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Background

 To model and predict the distribution of
selected seabird species in the NW Atlantic

— gather seabird data and biotic and abiotic
variables

— develop models for seabirds using available data
and environmental variables



Seabird Occurrence Database

PR YRR L ST e

>250,000 seabird
observation from U.S.
Atlantic waters (>100k from
Canada in PIROP)

.......

most data collected from
1978 through 2009

L -"".n

Data collected using a mix of |
. . pe . . e ; s, o -
scientific and non-scientific ., 6 Atlantic Bight
methods 5 XAl

"1:_ . i' b




Standardized Effort

e We standardized survey
effort to account for both
discrete-time and
continuous-strip surveys.

e Standardized 5-minute
equivalents in each cell.




Overview

e ~ 70 sea bird species in the data base that are
typically found in the Atlantic

» 10 — 15 of particular interest

* Demonstrate two modeling techniques
» Broad species distribution mapping
» Community occupancy modeling



Spatial Poisson Regression

e Poisson observation model (commonly used for
count data) with explicit spatial correlation and
covariates
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Truncated Data

e Set any count over 30 to be equal to 30
e This improves fitting a distribution to the data

e Possible aggregations are eliminated by this
truncation



Truncated Count Frequency
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Poisson Model
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where y;; Is the observation at grid cell 1 during
survey | In yeart

The log-linear full model is:

lug(j{.m) — lng(effm‘t”) + a+a, [Mﬂnthu]

+ 1 * S8T;j + B, * Chloryj + p3*x NAO, + £,
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Breaking Down the Model

log(2;j) = log(effort;;) + a + ay|Month;;]

Where:
- effort is an offset term
- a Is the intercept
- a, is a seasonal effect (month)




Breaking Down the Model




Spatial Random Effect

e Conditional autoregression (CAR)

[2,,2,,...,2.]~ Normal (0,5* (I — pW) ™)

e Useful when data have a discrete support (e.g. areal
measurements — counties, strata, etc.)
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Spatial Random Effect

e Y decimal degree
size

e 1,909 grid cells

e 1,066 sampled at
least once
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Bayesian Framework

 We used a Bayesian framework for the
analysis

— Used all uninformative priors on the covariate
parameters

e Model was implemented in WinBUGS

 We visually checked the chains for
convergence and all Rhat values < 1.1
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NOGA — Monthly Effect

Baseline Expected Count




Results — NOGA
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GRSH — Monthly Effect
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Results — GRSH

Summer Winter




WISP — Monthly Effect

Month




Results — WISP

Summer Winter
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Monthly Effect
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Results — ROST
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Results — Covariates

SST -0.77 -0.96 -0.30 2.53

Chlor 0.03 -0.02 -0.03 0.15

* All shown values are different from O

*We likely need to incorporate SST squared term,
spatial by month effect, and possibly NAO lag

NAO 0.05 0.03 0.04 0.38
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Summary

* Modeled the species distribution patterns with
explicit spatial correlation and with estimations of
uncertainty for 9 species so far

* Provided insight into covariates that are affecting
distributional patterns

e Combine individual species maps to determine if
there are community patterns



Shortcomings

 General lack of sea bird data collected in a rigorous
way across broad areas

e Data are combined over many years from various
survey types

e Detection of individuals, or even species, cannot be
accounted for with such data



Occupancy Models

e |If we look at areas with repeated aerial surveys, we
can estimate detection and species richness through
the use of site-occupancy models

* This allows us to understand the probability of
detecting a species given that it is present

 We expect that detection is very different among
species



Massachusetts Audubon

Nantucket Sound

Conducted 54 aerial surveys from August 2002 to
March 2006

Multiple transects flown at 500 ft above sea level
Area of ~1,400 km?

23 sea bird species were observed (there were other
shore birds, ducks, etc. that were not included in this
analysis)



Nantucket Sound




Community Models

* Create a detection array, X, where x; =1 if species i is
detected at site j during the kth sampling occasion

 We link species-specific parameters through a
hierarchical model with community level parameters



Simple Occupancy Models

1. Model x;, as a Bernoulli random variable:

Xije ~ Bern(p,jk z,-jk)

- Where p, is the detection probability of species i
at site j for the kth survey, given that species i was
present at site

- we included Julian date and effort in the model of
detection



Simple Occupancy Models

2. Model occupancy, z;, such that:
Z; ~ Bern(W;)

—where W;; is the probability of occurrence



Bayesian Analysis

 We used a Bayesian framework for the analysis
— Used all uninformative priors on the covariate parameters

* Model was implemented in WinBUGS

* We visually checked the chains for convergence and
all Rhat values



Detectability

Wilson's Storm Petrel
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Detectability

Common Tern
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Detectability
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Roseate Tern
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Detectability

Photo by Paul Joyce
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Species Richness




Summary

e Detection was very different by species
e Detection varied by Julian date for all species

e Occupancy was different by species and with
more data, we can model by season or date as

well



Implications

e Results indicate that some species, like Roseate
Terns, maybe difficult to detect from aerial surveys.

 Here, in order to have a 95% chance of seeing
Roseate Terns when they occupy an area, you would
need to conduct at least 15 repeated surveys.




Summary

* More data to improve models at the broad scale

e Detection of species by different survey types is
important to estimating occupancy and hence
abundance

e More work to be done in combining such
information to improve our understanding of sea bird

dynamics
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Wilson’s Storm-petrel Count
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