

BOEM State Task Force Meeting for Maryland

Maryland Wind Energy Area

John Walters
U.S. Coast Guard Fifth District

Emile Benard U.S. Coast Guard Atlantic Area

29 January 2013

Provide the task force with the latest information & analysis regarding navigational conflicts.

Background

- 1st Task Force Meeting April 14, 2010
- 2nd Task Force Meeting July 14, 2010
- RFI Closed January 10, 2011
- 3rd Task Force Meeting March 23, 2011

Background

- ACPARS Workgroup formed March 2011
- ACPARS Notice of Study May 11, 2011
- USCG R-Y-G for Maryland June 10, 2011
- 4th Task Force Meeting June 24, 2011
- Initial ACPARS comment period closed August 9, 2011
- Call for Information & Nominations
 Feb 3, 2012

Initial Draft R-Y-G

3rd Task Force Meeting

March 23, 2011

Maryland Potential Call Area

3rd Task Force Meeting

March 23, 2011

4th Task Force Meeting

June 24, 2011

4th Task Force Meeting

June 24, 2011

4th Task Force Meeting

June 24, 2011

MD Call Area

What's new?

- ACPARS Public Comments- August 2011 and January 2012
- ACPARS Interim Report- Spring 2012
- NOAA refined AIS products Fall 2012
 - Continental U.S.
 - All vessels
- BOEM AIS products available on MMC
 - Atlantic Coast
 - By vessel type
- View of Atlantic Coast as a system

MD Call Area

40	44	37	_42	48	49	36	29	492	150	569	608	166	48	56	172	589	570	251	152	147	121	406	106	108
39	35	31	40	44	50	045	35	-36	/72 / ₄	254	649	468	101	33	73	290	552	409	235	165	128	108	107	110
34	34	39	30	36	50	2 ⁴⁸		35	45	97 GG 2		633	⁾ 321	78 662	86	178	373	5440 555	304	199	153		114	100
25	34	662 -35	26	38	47	48	45 45	35/	//39	662	156	511	548		135	160	250	351/	338	245	185	662 150	127	117
29	37	36	28	32	40	51	346	42	44	62	90	263	518	384	220	192	223	256	283	270	200	168	144	122
33	37	32	27	33	37) 00s	50 [7	43	44	1 ⁴⁸	69	151 ,	385	423	1284	213	222	214	212	245	230	173	141	132
41	35	25 66	73	26	38	55 66	54 74	53	52	49 66	63 75	107	277	1	338 76	231	240	215 66	201 77	193	202	176 66	137 78	118
/ 46 //	ghi	27 S/	24 O#1	24	43	41	47	54	4 ⁶¹	53	53	96	228	1	-313 /	283	231	185	208	197	182	185	136	117
41	22	24	24	28	43	46	55	61	58	51	54	95	207	244	237	308	282	160	166	180	177	200	167	135
36	22	25	23	23	37		ر 47	62	57	51	60	91	192	217	175	265	311	188	152	138	152	155	194	184
28	24	24 67	20 23	27	47_	48	58/ 7 24	56	49	59V/ 67	72 7 2 5	92	167		157 26	204	285		166 27	147	133		143 28 _	193
27	28	22	24	34	47	44	55	3	50	68	81	93_	134	205	142	164	238	234	181	156	117	127	114	161
27	26	24	28	38	39	45	56	45	52	70	83	91/	134	200	159	142	205	226	184	172	-	123	130	133
30	25	30	31	38	43	50/	47	44	60	76	84	79-	128			129	187	205		173	163″	143	1	124
29	19	30 67	34 73	(35)	41	67	44 I 774	46	53	72 67	83 7 75	87	119		174 776	120	174	184 67	777	155	178		158 7 8	131
29	21	26	43	34	44 -	1/46	44	48	58	72	68	[88]	119	159	170	120	169	166	140	148	178	183	173	136
23	18	37	/52	40	48	51	46	54)	56	65	78	82	118	138		122	7	152			163	196	182	162
16	21	39	48	45	45	44	43_	49	57	65	82	77	111	131	157		(153	149		131	145	199	188	178
18	28	45 682	3	50	52	448 682	51 4 ()	53	60 1 1	65 682	⁷⁸	72	101	133 682		133	160	142 682	7	131	138	174 682	83	198
		1 ⁵²	e:			$\mathbf{G}^{\!(\!$	50	45	57 '	59	70	63	84	14	146	-	158	139		120		/ -		218
22	_		50	51/	52	49	48	45	67	63	59	58	81	_ \	151	144		128	1.4	126	133		183	189
25	45	59	/56A	52	45	1483	47	46	62	54	51	49	80	112	156	160	153	135	127	134	137	148	191	166

All Commercial Vessels 2010

All Commercial Vessels 2010

All Commercial Vessels 2010

Cargo Vessels 2010

Passenger Vessels 2010

Tank Vessels 2010

Tugs and Towing 2010

Tugs and Towing w/WEAs 2010

Existing Tug and Barge Lane

Existing Tug and Barge Lane

Impacts of Re-routing Offshore

Tug & barges currently transit through the MD WEA

- Divert Offshore (30+ NM)
 - Weather and sea state conditions
 - Mixing vessel types, slow vs. fast moving
- Divert Inshore
 - Increased vessel density at DelBay entrance
 - Longer Transits
- Transit through wind farm
 - Significant navigation risk concern
 - May require actions to prevent from occurring

Other Issues/Concerns

- How does MD WEA impact routes or approaches to other areas
- Cumulative impacts of multiple WEAs
- Thresholds- Volume/density of traffic vs. critical routes
- Tug/barge routes vary based on weather, sea state, depth of water (catenary)

In Conclusion

- Conflicts Remain
- Re-routing may result in an unacceptable level of risk
- Cumulative effects may require a holistic approach to resolve

Source: BOEM

Way Forward

Proceed with caution until impacts of developing the WEA are fully analyzed

- Modeling and Analysis Fall 2013
- Complete EIS prior to approval of COP
 - Full Navigational Safety Risk Assessment
 - Address cumulative Impacts

Questions?

John Walters

Fifth District Waterways Management John.R.Walters@uscg.mil

ACPARS@USCG.MIL
www.uscg.mil/LANTAREA/ACPARS