, particularly in higher latitudes such as the North Aleutian Basin, as the temperature changes were most marked towards the poles.

The second more regional control was imposed by the opening and closing of marine gateways, due to lateral plate tectonic movements. These primarily affected the marine biotas due to changes in oceanic circulation.

The third and more local control was from tectonics in the region of the North Aleutian Basin, which changed the depositional environments during deposition of the COST well succession and hence the relative abundance of marine, brackish water and nonmarine / terrestrial palynomorphs present in the well.

The first two controls are briefly discussed below with less discussion being included on the more local tectonic events because these have been comprehensively discussed in previous publications, including Detterman et al. (1996) and Sherwood et al. (2006).

2.2 GLOBAL PLATE TECTONIC AND CLIMATIC FRAMEWORK

Paleocene greenhouse conditions were inherited from the Cretaceous, with no appreciable change across the Cretaceous-Tertiary boundary other than the relatively short lived K/T boundary event. Low latitudinal thermal gradients resulted in warm air and sea-surface temperatures extending as far north as the Arctic Ocean, which probably had SST’s (sea surface
temperatures) that averaged about 10-12°C, resulting in environments totally unknown today due to the combination of warm temperatures and seasonality.

The Paleocene / Eocene Thermal Maximum (PETM) is strongly defined globally by an influx of the subtropical dinocyst *Apectodinium*, reflecting mean Arctic SST values that may have reached about 16°C. This provides a strong chronostratigraphic datum for the inception and end of the event, which lasted for less than half a million years. There is no evidence for the presence of the *Apectodinium* acme event in the North Aleutian Shelf COST No. 1 well, but this may be due to nonmarine deposition in the lowest part of the section or the interval may lie below the base of the well. This is discussed further in Section 5 of the report.

An extensive discussion of the PETM / *Apectodinium* acme event is given in Sluijs *et al.* (2007).

The PETM was succeeded by the early Eocene supergreenhouse world which, apart from the PETM, represented the warmest phase of the Cenozoic and which was succeeded immediately by global cooling and the shift towards the present bipolar glacial icehouse world.

The base middle Eocene *Azolla* event has received considerable attention since it was recovered from ACEX cores on the Lomonosov Ridge. The model proposed by ACEX scientists indicates a highly enclosed basin characterized by episodic surface freshwater layers that were repeatedly colonized by the floating freshwater fern *Azolla* for about 800,000 years. Briefly stated, the model proposes that sequestration of atmospheric carbon by *Azolla* lowered atmospheric CO₂ levels from above 2500 ppm to less that 1000 ppm, shifting the world toward the modern icehouse state.

The *Azolla* interval was succeeded by progressive cooling during the middle and late Eocene, culminating in the Terminal Eocene Event (TEE). The TEE resulted from the following succession of events:

- Plate tectonic separation of Australasia and South America leading to widening and deepening of the Drake Passage.

- Intensification of the Antarctic Circumpolar Current (ACC) which in turn initiated the modern system of deep, cold-water oxygen-rich circulation that extended into the North Atlantic (causing widespread seismically-reflected scouring by contourites).
- Sequestration of atmospheric CO₂ by this new deep-water circulation to below 1000 ppm, which in turn led to global temperature fall.
- Thermal isolation of Antarctica leading to widespread permanent Eastern Antarctic glaciation.
- Global eustatic sea-level fall. Moran et al. (2006) have also suggested the development of minor Arctic glaciation at this time based on the presence of ice-rafted material, but this remains to be confirmed by other studies.

Most of the Oligocene was characterized in higher latitudes by a cold phase that removed all cyst-forming dinoflagellates from the Arctic with the exception of the Barents Sea due to inflowing warmer currents from the Norwegian Sea. The northern North Pacific and Bering Sea region also experienced cold sea-surface and air temperatures during most of the Oligocene, which reduced the diversity of dinocyst species as well as angiosperm pollen, with thermophilic species being absent.

The latest Oligocene was marked by a warming event that permitted warmer water dinocysts and thermophilic pollen species to re-migrate into higher latitudes, including the northern North Pacific – Bering Sea region and Arctic. These conditions continued during the Miocene warm phase and reached an optimum in the early part of the middle Miocene between approximately 14 Ma and 16 Ma.

Following the middle Miocene climatic optimum, temperatures began to decrease sharply beginning at about 14 Ma, and were reflected by a sharp decline in thermophilic pollen and warmer water dinocysts. The dinocyst assemblages also show a marked change at this time in the northern North Pacific and Bering Sea region, with protoperidiniacean species becoming abundant at the same time as an increase in diatoms, silicoflagellates and ebridians (Bujak, 1984). Although several relatively short-lived and moderate increases in temperature did occur in the North Pacific region (discussed in the following Section of this report), the general cooling trend continued during the Plio-Pleistocene, culminating in today’s climate and temperatures.
2.3 CENOZOIC OCEANOGRAPHY OF THE PACIFIC OCEAN

Ogasawara (2002) divided the Cenozoic history of the Pacific Ocean into seven stages, extending from the Eocene to the Pleistocene (Figures 6 and 7). The first stage was the interval before 43 Ma, which he named the proto-Tasmanian stage, with development of the Tasmanian seaway representing the second stage from 43 to 29 Ma. The third stage (29-23.5 Ma) was the oceanographically most open system because the Pacific was not isolated from the other oceans. The 4th stage resulted from closing of the Bering Strait prior to closure of the Indonesian seaway (23.5-17 Ma) and was followed by the 5th stage during which time the Indonesian and Bering seaways were both closed (17-5 Ma). The 6th stage consisted of a closed Indonesian seaway and an open Bering Strait and Central American seaway (5-2 Ma). The 7th and final stage (post-2.4 Ma) is the modern situation with a closed Central American seaway.

These changes are reflected in Pacific-wide changes in the marine biotas. Major faunal changes across the Eocene – Oligocene boundary reflect the transition from warm-water environments to temperate or cool-water conditions at different latitudes. A dramatic change in the bio-siliceous sedimentation in the early Miocene has been related to diatom floral turnover and closure of the Indonesian seaway, which resulted in formation of the modern northward-flowing Kuroshio Current (Ogasawara, op. cit.), exemplifying the long-distance effects of plate tectonics and gateways on oceanographic change.

2.4 LITHOSTRATIGRAPHY OF THE NORTH ALEUTIAN BASIN

Recent comprehensive discussions of the lithostratigraphic framework are given in Detterman et al. (1996) and Sherwood et al. (2006), with the following text providing only a brief overview of the lithostratigraphy relevant to the present study.

The North Aleutian Basin, which is also referred to as the Bristol Bay Basin, is a retroarc basin extending from the northwestern margin of the Alaska Peninsula northward beneath the Bering Sea Shelf. More than 6000 m (19,685 ft) of Cenozoic strata are present at its deepest offshore location adjacent to the Alaska Peninsula (Finzel et al., 2005; Kirschner, 1988; Walker et al., 2003), with three major phases of Cenozoic subsidence being documented (Finzel et al., 2005; Walker et al., 2003):
1. Fault-controlled subsidence caused by Paleocene and Eocene extensional and strike-slip faulting (the Tolstoi Formation).

2. Late Eocene to middle Miocene flexural subsidence caused by crustal loading due to emplacement of a coeval volcanic arc (the Stepovak, Meshik, and Bear Lake Formations).

3. Late Miocene to Holocene subsidence, which was driven mainly by sediment loading of the southeastern margin as detritus was shed from the Alaska Peninsula (the Bear Lake and Milky River formations)

The Cenozoic succession of the Alaska Peninsula was deposited in a variety of marine and nonmarine environments reviewed by Detterman et al. (1996) and Finzel et al. (2009).

On the Alaska Peninsula, the Paleocene to Eocene Tolstoi Formation is 659 m (2162 ft) to 1,355 m (4,445 ft) thick at its type and reference sections and mainly comprises fluvial flood-plain and shallow-marine deltaic sediments. The COST well penetrated 2,065 m (6,775 ft) of Tolstoi Formation (Detterman, 1990) but failed to reach its base. The Stepovak Formation comprises about 2000 m (6562 ft) of upper Eocene to Oligocene volcaniclastic deep-water turbidites and shallow-marine sandstone that intertongue with volcanic strata on the southwestern side of the Alaska Peninsula. Detterman (1990) extended the Stepovak Formation to the offshore COST well as a sequence 1,679 m (5,510 ft) in thickness. The upper Oligocene to earliest middle Miocene Unga Formation is only exposed on the Pacific side of the Alaska Peninsula, where it comprises coarse-grained terrestrial strata 275 m (902 ft) in thickness.

The Bear Lake Formation comprises up to 1,000 m (3,281 ft) of sediments that locally overlie the Stepovak and Tolstoi formations with a disconformity or sometimes an angular unconformity. At onshore locations on the Alaska Peninsula, the upper part of the Bear Lake Formation is characterized by ‘a complex series of angular unconformities between the locally steeply dipping and tightly folded Bear Lake Formation and the overlying gently dipping Milky River Formation. Publicly available seismic data suggest that this unconformity may be a regional feature, but its characteristics change offshore. There, gently dipping reflectors of the Bear Lake Formation are locally truncated with subtle discordance by an interpreted erosional surface onto which strong reflectors representing clinoforms in the Milky River Formation prograde northwestward.’ (Finzel et al., 2009).
In the Bristol Bay Basin, the Miocene Bear Lake Formation is up to 1,000 m (3,281 ft) thick onshore and approximately 427 m (1,400 ft) in the COST well correlation of Detterman (1990). According to Finzel et al. (2009), Helmold & Brizzolara (2005) and Lyle et al. (1979), the Bear Lake Formation has the best porosity and permeability values of all the Cenozoic formations in the basin, containing about 63% reservoir sandstone in its total stratigraphic thickness, and is considered to be one of the most promising potential reservoirs in the Bristol Bay Basin.

The overlying Milky River Formation is 465 m (1526 ft) thick at its type section but ranges up to 1,012 m (3,320 ft) in an onshore well and comprises a mixture of primary volcanic and volcanioclastic strata (Detterman et al., 1996; Helmold & Brizzolara, 2005).
3. BIOSTRATIGRAPHIC FRAMEWORK

3.1 BIOSTRATIGRAPHIC BACKGROUND

The biostratigraphic succession of North Aleutian Shelf COST No.1 reported by BCM in 1983 was based on the analysis of palynomorphs, foraminifera, calcareous and siliceous microfossils. Their data were subsequently integrated with studies on megafossils and ostracodes by John Larson in MMS Report 88-0089 (Turner et al., 1988), who observed:

“The biostratigraphy of the Pleistocene, Pliocene, and late Miocene is based primarily on diatoms, with supporting evidence from foraminifera. Calcareous nannofossils and palynomorphs were important for determining the biostratigraphy of the Oligocene, with some support from foraminifera, while palynomorphs were the most important group in the Eocene.”

The data available to Larson provided a relatively high resolution biostratigraphy in the Upper Miocene to Pleistocene section of the well, down to approximately 3500 ft. However, the age of most of the well, from approximately 3960-17,155 ft (TMD) was less certain, and below about 10,000 ft. in the section assigned to the Eocene it was based on only a few specimens of pollen, fungi and dinoflagellates recorded by BCM (1983).

During the period following BCM’s 1983 analysis of the North Aleutian COST No.1 well, Jonathan Bujak and Kazumi Matsuoka systematically published details of the dinoflagellate assemblages in the northern North Pacific and Bering Sea region, including DSDP Leg 10, which cored Eocene to Pleistocene sections at 10 sites along the Aleutian Island Arc, plus the Navarin Basin, Norton Sound and St. George Basin COST wells, and the Japanese area to the south:

- Bering Sea (Bujak 1984)
- Navarin Basin, Norton Sound and St. George Basin (Matsuoka & Bujak 1988)
- Japanese area (Matsuoka, Bujak & Shimazaki 1987; Kurita & Obuse, 2003)
- Late Cenozoic of the western and northern Pacific (Bujak & Matsuoka, 1986)

These are summarized below.
3.2 NORTH PACIFIC – BERING SEA DINOCYST ZONAL SCHEMES

Bering Sea (Bujak 1984) (Figures 1, 8)

Bujak (1984) determined the relative abundances of dinoflagellate cysts and acritarchs from the Eocene to Pleistocene cored by Sites 183 to 192, DSDP Leg 19, along the northern and southern sides of the Aleutian Island Arc in the northern North Pacific and Bering Sea (Figure 1). He erected four new genera and 13 new species and defined eight concurrent-range zones which he calibrated with high-latitude diatom and silicoflagellate-ebridian zonations based on analyses of these microfossil groups recovered at the same DSDP sites (Figure 8):

- *Spiniferites frigidus* (early to late Pleistocene)
- *Nematosphaeropsis lemniscata* (early Pleistocene)
- *Impagidinium pacificum* (early to late Pliocene)
- *Spiniferites ovatus* (late Miocene to early Pliocene)
- *Gelatia inflata* (late Oligocene)
- *Spiniferites cf. membranaceus* (early Oligocene)
- *Trinovantedinium boreale* (early Oligocene)

No zones were erected for the early Miocene to early part of the late Miocene due to the lack of sediments of this age in the DSDP cores examined by Bujak (1984).

In addition to the biostratigraphic framework erected in his study, Bujak (1984) also interpreted a major biofacies change which he related to a significant oceanographic shift of potential significance to petroleum source rocks in the region:

“Upper Miocene to Recent dinocyst assemblages are dominated by protoperidiniacean cysts which became abundant in the Bering Sea and northern North Pacific at the same time as diatoms because of major changes in oceanic circulation and sedimentation in the Late Miocene.”

Modern dinoflagellates that form fossilizable cysts fall into three major groups: ceratiacean, gonyaulacacean and protoperidiniacean dinoflagellates, and the first two groups are almost entirely photosynthetic. In contrast, modern protoperidiniacean dinoflagellates are non-photosynthetic, and utilize dissolved organic material for nutrition or feed directly on diatoms (see review in Bujak & Davies, 1983, and Taylor 1984). They are particularly common in
upwelling regions where they are associated today with high diatom productivity, for example off the northeastern coast of Japan (Matsuoka (1976), in the Weddell Sea (Balech & El Sayed, 1965) and the coasts of Peru and western South Africa (Wall et al., 1977).

Navarin Basin, Norton Sound and the St. George Basin (Matsuoka & Bujak, 1988) (Figures 1, 9)

Matsuoka & Bujak (1988) determined the relative abundances of dinoflagellate cysts and acritarchs in 335 samples from the Navarin Basin COST No. 1 well, the Norton Sound COST No. 1 well and the St. George Basin COST No. 2 well and erected local dinoflagellate cyst zones for each well. The composite ranges of dinoflagellate cysts determined for each of the three COST wells were then used by Matsuoka & Bujak (op. cit.) to erect a composite dinoflagellate cyst zonation for the central and eastern Bering Sea.

The six zones were based on a combination of earliest and latest occurrence of a total of 34 genera and 70 species, with four new genera and 23 new species being erected in Matsuoka & Bujak’s 1988 paper. The zonation, including key species and correlation of the zones with diatom-silicoflagellate zones is shown in Figure 9:

- **Filisphaera filifera** Zone (late Pliocene to early Pleistocene)
- **Filisphaera pilosa** Zone (early to Pliocene)
- **Hystrichosphaeropsis variabile** Zone (late Miocene)
- **Heteraulacacysta campanula** Zone (latest late Oligocene to early Miocene)
- **Impagidinium velorum** Zone (early Oligocene)
- **Trinovantedinium boreale** Zone (early Oligocene)
- **Areospheridium diktyoplokus** Zone (late Eocene)

Sea of Japan (Matsuoka, Bujak & Shimazaki 1987) and DSDP Leg 57, offshore northeastern Japan (Kurita & Obuse, 2003) (Figure 1)

Matsuoka et al. (1987) analyzed 53 samples from the Akita and Niigata coastal regions of northern Japan and erected five dinocyst Oppel-zones for the Miocene to Holocene.
justification for the zones was based on planktonic foraminifera, radiolaria, calcareous nannofossils and diatom zonal determinations that had been previously determined for the same succession.

Matsuoka et al.’s (1987) data for the Japanese region were supplemented by Kurita & Obuse (2003) who documented the dinocyst succession in 34 samples from middle Miocene to upper Pliocene sediments from ODP Hole 1141A. Their study did not erect a dinocyst zonation, but updated that of Matsuoka et al. by the addition of several species bioevents.

The Japanese dinocyst zonation is only applicable to the Aleutian-Bering Sea region in sediments older than late Miocene due to differences in the stratigraphic ranges in upper Miocene to Recent sediments resulting from increased SST differences between the two regions. The Japanese dinocyst zones that are applicable to the Aleutian-Bering Sea region are:

- *Operculodinium echigoense* Zone (middle Miocene)
- *Diphyes latiusculum* Zone (middle Miocene)

Late Cenozoic of the western and northern Pacific (Bujak & Matsuoka, 1986)

Bujak & Matsuoka (1986) synthesized dinocyst data previously published by Bujak (1984), Matsuoka & Bujak (1988) and Matsuoka, Bujak & Shimazaki (1987) for the late Cenozoic of the western and northern Pacific. They reviewed the dinocyst zonal calibration against the diatom and silicoflagellate zonations in the northern colder-water areas and the foraminiferal zonations in the southern warmer-water areas.

Bujak & Matsuoka (op. cit.) noted that the local stratigraphic ranges of many dinocyst species reflected changing oceanography and SST, resulting in truncated stratigraphic ranges to the north that reflected the onset of colder surface water conditions during the Neogene. They also noted that the concurrent extinction in the Japanese area of a large proportion of species during the middle Miocene reflected the onset of colder water conditions:

“During the early middle Miocene, several species disappeared in northern Japan…..where the predominant current system changed from warm to cold-water during the early middle Miocene (Chinzei, 1976; Saito, 1963).
Bujak & Matsuoka (1986) also attributed the local extinction of several species in the Bering Sea to increased cooling:

“At the end of the late Miocene, many endemic species disappeared in the Bering Sea. The dinoflagellate cyst assemblages subsequently became less diverse with several protoperidiniacean species, such as *Selenopemphix nephroides* and *Xandarodinium variabile* occurring. According to Margulis & Kennett (1971), Bujak (1984), Wolfe (1978), and Wolfe and Tanai (1980), a late Miocene cooling trend occurred in the western and northern Pacific. The disappearances [of dinocyst taxa at this time]..... probably resulted from the paleoceanographic changes that occurred at this time in the northern North Pacific.”

Bujak & Matsuoka (1986) concluded that:

“In the Neogene to Pleistocene of the western and northern North Pacific areas, the stratigraphic ranges of most dinoflagellate cysts were probably controlled primarily by paleoceanographic changes related to water temperature.”

The composite dinocyst range chart published by Bujak & Matsuoka (1986) for the western and northern North Pacific did not differentiate the differences in ranges in the colder, northern North Pacific – Bering Sea region from those to the south in the warmer, Japanese region, or variations in species abundance through time. The present report on the North Aleutian Shelf COST No. 1 well therefore includes an updated composite dinocyst range chart for the western and northern North Pacific – Bering Sea in order to distinguish these ranges that are restricted to the Japanese area in red, as well as abundance occurrences of taxa (Figure 10)

Mid to high latitude Pacific Eocene dinoflagellate and miospore ranges

As discussed in Section 3.2 of this report, middle and upper Eocene palynomorph assemblages have previously been documented from the Bering Sea by Bujak (1984) at Sites 183 to 192 of DSDP Leg 19, and by Bujak & Matsuoka (1988) from the Navarin Basin No. 1, Norton Sound No. 1 and George Basin No. 1 COST wells. The only Leg 19 cores that penetrated Eocene strata are at Site 183 where the dinocyst *A. diktyoplokus* has its highest occurrence in core 27, section 4 at 67-69 cm. The youngest occurrence of *A. diktyoplokus* coincides with the top of the Priabonian type section at Priabona in northern Italy and hence the top of the Priabonian
Stage and the top of the Eocene as presently defined. This is discussed in more detail in Section 5.4 of this report. The dinocyst *Trinovantedinium boreale* also occurs at Site 183 where it is restricted to a single sample examined from core 31, section 2 at 51-69 cm.

Bujak (1984) defined the late Eocene *T. boreale* concurrent-range Zone based on the concurrent ranges of eight dinocyst species, but all of these have relatively long stratigraphic ranges except for *A. diktyoplokus* and *T. boreale*. He selected *T. boreale* to name the zone, but the ‘*Areosphaeridium diktyoplokus* concurrent-range Zone’ would have been a better choice because [1] *A. diktyoplokus* occurs at the top of the zone as defined in core 27, section 4 at 67-69 cm, whereas *T. boreale* only occurs in a single sample within the zone in core 31, section 2 at 51-69 cm, and [2] the stratigraphic range of the cosmopolitan dinocyst *A. diktyoplokus* is well-documented whereas that of endemic North Pacific-Bering Sea *T. boreale* is poorly known.

A. diktyoplokus and *T. boreale* were also recorded by Bujak & Matsuoka (1988) in the Bering Sea Navarin Basin and Norton Sound COST wells, with *T. boreale* occurring in younger strata than *A. diktyoplokus* in both wells:

<table>
<thead>
<tr>
<th>COST well</th>
<th>top T. boreale</th>
<th>top A. diktyoplokus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navarin Basin No. 1</td>
<td>12,680 ft</td>
<td>12,770 ft</td>
</tr>
<tr>
<td>Norton Sound No. 1</td>
<td>8430 ft</td>
<td>12,150 ft</td>
</tr>
</tbody>
</table>

St. George Basin No. 1 well: middle Eocene and lower Oligocene strata absent

Bujak & Matsuoka used these data to define the late Eocene *A. diktyoplokus* Zone and the early Oligocene *T. boreale* Zone, as shown in Figures 9 and 11 of the present report. Based on Bujak & Matsuoka’s record of *A. diktyoplokus* and *T. boreale* in the Navarin Basin and Norton Sound COST wells, the occurrence of *T. boreale* at Site 183 in a single sample below the highest occurrence of *A. diktyoplokus* is interpreted to reflect the shallow-water and possible hyposaline environmental preference of *T. boreale*.

Bujak (1984) also defined the *Kallosphaeridium curiosum* Zone in DSDP Site 183, cores 35 to 38 by the concurrent ranges of the dinocysts *Impagidinium velorum*, *K. curiosum*, *Operculodinium centrocarpum*, *Selenopemphix nephroides*, *S. sp. cf. armata sensu* Bujak 1984 and *Selenopemphix* sp. A of Bujak 1984. He assigned an ‘undifferentiated middle to late Eocene age’ to the zone, based on the oldest occurrence of *S. nephroides* in the type Bartonian
of southern England (Bujak, 1980) and its occurrences elsewhere documented in the University of Utrecht dinocyst summer course held in Urbino, Italy:

http://www.uu.nl/EN/faculties/science/organisation/depts/biology/research/chairs/BiомarineSciences/People/Henk_Brinkhuis/Pages/default.aspx. The absence of *A. diktyoplokus* from samples at DSDP Site 183 assigned to the *K. curiosum* Zone is puzzling and the *K. curiosum* Zone is not included in the composite North Pacific-Bering Sea zonation erected in the present report (Figure 10) due to this uncertainty and its poor age control. Instead, the following late Paleocene to middle Eocene palynomorph assemblage zones are erected for the North Pacific-Bering Sea region based on a combination of dinocyst, pollen and fungal spore species that occur in the North Aleutian Shelf COST No. 1 well (Figure 10):

Phthanoperidinium distinctum Zone E3 (Bartonian: middle Eocene)
- Top defined by the youngest occurrences of:
 - *Phthanoperidinium distinctum* (dinocyst)
 - *Pistillipollenites mcgregorii* (pollen)
 - *Pesavis tagluensis* (fungal spore)

Diphyes colligerum Zone, Subzone E2b (Lutetian: middle Eocene)
- Top defined by the youngest occurrences of:
 - *Diphyes colligerum* (dinocyst)
 - *Striadiporites sanctaebarbarae* (fungal spore)

Diphyes colligerum Zone, Subzone E2a (Lutetian: middle Eocene)
- Top defined by the youngest occurrences of:
 - *Ctenosporites wolfei* (fungal spore)
 - *Pesavis* sp. A of Ioannides & McIntyre, 1980 (fungal spore)

Charlesdowniea columna Zone E1 (Ypresian: early Eocene)
- Top defined by the youngest occurrences of:
 - *Areoligera senonensis* (dinocyst)
 - *Charlesdowniea edwardsii* (dinocyst)
Glaphyrocysta exuberans (dinocyst)

Glaphyrocysta ordinata (dinocyst)

G. exuberans and G. ordinata are both temperature-sensitive species with a warmer water preference and ranges that extend upwards into the middle Eocene in the Japanese region, as shown in Figure 10.

Aspectodinium homomorphum acme Zone (late Paleocene)

Zone defined by an acme of the dinocyst genus Aspectodinium, reflecting their global migration and abundance coincident with the Paleocene / Eocene Thermal Maximum (PETM), as documented by Bujak & Brinkhuis (1998).

The ranges of dinocyst species listed above are based on their global stratigraphic ranges documented in the University of Utrecht summer dinocyst course held in Urbino, Italy (op. cit.). The ranges of pollen and fungal spore species are based on their ranges established in more than 100 Alaskan and Canadian Arctic wells (Bujak, unpublished personal observations and confidential data), which were correlated with marine dinocysts and benthic foraminifera present in the same well sections.

Taxonomic note: Charlesdowniea edwardsii is restricted to the Pacific – Australasian region, but it is very similar in morphology to C. columna, which has widespread occurrences in the circum North Atlantic region, including northwest Europe where its established range is the same as that of C. edwardsii. Some authors consider that C. columna and C. edwardsii are conspecific.

3.3 RELEVANT ALEUTIAN AND SOUTHERN ALASKAN PALYNOLOGICAL STUDIES

Finzel et al. (2009): Bear Lake Formation, central Alaska Peninsula (Figures 2, 3, and 4)

Finzel et al. (2009) studied the biostratigraphy and depositional environments of the Bear Lake Formation in onshore exposures along the coast and mountains of the central Alaska Peninsula, approximately 100 km to the southeast of the North Aleutian Shelf COST No. 1 well (Figure 2). Figure 3 and Stratigraphic Chart 2 summarizes the ages that they assigned to samples from the following localities, from youngest to oldest:
• Bear Lake 5
• Bear Lake 2
• Sundean / Left Head
• Bear Lake 1
• Bear Lake 4
• Bear Lake 3
• Coal Point

The age assignments of Finzel et al. showed that deposition of the Bear Lake Formation began ‘sometime before the middle Miocene (15 Ma) and extended to possibly the earliest Pliocene’, with most deposition occurring during the middle and late Miocene.

Their lithofacies analysis of the formation also indicated that it represented a regional transgressive estuarine depositional system:

“The lower part of the formation is characterized by trough cross-stratified sandstone interceded with coal and pedogenic mudstone deposited in fluvial and swamp environments of the uppermost parts of the estuarine system. The lower-middle part of the formation is dominated by non-bioturbated, wavy- and flaser-bedded sandstone and siltstone that were deposited in supratidal flat environments. The upper-middle part of the Bear Lake Formation is characterized by inclined heterolithic strata and coquinooid mussel beds that represent tidal channel environments in the middle and lower tracts of the estuarine system. The uppermost part of the formation consists of tabular, bioturbated sandstone with diverse marine invertebrate macrofossil remains. We interpret this part of the section as representing the subtidal tract of the lower estuarine system and possibly the adjacent shallow marine shelf. A comparison of our depositional framework for the Bear Lake Formation with core and well-log data from onshore and offshore wells indicates that similar Miocene depositional systems existed throughout much of the Bristol Bay basin.”

Palynological analyses in the study of Finzel et al were undertaken by James White of the Geological Survey of Canada, who analyzed samples from the following three sections:

• Left Head 1 (five samples)
Bear Lake 1 (six samples)

Coal Point 1 (six samples)

All of the species listed in Finzel et al. are nonmarine pollen and spores, with the exception of the dinoflagellate cyst genus *Cleistosphaeridium*, but a large percentage of ‘Undeterminable spp.’ were recorded and were particularly high in the Coal Point 1 section, with the value of ‘Undeterminable spp.’ exceeding 50% of the total palynomorph count in several samples.

Finzel et al. based their age determinations of the examined section on the megafossils plus the presence of temperature-sensitive species, which they correlated with temperature changes that occurred during the middle and late Miocene in the Bristol Bay Basin. Temperature-sensitive species that they noted were the thermophilous taxa *Acer, Carya, Pterocarya* and *Ulmus*.

Finzel et al. also interpreted assemblages dominated by Taxodiaceae-Cupressaceae-Taxaceae, which they termed T-C-T palynomorphs, as supporting ‘deposition during a period of warm climate.

Based on a dominance of T-C-T palynomorphs, Finzel et al. concluded that:

“The Coal Point section, therefore, is apparently older than an interpreted temperature decline that began ca. 15 Ma in the early middle Miocene (White et al., 1997, 1999; Zachos et al., 2001). The reduced abundance of T-C-T pollen, greater Pinaceae, and presence of thermophilous angiosperms that grew in temperate climates in the upper part of the Bear Lake 1 and lower part of the Left Head sections suggest a correlative relationship for these parts of the sections. *Ilex*-type pollen in the upper Bear Lake 1 section suggests a climate with limited frost. These sections are likely correlative with the late middle and early late Homerian stage (Wolfe et al., 1966; Reininck-Smith and Leopold, 2005). The single grass pollen grain in the upper Bear Lake 1 sample is limited evidence, to be treated with caution, but would suggest a correlation to the upper half of the Homerian-type section in Cook Inlet (Reininck-Smith and Leopold, 2005). The upper part of the Bear Lake 1 and lower part of the Left Head sections were likely deposited in the Homerian stage, of middle to early late Miocene age, ca. 11-?8 Ma. Reininck-Smith & Leopold (2005). Detailed restudy of the Holocene in coastal Alaska argues for less cooling in mean annual temperature after the Seldovian and probably less temperature fluctuation during the Homerian than previously described (Wolfe, 1994; White et al., 1997, 1999).”
Integrating macrofossil evidence documented in their study with the palynology discussed above, Finzel et al. concluded that deposition of the Bear Lake Formation along the coast and in the mountains of the central Alaska Peninsula initiated sometime before 15 Ma (middle Miocene) and extended possibly into the earliest Pliocene, with the bulk of the formation being deposited during the middle and late Miocene.

Finzel et al.’s conclusions are summarized in Figures 3 and 4 which illustrate that the Bear Lake Formation represents a mainly middle and late Miocene transgressive estuarine depositional system in the Bristol Bay Basin:

“The transgressive package consists of nonmarine, fluvial strata that grade upsection into transitional supratidal strata overlain by subtidal and shelf strata. This progression of facies, combined with the presence of brackish water trace fossils, tidally generated sedimentary structures, and the general lack of wave-generated features, suggests an estuarine depositional environment. Comparison of our depositional framework with core and well-log data from onshore and offshore exploration wells indicates that similar Neogene depositional systems existed throughout much of the Bristol Bay Basin.

The present study on the North Aleutian Shelf COST No. 1 well supports the ages assigned to the Bear Lake Formation by Finzel et al. (2009). These were primarily based on the distribution of thermophilic pollen as the onshore sections examined by Finzel et al. contained few or no marine palynomorphs (Figures 3 and 4). Miocene sediments of the COST well were deposited in marine environments and contain age-diagnostic marine dinocysts that indicate the same ages as those inferred by Finzel et al. (Figure 3; Figure 5), as well as the same succession of thermophilic pollen that they documented. These two sources of COST well data, from [1] nonmarine temperature-sensitive pollen and [2] the ranges of age-diagnostic marine dinocysts that have been calibrated against siliceous microfossils at other North Pacific – Bering Sea locations, independently support the ages assigned by Finzel et al. to the Bear Lake Formation at onshore localities, as discussed in Section 6 of this report on ‘Biostratigraphic Results’.

Stratigraphic Chart 2 correlates the North Aleutian Shelf COST No. 1 well with the onshore sections examined by Finzel et al. (2009). Marine dinocysts present in the COST well indicate an upper Miocene section assigned to the *H. variabilis* Zone from 2510–4080 ft underlain by a
section assigned to the middle Miocene *O. echigoense* Zone from 4080-5675 ft. These are broadly correlated as follows with the onshore sections examined by Finzel *et al.*

The upper Miocene section from 2510-4080 ft broadly correlates with the Bear Lake Formation exposed at the Bear Lake 1, Sunbean / Left Head and Bear Lake 2 and 5 localities, to which Finzel *et al.* assigned a late middle Miocene to early Pliocene age. According to the interpretations of Finzel *et al.*, these were deposited in environments that changed upwards from supratidal freshwater marshes and brackish tidal flats at the Bear Lake 1 locality, to brackish-marine intertidal channels and tidal flats at the Sunbean / Left Head locality, and then to marine subtidal channels and sand flats at the Bear Lake 2 and 5 localities.

The middle Miocene section from 4080-5675 ft broadly correlates with the Bear Lake Formation exposed at the Coal Point and Bear Lake 3 and 4 localities, to which Finzel *et al.* assigned an early to middle Miocene age. According to the interpretations of Finzel *et al.*, these were deposited in nonmarine fluvial channels adjacent to overbank environments and swamps or marshes.

The COST well Bear Lake Formation section also shows an upward decrease in nonmarine spores that were transported by water to the COST site. This tentatively supports the transgressive nature of the succession documented by Finzel *et al.*, with fewer of the water-borne spores reaching the COST depositional location as the regression progressed.

Reininck-Smith & Leopold (2005): upper Miocene Homerian type section, southern Alaska

Reininck-Smith & Leopold (2005) studied the palynology of the upper Miocene Homerian type section in the upper Beluga Formation of the Kenai Group in southern Alaska. They documented the presence of 36 pollen and spore genera, but no dinocysts due to the non-marine depositional environment. Their study is relevant because it details the presence and significance of the following thermophilic pollen species that also occur in the North Aleutian Shelf COST No. 1 well:

<table>
<thead>
<tr>
<th>Generic name</th>
<th>common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carya</td>
<td>hazel</td>
</tr>
<tr>
<td>Corylus</td>
<td>pecan</td>
</tr>
<tr>
<td>Fagus</td>
<td>beech</td>
</tr>
</tbody>
</table>
The presence of these thermophilic pollen species in the COST well provides information regarding the presence of warmer climatic episodes in the well, which can then be correlated with increased paleotemperature episodes documented for the North Pacific region and Beringia by Barron & Baldauf (1990) and Wolfe (1994) respectively.

This is discussed below and in Section 6 of the report on Biostratigraphic Results.

3.4 RECONSTRUCTION OF PALEOTEMPERATURES

Global deep-sea oxygen and carbon isotope records of Zachos et al. (2001) (Figures 5, 6)

Zachos et al. (2001) constructed global deep-sea oxygen and carbon isotope records based on data from more than 40 DSDP and ODP sites, with most of the data being derived from the analysis of two common and long-lived benthic taxa, *Cibicidoides* and *Nuttallides*. The oxygen isotope record, which is a general proxy for paleotemperature, is shown in Figures 5 and 6, illustrating the general warm to cool trend during the greenhouse to icehouse shift, including several cold and warm phases in the Oligocene and Miocene.

North Pacific climatic optima of Barron & Baldauf (1990) (Figure 5)

Barron & Baldauf (1990) recognized several oscillations in sea-surface temperature (SST) based on oxygen isotope ratios from *Cibicides* tests obtained from North Pacific marine sediments. They identified three warm intervals, which they named Climatic Optimum 1 (16 to 15 Ma), Climatic Optimum 2 (11.5 to 10.5 Ma), and Climatic Optimum 3 (7.5 to 6.5 Ma) shown in Figure 5.

All three of these Climatic Optima were identified in the North Aleutian Shelf COST No. 1 well, as discussed in Sections 5 and 6 of the report:
• 2730 ft: Climatic Optimum 3
• 3990-4080 ft: Climatic Optimum 2
• 5160-5340 ft: Climatic Optimum 1

Mean Annual Temperatures (MAT) in Beringia (Wolfe, 1994) (Figure 5)

Wolfe (1994) used multivariate analysis of foliar physiognomy to reconstruct the nonmarine climate in Beringia. His studies suggested a gradual decline in MAT from about 12°C to 11°C in the Seldovian, between 18 to 14 Ma, followed by a sharp decrease to about 4°C in the earliest Homerian at 13 Ma. MAT remained between 4°C and 5°C during the remainder of the Homerian and earliest Clamgulchian from 12 to 7 Ma, with two minor increases of about 1°C in MAT at about 11 Ma and 8 Ma (Figure 5).
4. NORTH PACIFIC – BERING SEA BIOSTRATIGRAPHIC ZONATION

4.1 BACKGROUND

The regional North Pacific – Bering Sea palynological zonation used in this report is shown in Figures 10 and 11, and is based on the integration of zonal schemes and species ranges discussed in the preceding sections of this report and shown in Figures 5 to 9. This updates previous work by [1] using the abundances of taxa as well as their ranges, and [2] distinguishing between the ranges of species in the Bering Sea - Aleutian area and those in warmer water of the Japanese region. The colder water ranges shown in black on Figure 10 are applied to the North Aleutian Basin including the COST 1 well.

The palynological zones are primarily based on marine dinocysts, with the addition of several miospore (pollen-spore) and fungal species. Fungi are particularly important in the Eocene section of the COST well, as this comprises predominantly or exclusively nonmarine strata in the North Aleutian Basin. The miospore and fungal ranges are primarily based on Bujak’s personal observations of their occurrences in high-latitude marine sections, including the Arctic, plus unpublished and confidential data from the North Pacific region.

Data for the Eocene are mainly provided by the mid to high latitudes ranges of taxa from various sources, summarized in the University of Utrecht Summer School on dinocysts held in Urbino, Italy, for which details can be obtained from Dr Henk Brinkhuis: http://www.uu.nl/EN/faculties/science/organisation/depts/biology/research/chairs/BiomarineSciences/People/Henk_Brinkhuis/Pages/default.aspx.

4.2 DEFINITION OF ZONES

Zones are concurrent range zones defined by a combination of first (earliest) and last (latest) stratigraphic occurrences and abundances of species. The succession of first and last occurrences bioevents that define each zone are tabulated in Figure 10. Age justification and correlation of the zones with other microfossil zonations are discussed in the preceding sections of this report and are tabulated in Figures 5 to 8. Zonal names are based on one of the taxa that define the zone and are also indicated by an alphanumeric notation indicating the Stage / Age in which the zone occurs.
The palynological zones defined in this report are, in order of increasing depth:

Spiniferites frigidus Zone PL2 (Pleistocene: Ionian)

Nematosphaeropsis lemniscata Zone PL1 (Pleistocene: Calabrian)

Impagidinium pacificum Zone P2 (late early and late Pliocene: late Zanclean, Piacenzian and Gelasian)

Spiniferites ovatus Zone P1 (early Pliocene: early and middle Zanclean)

Hystrichosphaeropsis variabilis Zone M3 (latest middle and late Miocene: late Serravalian, Tortonian and Messinian)

- Subzone M3b (late Miocene: late Tortonian and Messinian)
- Subzone M3b (latest middle and late Miocene: late Serravalian and early and middle Tortonian)

Operculodinium echigoense Zone M2 (middle Miocene: Langhian and early to middle Serravalian)

- Subzone M2b (middle Miocene: early to middle Serravalian)
- Subzone M2a (middle Miocene: Langhian)

Heteraulacacysta campanula Zone M1 (early Miocene: Burdigalian and Aquitainian)

Gelatia inflata Zone O3 (late Oligocene: Chattian)

Spiniferites cf. membranaceus Zone O2 (early Oligocene: Rupelian)

Trinovantedinium boreale Zone O1 (earliest Oligocene: early Rupelian)

Areosphaeridium diktyoplokus Zone E4 (late Eocene (Priabonian)

Phthanoperidinium distinctum Zone E3 (middle Eocene: Bartonian)

Diphyes colligerum Zone E2 (middle Eocene: Lutetian)

- Subzone E2b (middle Eocene: late part of the Lutetian)
- Subzone E2a (middle Eocene: early part of the Lutetian)

Charlesdowniea columna Zone (early Eocene: Ypresian)

Apectodinium homomorphum Zone (latest Paleocene: late Thanetian)
4.3 CALIBRATION WITH ABSOLUTE TIME

Two methods are used to assign specific depths in the North Aleutian Shelf COST No. 1 well to absolute time:

1. Correlation of palynomorph bioevents and zonal boundaries with ages established using other fossil groups or in references sections, which is discussed above in Section 3.1 of the report.

2. Correlation with paleotemperature changes documented by Barron & Baldauf (1990) for the North Pacific and by Wolfe (1994) for Beringia using shifts in the pollen assemblages observed in the COST well. These are reflected in the occurrence and abundance of thermophilic angiosperm and gymnosperm pollen in the well. Details of this methodology are given in Section 3.4 of this report.

4.4 ABSOLUTE TIME SCALE

4.5 NOTES ON TAXONOMIC NOMENCLATURE

The dinocyst taxonomic nomenclature used in this report follows the Lentin and Williams index of fossil dinoflagellates, 2004 edition (Williams & Fensome, 2004).

Fossil pollen and spore nomenclature is complicated by the use of several systems of nomenclature by palynologists. These include the application of:

- Modern plant nomenclature such as the pollen genus *Pterocarya* to denote the pollen produced by the parent plant, in this example, wingnut.

- Modern pollen and spore nomenclature such as the use of the genus *Pterocaryapollenites* to denote the pollen produced by the parent plant.

- A purely morphological system, for example the genus *Polyatriopollenites* for pollen specimens that resemble or are identical to modern *Pterocaryapollenites* pollen. This
system is preferred by some palynologists in order to avoid indications of plant affinity for the pollen, particularly in older Cenozoic or Mesozoic strata where affinities are more tenuous than in Neogene sections.

The nomenclatural confusion also applies to specific assignments of pollen and spore, so that several generic and specific names have been applied to identical pollen in the fossil record in publications and other reports, leading to confusion in interpreting data for non-palynologists (as well as many palynologists).

In order to provide consistency with the previous data of Finzel et al. (2009), the present report uses pollen and spore nomenclature that is similar to that used by James White of the GSC in Calgary, in Finzel et al. (2009). The following listing is provided to facilitate comparisons of the data in Finzel et al. with those of the present report for the COST well:

<table>
<thead>
<tr>
<th>Finzel et al. (2009)</th>
<th>This report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abies sp.</td>
<td>Abiespollenites spp.</td>
</tr>
<tr>
<td>Alnus sp. with 4 to 7 pores</td>
<td>Alnipollenites verus</td>
</tr>
<tr>
<td>Aremarrhena sp.</td>
<td>not recorded</td>
</tr>
<tr>
<td>Artemisia sp.</td>
<td>Artemisia-Taraxacum spp.</td>
</tr>
<tr>
<td>Baculatisporites pimarius</td>
<td>Baculatisporites / Osmundacidites spp.</td>
</tr>
<tr>
<td>Betula 20 microns or less</td>
<td>Betulaceoipollenites spp. 20 microns or less</td>
</tr>
<tr>
<td>Betula greater than 20 microns</td>
<td>Betulaceoipollenites spp. greater than 20 microns</td>
</tr>
<tr>
<td>Boisduvalia clavatites</td>
<td>Boisduvalia clavatites</td>
</tr>
<tr>
<td>Carya sp.</td>
<td>Caryapollenites spp.</td>
</tr>
<tr>
<td>Cedrus sp.</td>
<td>Cedripites spp.</td>
</tr>
<tr>
<td>Cryptogramma sp.</td>
<td>not recorded</td>
</tr>
<tr>
<td>Cystopteris sp.</td>
<td>not recorded</td>
</tr>
<tr>
<td>Deltoidospora sp.</td>
<td>Deltoidospora spp.</td>
</tr>
<tr>
<td>Ericales undifferentiated</td>
<td>Ericipites antecursorioides and E. compactipolleniatu</td>
</tr>
<tr>
<td>Fagus sp.</td>
<td>Faguspollenites spp.</td>
</tr>
<tr>
<td>Fractisporonites sp.</td>
<td>not recorded</td>
</tr>
<tr>
<td>Hypoxylonites sp.</td>
<td>not recorded</td>
</tr>
<tr>
<td>Ilex-type</td>
<td>Ilexpollenites spp.</td>
</tr>
</tbody>
</table>

North Aleutian Shelf COST No. 1 page 38 Bujak Research International
| Taxon | Text
5. SUMMARY OF RESULTS: NORTH ALEUTIAN SHELF COST NO. 1 WELL

5.1 PALYNOLOGICAL ZONAL ASSIGNMENTS *

1390 ft: highest examined sample

1390-1590(1) ft: *Nematosphaeropsis lemniscata* Zone PL1 (early Pleistocene) [1]

1590(1)-2370 ft: *Impagidinium pacificum* Zone P2 (latest early to late Pliocene) [3]

2370-2510(2) ft: *Spiniferites ovatus* Zone P1 (early Pliocene) [1]

(Bracketed numbers - See notes on zonal assignments, Section 5.3 below)

2510(2)-4080 ft: *Hystrichosphaeropsis variabilis* Zone M3 (late Miocene) [3]

- 2510-3090 ft: *H. variabilis* Zone Subzone M3b (late Miocene) [3]
- 3090-4080 ft: *H. variabilis* Subzone M3a (late Miocene) [3]

4080-5675(3) ft: *Operculodinium echigoense* Zone M2 (middle Miocene) [2]

- 4080-4890 ft: *O. echigoense* Zone, Subzone M2b (middle Miocene) [2]
- 4890-5675(3) ft: *O. echigoense* Zone, Subzone M2a (middle Miocene) [2]

hiatus---

5675(3)-7900(4) ft: *Spiniferites cf. membranaceus* Zone O2 (early Oligocene) [4]

7900(4)-9555(5) ft: *Trinovantedinium boreale* Zone O1 (early Oligocene) [4]

9555(5)-10,380 ft: *Areosphaeridium diktyoplokus* E4 Zone (late Eocene) [2]

hiatus---

10,380-15,420 ft: *Diphyes colligerum* Zone E2 (middle Eocene) [3]

- 10,380-11,820 ft: *D. colligerum* Zone E2 Subzone 2b (middle Eocene) [2]
- 11,820-15,420 ft: *D. colligerum* Zone E2 Subzone 2a (middle Eocene) [2]

15,420-17,150 ft (TD): *Charlesdowniea columna* Zone E1 (early Eocene) [2]
5.2 ADJUSTMENTS TO DEPTHS OF ZONAL TOPS

The following adjustments were made to coincide with a major stratigraphic break or seismic horizon when the observed zonal bioevent is considered too depressed and to occur slightly low in the well due to poor sample quality or unfavourable depositional environments.

(1) Depth adjusted from the cuttings sample at 1650-1740 ft to the top of the Milky River Formation at 1590 ft.

(2) Depth adjusted from the cuttings sample at 2550-2640 ft to Seismic Horizon A, the top of Seismic Sequence II, and the top of the Bear Lake Formation at 2510 ft.

(3) Depth adjusted from the cuttings sample at 5700-5790 ft to Seismic Horizon B, the top of Seismic Sequence III, and the top of the Stepovak Formation at 5675 ft.

(4) Depth adjusted from the cuttings sample at 8040-8130 ft to the top of the Seismic Horizon C at 7900 ft.

(5) Depth adjusted from the cuttings sample at 9570-9650 ft to the top of lithological sequence D2 at 9555 ft.

5.3 NOTES ON ZONAL ASSIGNMENTS

1. The zonal listing shows the highest examined sample in which zonal marker species were observed. This may result in the biostratigraphic picks differing slightly from stratigraphic datums indicated by log or seismic correlations. Where these depths are occasionally integrated (e.g., the top of the Milky River Formation), this reconciliation is noted in the text.

2. The degree of confidence is shown in square brackets [1-4] after each zonal assignment:

 - Confidence level 1: highest confidence level
 - Confidence level 2: medium confidence level
 - Confidence level 3: lower confidence level
 - Confidence level 4: lowest confidence level
5.4 ABSOLUTE AGE ASSIGNMENTS

The methods used to assign the ages for specific depths in the North Aleutian Shelf COST No. 1 well discussed in Section 4.3 and in Stratigraphic Charts 1 & 2 of this report provide the following determinations:

1390 ft: > 0.78 Ma for the highest examined sample in the *Nematosphaeropsis lemniscata* Zone equivalent to Calabrian interval = 0.78 to 1.8 Ma.

1590\(^{(1)}\) ft: 1.8 Ma for the top of the *Impagidinium pacificum* Zone P2 Zone as top of zone = top Pliocene (*sensu* top Gelasian dated as 1.8 Ma).

2010 ft: 2.4 to 2.6 Ma (average age = 2.5 Ma) for the top consistent / *in situ* occurrence of *Tsugaepollenites* (hemlock), corresponding to intra-P2 cooling event coincident with expansion of Arctic ice sheet.

2370 ft: 3.5 Ma for the top common / abundant occurrence of *Tsugaepollenites* (hemlock), coincident with early development of Arctic ice sheet.

2370 ft: Approximate 3.5 Ma for the top of the *Spiniferites ovatus* Zone.

2510 ft: Approximate 3.4 to 5.3 Ma hiatus corresponding to seismic horizon A as the lowermost Pliocene is probably absent, assuming constant sedimentation rate in the early Pliocene *Spiniferites ovatus* Zone.

2550 ft: 5.33 Ma for the top of Subzone M3b of the *Hystrichosphaeropsis variabilis* Zone, which correlates with the top Miocene.

2730 ft: 6.5 to 7.5 Ma (average = 6.0 Ma) corresponding to North Pacific climatic optimum CO3 of Barron & Baldauf (1990).

3090 ft: Approximate 9 Ma for the top of Subzone M3a of the *Hystrichosphaeropsis variabilis* Zone.

3990 ft: 10.5 to 11.5 Ma (average = 11.0 Ma) corresponding to North Pacific climatic optimum CO2 of Barron & Baldauf (1990).

3990 ft: 11 Ma corresponding to a minor temperature increase documented by Wolfe (1994).

4080 ft: 11.61 Ma for the top of Subzone M2b of the *Operculodinium echigoense* Zone, which correlates with the top middle Miocene.
4890 ft: 14 Ma corresponding to an abrupt temperature decline documented by Wolfe (1994).

4890 ft: Approximate 14 Ma for the top of Subzone M2a of the Operculodinium echigoense Zone, within the middle Miocene.

5160-5340 ft: 15.0 to 16.0 Ma based on the correlation with North Pacific climatic optimum CO1 of Barron & Baldauf (1990) which occurred from 15 to 16 Ma.

5675 ft: The youngest established age for the base of the Miocene section in the North Aleutian Shelf COST No. 1 well is 15 Ma and the oldest age is 16 Ma, as discussed above. The youngest age of Oligocene strata immediately below the hiatus at 5675 ft is 28.4 Ma (= top of the lower Oligocene). Its oldest age is less certain because the age of the base of the S. cf. membranaceus Zone has not been firmly established. Preliminary estimates indicate its base at 32.9, based on a possible duration of 1 Ma for the underlying T. boreale Zone. The restricted dinocyst assemblages in the T. boreale Zone indicate that the T. boreale Zone may equate with a sharp cooling phase in the earliest Oligocene (Figure 5), so that its 1 Ma duration is calculated from its base at the Eocene-Oligocene boundary at 33.9 Ma. This gives a minimum duration for the hiatus between the Oligocene and Miocene sections of the well of 12.4 Ma (28.4 minus 16 Ma) and a possible maximum duration of 17.9 Ma (32.9 minus 15 Ma). The hiatus between the Miocene and Oligocene and Miocene section in the COST well corresponds to Seismic Event B and the hiatus between Bear Lake and Stepovak formations (see discussion of the S. cf. membranaceus Zone for details).

9555 ft: 33.5 Ma based on the youngest global occurrence of the dinocyst Areosphaeridium diktyoplokus (Brinkhuis, 1994; Brinkhuis & Visscher, 1995; and the University of Utrecht dinocyst summer course held in Urbino, Italy: http://www.uu.nl/EN/faculties/science/organisation/depts/biology/research/chairs/BiomarineSciences/People/Henk_Brinkhuis/Pages/default.aspx.

The bioevent also characterizes the top of the Priabonian type section as originally defined at Priabona in northern Italy, but there have been recommendations to redefine the top of the Priabonian, and hence the top of the Eocene at the deeper paleowater Massignano section in central Italy, primarily tied into the occurrences.
of Hantkeninid foraminifera, and this would place the top of the Eocene slightly below the last occurrence of *A. diktyoplokus*. Irrespective of this possible redefinition, the youngest occurrence and hence the top of the *A. diktyoplokus* Zone indicates an absolute age of 33.5 Ma for the COST well at 9555 ft as there is no evidence of a hiatus immediately above this horizon in the well.

10,380 ft: Possible minimum duration of missing section in hiatus at 10,380 ft of 3.2 Ma based on Priabonian strata no older than 37.2 Ma overlying Lutetian strata with fungal spore markers no younger than 40.4 Ma. This corresponds to Seismic Event D and the break between the Stepovak and Tolstoi formations.

15,420 ft: 48.6 Ma based on the youngest occurrence of the dinocyst *Charlesdowniea columna* at the top of the Ypresian.
6. BIOSTRATIGRAPHIC RESULTS: N. ALEUTIAN SHELF COST NO. 1 WELL

6.1 INTRODUCTION

1. This section of the report discusses the biostratigraphic succession interpreted from the palynological data shown on the stratigraphic and species occurrence charts in Appendices A and B of the report.

2. The zonal subdivision of the well is documented below in order of increase depth, using the zonal scheme shown in Figure 10.

3. Each zonal and subzonal name is followed by its zonal abbreviation and age, for example, the Spiniferites frigidus Zone PL2 (Pleistocene).

4. A confidence level is assigned to each zone in square brackets from 1 (highest) to 4 (lowest). Zonal bioevents listed within each zone or subzone are followed by the type of microfossil in curved brackets, i.e., (A) algae, (D) dinocysts, (F) fungi, (P) pollen, and (S) spores.

5. The zone characterized by each species’ highest occurrence is shown in square brackets [---] after the species name and microfossil type; for example:

 1390 ft Filisphaera filifera (D) [PL2]

 In this example the species Filisphaera filifera is a dinocyst that has its highest occurrence at 1390 ft and in the North Pacific – Bering Sea zonal scheme defined in this report and its highest occurrence characterizes Zone PL2 (Pleistocene Spiniferites frigidus Zone).
6.2 BIOSTRATIGRAPHIC SUBDIVISION: N. ALEUTIAN SHELF COST 1 WELL

1390 ft: highest examined sample

1390-1590\(^{(1)}\) ft: *Nematosphaeropsis lemniscata* Zone PL1 (early Pleistocene) [1]
(1) Depth adjusted from the cuttings sample at 1650-1740 ft to the top of the Milky River Formation at 1590 ft.

Diagnostic palynomorph bioevents:

<table>
<thead>
<tr>
<th>Depth</th>
<th>Palynomorphs</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1390 ft</td>
<td>Brigantedinium spp. (D) [PL2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filisphaera filifera (D) [PL2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halodinium major (A) [PL2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halodinium minor (A) [PL2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spiniferites ramosus (D) [PL2]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Xandarodinium variabile (D) [PL1]</td>
<td></td>
</tr>
<tr>
<td>1470 ft</td>
<td>Selenopemphix nephroides (D) [PL1]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spiniferites frigidus (D) [PL2]</td>
<td></td>
</tr>
</tbody>
</table>

Absolute age assignment:

1390 ft: highest examined sample in the *Nematosphaeropsis lemniscata* Zone PL1 Zone (zone equivalent to Calabrian = 0.78 to 1.8 Ma) (1780 ft sample age > 0.78 Ma)

Discussion: Eight algal and dinocyst species confirm the Pleistocene age of this interval, with *Selenopemphix nephroides* and *Xandarodinium variabile* indicating a relatively confident assignment [level 1] to the early Pleistocene *Nematosphaeropsis lemniscata* Zone.

Paleobathymetry: The following paleobathymetric depths were given for this interval (1390-1590) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given below in the section on ‘paleoenvironment’.

- 1390-1560 ft: middle to outer neritic
• 1560-1590 ft: outer neritic

Paleoenvironment: Marine dinocysts comprise 3% to 5% of the total palynomorph assemblages), with rare brackish-freshwater algal species of *Halodinium* probably being transported to the marine depositional site, and the relatively low abundance of dinocysts is probably due to their dilution by nonmarine miospores also being transported to the depositional site. Protoperidiniacean species comprise more than 50% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance, as discussed in Bujak (1984) and Section 2.3 of this report. However, it is probable that the North Aleutian Shelf area drilled by the COST well was not the center of high productivity as a larger number of protoperidiniacean cyst remains would have been deposited in sediments at the COST well location. It is more likely that the areas of high productivity were some distance away and the cysts were transported to the COST well location, or that a relatively small number of protoperidiniacean dinoflagellates occupied the COST well location and formed cysts that sank to the sea-floor and were incorporated into the COST well sediments. As discussed below, Protoperidiniacean cysts are the most common dinocyst type, but occur in relatively low number compared to miospores throughout the COST well middle Miocene to Pleistocene section, so that a similar scenario is suggested for all of this time.

The miospore assemblages in this interval reflect a climate similar to today’s, comprising long-ranging spores and gymnosperm data plus low-diversity angiosperm pollen including *Betulaceoipollenites* (birch) and *Alnipollenites* (alder). *In situ* thermophilic species are absent and the rare specimens that do occur are interpreted to be reworked.

Correlation with other microfossil zones: The following siliceous microfossil zones have their tops in the early Pleistocene *N. lemniscata* Zone as documented in Turner *et al.* (1988):

1380 ft *Actinocyclus oculatus* Zone (Pleistocene)

Siliceous microfossil zonal markers bioevents (J. Larson in Turner *et al.*, 1988):

1380 ft *Rhizosolenia curvirostris* (no samples examined above 1380 ft)

Thalassiosira nidulus (no samples examined above 1380 ft)

1470 ft top *Actinocyclus oculatus*

top Pseudopyxilla americana
Other microfossils: High-latitude, cold-water shelf foraminifera occur with no observed age-diagnostic species. No ostracodes or calcareous nannofossils were recovered from this interval of the well.

Seismic and lithostratigraphy: The early Pleistocene N. lemniscata Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Lower part of the ‘unnamed Quaternary unit which occurs from 0-1590 ft
- Middle part of Seismic Sequence I which occurs from 0-2510 ft
- Middle part of lithostratigraphic Unit A which occurs from 1000-2510 ft

1590(1)-2370 ft: Impagidinium pacificum Zone P2 (latest early to late Pliocene) [1]

(1) Depth adjusted from the cuttings sample at 1650-1740 ft to the top of the Milky River Formation at 1590 ft.

Diagnostic palynomorph bioevents:

1560 ft Lejeunecysta fallax (D) [P2]
 Selenopemphix crenata (D) [P2]
 Selenopemphix quanta (D) [P2]

1650 ft Nematosphaeropsis lemniscata (D) [P2]
 Tectatodinium pellitum (D) [P2]

1830 ft Impagidinium pallidum (D) [P2]
 Impagidinium velorum (D) [P2]

2190 ft Impagidinium japonicum (D) [P2]

2280 ft Impagidinium pacificum (D) [P2]

Absolute age assignments:

1590(1): 1.8 Ma for the top of the Impagidinium pacificum Zone P2 Zone as top of zone = top Pliocene (sensu top Gelasian dated as 1.8 Ma).
2010 ft: 2.4 to 2.6 Ma (average age = 2.5 Ma) for the top consistent / in situ occurrence of *Tsugaepollenites* (hemlock), corresponding to intra-P2 cooling event coincident with expansion of Arctic ice sheet.

Discussion: Nine dinocyst species confirm the Pliocene age of this interval, indicating a relatively confident assignment [level 1] to the latest early to late Pliocene *Impagidinium pacificum* Zone.

Paleobathymetry: The following paleobathymetric depths were given for this interval (1590-2370 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given below in the section on ‘paleoenvironment’.

- 1590-1740 ft: outer neritic
- 1740-2160 ft: middle to outer neritic
- 2160-2370 ft: middle neritic

Paleoenvironment: Marine dinocysts occur in all samples from this interval, comprising between 3% and 4% of palynomorphs indicating fully marine deposition, with protoperidiniacean species comprising from 64% to 75% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance. The miospore assemblages are similar to those in the overlying interval and in situ thermophilic species are absent except for the rare specimens that are interpreted to be reworked. However, the highest consistent occurrence of *Tsugaepollenites* (hemlock) within the interval at 2010 ft, is interpreted to correspond to intra-P2 cooling event coincident with expansion of Arctic ice sheet at approximately 2.4 to 3.6 Ma.

Correlation with other microfossil zones: The following siliceous microfossil zones have their tops in the late Pliocene *I. pacificum* Zone as documented in Turner *et al.* (1988):

- 1560 ft *Denticulopsis seminae fossilis* Zone (late part of the late Pliocene)
- 2190 ft *D. seminae fossilis – D. kamtschatica* Zone (early part of the late Pliocene)

Siliceous microfossil zonal markers bioevents (J. Larson in Turner *et al.*, 1988):

- 1560 ft top *Rhizosolenia barboi* (defines top of the *D. seminae fossilis* Zone)
- top *Stephanopyxis horridus*
1760 ft top *Thalassiosira zabelinae*

2190 ft top common *Denticulopsis kamtschatica*

Other microfossils: High-latitude, cold-water shelf assemblage with no observed age-diagnostic species, with faunal abundance decreasing downhole. Ostracodes support general Pliocene age for this interval (Elizabeth Browers, written communication to John Larson, op. cit).

Seismic and lithostratigraphy: The latest early to late Pliocene *I. pacificum* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):

- Middle and upper part of the Milky River Formation, which occurs from 1590-2510 ft (as defined in the present study)
- Lower part of Seismic Sequence I which occurs from 0-2510 ft
- Middle part of lithostratigraphic Unit A which occurs from 1000-2510 ft

2370-2510(2) ft: Spiniferites ovatus Zone P1 (early Pliocene) [2]

(2) Depth adjusted from the cuttings sample at 2550-2640 ft to Seismic Horizon A, the top of Seismic Sequence II, and the top of the Bear Lake Formation at 2510 ft.

Diagnostic palynomorph bioevents:

2370 ft *Spiniferites ovatus* (D) [P1]

Absolute age assignment:

2370 ft: 3.5 Ma for the top common / abundant occurrence of *Tsugaepollenites* (hemlock), coincident with early development of Arctic ice sheet.

2370 ft: Approximate 3.5 Ma for the top of the *Spiniferites ovatus* Zone.

Discussion: The early Pliocene top *Spiniferites ovatus* Zone is defined primarily on the highest occurrence of the dinocyst *S. ovatus*, which occurs in low numbers in both samples from this interval. The sample at 2370 ft marks the highest common occurrence of *Tsugaepollenites* (hemlock). This is correlated with early development of Arctic ice sheet between 6.5 to 7.5 Ma and slightly warmer climate in the North Aleutian shelf region than that of the overlying
interval. Protoperidiniacean species comprise more than 67% to 73% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance, as discussed in the section of the report on the Pleistocene *N. lemniscata* Zone.

Paleobathymetry: The following paleobathymetric depths were given for this interval (2370-2510 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given below in the section on ‘paleoenvironment’.

- 2370-2510 ft: inner to middle neritic

Paleoenvironment: Marine dinocysts occur in both samples from this interval, comprising approximately 3% of palynomorphs indicating marine deposition, with protoperidiniacean species comprising from 67% to 73% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance. The miospore assemblages are similar to those in the overlying interval but the highest common to abundant occurrence of *Tsugaepollenites* (hemlock) is interpreted to correspond to early development of Arctic ice sheet at approximately 3.5 Ma.

Correlation with other microfossil zones: The following siliceous microfossil zones have their tops in the early Pliocene *S. ovatus* Zone as documented in Turner *et al.* (1988):

- 2370 ft *D. kamtschatica* Zone Subzone ‘b’ (early Pliocene)

Siliceous microfossil zonal markers bioevents (J. Larson in Turner *et al.*, 1988):

- 2370 ft top *Cosmiodiscus insignis*

- top *Coscinodiscus temperi*

Other microfossils: Extremely rare high-latitude, cold-water shelf assemblage of foraminifera occur with no observed age-diagnostic species. Ostracodes are absent from this interval of the well.

Seismic and lithostratigraphy: The early Pliocene *S. ovatus* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):

- Lower part of the Milky River Formation which occurs from 1590-2510 ft (as defined in the present study)

- Lower part of Seismic Sequence I which occurs from 0-2510 ft
Lower part of lithostratigraphic Unit A which occurs from 1000-2510 ft

The base of the Zone corresponds to Seismic Event A

2510(2)-4080 ft: *Hystrichosphaeropsis variabilis* Zone M3 (late Miocene) [3]

(2) Depth adjusted from the cuttings sample at 2550-2640 ft to Seismic Horizon A, the top of Seismic Sequence II, and the top of the Bear Lake Formation at 2510 ft.

2510(2)-3090 ft: *H. variabilis* Zone Subzone M3b (late Miocene) [2]

Diagnostic palynomorph bioevents:

2550 ft *Spiniferites aquilonius* (D) [M3b]

2730 ft *Hystrichosphaeropsis variabilis* (D) [M3b]
Leujeunecysta globosa (D) [M3b]

Absolute age assignment:

2510 ft: Approximate 3.4 to 5.3 Ma hiatus corresponding to seismic horizon A as the lowermost Pliocene is probably absent, assuming constant sedimentation rate in the early Pliocene *Spiniferites ovatus* Zone.

2550 ft: 5.33 Ma for the top of Subzone M3b of the *Hystrichosphaeropsis variabilis* Zone, which correlates with the top Miocene.

2730 ft: 6.5 to 7.5 Ma (average = 6.0 Ma) corresponding to North Pacific climatic optimum CO3 of Barron & Baldauf (1990).

Discussion: Three dinocyst species indicate assignment to the late Miocene *H. variabilis* Zone, indicating a fairly confident assignment [level 2]. The miospore assemblages include an influx of thermophilic angiosperm pollen from 2730-2820 ft, which is interpreted to correspond to North Pacific climatic optimum CO3 of Barron & Baldauf (1990) dated at 6.5 Ma to 7.5 Ma.

Paleobathymetry: The following paleobathymetric depths were given for this interval (2510-3090 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given below in the section on ‘paleoenvironment’.
• 2510-3090 ft: inner to middle neritic

Paleoenvironment: Marine dinocysts occur in all samples from this interval, comprising between 3% and 4% of palynomorphs indicating marine deposition. Protoperidiniacean species comprise up to 70% of the marine dinocysts, reflecting periods of high productivity, often associated with diatom abundance, as discussed in the section of the report on the Pleistocene N. lemniscata Zone.

Correlation with other microfossil zones: The following siliceous microfossil zones have their tops in the late Miocene H. variabilis Zone as documented in Turner et al. (1988):

2670 ft Denticulopsis kamtschatica Zone Subzone ‘a’ (late Miocene)
2970 ft: Denticulopsis hustedtii Zone Subzone ‘b’ (late part of the late Miocene)

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988):

2670 ft base Thalassiosira oestrupii
2870 ft (estimated depth): top Triceratium condecorum
2970 ft base Denticulopsis kamtschatica

Other microfossils: Extremely rare high-latitude, cold-water shelf assemblages of foraminifera occur that are possibly caved from the overlying interval, with no observed age-diagnostic species. Ostracodes occur in isolated intervals and support a general Miocene age for this interval.

Seismic and lithostratigraphy: Subzone M3b of the late Miocene H. variabilis Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

• Upper part of the Bear Lake Formation which occurs from 2510-5675 ft (as defined in the present study)
• Upper part of Seismic Sequence II which occurs from 2510-5675 ft
• Upper part of lithostratigraphic Unit B1 which occurs from 2510-4110 ft

The top of the Subzone corresponds to Seismic Event A.

3090-4080 ft: Hystrichosphaeropsis variabilis Subzone M3a (late Miocene) [1]
Diagnostic palynomorph bioevents:

3090 ft
Hystrichosphaeropsis arctica (D) [M3a]
Operculodinium wallii (D) [M3a]
Operculodinium alsium (D) [M3a]

3180 ft
Spiniferites frigidus (D) [M3a]
Spiniferites hexatypicus (D) [M3a]
Spiniferites reductus (D) [M3a]

3180 ft
Tectatodinium minutum (D) [M3a]

3270 ft
Spiniferites ellipsoideus (D) [M3a]
Spiniferites nortonensis (D) [M3a]

3900 ft
Tuberculodinium rossignolae (D) [M3a]

Absolute age assignment:

3090 ft: Approximate 9 Ma for the top of Subzone M3a of the Hystrichosphaeropsis variabilis Zone.

3990 ft: 10.5 to 11.5 Ma (average = 11.0 Ma) corresponding to North Pacific climatic optimum CO2 of Barron & Baldauf (1990).

3990 ft: 11 Ma corresponding to a minor temperature increase documented by Wolfe (1994).

Discussion: The late Miocene Hystrichosphaeropsis variabilis Subzone M3a is indicated by the highest occurrence of 10 dinocyst species in this interval, indicating a high level of confidence (level 1) for the zonal assignment. The miospore assemblages include an influx of thermophilic angiosperm pollen at 3990 ft, which is interpreted to correspond to North Pacific climatic optimum CO2 of Barron & Baldauf (1990) dated at 10.5 to 11.5 Ma and a minor temperature increase documented in Beringia by Wolfe (1994) at 11 Ma. Protoperidiniacean species generally comprise up to 75% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance, as discussed in the section of the report on the Pleistocene N. lemniscata Zone.
Paleobathymetry: The following paleobathymetric depths were given for this interval (3090-4080 ft) in Sherwood et al. (2006) and Turner et al. (1988), with additional interpretations being given in the discussion below on ‘Paleoenvironment’.

- 3090-3130 ft: inner to middle neritic
- 3130-3310 ft: transitional
- 3310-3900 ft: transitional to inner neritic
- 3900-4080 ft: inner neritic

This has been amended as follows based on observation of marine dinocysts during the present study:

- 3090-3130 ft: inner to middle neritic
- 3130-4080: inner neritic

Paleoenvironment: The presence of marine dinocysts in all samples from this interval indicates marine depositional environments. However, the relative abundance of dinocysts is lower and a larger number of spores occur relative to the lighter and more easily transported angiosperm pollen as compared to the overlying interval. This may have been caused by the transgressive trend noted by Finzel et al. (2009) in coeval strata of the Bear Lake Formation exposed on the central Alaska Peninsula from (from older to younger) [1] nonmarine fluvial channels adjacent to overbank environments and swamps or marshes (corresponding to middle Miocene Subzone M2a), to [2] supratidal freshwater marshes and brackish tidal flats (corresponding to middle Miocene Subzone M2b), to [3] brackish-marine intertidal channels and tidal flats (corresponding to late Miocene Subzone M3a), to marine subtidal channels and sand flats (corresponding to late Miocene Subzone M3b.) This is illustrated in Stratigraphic Chart 2 in Appendix A of the report. Protoperidiniacean species comprise up to 75% of marine dinocysts, reflecting periods of high productivity, often associated with diatom abundance, as discussed in the section of the report on the Pleistocene N. lemniscata Zone.

Correlation with other microfossil zones: The following siliceous microfossil zones have their tops in the late Miocene H. variabilis Zone Subzone M3a, as documented in Turner et al. (1988):

3500 ft Denticulopsis hustedtii Zone Subzone ‘a’ (early part of the late Miocene)
3960 ft ‘Indeterminate zone’ (early to middle Miocene)

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988):

3500 ft base *Coscinodiscus insignis*

top *Stephanopyxis schenckii*

Other microfossils: Above 3900 ft, foraminifera comprise extremely rare high-latitude, cold-water shelf assemblage possibly caved from the overlying interval, with no observed age-diagnostic species. Foraminifera occur in moderate abundance below 3900 ft, with *Porosorotalia* cf. *P. clarki* at 4050 ft supporting a Miocene age. Ostracodes occur in isolated intervals and support a general Miocene age for this interval.

Seismic and lithostratigraphy: Subzone M3a of the late Miocene *H. variabilis* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Middle part of the Bear Lake Formation which occurs from 2510-5675 ft (as defined in the present study)
- Middle part of Seismic Sequence II which occurs from 2510-5675 ft
- Lower part of lithostratigraphic Unit B1 which occurs from 2510-4110 ft

4080-5675 ft: *Operculodinium echigoense* Zone M2 (middle Miocene) [2]

(3) Depth adjusted from the cuttings sample at 5700-5790 ft to Seismic Horizon B, the top of Seismic Sequence III and the top of the Stepovak Formation at 5675 ft.

Discussion: The *O. echigoense* Zone is subdivided into its two subzones in the COST well.

4080-4890 ft: *Operculodinium echigoense* Zone, Subzone M2b (middle Miocene) [2]

Diagnostic palynomorph bioevents:

4080 ft *Impagidinium cornutum* (D) [M3a]

Impagidinium manumii (D) [M3a]

Operculodinium echigoense (D) [M2b]
Absolute age assignment:

4080 ft: 11.61 Ma for the top of Subzone M2b of the *Operculodinium echigoense* Zone, which correlates with the top middle Miocene.

Discussion: The middle Miocene *Operculodinium echigoense* Zone Subzone M2b is defined primarily on the highest occurrence of the dinocyst *O. echigoense*, in the northern North Pacific - Bering Sea region and this species is persistent in this interval, indicating fairly confident (level 2) assignment to the subzone. Protoperidiniacean species comprise up to 50% of marine dinocyst, reflecting periods of high productivity, often associated with diatom abundance, as discussed in the section of the report on the Pleistocene *N. lemniscata* Zone.

Paleobathymetry: The following paleobathymetric depths were given for this interval (4080-4890 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 4080-4110 ft: middle neritic
- 4110-4870 ft: inner to middle neritic
- 4870-4890 ft: inner neritic

Paleoenvironment: Marine dinocysts are rare but persistent in this interval indicating marine depositional environments, but they are strongly diluted by spores and pollen transported to the depositional site. The significance of this is outlined in the previous discussion in this report on the *H. variabilis* Zone Subzone M3a.

Correlation with other microfossil zones: No siliceous microfossil zonal tops were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner *et al.*, 1988):

3960 ft base *Thalassiosira nidulus*

Other microfossils: Foraminifera occur in moderate abundance below 3900 ft, with *Porosorotalia* cf. *P. clarki* at 4050 ft supporting a Miocene age. Ostracodes occur in isolated intervals and support a general Miocene age for this interval.

Seismic and lithostratigraphy: Subzone M2b of the middle Miocene *O. echigoense* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):
• Middle part of the Bear Lake Formation which occurs from 2510-5675 ft (as defined in the present study)
• Middle part of Seismic Sequence II which occurs from 2510-5675 ft
• Lithostratigraphic Unit B2 which occurs from 4110-4870 ft

4890-5675(3) ft: *Operculodinium echigoense* Zone, Subzone M2a (middle Miocene) [2]

(3) Depth adjusted from the cuttings sample at 5700-5790 ft to Seismic Horizon B, the top of Seismic Sequence III, and the top of the Stepovak Formation at 5675 ft.

Diagnostic palynomorph bioevents:

4890 ft \hspace{1em} \textit{Diphyes latiusculum} (D) [M2a]

\hspace{1em} \textit{Gelatia inflata} (D) [O4] single specimen interpreted to be reworked

Absolute age assignment:

4890 ft: \hspace{1em} 14 Ma corresponding to an abrupt temperature decline documented by Wolfe (1994).

4890ft: \hspace{1em} Approximate 14 Ma for the top of Subzone M2a of the *Operculodinium echigoense* Zone, within the middle Miocene.

5160-5340 ft: \hspace{1em} 15 to 16 Ma (average 5200 ft and 15.5 Ma) corresponding to North Pacific climatic optimum CO1 of Barron & Baldauf (1990).

Discussion: The middle Miocene *Operculodinium echigoense* Zone Subzone M2a is defined primarily on the highest occurrence of the dinocyst *D. latiusculum*, in the northern North Pacific - Bering Sea region and this species is persistent in this interval, indicating fairly confident (level 2) assignment to the subzone. A single specimen of *Gelatia inflata* is interpreted to be reworked at 4890 ft, but if in place it would indicate the presence of upper Oligocene strata in the well. The miospore assemblages include an influx of thermophilic angiosperm pollen below between 5160-5340 ft, which is interpreted to correspond to North Pacific climatic optimum CO1 of Barron & Baldauf (1990) dated at 15.5(?) Ma. A marked decrease in thermophilic pollen above 4890 ft is also correlated with the 14 Ma abrupt
temperature decline documented by Wolfe (1994) and the 14 Ma (?) global cooling phase documented by Zachos et al. (2001).

Paleobathymetry: The following paleobathymetric depths were given for this interval (4890-5675 ft) in Sherwood et al. (2006) and Turner et al. (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 4890-5460 ft: inner neritic
- 5460-5675 ft: inner to middle neritic

Paleoenvironment: The presence of rare marine dinocysts in most samples from this interval indicates marine depositional environments, with the marine assemblages being diluted by abundant transported palynomorphs. Interpreted changes in depositional environments during the Miocene are outlined in this report in the discussion on the *Hystrichosphaeropsis variabilis* Zone, Subzone M3a. The relative abundance of protoperidiniacean species shows a marked change through this interval, from 10% in the lowest sample at 5610 ft to 35% in the highest sample at 4890 ft, and then increasing further in the overlying Subzone M2b to up to 50%. As discussed earlier the high relative abundance of protoperidiniacean species reflects periods of high productivity and is often associated with diatom abundance. Gonyaulacacean dinoflagellates are primarily photosynthetic and are not associated with diatom occurrences or blooms, unlike protoperidiniacean dinoflagellates which are primarily carnivorous and have been observed feeding on animal remains and ingesting entire diatoms. Bujak (1984) therefore related the shift from gonyaulacacean-dominance to protoperidiniacean dominance to a significant oceanographic shift of potential significance to petroleum source rocks in the region:

> “Upper Miocene to Recent dinocyst assemblages are dominated by protoperidiniacean cysts which became abundant in the Bering Sea and northern North Pacific at the same time as diatoms because of major changes in oceanic circulation and sedimentation in the Late Miocene.”

The shift from gonyaulacacean to protoperidiniacean dominance may therefore have occurred in the middle Miocene, during deposition of Subzone M2a and this might be explained by the parallel uphole increase in siliceous microfossil prey, including diatoms in the same middle Miocene section of the well.
Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None

Other microfossils: Foraminifera occur in moderate abundance but with no age-diagnostic species. Ostracodes occur in isolated intervals and support a general Miocene age for this interval.

Seismic and lithostratigraphy: Subzone M2a of the middle Miocene O. echigoense Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Lower part of the Bear Lake Formation which occurs from 2510-5675 ft (as defined in the present study)
- Lower part of Seismic Sequence II which occurs from 2510-5675 ft
- Lithostratigraphic Unit B3 which occurs from 4870-5675 ft

5675^(D)-9210 ft: Spiniferites cf. membranaceus Zone O2 (early Oligocene) [3]

(3) Depth adjusted from the cuttings sample at 5700-5790 ft to Seismic Horizon B, the top of Seismic Sequence III, and the top of the Stepovak Formation at 5675 ft.

Diagnostic palynomorph bioevents:

5700 ft Gelatia inflata (D) [O3] highest interpreted in situ occurrences

Spiniferites cf. membranaceus sensu Bujak 1984 (D) [O2]

6330 ft Hystrichostrogylon membraniphorum (D) [O2]

Absolute age assignment:

5675 ft: The youngest established age for the base of the Miocene section in the North Aleutian Shelf COST No. 1 well is 15 Ma and the oldest age is 16 Ma. The youngest age of Oligocene strata immediately below the hiatus at 5675 ft is 28.4 Ma (= top of the lower Oligocene). Its oldest age is less certain because the age of the base of the S. cf. membranaceus Zone has not been firmly established. Preliminary estimates indicate its base at 32.9, based on a possible duration of 1 Ma for the underlying T. boreale Zone. The restricted dinocyst assemblages in the
T. boreale Zone indicate that the T. boreale Zone may equate with a sharp cooling phase in the earliest Oligocene (Figure 5), so that its 1 Ma duration is calculated from its base at the Eocene-Oligocene boundary at 33.9 Ma. This gives a minimum duration for the hiatus between the Oligocene and Miocene sections of the well of 12.4 Ma (28.4 minus 16 Ma) and a possible maximum duration of 17.9 Ma (32.9 minus 15 Ma). The hiatus between the Miocene and Oligocene and Miocene section in the COST well corresponds to Seismic Event B and the hiatus between Bear Lake and Stepovak formations (see discussion of the S. cf. membranaceus Zone for details).

Discussion: The early Oligocene assignment of the S. cf. membranaceus Zone is based on the presence of S. cf. membranaceus at 5700 ft and H. membraniphorum at 6330 ft, with G. inflata also indicating a general Oligocene age for the sample at 5700 ft. The confidence level for the zonal pick is fairly low (= 3) because these and other marine dinocysts are rare throughout the interval, reflecting restricted marine or nonmarine deposition, with no nonmarine palynomorphs presently being known that characterize the zone. Although G. inflata occurs in this interval in the COST well, its stratigraphic range encompasses both the G. inflata and S. cf membranaceus zones in the North Pacific and Bering Sea region, so that its occurrence does not conflict with assignment to the latter zone.

Detterman et al. (1996) defined two members of the Stepovak Formation: an overlying sandstone member, which was deposited on a shallow water shelf, and an underlying siltstone member, which was deposited as a succession of deep-water turbidites. The predominantly shallow water marine to nonmarine deposition of the Stepovak Formation in the COST well would be consistent with an early Oligocene age for the section and correlation with the onshore Sandstone member. However, assignment to the early Oligocene S. cf. membranaceus Zone of the present study is less confident than picks for the overlying Miocene-Pleistocene sections and the possibility that it may be in part late Oligocene cannot be discounted. In this case, part of the Stepovak section in the COST well would be equivalent to the Siltstone member of the Stepovak Formation. It is therefore possible that palynological zones O3 and O2 may be correlative with the sandstone member onshore, whilst zones O1 and E4 may be correlative with the siltstone member.

It may also be relevant that the Stepovak Formation is 2,028 ft thick in the type area onshore (Detterman et al, 1996, p. 47) but 4,705 ft or more at the COST well, indicating a much thicker...
and possibly more complete section in the COST well. This interpretation would suggest that the early Oligocene picks for the well may be too high, but in the absence of other strong biostratigraphic evidence, a low confidence (3) is assigned to the early Oligocene age interpretation of the *S. cf. membranaceus* Zone of this report.

Assignment to the *S. cf. membranaceus* Zone, if correct, indicates a relatively long hiatus between the Stepovak and Bear Lake formations, corresponding to Seismic Event B at 5675 ft, as discussed above.

Paleobathymetry: The following paleobathymetric depths were given for this interval (5675-7900 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given in the discussion that follow on ‘Paleoenvironment’.

- 5675-5860 ft: inner to middle neritic
- 5860-6120 ft: inner neritic
- 6120-6470 ft: transitional
- 6470-7900 ft: nonmarine to transitional
- 7900-8190 ft: transitional to inner neritic
- 8190-9210 ft: nonmarine to inner neritic

This has been amended as follows based on observation of marine dinocysts during the present study:

- 5675-5860 ft: inner to middle neritic
- 5860-6120 ft: inner neritic
- 6120-6330 ft: transitional
- 6330-8190 ft: transitional to inner neritic
- 8190-9210 ft: nonmarine to inner neritic

Paleoenvironment: Marine dinocysts occur sporadically and in low numbers throughout the interval, indicating environments that fluctuated from non marine to inner neritic. Non-thermophilic angiosperm pollen indicating a relatively cool climate characteristic of the Oligocene cold phase, as discussed above.
Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None

Other microfossils: Foraminifera occur in moderate abundance down to 6120 ft and include Rotalia beccarii (equivalent to Ammonia japonica according to J. Larson in Turner et al., 1988), which indicates an Oligocene to earliest Miocene age based on its occurrence in other Bering Sea COST wells. Foraminifera are extremely rare from 6120-7900 ft and become more common below 7900 ft but with no marker species being observed, possibly due to the poor preservation of specimens. In situ ostracodes are extremely rare in this interval and no age-diagnostic species were observed.

Seismic and lithostratigraphy: The early Oligocene S. cf. membranaceus Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Middle and upper part of the Stepovak Formation which occurs from 5675-10,380 ft (as defined in the present study)
- Seismic Sequence III which occurs from 5675-7900 ft
- Upper part of seismic Sequence IV which occurs from 7900-10,380 ft
- Lithostratigraphic Units C1 and C2 which occur from 5675-6470 ft and 6470-7900 ft respectively
- Middle and upper part of lithostratigraphic Unit D1 which occurs from 7900-9555 ft

9210-9555 ft: Trinovantedinium boreale Zone O1 (early Oligocene) [1]

(5) Depth adjusted from the cuttings sample at 9570-9650 ft to the top of lithological sequence D2 at 9555 ft.

Diagnostic palynomorph bioevents:

9210 ft Trinovantedinium boreale (D) [O1]

Phthanoperidinium bennetii (D) [O1]

Phthanoperidinium comatum (D) [O1]
Absolute age assignment: There is little data available at present to indicate the absolute age of the top of the *T. boreale* Zone, although the absence of thermophilic pollen indicates that the entire zone occurs within the Oligocene cold phase and it is possible that the zone corresponds entirely to the marked temperature decrease that followed the 33.5 Ma TEE before temperature recovered slightly in the subsequent part of the Oligocene cold phase.

Discussion: This zone was originally defined by Bujak (1984) in North Pacific – Bering Sea DSDP Leg 19 sites where it is characterized by low-diversity dinocyst assemblages dominated by *T. boreale*. The same situation occurs in the COST well with *T. boreale* as the dominant dinocyst species. *T. boreale* also ranges down into the underlying late Eocene *Areosphaeridium diktyoplokus* Zone, where it is less common and co-occurs with several late Eocene dinocyst species, discussed below.

The zonal assignment is supported by the presence of *Phthyanoperidinium bennetii* and *Phthyanoperidinium comatum*. Data from the Bering Sea and Japanese areas indicate that neither of these species ranges above the earliest Oligocene in the northern North Pacific, but that *P. comatum* ranges to the top of the early Oligocene in the Japanese area due to warmer SST (K. Matsuoka, pers. comm. to J. Bujak), as shown in Figure 10. Both of these species are found in fully marine dinocyst assemblages, but probably have a tolerance of hyposalinity as discussed below.

Paleobathymetry: The following paleobathymetric depths were given for this interval (9210-9555 ft) in Sherwood et al. (2006) and Turner et al. (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 9210-9555 ft: nonmarine to inner neritic

Paleoenvironment: The present study broadly agrees with the environment shown on the bathymetric curve in Sherwood et al. (2006), although marine dinocysts are slightly more abundant than in the overlying interval, indicating environments that were transitional to nearshore marine without an evidence of entirely nonmarine deposition.

Correlation with other microfossil zones: No other microfossil zones were assigned to this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None
Other microfossils: Foraminifera are common in this interval but with no marker species being observed, possibly due to the poor preservation of specimens.

Seismic and lithostratigraphy: The early Oligocene *T. boreale* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):

- Middle part of the Stepovak Formation which occurs from 5675-10,380 ft (as defined in the present study)
- Middle part of seismic Sequence IV which occurs from 7900-10,380 ft
- Lower part of lithostratigraphic Unit D1 which occurs from 7900-9555 ft

9555(5)-10,380 ft: *Areosphaeridium diktyoplokus* Zone E4 (late Eocene) [2]

(5) Depth adjusted from the cuttings sample at 9570-9650ft to the top of lithological sequence D2 at 9555 ft.

Diagnostic palynomorph bioevents:

- 9570 ft *Areosphaeridium diktyoplokus* (D) [E4]
 - *Adnatosphaeridium multispinosum* (D) [E4]
 - *Lentinia serrata* (D) [E4]
 - *Phthanoperidinium levimurum* (D) [E4]
- 9750 ft *Cordosphaeridium gracile* (D) [E4]
 - *Glaphycysta semitecta* (D) [E4]
- 9930 ft *Cordosphaeridium exilimurum* (D) [E4]
 - *Cordosphaeridium inodes* (D) [E4]

Absolute age assignment: The youngest occurrence of *Areosphaeridium diktyoplokus* is a global dinocyst datum that is well established at 33.5 Ma (see discussions and data for example in Brinkhuis, 1994; Brinkhuis & Visscher, 1995; and the University of Utrecht dinocyst summer course held in Urbino, Italy (web address given on page 35). The bioevent also characterizes the top of the Priabonian type section as originally defined at Priabona in
northern Italy; however there have been recommendations, primarily tied into the occurrences of Hantkeninid foraminifera, to redefine the top of the Priabonian, and hence the top of the Eocene, at the deeper paleowater Massignano section in central Italy, that would place the top of the Eocene slightly below the last occurrence of *A. diktyoplokus*. Irrespective of this possible redefinition, the youngest occurrence and hence the top of the *A. diktyoplokus* Zone indicates an absolute age of 33.5 Ma for the COST well at 9555 ft as there is no evidence of a hiatus immediately above this horizon in the well.

Discussion: Although several biomarkers for the late Eocene *Areosphaeridium diktyoplokus* Zone occur in this interval, the level of confidence is downgraded from [1] (highest level of confidence) to [2] because it is possible that the specimens are reworked from the underlying Eocene section of the well, as discussed below.

A late Eocene age assignment was also indicated in BCM ’s 1983 report on the COST well, based primarily on the presence of *Areosphaeridium diktyoplokus*. However, other species recorded as being present in the same interval by BCM do not range into the late Eocene, indicating either reworking or incorrect species identifications. If the reworking interpretation is correct, then it is possible that other specimens such as *A. diktyoplokus* are also reworked, suggesting that the interval is lowermost Oligocene and contains common Eocene reworking. The Eocene – Oligocene boundary would then be coincident with Seismic Horizon D at 10,380 ft.

Assessment of BCM’s species assignments in this interval is therefore crucial in order to determine the age of this interval and whether the dinocyst biomarkers are reworked or in place.

BCM (1983) recorded a species in the conventional core at 9969.3 ft as the peridiniacean dinocyst species *Deflandrea* cf. *D. wetzelli*. *D. wetzelli* (which has now been reassigned to the genus *Cerodinium*) does not range above the Lutetian and, if it were in place and correctly identified, it would indicate the presence of a hiatus at about 9969.3 ft, with lower Oligocene strata directly overlying a middle Eocene (Lutetian section), and both the Bartonian and Priabonian being absent.

No specimens of either *C. wetzelii* or related species that could be assigned to *C. cf. wetzelii* were observed during the present study, and the only peridiniacean dinocyst with similar morphology that occurs in this interval is the species *Trinovantedinium boreale*. *T. boreale*
superficially resembles *C. wetzelli*, but differs in several features including not having pericoels beneath its apical and antapical horns – a feature that is highly characteristic of *C. wetzelli*. *T. boreale* was described for the first time and a new species erected by Bujak in 1984, the year after BCM’s (1983) report on the COST well, and this may explain BCM’s incorrect identification of the specimens of *T. boreale* as *D. cf. wetzelli*.

BCM also recorded dinocysts from this interval that they identified as *Glaphyrocysta exuberans*, which does not range above the Lutetian. No specimens of *G. exuberans* were observed from this interval during the present study, but the distinctive species *Glaphyrocysta semitecta* does occur. *G. semitecta* is a temperature-sensitive species that was erected by Bujak (in Bujak et al., 1980) from the type Bartonian of southern England. It has a diachronous range, reflecting strong SST control, last occurring in the Priabonian in mid to high latitudes such as the North Sea and northern North Pacific - Bering Sea regions, but ranging into the earliest Oligocene in lower latitudes in Tethyan localities including central and northern Italy (Brinkhuis 1994). Its presence in this interval of the COST well is therefore consistent with a late Eocene age assignment and BCM’s record of *G. exuberans* is interpreted to be a misidentification of *G. semitecta*.

Another species considered to be incorrectly indentified in this interval by BCM is *Adnatosphaeridium reticulense* in the conventional core at 9978.1 ft and it is probable that its correct identification is *Adnatosphaeridium multispinosum*, which was observed in the present study and which ranges to the top of the Eocene.

BCM recorded *Apectodinium homomorphum* in the conventional core at 10,328.9 ft. This species forms part of a plexus with related species such as *Apectodinium parvum* intergrading into forms with short horns and spinal ornament. These superficially resemble *T. boreale* and it is possible that BCM’s record of *A. homomorphum* represents specimens of *T. boreale*.

BCM also recorded *Deflandrea cf. D. phosphoritica* in this interval, but no specimens attributable to the distinctive species *D. phosphoritica* were observed in the COST well during the present study.

In summary, data from the present study and the species identifications discussed above are consistent with a late Eocene (Priabonian) assignment for the interval from 9555-10,380 ft and this interpretation consistent with paleoenvironmental interpretations based on the palynomorph assemblages in the interval.
Paleobathymetry: The following paleobathymetric depths were given for this interval (9555-10,380 ft) in Sherwood et al. (2006) and Turner et al. (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 9555-10,230 ft: inner to middle neritic
- 10,230-10,380 ft: transitional to inner neritic

This has been amended as follows based on observation of marine dinocysts during the present study:

- 9555-10,380 ft: inner to middle neritic

Paleoenvironment: The palynological succession in this interval shows evidence of upward shallowing, with fully marine dinocysts becoming less common upwards and brackish-tolerant species of Phthanoperidinium and the fresh to brackish water alga Paralecaniella indentata becoming relatively more common. This is consistent with strong evidence for a global glacioeustatic sea-level fall associated with the Terminal Eocene Event (TEE). The TEE is often characterized by a hiatus or a shift towards less marine conditions around basin margins. The TEE began with increased development of the Antarctic Circumpolar Current (ACC) due to plate tectonic separation of the Antarctic landmass from South America and Australasia. Increased ACC then triggered the onset of vigorous, oxygen-rich deep-water circulation, which then sequestered large amounts of CO2 at the Eocene/Oligocene transition, with atmospheric levels falling below 1000 ppm. The reduced pCO2 resulted in major Antarctic glaciation and glacioeustatic sea-level fall. At the same time, the more vigorous deep-water circulation caused bottom-water scouring and a corresponding seismic event extending, for example, into the North Atlantic. It is therefore possible that the regression indicated by palynology in the interval from 10,380 ft to 9555 ft was related to the TEE, although local tectonic factors may have also contributed.

Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None

Other microfossils: Foraminifera are common in this interval but with no marker species being observed, possibly due to the poor preservation of specimens. Ostracodes are very rare
and probably represent caved specimens. Rare echinoid fragments and pyritised diatoms occur but are not age-diagnostic.

Seismic and lithostratigraphy: The late Eocene *A. diktyoplokus* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):

- Lower part of the Stepovak Formation which occurs from 5675-10,380 ft (as defined in the present study)
- Lower part of seismic Sequence IV which occurs from 7900-10,380 ft
- Lithostratigraphic Unit D2 which occurs from 9555-10,380 ft

The base of the Zone corresponds to Seismic Event D at 10,380 ft.

10,380-15,420 ft: Diphyes colligerum Zone E2 (middle Eocene) [2]

Discussion: The *Diphyes colligerum* Zone E2 Zone is separated in the COST well into late Lutetian Subzone 2b from 10,380-11,820 ft and the early Lutetian Subzone 2a from 11,820-15,420 ft.

10,380-11,820 ft: Diphyes colligerum Zone E2 Subzone 2b (middle Eocene) [2]

Diagnostic palynomorph bioevents:

10,380 ft *Pesavis tagluensis* (F) [E3]

Striadioporites sanctaebargarae (F) [E2b]

10,470 ft single questionable *Pesavis* sp. A, Ioannides & McIntyre 1980 (F) [E2a]

Absolute age assignment: Assignment to the middle Eocene *Diphyes colligerum* Zone E2 Subzone 2b is based on fungal spores and the pollen *Pistillipollenites mcgregorii* with reference to their ranges established by unpublished and confidential studies on Arctic, North Pacific and Norwegian-Greenland sections. These indicate their relatively synchronous ranges across the entire area with little or no diachronism due to temperature gradients within the late part of the Lutetian. This interpretation indicates that the Bartonian is absent from the COST well, indicating the presence of a hiatus with a minimum duration between the Priabonian that
has a base established at 37.2 Ma and the top of the Lutetian at 40.4 Ma. This minimum duration for the hiatus of 3.2 Ma corresponds to Seismic Event D 10,380 ft between seismic sequences III and IV, and the break between the Stepovak and Tolstoi formations.

No major glacioeustatic sea-level fall is known during the late Lutetian and Bartonian and it is probable that the hiatus reelects local tectonic-volcanic events rather than global glacioeustacy. This is supported by the following information summarized by Kirk Sherwood (personal communication to J. Bujak, November 2009):

“According to Detterman et al (1996, p. 42), the Tolstoi Formation ranges from Late Paleocene (~59 Ma?) to Mid-Eocene in age. Offshore, the basement horsts in the North Aleutian basin began to rise at this time, and the Tolstoi is the principal fill in the intervening grabens. Onshore, the Tolstoi is overlain unconformably (in both cases) by either the 30-40 Ma Meshik volcanics or the Oligocene Stepovak Formation (Detterman et al, 1996, p. 40-41).

At about 50 Ma, the reorganized interactions with the Kula and Pacific plates produced a new mid-ocean Aleutian volcanic arc (previously located along the Bering shelf margin) and initiated the strike-slip faulting through the Bering shelf that controlled the subsidence and block faulting in the North Aleutian, St. George, and Navarin basins (Worrall, 1991, fig. 22). The oldest rocks found in the modern Aleutian arc are about 46-55 Ma (Jicha et al., 2006; Scholl et al., 1987) and this is used to establish the age of origin of the arc in its present location. However, based upon onshore age data for the Tolstoi Formation (Detterman et al, 1996, p. 42), the sediment fill in the North Aleutian basin can be inferred to be a little older, extending back into the late Paleocene (~59 Ma).

A major outpouring of volcanic rocks and related intrusives occurred across the Alaska Peninsula from 22-48 Ma, with most dates falling in the range from 30-40 Ma. This event is referred to as the “Meshik arc” (Wilson 1985) and the volcanics are called the Meshik Formation. One large Meshik volcanic center was sited in the eastern part of the North Aleutian basin and divides the basin into two subbasins. Sherwood et al. (2006, figs. 18, 19). The volcanic and tectonic activity associated with the Meshik arc may well be the driver for the 37.2-40.4 Ma (Late Eocene) uplift and erosion event (seismic horizon D) at 10,380 ft md in the COST well”
Discussion: If the single questionable specimen of *Pesavis* sp. A, Ioannides & McIntyre 1980 at 10,470 ft is in place and correctly identified, it would indicate penetration of early Lutetian Subzone 2a at 10,470 ft. However, the preferred interpretation is that it is reworked based on its corroded preservation which contrasts with the good preservation of the *in situ* assemblage.

Paleobathymetry: The following paleobathymetric depths were given for this interval (10,380-11,820 ft) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 10,380-10,590 ft: transitional to inner neritic
- 10,590-10,830 ft: nonmarine to transitional
- 10,830-11,820 ft: nonmarine

Paleoenvironment: J. Larson (personal communication to J. Bujak, November 2009) reviewed evidence for marine deposition in the Tolstoi Formation:

“Proceeding downward in the section, the last vestiges of marine environment (transitional marine) down to 10,830 feet on the paleoenvironmental curve are based on an occurrence of *Ostrea* (oysters) in the conventional core at 10,326.2-10,333.3 and on sporadic very rare foramin occurrences (*Cribronion* sp?, *Textularia*?? (fragment), *Elphidium*? (fragment) and *Elphidiella* sp.) in the ditch samples. *Elphidium* sp. was the last unfragmented foram observed, at 10,590’. An *Elphidium*? fragment occurs at 10,710’.

Below this horizon, foraminiferal evidence becomes exceedingly rare and ultimately disappears altogether. Caving or reworking of foram material seems likely. At 11,030-11,040’ there was a fragmentary internal mold. At 11,700’ a very worn fragment occurs that is tentatively assigned to *Cyclammina* and at 11,910’ a possible *Haplophragmoides* fragment occurs. Sidewall cores in the 12,284’ to 12,947’ interval yielded fine arenaceous tubules of uncertain affinity (12,284’ and 12,375’), and a crushed possible foraminiferal test, plus a possible Rotalid fragment at 12,437’. A sand-cast/mold of a quinqueloculinid or a globobuliminid foraminifera was observed at 12,947’ and the deepest potential foraminifera fragment observed (*Elphidiella*?) is in the cuttings sample at 13,500-13,530’. Molluscan fragments were noted at 15,000-15,060’, 16,080-140’ and 16,470-16,560’.”
There is no confident evidence from the present study to indicate the presence of marginal marine or marine strata in this interval. Rare dinocysts observed in the uppermost part of the section are not age-diagnostic and may be caved from the overlying upper Eocene interval.

Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner *et al.*, 1988): None

Other microfossils: Foraminifera are rare in this interval and no specimens were observed below 10,760 ft except for probably caved specimens.

Seismic and lithostratigraphy: Subzone 2b of the middle Eocene *D. colligerum* Zone corresponds to the following seismic and lithostratigraphic units of Sherwood *et al.* (2006) and Turner *et al.* (1988):

- Upper part of the Tolstoi Formation penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Upper part of seismic Sequence V penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Upper part of lithostratigraphic Unit E which occurs from 10,380-15,620 ft

The top of the Zone corresponds to Seismic Event D at 10,380 ft.

11,820-15,420 ft: Diphyes colligerum Zone E2 Subzone 2a (middle Eocene) [3]

Diagnostic palynomorph bioevents:

11,820 ft *Pesavis* sp. A of Ioannides & McIntyre, 1980 (F) [E2a]

12,450 ft *Ctenosporites wolfei* (F) [E2a]

Discussion: Assignment to the *Diphyes colligerum* Zone Subzone 2a is indicated by the presence of the fungal spores *Pesavis* sp. A of Ioannides & McIntyre (1980) and *Ctenosporites wolfei*. As with the overlying Subzone 2b, in the absence of *in situ* dinocysts and age-diagnostic miospores, assignment to Subzone 2a is based on fungal spores and their ranges established by unpublished and confidential studies on Arctic, North Pacific and Norwegian-Greenland sections.
Paleobathymetry: The following paleobathymetric depths were given for this interval (11,820-15,420 ft) in Sherwood et al. (2006) and Turner et al. (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 11,820-15,420 ft: nonmarine

Paleoenvironment: There is no evidence from the present study to indicate the presence of marginal marine or marine strata in this interval.

Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.

Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None

Other microfossils: Other microfossils: Extremely rare radiolaria occur within the Eocene section of the well, but no age-diagnostic forms were observed.

Seismic and lithostratigraphy: Subzone 2a of the middle Eocene D. colligerum Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Middle part of the Tolstoi Formation penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Middle part of seismic Sequence V penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Lower (but not the lowest) and middle part of lithostratigraphic Unit E which occurs from 10,380-15,620 ft

15,420-17,155 ft (TD): Charlesdowniea columna Zone E1 (early Eocene) [2]

Diagnostic palynomorph bioevents:

15,420 ft Charlesdowniea columna (D) [E1]
15,600 ft Areoligera senonensis (D) [E1]

Absolute age assignment:

15,420 ft: 48.6 Ma based on the youngest occurrence of the dinocyst Charlesdowniea columna at the top of the Ypresian.
Discussion: The dinocyst *C. edwardsii* is restricted to the Pacific – Australasian region, but is very similar in morphology to *Charlesdowniea columna* and some authors consider that *C. columna* and *C. edwardsii* are conspecific. *C. columna* has widespread occurrences in the circum North Atlantic region, including northwest Europe where its youngest occurrence is well established at 48.6 Ma almost at to the top of the Ypresian. The range of *C. edwardsii* is less well established, but there is no reliable evidence to indicate its presence in middle Eocene strata in the Northern Hemisphere. The range of *Areoligera senonensis* is less well-resulting in intergradation within the *Areoligera coronata-medusetiformis-senonensis* plexus leading to confused speciation in the literature. Assignment to the early Eocene *C. columna* Zone is therefore based on the occurrence of *C. columna* at 15,420 ft.

Although the lowest part of the well, from 15,610-17,155 ft (TD) is included in the early Eocene *C. columna* Zone, it is possible that it includes Paleocene strata because no palynological bioevents were observed in that section of the well to indicate either an Eocene or a Paleocene age.

Paleobathymetry: The following paleobathymetric depths were given for this interval (15,420-17,155 ft: TD) in Sherwood *et al.* (2006) and Turner *et al.* (1988), with additional interpretations being given in the discussion that following on ‘Paleoenvironment’.

- 15,420-17,255 ft (TD): nonmarine

This has been amended as follows based on observation of marine dinocysts during the present study:

- 15,420-15,690 ft: nonmarine to transitional
- 15,690 ft-17,255 ft (TD): nonmarine

Paleoenvironment: *C. columna* and *A. senonensis* both represent species that were probably hyposalinity-tolerant, so that their presence does not necessarily indicate fully marine conditions. Their presence in the mudstone between approximately 15,420 ft and 15,610 ft may therefore reflect marginal marine conditions, possibly associated with tidal mud flats, embayments or brackish water lagoons, or alternatively they may have been transported to a nonmarine location by storm surges.

Correlation with other microfossil zones: No other microfossil zones were recognized in this interval.
Siliceous microfossil zonal markers bioevents (J. Larson in Turner et al., 1988): None

Other microfossils: None

Seismic and lithostratigraphy: The early Eocene C. columna Zone corresponds to the following seismic and lithostratigraphic units of Sherwood et al. (2006) and Turner et al. (1988):

- Lower part of the Tolstoi Formation penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Lower part of seismic Sequence V penetrated in the COST well which occurs from 10,380-17,155 ft (TD)
- Lowest part of lithostratigraphic Unit E which occurs from 10,380-15,620 ft, and lithostratigraphic Units F and G which occur from 15,620-16,652 ft and 16,652-17,155 ft (TD) respectively.
7. LITHOSTRATIGRAPHY AND SEISMIC SEQUENCES

7.1 LITHOSTRATIGRAPHIC PICKS

The following lithostratigraphic picks are based on a consensus reached by John Larson and Kirk Sherwood of the Alaskan MMS, Anchorage (pers. comm.) and the present study.

0 ft unnamed Quaternary
1590 ft Milky River Formation
2510 ft Bear Lake Formation
5675 ft Stepovak Formation
10,380 ft Tolstoi Formation
17,155 ft Total Depth in Tolstoi Formation

7.2 SEISMIC SEQUENCE PICKS

The following seismic stratigraphic picks are based on data documented in Sherwood et al. (2006).

0 ft Seismic Sequence I

--Seismic Horizon A--
2510 ft Seismic Sequence II

--Seismic Horizon B--
5675 ft Seismic Sequence III

--Seismic Horizon C--
7900 ft Seismic Sequence IV

--Seismic Horizon D--
10,380 ft Seismic Sequence V
8. PALEOEBATHYEMETRIC LISTING

Paleobathymetry: The following paleobathymetric depths were given for this interval in Sherwood et al. (2006) and Turner et al. (1988), with additional paleoenvironmental interpretations being given in discussion of the individual zones in Section 6 of this report on ‘Biostratigraphic Results’:

- 1390-1560 ft: middle to outer neritic
- 1560-1740 ft: outer neritic
- 1740-2160 ft: middle to outer neritic
- 2160-3000 ft: middle neritic
- 3000-3130 ft: inner to middle neritic
- 3130-3310 ft: transitional
- 3310-3900 ft: transitional to inner neritic
- 3900-4080 ft: inner neritic
- 4080-4110 ft: middle neritic
- 4110-4870 ft: inner to middle neritic
- 4870-5460 ft: inner neritic
- 5460-5860 ft: inner to middle neritic
- 5860-6120 ft: inner neritic
- 6120-6470 ft: transitional
- 6470-7900 ft: nonmarine to transitional
- 7900-8190 ft: transitional to inner neritic
- 8190-9555 ft: nonmarine to inner neritic
- 9555-10,230 ft: inner to middle neritic
- 10,230-10,590 ft: transitional to inner neritic
- 10,590-10,830 ft: nonmarine to transitional
- 10,830-17,155 ft (TD): nonmarine
The paleobathymetric depths listed above from Sherwood et al. (2006) and Turner et al. (1989) are amended below to include new paleoenvironmental interpretations discussed in the individual zones in the Sections of this report on ‘Biostratigraphic Results’:

- 1390-1560 ft: middle to outer neritic
- 1560-1740 ft: outer neritic
- 1740-2160 ft: middle to outer neritic
- 2160-3000 ft: middle neritic
- 3000-3130 ft: inner to middle neritic
- 3130-4080: inner neritic
- 4080-4110 ft: middle neritic
- 4110-4870 ft: inner to middle neritic
- 4870-5460 ft: inner neritic
- 5460-5860 ft: inner to middle neritic
- 5860-6120 ft: inner neritic
- 6120-6330 ft: transitional
- 6330-8190 ft: transitional to inner neritic
- 8190-9555 ft: nonmarine to inner neritic
- 9555-10,380 ft: inner to middle neritic
- 10,380-10,590 ft: transitional to inner neritic
- 10,590-10,830 ft: nonmarine to transitional
- 10,830-15,420 ft: nonmarine
- 15,420-15,690 ft: nonmarine to transitional
- 15,690 ft-17,155 ft (TD)
9. VISUAL KEROGEN ANALYSIS OF POSSIBLE AMORPHOUS SAPROPEL IN KEY INTERVALS (TABLE 3)

Turner et al. (1988, fig. 93, p. 187) reviewed the North Aleutian Shelf COST No. 1 well kerogen data of Dow (1983, in Robertson Research, 1983), who reported amorphous kerogen with some values exceeding 40% of the total amorphous-exinite-vitrinite-inertinite mix in the interval from 15,620-17,155 ft. Based on Dow’s description of relatively high amounts of amorphous kerogen, Sherwood et al., 2006, p. 24-26 informally termed the section from 15,620-17,155 ft as the “amorphous interval”.

Amorphous sapropelic kerogen sensu stricto is a primary source for liquid hydrocarbons. It is typically formed by algae, and primarily comprises the remains of marine phytoplankton in oil-prone source rocks such as the Kimmeridgian Clay of the North Sea and the Miocene Monterey Formation of California, although it may be occasionally formed in freshwater bodies by non-marine algae in other regions. Its possible presence as reported by Dow (1983) is therefore crucial for assessing the hydrocarbon potential of the COST well as its common occurrence would significantly increase the oil potential of the North Aleutian Basin.

Marine microfossils are absent or extremely rare in the COST well “amorphous interval” and the presence of relatively common amorphous kerogen in the interval is inconsistent with both pyrolysis and elemental data shown in Turner et al. (1988, fig. 93). Robertson Research (1983) also noted this discrepancy and speculated that the kerogen documented as amorphous material represents the oxidized relicts of original amorphous kerogen or alternatively that the kerogen was incorrectly identified by Dow (1983).

Flett (in Turner et al., 1988, p. 191) and Dow (1983) also speculated that non-algal material was a possible origin for the “amorphous” kerogen in this interval as a possible way to reconcile the conflicting geochemical data.

Bujak et al. (1977a, b, 1978, 1979) undertook visual kerogen analyses using transmitted light microscopy in more than 100 wells from the Canadian east coast Scotian Shelf, Grand Banks and Labrador Shelf. These authors noted the difficulty in sometimes distinguishing between true amorphous sapropelic kerogen and the highly fragmented and finely disseminated remains of plant material, including cuticle generally classified within their grouping of “herbaceous kerogen”.
Bujak et al. (op. cit.) also noted that finely disseminated herbaceous kerogen could be distinguished from amorphous sapropelic by careful observation under high power transmitted light microscopy. Under high power and with oil-immersion of the microscope objective, the original structure of herbaceous kerogen can be discerned as distinct walls with angular structure surrounding the finely disseminated herbaceous material. This contrasts with the fully amorphous character of sapropelic kerogen which reflects its origin from the semi-liquid contents of algal cells.

Distinguishing the two types of kerogen is also aided by fluorescence microscopy which is discussed by Bujak & Davies (1982a, b) and illustrated in Plate 1 of the present report. This technique can be used to continuously observe the kerogen in the same field of view under both normal transmitted light and reflected fluorescence emission and therefore provides a practical and rapid method to determine kerogen type.

The combination of normal transmitted light and fluorescence microscopy was therefore used in the present study of the COST well and indicated that no amorphous sapropelic kerogen, or only very small amounts (less than 5%), occur in the “amorphous interval”, which in contrast contains relatively high amounts of finely disseminated herbaceous material. This indicates that the interval is primarily gas prone with little potential for sourcing oil.

Results of the kerogen analysis of this interval are shown in Table 3, which uses the four-fold kerogen classification of Bujak et al. (op. cit.), plus the addition of “resinous kerogen” discussed in the following section of this report.
10. COMPOSITION OF COALS WITH REPORTED HIGH HI VALUES (TABLE 4)

Table 4 lists sidewall and conventional core samples with a reported Hydrogen Index (HI) exceeding 150 by Dow (1983, in Robertson Research, 1983) and Exlog (1983). Most of the samples contain coals.

It is possible that the high HI values observed in coals from the middle and lower parts of the well result from the coals including algal material. In order to confirm whether ‘algal coals’ occur at these horizons, kerogen analyses and the determination of major palynomorph groups were undertaken on coal fragments picked and processed from the intervals and the results are presented in Table 3. The following categories of kerogen type were recognized:

- resin
- amorphous sapropelic material
- herbaceous kerogen, including plant cuticle and cells
- wood
- inertinite, representing black opaque kerogen resulting from either high thermal alteration or oxidation which may be associated with weathering

The following palynomorph types were determined:

- saccate gymnosperm pollen including bisaccate pollen and *Tsugaepollenites*
- angiosperm pollen
- spores
- *Taxodiaceaepollenites* pollen
- fungal remains
- miscellaneous algae listed on the range chart included with this report
- dinoflagellate cysts (dinocysts)

These data indicate that algal remains are absent or very rare in all of the examined samples, indicating that the high HI values previously recorded are not due to the presence of algal material.
Resin is relatively abundant in several intervals of the well, and may be a possible source for waxy oil source in the Canadian Beaufort Mackenzie Basin as it is identical to the kerogen classified as ‘resinite’ by Snowden (1980), who suggested that it might be a possible waxy oil source in the Canadian Beaufort Mackenzie Basin. Common to abundant resin is confined to the Tolstoi and Stepovak Formation sections of the COST well and corresponds to previously reported high HI values in the sidewall core at 10,832.0 ft and the cuttings sample at 15,420-15510 ft which both contain 40% resin.
11. REFERENCES

Robertson Research (U.S.), Inc., see Dow, 1983.

12. ACKNOWLEDGEMENTS

The author is grateful to John Larson and Kirk Sherwood of the Department of the Interior Minerals Management Service, Alaska Outer Continental Shelf Region in Anchorage, Alaska, for providing their advice and expertise relevant to the present study. The author is also grateful to Emily Finzel of the Department of Earth and Atmospheric Sciences, Purdue University, Indiana, and James White of the Geological Survey of Canada, Calgary, for helpful discussions and for permission to reproduce three figures from Finzel et al. (2009) as Figures 2, 3, and 4 in the present report.
1st stage: Proto-Tasmanian Seaway
55-56 Ma: Increased greenhouse gases due from Greenland Mantle Plume volcanism resulting in Paleocene Eocene Thermal Maximum (PETM). India-Asia contact initiating Himalayan uplift.
50-51.5 Ma: Early Eocene climatic optimum.
50 Ma: Arctic Azolla Event reducing pCO$_2$ levels (? to less than 2000 ppm.) and initiating the shift towards the modern icehouse climate.
49-50 Ma: Initiation of eastern Antarctic glaciation resulting in glacioeustatic sea-level fall.
43 Ma: Preliminary onset of the Tasman Seaway. Moving direction of the Pacific Plate changes from NNW to WNW.

2nd stage: Tasmanian Seaway
38 Ma: Tethys closes between the Mediterranean and Indian Oceans.
33-34 Ma: Terminal Eocene Event. Major opening of the Tasmanian seaway between Antarctica and Tasmania leading to increased development of the Antarctic Circumpolar Current (ACC) triggering the onset of vigorous, oxygen-rich deep-water circulation and sequestration of atmospheric CO$_2$ at the Eocene/Oligocene transition. Lowered pCO$_2$ levels (to less than 1000 ppm) resulting in major Eastern Antarctic glaciation and glacioeustatic sea-level fall up to 350m.
30-31 Ma: Increased opening of the Drake Passage between Antarctica and South America
25 Ma: late Oligocene warming.

3rd stage: Tasman-Drake Seaways
23.5 Ma: Drake Passage opens between Antarctica and South America. Intensification of ACC. Mi-1 glaciation of Zachos (2001)

4th stage: Indo-Pacific separation
21-17 Ma: Initiation of Andean uplift, and acceleration of Himalayan uplift.

5th stage: Indo-Pacific connection
17 Ma: Closing of Indonesian seaway
15-17 Ma: Mid Miocene climatic optimum
14.5-15 Ma: Onset of middle-Miocene cooling
11-14 Ma: Major expansion of Eastern Antarctic Ice Sheet
9 Ma: Shoaling of Panama Isthmus
7-8 Ma: Asian monsoons intensify
6.5 Ma: Establishment of Western Antarctic ice sheet
6.5-6.2 Ma: Diatom accumulation rate (MAR) increase in California (6.5 Ma) and in high latitudes (6.2 Ma)
6 Ma: Minor warming event N7b of Tsuchi (1992)

6th stage: Bering Strait
5 Ma: Messinian salinity crisis
4.5 Ma: Diatom sedimentation increases in NW Pacific and decreases in California-Japan (Diatom event C of Barron, 1998)
3.5 Ma: Ice sheet development in Arctic Ocean (Kennett & Barker, 1990)
3.5-2 Ma: Closing of American Seaway (Panama Isthmus)
2.4 Ma: Expansion of Arctic Ice Sheet

Table 1. Global oceanographic-climatic events and Pacific gateway stages after Ogasawara (2002).
North Aleutian Shelf
COST No. 1

<table>
<thead>
<tr>
<th>Upper Sample Depth (ft)</th>
<th>Lower Sample Depth (ft)</th>
<th>Sample Type</th>
<th>nonmarine</th>
<th>paralic / brackish</th>
<th>marine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1390</td>
<td>1470</td>
<td>cuttings</td>
<td>63.7</td>
<td>13.7</td>
<td>20.7</td>
</tr>
<tr>
<td>1470</td>
<td>1560</td>
<td>cuttings</td>
<td>55.0</td>
<td>15.7</td>
<td>27.7</td>
</tr>
<tr>
<td>1560</td>
<td>1650</td>
<td>cuttings</td>
<td>62.3</td>
<td>12.7</td>
<td>22.7</td>
</tr>
<tr>
<td>1650</td>
<td>1740</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>1740</td>
<td>1830</td>
<td>cuttings</td>
<td>65.3</td>
<td>2.3</td>
<td>28.0</td>
</tr>
<tr>
<td>1830</td>
<td>1920</td>
<td>cuttings</td>
<td>67.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>1920</td>
<td>2010</td>
<td>cuttings</td>
<td>71.8</td>
<td>0.8</td>
<td>1.6</td>
</tr>
<tr>
<td>2010</td>
<td>2100</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2100</td>
<td>2200</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2200</td>
<td>2300</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>2300</td>
<td>2400</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>2400</td>
<td>2500</td>
<td>cuttings</td>
<td>62.3</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2500</td>
<td>2600</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>2600</td>
<td>2700</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>2700</td>
<td>2800</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2800</td>
<td>2900</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2900</td>
<td>3000</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>3000</td>
<td>3100</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>3100</td>
<td>3200</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3200</td>
<td>3300</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3300</td>
<td>3400</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>3400</td>
<td>3500</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>3500</td>
<td>3600</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3600</td>
<td>3700</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3700</td>
<td>3800</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>3800</td>
<td>3900</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>3900</td>
<td>4000</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4000</td>
<td>4100</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4100</td>
<td>4200</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>4200</td>
<td>4300</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>4300</td>
<td>4400</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4400</td>
<td>4500</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4500</td>
<td>4600</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>4600</td>
<td>4700</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>4700</td>
<td>4800</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>4800</td>
<td>4900</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4900</td>
<td>5000</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>5000</td>
<td>5100</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>5100</td>
<td>5200</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>5200</td>
<td>5300</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5300</td>
<td>5400</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
<tr>
<td>5400</td>
<td>5500</td>
<td>cuttings</td>
<td>64.4</td>
<td>1.4</td>
<td>3.0</td>
</tr>
<tr>
<td>5500</td>
<td>5600</td>
<td>cuttings</td>
<td>66.0</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>5600</td>
<td>5700</td>
<td>cuttings</td>
<td>63.0</td>
<td>1.0</td>
<td>3.0</td>
</tr>
<tr>
<td>5700</td>
<td>5800</td>
<td>cuttings</td>
<td>60.7</td>
<td>2.7</td>
<td>33.0</td>
</tr>
</tbody>
</table>

Table 2. Percent values of environmentally sensitive groups of palynomorphs in the COST well.
<table>
<thead>
<tr>
<th>Upper sample depth (ft)</th>
<th>Lower sample depth (ft)</th>
<th>Sample type</th>
<th>% bisaccate gymnosperms</th>
<th>% Tsugaepollenites</th>
<th>% pollen excluding thermophilic taxa</th>
<th>% thermophilic pollen</th>
<th>% Taxodiaceapollenites</th>
<th>% freshwater algae</th>
<th>% brackish water algae</th>
<th>% brackish water dinocysts</th>
<th>% marine algae</th>
<th>% Gonyalacacean dinocysts</th>
<th>% Protoperidiniacean dinocysts</th>
<th>TOTAL COUNT (counts less than 500 are due to low palynomorph recovery)</th>
</tr>
</thead>
</table>
| 5880 5970 cuttings | 5970 6060 cuttings | 6060 6150 cuttings | 6150 6240 cuttings | 6240 6330 cuttings | 6330 6420 cuttings | 6420 6510 cuttings | 6510 6600 cuttings | 6600 6690 cuttings | 6690 6780 cuttings | 6780 6870 cuttings | 6870 6960 cuttings | 6960 7050 cuttings | 7050 7140 cuttings | 7140 7230 cuttings | 7230 7320 cuttings | 7320 7410 cuttings | 7410 7500 cuttings | 7500 7590 cuttings | 7590 7680 cuttings | 7680 7770 cuttings | 7770 7860 cuttings | 7860 7950 cuttings | 7950 8040 cuttings | 8040 8130 cuttings | 8130 8220 cuttings | 8220 8310 cuttings | 8310 8400 cuttings | 8400 8490 cuttings | 8490 8580 cuttings | 8580 8670 cuttings | 8670 8760 cuttings | 8760 8850 cuttings | 8850 8940 cuttings | 8940 9030 cuttings | 9030 9120 cuttings | 9120 9210 cuttings | 9210 9300 cuttings | 9300 9390 cuttings | 9390 9480 cuttings | 9480 9570 cuttings | 9570 9660 cuttings | 9660 9750 cuttings | 9750 9840 cuttings | 9840 9930 cuttings | 9930 10020 cuttings | 10020 10110 cuttings | 10110 10200 cuttings | 10200 10290 cuttings | 10290 10380 cuttings | 10380 10470 cuttings | 10470 10560 cuttings |...
North Aleutian Shelf

COST No. 1

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>nonmarine</th>
<th>paralic / brackish</th>
<th>marine</th>
</tr>
</thead>
<tbody>
<tr>
<td>% bisaccate gymnosperms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% pollen excluding thermophilic taxa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% thermophilic pollen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% T. epoxidepollinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% T. ledaepollinates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% T. taxodiaceae pollenites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% freshwater algae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% brackish water algae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% brackish water dinocysts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% marine algae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Gonyalacacean dinocysts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% Protoperidiniacean dinocysts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL COUNT (counts less than 500 are due to low palynomorph recovery)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>nonmarine</th>
<th>paralic / brackish</th>
<th>marine</th>
</tr>
</thead>
<tbody>
<tr>
<td>% fungi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Percent values of environmentally sensitive groups of palynomorphs in the COST well.

Page 94
Table 2: Percent values of environmentally sensitive groups of palynomorphs in the COST well

<table>
<thead>
<tr>
<th>Sample Depth (ft)</th>
<th>Sample Type</th>
<th>% Biscate Gymnosperms</th>
<th>% Tsugaepollenites</th>
<th>% Pollen Excluding Thermophilic taxa</th>
<th>% Thermophilic Pollen</th>
<th>% Angiosperms</th>
<th>% Fungi</th>
<th>% Taxodiaceae pollenites</th>
<th>% Freshwater algae</th>
<th>% Freshwater diatoms</th>
<th>% Brackish Water Diatoms</th>
<th>% Marine Diatoms</th>
<th>% Marine Algae</th>
<th>% Gonyalacean dinocysts</th>
<th>% Protoperidiniacean dinocysts</th>
<th>% Brackish Water Algae</th>
<th>% Marine Algae</th>
<th>% Freshwater Algae</th>
<th>% Brackish Water Algae</th>
<th>% Marine Algae</th>
</tr>
</thead>
<tbody>
<tr>
<td>14790</td>
<td>14790 cuttings</td>
<td>29.0</td>
<td>6.0</td>
<td>4.0</td>
<td>58.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>14800</td>
<td>14890 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>69.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>14900</td>
<td>14980 cuttings</td>
<td>20.5</td>
<td>9.5</td>
<td>5.5</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15000</td>
<td>15080 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>61.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15100</td>
<td>15180 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.5</td>
<td>69.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15200</td>
<td>15290 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>62.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15300</td>
<td>15390 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15400</td>
<td>15490 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15500</td>
<td>15590 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15600</td>
<td>15690 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15700</td>
<td>15790 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15800</td>
<td>15890 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>15900</td>
<td>15990 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td>16090 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>16100</td>
<td>16190 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>16200</td>
<td>16290 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>16300</td>
<td>16390 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>16400</td>
<td>16490 cuttings</td>
<td>21.5</td>
<td>9.5</td>
<td>5.0</td>
<td>67.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
North Aleutian Basin

COST 1 well coal samples: kerogen types and major palynomorph groups

<table>
<thead>
<tr>
<th>Formation</th>
<th>KEROGEN TYPE (%)</th>
<th>PALYNOMORPH TYPE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESIN</td>
<td>AMORPHOUS</td>
</tr>
<tr>
<td>2640-2730</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>2730-2820</td>
<td>10</td>
<td>75</td>
</tr>
<tr>
<td>2820-2910</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>2910-3000</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>3000-3090</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>3090-3180</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>3180-3270</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>3270-3360</td>
<td>65</td>
<td>25</td>
</tr>
<tr>
<td>3360-3450</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>3450-3540</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>3540-3630</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>3630-3720</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>3720-3810</td>
<td>65</td>
<td>10</td>
</tr>
<tr>
<td>3810-3900</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>3900-3990</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>8130-8220</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>8220-8310</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>8310-8400</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>8400-8490</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>8580-8670</td>
<td>10</td>
<td>35</td>
</tr>
<tr>
<td>8670-8760</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>8760-8850</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>8850-8940</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>8940-9030</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>9030-9120</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>10,470-10,560</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>10,560-10,650</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>10,740-10,830</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>10,830-10,920</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>10,832.0</td>
<td>swc</td>
<td>40</td>
</tr>
<tr>
<td>10,920-11,010</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>11,010-11,100</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>11,100-11,190</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>11,190-11,280</td>
<td>10</td>
<td>65</td>
</tr>
<tr>
<td>11,280-11,370</td>
<td>5</td>
<td>60</td>
</tr>
<tr>
<td>11,370-11,460</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>11,460-11,550</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>11,550-11,640</td>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>11,640-11,730</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>11,730-11,820</td>
<td>15</td>
<td>65</td>
</tr>
</tbody>
</table>

Table 3. Percent values of major kerogen types and major palynomorph groups in COST well coals based on the present study.
North Aleutian Basin COST 1 well coal samples: kerogen types and major palynomorph groups

<table>
<thead>
<tr>
<th>KEROGEN TYPE (%)</th>
<th>PALYNOMORPH TYPE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIN AMORPHOUS</td>
<td>HERBACEOUS PALYNOMORPHS WOODY INERTINITE SACCATE GYMNOSPERM POLLEN ANGIOSPERM POLLEN SPORES TEXACEAEPOLENTIES FUNGI ALGAE DINOCYSTS</td>
</tr>
<tr>
<td>12,630 12,720 cuttings</td>
<td>35 45 5 15 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>12,720 12,810 cuttings</td>
<td>45 35 10 15 20 35 15 5 5</td>
</tr>
<tr>
<td>12,810 12,900 cuttings</td>
<td>25 60 5 10 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>12,900 12,990 cuttings</td>
<td>10 55 25 15 38 30 25 5 2</td>
</tr>
<tr>
<td>12,990 13,080 cuttings</td>
<td>5 80 10 5 20 50 20 5 5</td>
</tr>
<tr>
<td>13,080 13,170 cuttings</td>
<td>75 20 5 10 45 35 10</td>
</tr>
<tr>
<td>13,260 13,350 cuttings</td>
<td>75 20 5 20 40 35 5</td>
</tr>
<tr>
<td>13,350 13,440 cuttings</td>
<td>5 60 30 5 15 44 35 5 1</td>
</tr>
<tr>
<td>13,440 13,530 cuttings</td>
<td>10 70 15 5 10 45 40 5</td>
</tr>
<tr>
<td>13,530 13,620 cuttings</td>
<td>5 70 15 10 10 40 40 10</td>
</tr>
<tr>
<td>13,620 13,710 cuttings</td>
<td>75 15 10 20 35 35 10 5 1</td>
</tr>
<tr>
<td>13,710 13,800 cuttings</td>
<td>65 10 20 5 15 35 38 10 2</td>
</tr>
<tr>
<td>13,800 13,890 cuttings</td>
<td>75 20 5 20 38 35 5 2</td>
</tr>
<tr>
<td>13,890 13,980 cuttings</td>
<td>15 55 10 15 5 10 49 5 1</td>
</tr>
<tr>
<td>13,980 14,070 cuttings</td>
<td>5 60 15 20 10 40 43 5 2</td>
</tr>
<tr>
<td>14,070 14,160 cuttings</td>
<td>15 65 10 10 15 44 35 5 1</td>
</tr>
<tr>
<td>14,160 14,250 cuttings</td>
<td>5 65 25 5 10 39 40 10 1</td>
</tr>
<tr>
<td>14,250 14,340 cuttings</td>
<td>25 60 5 10 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>14,340 14,430 cuttings</td>
<td>15 70 5 10 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>14,430 14,520 cuttings</td>
<td>75 15 10 20 10 40 38 35 5 2</td>
</tr>
<tr>
<td>14,520 14,610 cuttings</td>
<td>55 25 10 10 5 73 15 5 2</td>
</tr>
<tr>
<td>14,610 14,700 cuttings</td>
<td>75 15 5 5 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>14,700 14,790 cuttings</td>
<td>15 65 10 10 10 35 50 5</td>
</tr>
<tr>
<td>14,790 14,880 cuttings</td>
<td>5 60 25 10 40 30 25 5</td>
</tr>
<tr>
<td>14,880 14,970 cuttings</td>
<td>15 45 30 10 25 39 35 1</td>
</tr>
<tr>
<td>14,970 15,060 cuttings</td>
<td>15 55 20 10 20 44 35 1</td>
</tr>
<tr>
<td>15,060 15,150 cuttings</td>
<td>10 60 15 15 15 44 40 1</td>
</tr>
<tr>
<td>15,150 15,240 cuttings</td>
<td>30 45 5 20 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>15,240 15,330 cuttings</td>
<td>35 40 10 15 5 39 55 1</td>
</tr>
<tr>
<td>15,420 15,510 cuttings</td>
<td>40 45 5 10 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>15,510 15,600 cuttings</td>
<td>60 33 2 5 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>15,600 15,690 cuttings</td>
<td>65 25 5 5 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>15,690 15,780 cuttings</td>
<td>15 65 2 18 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>16,590 16,680 cuttings</td>
<td>5 10 85 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>16,680 16,770 cuttings</td>
<td>5 5 90 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>16,770 16,860 cuttings</td>
<td>10 90 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>16,860 16,950 cuttings</td>
<td>5 95 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>16,950 17,040 cuttings</td>
<td>5 95 INDETERMINATE (TOO RARE)</td>
</tr>
<tr>
<td>Depth</td>
<td>Sample Type</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>8314.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>10832.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>11102.5</td>
<td>Conventional Core 13/Robertson Research</td>
</tr>
<tr>
<td>11224.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>12021.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>12250.8</td>
<td>Exlog/Conventional Core 14</td>
</tr>
<tr>
<td>12251.2</td>
<td>Conventional Core 14/Robertson Research</td>
</tr>
<tr>
<td>12252.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>12262.4</td>
<td>Conventional Core 14/Robertson Research</td>
</tr>
<tr>
<td>12269.3</td>
<td>Conventional Core 14/Robertson Research</td>
</tr>
<tr>
<td>12510.0</td>
<td>Exlog-Cuttings-Hand Picked brown-black shales</td>
</tr>
<tr>
<td>12570.0</td>
<td>Exlog-Cuttings-Hand Picked brown-black shales</td>
</tr>
<tr>
<td>12630.0</td>
<td>Exlog-Cuttings-Hand Picked brown-black shales</td>
</tr>
<tr>
<td>12630.9</td>
<td>Conventional Core 15/Robertson Research</td>
</tr>
<tr>
<td>12634.8</td>
<td>Conventional Core 15/Robertson Research</td>
</tr>
<tr>
<td>12635.4</td>
<td>Conventional Core 15/Robertson Research</td>
</tr>
<tr>
<td>12635.4</td>
<td>Exlog/Conventional Core 15</td>
</tr>
<tr>
<td>12644.0</td>
<td>Exlog/Conventional Core 15</td>
</tr>
<tr>
<td>12620.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>12825.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>13275.0</td>
<td>Sidewall Cores/Robertson Research</td>
</tr>
<tr>
<td>14167.3</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>14167.4</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14167.7</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14168.0</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>14179.1</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14179.4</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14179.4</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>14183.8</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14183.8</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>14183.8</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>14186.2</td>
<td>Conventional Core 16/Robertson Research</td>
</tr>
<tr>
<td>14186.5</td>
<td>Exlog/Conventional Core 16</td>
</tr>
<tr>
<td>15364.7</td>
<td>Exlog/Conventional Core 17/Robertson Research</td>
</tr>
<tr>
<td>16011.8</td>
<td>Exlog/Conventional Core 18</td>
</tr>
</tbody>
</table>

Table 4. Sidewall and conventional core samples with a reported HI exceeding 150 by Dow (1983, in Robertson Research, 1983) and Exlog (1983). Most of the samples contain coals.
Figure 1. Location map: North Aleutian Shelf COST No.1 well in red, Port Moller in white (Finzel et al., 2009), Cook Inlet in green (Reininck-Smith & Leopold, 2005), DSDP Leg 19 sites in orange (Bujak 1984), Navarin Basin, Norton Sound, St. George Basin COST wells in pink (Matsuoka & Bujak 1987), Sea of Japan (Matsuoka, Bujak & Shimazaki, 1987) and DSDP Leg 57, offshore northeastern Japan (Kurita & Obuse, 2003) in yellow.
Figure 2. (A) Location map of the area studies by Finzel et al. (2009), showing the Bristol Bay Basin and North Aleutian Shelf COST No. 1 well. The shaded contours are an isopach map of Cenozoic strata. (B) Geological map showing the location of sections studied by Finzel et al. (2009). Figure from Finzel et al. (2009, figure 1). AAPG©2010, reprinted by permission of the AAPG whose permission is required for further use.
Figure 3. Composite stratigraphic section of the Bear Lake Formation in the vicinity of Port Moller, Alaska, showing age, lithology, and palynological and macrofossil data. Stratigraphic locations of the fossil samples are shown on the right of the lithological section. Evidence for interpreted ages is outlined in the third column. Figure from Finzel et al. (2009, figure 6). AAPG©2010, reprinted by permission of the AAPG whose permission is required for further use.
Figure 4. (A) Depositional configuration, interpreted depositional environments, and key sedimentary structures of the Bear Lake Formation at the localities studied by Finzel et al. (2009). Angiosperm conifer forests, freshwater fluvial channels, and peat-forming environments are common in the upper, nonmarine parts of the estuarine system. Carbonaceous shale and mud-rich wavy bedding characterize the supratidal parts of the system. Intertidal channels and flats of the middle and lower parts of the estuarine system are represented by flaser bedding, mussel banks, and lateral accretion surfaces. In the subtidal part of the estuary, sand-rich macroforms and conglomeratic storm deposits are typical. (B) The stratigraphic configuration of the Bear Lake Formation shows it to be a product of a transgressive estuarine depositional system at the localities studied by Finzel et al. (2009) indicated by the upward change from nonmarine fluvial environments through supratidal and intertidal deposition, culminating if subtidal strata at the top of the section. Reservoir slices highlight how the types of reservoirs change with stratigraphic position in the Bear Lake Formation. (From Finzel et al., 2009, Figure 12). AAPG©2010, reprinted by permission of the AAPG whose permission is required for further use.
Figure 6. North Pacific-Bering Sea Cenozoic palynological zones (this study), plotted against the succession of Pacific gateways (after Ogasawara, 2002) and the composite oxygen isotope curve of Zachos et al. (2001). Major climatic events are shown in red (warm) and blue (cold), plus the Arctic Azolla event in green coincident with the greenhouse to icehouse shift. TEE = Terminal Eocene Event, LOW = Late Oligocene Warming Event, MMCO = middle Miocene climatic optimum (see Figure 7 for key).
Figure 7. Key to Pacific Cenozoic gateways (after Ogasawara, 2002)
Figure 8. Dinocyst zones erected for Bering Sea / northern North Pacific DSDP Leg 19 by Bujak (1984).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALEOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIGOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLIOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>late</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>middle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>early</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Cannosphaeropsis sp. B of Bujak 1984
- Multispinula minuta
- Areosphaeridium diktyoplokus
- Beringella fritilla
- Brigantedinium spp.
- Chiropteridium dispersum
- Filisphaera filifera
- Gelatia inflata
- Halodinium major
- Halodinium minor
- Hystrichokolpoma cf. cinctum sensu Bujak 1984
- Hystrichostrogylon membraniphorum
- Impagidinium pacificum
- Impagidinium pallidum
- Impagidinium velorum
- Kallosphaeridium curiosum
- Lejeunecysta fallax
- Lejeunecysta globosa
- Nematosphaeropsis lemniscata
- Operculodinium centrocarpum
- Phthanoperidinium bennetii
- Phthanoperidinium comatum
- Quinquecuspis concentricum
- Selenopemphix cf. armata sensu Bujak 1984
- Selenopemphix nephroides
- Selenopemphix sp. A of Bujak 1984
- Spiniferites cf. membranaceus sensu Bujak 1984
- Spiniferites frigidus
- Spiniferites ramosus
- Spiniferites ovatus
- Tectatodinium pellitum
- Trinovantedinium boreale
- Tuberculodinium vancampoae
- Xandarodinium variabile
- D. seminae
- D. octangulatus
- S. frigidus
- D. octanarius
- A. ocuatus
- D. subarctios
- N. lemniscata
- I. pacificum
- D. seminae fossilis
- A. rectangulare
- D. kamtschatica
- D. jimlingii
- D. kamtschatica
- D. quniququangellus
- D. hustedtii
- Mesocenosicula apiculata
- Tortonian
- Mesocenosicula x
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. lauta
- C. triacantha
- A. rectangulare
- D. kamtschatica
- D. quniququangellus
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early
- D. hustedtii
- D. lauta
- Langhian
- A. ingens
- D. lauta
- C. triacantha
- early

- Figure 8.xls
Figure 9. Dinocyst zones erected for the Navarin Basin, Norton Sound and the St. George Basin COST wells by Matsuoka & Bujak (1988).
<table>
<thead>
<tr>
<th>AGE / STAGE</th>
<th>PALYNOLOGICAL ZONES (THIS STUDY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALEOCENE</td>
<td>Ioanian</td>
</tr>
<tr>
<td>late Thanetian</td>
<td></td>
</tr>
<tr>
<td>late Chattian</td>
<td></td>
</tr>
<tr>
<td>OLIGOCENE</td>
<td></td>
</tr>
<tr>
<td>late Gelasian</td>
<td></td>
</tr>
<tr>
<td>MIOCENE</td>
<td></td>
</tr>
<tr>
<td>late Messinian</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PLIOCENE</td>
<td></td>
</tr>
<tr>
<td>early Ypresian</td>
<td></td>
</tr>
<tr>
<td>early Rupelian</td>
<td></td>
</tr>
<tr>
<td>late Burdigalian</td>
<td></td>
</tr>
<tr>
<td>S. cf. membranaceus</td>
<td></td>
</tr>
<tr>
<td>early Zanclean</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>late Bartonian</td>
<td></td>
</tr>
<tr>
<td>C. columna E1</td>
<td></td>
</tr>
<tr>
<td>PIAZZENIAN</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Aquitanian</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Langhian</td>
<td></td>
</tr>
<tr>
<td>D. colligerum</td>
<td></td>
</tr>
<tr>
<td>late Priabonian</td>
<td></td>
</tr>
<tr>
<td>S. ovatus P1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>early A. diktyoplokus</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>N. lemniscata PL1</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Calabrian</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>late Piacenzian</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Japanese area due to warmer waters. Species</td>
<td></td>
</tr>
<tr>
<td>REGIONAL NORTH PACIFIC - BERING SEA</td>
<td></td>
</tr>
<tr>
<td>Key to symbols: x present; black x abundant; red x indicates extended range in Japanese area but not in the Bering Sea - and their zonal highest occurrences (e.g.,</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>A. homomorphum P</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>I. pacificum P2</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Beringella fritilla</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Brigantedinium spp.</td>
<td></td>
</tr>
<tr>
<td>Halodinium major</td>
<td></td>
</tr>
<tr>
<td>Halodinium minor</td>
<td></td>
</tr>
<tr>
<td>Operculodinium centrocarpum</td>
<td></td>
</tr>
<tr>
<td>Quinquecuspis concentricum</td>
<td></td>
</tr>
<tr>
<td>Spiniferites edwardsii</td>
<td></td>
</tr>
<tr>
<td>Glaphyrocysta ordinata</td>
<td></td>
</tr>
<tr>
<td>Glaphyrocysta exuberans</td>
<td></td>
</tr>
<tr>
<td>Areoligera senonensis</td>
<td></td>
</tr>
<tr>
<td>Apectodinium homomorphum</td>
<td></td>
</tr>
</tbody>
</table>
Figure 11. Regional North Pacific – Bering Sea palynological zonation of Bujak (this study) plotted against other relevant microfossil schemes and Alaskan stages.

AGE / STAGE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLEISTOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Glacial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Denali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early Denali</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Calabrian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLIGOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Tortonian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALEOCENE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11.xls
APPENDIX A

Stratigraphic Charts 1 and 2
Bear Lake Formation: correlation with onshore data of Finzel et al. (2009)

Well Name: North Aleutian COST 1

Seismic Sequence (Turner et al., 1988, pl. 1 and Sherwood et al., 2006, pl. 2)

Formation Stratigraphy (Bujak Research, this study)

Age Chronostratigraphy (Bujak Research, this study)

Zone Palynological zones (Bujak Research, this study)

Sub Zone

Absolute age assignment (Bujak Research, this study)

Formation Finzel et al. (2009) onshore localities

Age Chronostratigraphy (Finzel et al. 2005)

Finzel et al. (2009) interpreted depositional environments
APPENDIX B

Species Occurrence Charts 1, 2, and 3
<table>
<thead>
<tr>
<th>depth (ft)</th>
<th>upper sample</th>
<th>lower sample</th>
<th>sample type</th>
<th>depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57-58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59-60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61-62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63-64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69-70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73-74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75-76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77-78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81-82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83-84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87-88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89-90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91-92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97-98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Species Occurrence Chart 1: all taxa arranged alphabetically within major palynomorph groups (Bujak Research International study, November 2009)
<table>
<thead>
<tr>
<th>Sample Depth (ft)</th>
<th>Type</th>
<th>Age</th>
<th>Zonal Tops of Marker Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>17,155.0</td>
<td>TD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,715.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,870</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,510</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14,186.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,890</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,710</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13,440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,990</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12,540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11,010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,560</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

North Aleutian Shelf COST No. 1 well. Species occurrence chart 2: palynological zone markers arranged by highest occurrence (Bojak Research International study, November 2006)